linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/kernel.h>
  44#include <linux/list.h>
  45#include <linux/list_nulls.h>
  46#include <linux/timer.h>
  47#include <linux/cache.h>
  48#include <linux/module.h>
  49#include <linux/lockdep.h>
  50#include <linux/netdevice.h>
  51#include <linux/skbuff.h>       /* struct sk_buff */
  52#include <linux/mm.h>
  53#include <linux/security.h>
  54#include <linux/slab.h>
  55
  56#include <linux/filter.h>
  57#include <linux/rculist_nulls.h>
  58#include <linux/poll.h>
  59
  60#include <linux/atomic.h>
  61#include <net/dst.h>
  62#include <net/checksum.h>
  63
  64/*
  65 * This structure really needs to be cleaned up.
  66 * Most of it is for TCP, and not used by any of
  67 * the other protocols.
  68 */
  69
  70/* Define this to get the SOCK_DBG debugging facility. */
  71#define SOCK_DEBUGGING
  72#ifdef SOCK_DEBUGGING
  73#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  74                                        printk(KERN_DEBUG msg); } while (0)
  75#else
  76/* Validate arguments and do nothing */
  77static inline void __attribute__ ((format (printf, 2, 3)))
  78SOCK_DEBUG(struct sock *sk, const char *msg, ...)
  79{
  80}
  81#endif
  82
  83/* This is the per-socket lock.  The spinlock provides a synchronization
  84 * between user contexts and software interrupt processing, whereas the
  85 * mini-semaphore synchronizes multiple users amongst themselves.
  86 */
  87typedef struct {
  88        spinlock_t              slock;
  89        int                     owned;
  90        wait_queue_head_t       wq;
  91        /*
  92         * We express the mutex-alike socket_lock semantics
  93         * to the lock validator by explicitly managing
  94         * the slock as a lock variant (in addition to
  95         * the slock itself):
  96         */
  97#ifdef CONFIG_DEBUG_LOCK_ALLOC
  98        struct lockdep_map dep_map;
  99#endif
 100} socket_lock_t;
 101
 102struct sock;
 103struct proto;
 104struct net;
 105
 106/**
 107 *      struct sock_common - minimal network layer representation of sockets
 108 *      @skc_daddr: Foreign IPv4 addr
 109 *      @skc_rcv_saddr: Bound local IPv4 addr
 110 *      @skc_hash: hash value used with various protocol lookup tables
 111 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 112 *      @skc_family: network address family
 113 *      @skc_state: Connection state
 114 *      @skc_reuse: %SO_REUSEADDR setting
 115 *      @skc_bound_dev_if: bound device index if != 0
 116 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 117 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 118 *      @skc_prot: protocol handlers inside a network family
 119 *      @skc_net: reference to the network namespace of this socket
 120 *      @skc_node: main hash linkage for various protocol lookup tables
 121 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 122 *      @skc_tx_queue_mapping: tx queue number for this connection
 123 *      @skc_refcnt: reference count
 124 *
 125 *      This is the minimal network layer representation of sockets, the header
 126 *      for struct sock and struct inet_timewait_sock.
 127 */
 128struct sock_common {
 129        /* skc_daddr and skc_rcv_saddr must be grouped :
 130         * cf INET_MATCH() and INET_TW_MATCH()
 131         */
 132        __be32                  skc_daddr;
 133        __be32                  skc_rcv_saddr;
 134
 135        union  {
 136                unsigned int    skc_hash;
 137                __u16           skc_u16hashes[2];
 138        };
 139        unsigned short          skc_family;
 140        volatile unsigned char  skc_state;
 141        unsigned char           skc_reuse;
 142        int                     skc_bound_dev_if;
 143        union {
 144                struct hlist_node       skc_bind_node;
 145                struct hlist_nulls_node skc_portaddr_node;
 146        };
 147        struct proto            *skc_prot;
 148#ifdef CONFIG_NET_NS
 149        struct net              *skc_net;
 150#endif
 151        /*
 152         * fields between dontcopy_begin/dontcopy_end
 153         * are not copied in sock_copy()
 154         */
 155        /* private: */
 156        int                     skc_dontcopy_begin[0];
 157        /* public: */
 158        union {
 159                struct hlist_node       skc_node;
 160                struct hlist_nulls_node skc_nulls_node;
 161        };
 162        int                     skc_tx_queue_mapping;
 163        atomic_t                skc_refcnt;
 164        /* private: */
 165        int                     skc_dontcopy_end[0];
 166        /* public: */
 167};
 168
 169/**
 170  *     struct sock - network layer representation of sockets
 171  *     @__sk_common: shared layout with inet_timewait_sock
 172  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 173  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 174  *     @sk_lock:       synchronizer
 175  *     @sk_rcvbuf: size of receive buffer in bytes
 176  *     @sk_wq: sock wait queue and async head
 177  *     @sk_dst_cache: destination cache
 178  *     @sk_dst_lock: destination cache lock
 179  *     @sk_policy: flow policy
 180  *     @sk_rmem_alloc: receive queue bytes committed
 181  *     @sk_receive_queue: incoming packets
 182  *     @sk_wmem_alloc: transmit queue bytes committed
 183  *     @sk_write_queue: Packet sending queue
 184  *     @sk_async_wait_queue: DMA copied packets
 185  *     @sk_omem_alloc: "o" is "option" or "other"
 186  *     @sk_wmem_queued: persistent queue size
 187  *     @sk_forward_alloc: space allocated forward
 188  *     @sk_allocation: allocation mode
 189  *     @sk_sndbuf: size of send buffer in bytes
 190  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 191  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 192  *     @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 193  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 194  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 195  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 196  *     @sk_gso_max_size: Maximum GSO segment size to build
 197  *     @sk_lingertime: %SO_LINGER l_linger setting
 198  *     @sk_backlog: always used with the per-socket spinlock held
 199  *     @sk_callback_lock: used with the callbacks in the end of this struct
 200  *     @sk_error_queue: rarely used
 201  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 202  *                       IPV6_ADDRFORM for instance)
 203  *     @sk_err: last error
 204  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 205  *                   persistent failure not just 'timed out'
 206  *     @sk_drops: raw/udp drops counter
 207  *     @sk_ack_backlog: current listen backlog
 208  *     @sk_max_ack_backlog: listen backlog set in listen()
 209  *     @sk_priority: %SO_PRIORITY setting
 210  *     @sk_type: socket type (%SOCK_STREAM, etc)
 211  *     @sk_protocol: which protocol this socket belongs in this network family
 212  *     @sk_peer_pid: &struct pid for this socket's peer
 213  *     @sk_peer_cred: %SO_PEERCRED setting
 214  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 215  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 216  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 217  *     @sk_rxhash: flow hash received from netif layer
 218  *     @sk_filter: socket filtering instructions
 219  *     @sk_protinfo: private area, net family specific, when not using slab
 220  *     @sk_timer: sock cleanup timer
 221  *     @sk_stamp: time stamp of last packet received
 222  *     @sk_socket: Identd and reporting IO signals
 223  *     @sk_user_data: RPC layer private data
 224  *     @sk_sndmsg_page: cached page for sendmsg
 225  *     @sk_sndmsg_off: cached offset for sendmsg
 226  *     @sk_send_head: front of stuff to transmit
 227  *     @sk_security: used by security modules
 228  *     @sk_mark: generic packet mark
 229  *     @sk_classid: this socket's cgroup classid
 230  *     @sk_write_pending: a write to stream socket waits to start
 231  *     @sk_state_change: callback to indicate change in the state of the sock
 232  *     @sk_data_ready: callback to indicate there is data to be processed
 233  *     @sk_write_space: callback to indicate there is bf sending space available
 234  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 235  *     @sk_backlog_rcv: callback to process the backlog
 236  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 237 */
 238struct sock {
 239        /*
 240         * Now struct inet_timewait_sock also uses sock_common, so please just
 241         * don't add nothing before this first member (__sk_common) --acme
 242         */
 243        struct sock_common      __sk_common;
 244#define sk_node                 __sk_common.skc_node
 245#define sk_nulls_node           __sk_common.skc_nulls_node
 246#define sk_refcnt               __sk_common.skc_refcnt
 247#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 248
 249#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 250#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 251#define sk_hash                 __sk_common.skc_hash
 252#define sk_family               __sk_common.skc_family
 253#define sk_state                __sk_common.skc_state
 254#define sk_reuse                __sk_common.skc_reuse
 255#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 256#define sk_bind_node            __sk_common.skc_bind_node
 257#define sk_prot                 __sk_common.skc_prot
 258#define sk_net                  __sk_common.skc_net
 259        socket_lock_t           sk_lock;
 260        struct sk_buff_head     sk_receive_queue;
 261        /*
 262         * The backlog queue is special, it is always used with
 263         * the per-socket spinlock held and requires low latency
 264         * access. Therefore we special case it's implementation.
 265         * Note : rmem_alloc is in this structure to fill a hole
 266         * on 64bit arches, not because its logically part of
 267         * backlog.
 268         */
 269        struct {
 270                atomic_t        rmem_alloc;
 271                int             len;
 272                struct sk_buff  *head;
 273                struct sk_buff  *tail;
 274        } sk_backlog;
 275#define sk_rmem_alloc sk_backlog.rmem_alloc
 276        int                     sk_forward_alloc;
 277#ifdef CONFIG_RPS
 278        __u32                   sk_rxhash;
 279#endif
 280        atomic_t                sk_drops;
 281        int                     sk_rcvbuf;
 282
 283        struct sk_filter __rcu  *sk_filter;
 284        struct socket_wq __rcu  *sk_wq;
 285
 286#ifdef CONFIG_NET_DMA
 287        struct sk_buff_head     sk_async_wait_queue;
 288#endif
 289
 290#ifdef CONFIG_XFRM
 291        struct xfrm_policy      *sk_policy[2];
 292#endif
 293        unsigned long           sk_flags;
 294        struct dst_entry        *sk_dst_cache;
 295        spinlock_t              sk_dst_lock;
 296        atomic_t                sk_wmem_alloc;
 297        atomic_t                sk_omem_alloc;
 298        int                     sk_sndbuf;
 299        struct sk_buff_head     sk_write_queue;
 300        kmemcheck_bitfield_begin(flags);
 301        unsigned int            sk_shutdown  : 2,
 302                                sk_no_check  : 2,
 303                                sk_userlocks : 4,
 304                                sk_protocol  : 8,
 305                                sk_type      : 16;
 306        kmemcheck_bitfield_end(flags);
 307        int                     sk_wmem_queued;
 308        gfp_t                   sk_allocation;
 309        int                     sk_route_caps;
 310        int                     sk_route_nocaps;
 311        int                     sk_gso_type;
 312        unsigned int            sk_gso_max_size;
 313        int                     sk_rcvlowat;
 314        unsigned long           sk_lingertime;
 315        struct sk_buff_head     sk_error_queue;
 316        struct proto            *sk_prot_creator;
 317        rwlock_t                sk_callback_lock;
 318        int                     sk_err,
 319                                sk_err_soft;
 320        unsigned short          sk_ack_backlog;
 321        unsigned short          sk_max_ack_backlog;
 322        __u32                   sk_priority;
 323        struct pid              *sk_peer_pid;
 324        const struct cred       *sk_peer_cred;
 325        long                    sk_rcvtimeo;
 326        long                    sk_sndtimeo;
 327        void                    *sk_protinfo;
 328        struct timer_list       sk_timer;
 329        ktime_t                 sk_stamp;
 330        struct socket           *sk_socket;
 331        void                    *sk_user_data;
 332        struct page             *sk_sndmsg_page;
 333        struct sk_buff          *sk_send_head;
 334        __u32                   sk_sndmsg_off;
 335        int                     sk_write_pending;
 336#ifdef CONFIG_SECURITY
 337        void                    *sk_security;
 338#endif
 339        __u32                   sk_mark;
 340        u32                     sk_classid;
 341        void                    (*sk_state_change)(struct sock *sk);
 342        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 343        void                    (*sk_write_space)(struct sock *sk);
 344        void                    (*sk_error_report)(struct sock *sk);
 345        int                     (*sk_backlog_rcv)(struct sock *sk,
 346                                                  struct sk_buff *skb);  
 347        void                    (*sk_destruct)(struct sock *sk);
 348};
 349
 350/*
 351 * Hashed lists helper routines
 352 */
 353static inline struct sock *sk_entry(const struct hlist_node *node)
 354{
 355        return hlist_entry(node, struct sock, sk_node);
 356}
 357
 358static inline struct sock *__sk_head(const struct hlist_head *head)
 359{
 360        return hlist_entry(head->first, struct sock, sk_node);
 361}
 362
 363static inline struct sock *sk_head(const struct hlist_head *head)
 364{
 365        return hlist_empty(head) ? NULL : __sk_head(head);
 366}
 367
 368static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 369{
 370        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 371}
 372
 373static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 374{
 375        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 376}
 377
 378static inline struct sock *sk_next(const struct sock *sk)
 379{
 380        return sk->sk_node.next ?
 381                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 382}
 383
 384static inline struct sock *sk_nulls_next(const struct sock *sk)
 385{
 386        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 387                hlist_nulls_entry(sk->sk_nulls_node.next,
 388                                  struct sock, sk_nulls_node) :
 389                NULL;
 390}
 391
 392static inline int sk_unhashed(const struct sock *sk)
 393{
 394        return hlist_unhashed(&sk->sk_node);
 395}
 396
 397static inline int sk_hashed(const struct sock *sk)
 398{
 399        return !sk_unhashed(sk);
 400}
 401
 402static __inline__ void sk_node_init(struct hlist_node *node)
 403{
 404        node->pprev = NULL;
 405}
 406
 407static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
 408{
 409        node->pprev = NULL;
 410}
 411
 412static __inline__ void __sk_del_node(struct sock *sk)
 413{
 414        __hlist_del(&sk->sk_node);
 415}
 416
 417/* NB: equivalent to hlist_del_init_rcu */
 418static __inline__ int __sk_del_node_init(struct sock *sk)
 419{
 420        if (sk_hashed(sk)) {
 421                __sk_del_node(sk);
 422                sk_node_init(&sk->sk_node);
 423                return 1;
 424        }
 425        return 0;
 426}
 427
 428/* Grab socket reference count. This operation is valid only
 429   when sk is ALREADY grabbed f.e. it is found in hash table
 430   or a list and the lookup is made under lock preventing hash table
 431   modifications.
 432 */
 433
 434static inline void sock_hold(struct sock *sk)
 435{
 436        atomic_inc(&sk->sk_refcnt);
 437}
 438
 439/* Ungrab socket in the context, which assumes that socket refcnt
 440   cannot hit zero, f.e. it is true in context of any socketcall.
 441 */
 442static inline void __sock_put(struct sock *sk)
 443{
 444        atomic_dec(&sk->sk_refcnt);
 445}
 446
 447static __inline__ int sk_del_node_init(struct sock *sk)
 448{
 449        int rc = __sk_del_node_init(sk);
 450
 451        if (rc) {
 452                /* paranoid for a while -acme */
 453                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 454                __sock_put(sk);
 455        }
 456        return rc;
 457}
 458#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 459
 460static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
 461{
 462        if (sk_hashed(sk)) {
 463                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 464                return 1;
 465        }
 466        return 0;
 467}
 468
 469static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
 470{
 471        int rc = __sk_nulls_del_node_init_rcu(sk);
 472
 473        if (rc) {
 474                /* paranoid for a while -acme */
 475                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 476                __sock_put(sk);
 477        }
 478        return rc;
 479}
 480
 481static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
 482{
 483        hlist_add_head(&sk->sk_node, list);
 484}
 485
 486static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
 487{
 488        sock_hold(sk);
 489        __sk_add_node(sk, list);
 490}
 491
 492static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 493{
 494        sock_hold(sk);
 495        hlist_add_head_rcu(&sk->sk_node, list);
 496}
 497
 498static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 499{
 500        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 501}
 502
 503static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 504{
 505        sock_hold(sk);
 506        __sk_nulls_add_node_rcu(sk, list);
 507}
 508
 509static __inline__ void __sk_del_bind_node(struct sock *sk)
 510{
 511        __hlist_del(&sk->sk_bind_node);
 512}
 513
 514static __inline__ void sk_add_bind_node(struct sock *sk,
 515                                        struct hlist_head *list)
 516{
 517        hlist_add_head(&sk->sk_bind_node, list);
 518}
 519
 520#define sk_for_each(__sk, node, list) \
 521        hlist_for_each_entry(__sk, node, list, sk_node)
 522#define sk_for_each_rcu(__sk, node, list) \
 523        hlist_for_each_entry_rcu(__sk, node, list, sk_node)
 524#define sk_nulls_for_each(__sk, node, list) \
 525        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 526#define sk_nulls_for_each_rcu(__sk, node, list) \
 527        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 528#define sk_for_each_from(__sk, node) \
 529        if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 530                hlist_for_each_entry_from(__sk, node, sk_node)
 531#define sk_nulls_for_each_from(__sk, node) \
 532        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 533                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 534#define sk_for_each_safe(__sk, node, tmp, list) \
 535        hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 536#define sk_for_each_bound(__sk, node, list) \
 537        hlist_for_each_entry(__sk, node, list, sk_bind_node)
 538
 539/* Sock flags */
 540enum sock_flags {
 541        SOCK_DEAD,
 542        SOCK_DONE,
 543        SOCK_URGINLINE,
 544        SOCK_KEEPOPEN,
 545        SOCK_LINGER,
 546        SOCK_DESTROY,
 547        SOCK_BROADCAST,
 548        SOCK_TIMESTAMP,
 549        SOCK_ZAPPED,
 550        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 551        SOCK_DBG, /* %SO_DEBUG setting */
 552        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 553        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 554        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 555        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 556        SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 557        SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 558        SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 559        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 560        SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 561        SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 562        SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 563        SOCK_FASYNC, /* fasync() active */
 564        SOCK_RXQ_OVFL,
 565};
 566
 567static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 568{
 569        nsk->sk_flags = osk->sk_flags;
 570}
 571
 572static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 573{
 574        __set_bit(flag, &sk->sk_flags);
 575}
 576
 577static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 578{
 579        __clear_bit(flag, &sk->sk_flags);
 580}
 581
 582static inline int sock_flag(struct sock *sk, enum sock_flags flag)
 583{
 584        return test_bit(flag, &sk->sk_flags);
 585}
 586
 587static inline void sk_acceptq_removed(struct sock *sk)
 588{
 589        sk->sk_ack_backlog--;
 590}
 591
 592static inline void sk_acceptq_added(struct sock *sk)
 593{
 594        sk->sk_ack_backlog++;
 595}
 596
 597static inline int sk_acceptq_is_full(struct sock *sk)
 598{
 599        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 600}
 601
 602/*
 603 * Compute minimal free write space needed to queue new packets.
 604 */
 605static inline int sk_stream_min_wspace(struct sock *sk)
 606{
 607        return sk->sk_wmem_queued >> 1;
 608}
 609
 610static inline int sk_stream_wspace(struct sock *sk)
 611{
 612        return sk->sk_sndbuf - sk->sk_wmem_queued;
 613}
 614
 615extern void sk_stream_write_space(struct sock *sk);
 616
 617static inline int sk_stream_memory_free(struct sock *sk)
 618{
 619        return sk->sk_wmem_queued < sk->sk_sndbuf;
 620}
 621
 622/* OOB backlog add */
 623static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 624{
 625        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 626        skb_dst_force(skb);
 627
 628        if (!sk->sk_backlog.tail)
 629                sk->sk_backlog.head = skb;
 630        else
 631                sk->sk_backlog.tail->next = skb;
 632
 633        sk->sk_backlog.tail = skb;
 634        skb->next = NULL;
 635}
 636
 637/*
 638 * Take into account size of receive queue and backlog queue
 639 */
 640static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
 641{
 642        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 643
 644        return qsize + skb->truesize > sk->sk_rcvbuf;
 645}
 646
 647/* The per-socket spinlock must be held here. */
 648static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 649{
 650        if (sk_rcvqueues_full(sk, skb))
 651                return -ENOBUFS;
 652
 653        __sk_add_backlog(sk, skb);
 654        sk->sk_backlog.len += skb->truesize;
 655        return 0;
 656}
 657
 658static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 659{
 660        return sk->sk_backlog_rcv(sk, skb);
 661}
 662
 663static inline void sock_rps_record_flow(const struct sock *sk)
 664{
 665#ifdef CONFIG_RPS
 666        struct rps_sock_flow_table *sock_flow_table;
 667
 668        rcu_read_lock();
 669        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 670        rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 671        rcu_read_unlock();
 672#endif
 673}
 674
 675static inline void sock_rps_reset_flow(const struct sock *sk)
 676{
 677#ifdef CONFIG_RPS
 678        struct rps_sock_flow_table *sock_flow_table;
 679
 680        rcu_read_lock();
 681        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 682        rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 683        rcu_read_unlock();
 684#endif
 685}
 686
 687static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
 688{
 689#ifdef CONFIG_RPS
 690        if (unlikely(sk->sk_rxhash != rxhash)) {
 691                sock_rps_reset_flow(sk);
 692                sk->sk_rxhash = rxhash;
 693        }
 694#endif
 695}
 696
 697#define sk_wait_event(__sk, __timeo, __condition)                       \
 698        ({      int __rc;                                               \
 699                release_sock(__sk);                                     \
 700                __rc = __condition;                                     \
 701                if (!__rc) {                                            \
 702                        *(__timeo) = schedule_timeout(*(__timeo));      \
 703                }                                                       \
 704                lock_sock(__sk);                                        \
 705                __rc = __condition;                                     \
 706                __rc;                                                   \
 707        })
 708
 709extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 710extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 711extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 712extern int sk_stream_error(struct sock *sk, int flags, int err);
 713extern void sk_stream_kill_queues(struct sock *sk);
 714
 715extern int sk_wait_data(struct sock *sk, long *timeo);
 716
 717struct request_sock_ops;
 718struct timewait_sock_ops;
 719struct inet_hashinfo;
 720struct raw_hashinfo;
 721
 722/* Networking protocol blocks we attach to sockets.
 723 * socket layer -> transport layer interface
 724 * transport -> network interface is defined by struct inet_proto
 725 */
 726struct proto {
 727        void                    (*close)(struct sock *sk, 
 728                                        long timeout);
 729        int                     (*connect)(struct sock *sk,
 730                                        struct sockaddr *uaddr, 
 731                                        int addr_len);
 732        int                     (*disconnect)(struct sock *sk, int flags);
 733
 734        struct sock *           (*accept) (struct sock *sk, int flags, int *err);
 735
 736        int                     (*ioctl)(struct sock *sk, int cmd,
 737                                         unsigned long arg);
 738        int                     (*init)(struct sock *sk);
 739        void                    (*destroy)(struct sock *sk);
 740        void                    (*shutdown)(struct sock *sk, int how);
 741        int                     (*setsockopt)(struct sock *sk, int level, 
 742                                        int optname, char __user *optval,
 743                                        unsigned int optlen);
 744        int                     (*getsockopt)(struct sock *sk, int level, 
 745                                        int optname, char __user *optval, 
 746                                        int __user *option);     
 747#ifdef CONFIG_COMPAT
 748        int                     (*compat_setsockopt)(struct sock *sk,
 749                                        int level,
 750                                        int optname, char __user *optval,
 751                                        unsigned int optlen);
 752        int                     (*compat_getsockopt)(struct sock *sk,
 753                                        int level,
 754                                        int optname, char __user *optval,
 755                                        int __user *option);
 756        int                     (*compat_ioctl)(struct sock *sk,
 757                                        unsigned int cmd, unsigned long arg);
 758#endif
 759        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
 760                                           struct msghdr *msg, size_t len);
 761        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
 762                                           struct msghdr *msg,
 763                                        size_t len, int noblock, int flags, 
 764                                        int *addr_len);
 765        int                     (*sendpage)(struct sock *sk, struct page *page,
 766                                        int offset, size_t size, int flags);
 767        int                     (*bind)(struct sock *sk, 
 768                                        struct sockaddr *uaddr, int addr_len);
 769
 770        int                     (*backlog_rcv) (struct sock *sk, 
 771                                                struct sk_buff *skb);
 772
 773        /* Keeping track of sk's, looking them up, and port selection methods. */
 774        void                    (*hash)(struct sock *sk);
 775        void                    (*unhash)(struct sock *sk);
 776        void                    (*rehash)(struct sock *sk);
 777        int                     (*get_port)(struct sock *sk, unsigned short snum);
 778        void                    (*clear_sk)(struct sock *sk, int size);
 779
 780        /* Keeping track of sockets in use */
 781#ifdef CONFIG_PROC_FS
 782        unsigned int            inuse_idx;
 783#endif
 784
 785        /* Memory pressure */
 786        void                    (*enter_memory_pressure)(struct sock *sk);
 787        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
 788        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 789        /*
 790         * Pressure flag: try to collapse.
 791         * Technical note: it is used by multiple contexts non atomically.
 792         * All the __sk_mem_schedule() is of this nature: accounting
 793         * is strict, actions are advisory and have some latency.
 794         */
 795        int                     *memory_pressure;
 796        long                    *sysctl_mem;
 797        int                     *sysctl_wmem;
 798        int                     *sysctl_rmem;
 799        int                     max_header;
 800        bool                    no_autobind;
 801
 802        struct kmem_cache       *slab;
 803        unsigned int            obj_size;
 804        int                     slab_flags;
 805
 806        struct percpu_counter   *orphan_count;
 807
 808        struct request_sock_ops *rsk_prot;
 809        struct timewait_sock_ops *twsk_prot;
 810
 811        union {
 812                struct inet_hashinfo    *hashinfo;
 813                struct udp_table        *udp_table;
 814                struct raw_hashinfo     *raw_hash;
 815        } h;
 816
 817        struct module           *owner;
 818
 819        char                    name[32];
 820
 821        struct list_head        node;
 822#ifdef SOCK_REFCNT_DEBUG
 823        atomic_t                socks;
 824#endif
 825};
 826
 827extern int proto_register(struct proto *prot, int alloc_slab);
 828extern void proto_unregister(struct proto *prot);
 829
 830#ifdef SOCK_REFCNT_DEBUG
 831static inline void sk_refcnt_debug_inc(struct sock *sk)
 832{
 833        atomic_inc(&sk->sk_prot->socks);
 834}
 835
 836static inline void sk_refcnt_debug_dec(struct sock *sk)
 837{
 838        atomic_dec(&sk->sk_prot->socks);
 839        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 840               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 841}
 842
 843static inline void sk_refcnt_debug_release(const struct sock *sk)
 844{
 845        if (atomic_read(&sk->sk_refcnt) != 1)
 846                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 847                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 848}
 849#else /* SOCK_REFCNT_DEBUG */
 850#define sk_refcnt_debug_inc(sk) do { } while (0)
 851#define sk_refcnt_debug_dec(sk) do { } while (0)
 852#define sk_refcnt_debug_release(sk) do { } while (0)
 853#endif /* SOCK_REFCNT_DEBUG */
 854
 855
 856#ifdef CONFIG_PROC_FS
 857/* Called with local bh disabled */
 858extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
 859extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
 860#else
 861static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
 862                int inc)
 863{
 864}
 865#endif
 866
 867
 868/* With per-bucket locks this operation is not-atomic, so that
 869 * this version is not worse.
 870 */
 871static inline void __sk_prot_rehash(struct sock *sk)
 872{
 873        sk->sk_prot->unhash(sk);
 874        sk->sk_prot->hash(sk);
 875}
 876
 877void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
 878
 879/* About 10 seconds */
 880#define SOCK_DESTROY_TIME (10*HZ)
 881
 882/* Sockets 0-1023 can't be bound to unless you are superuser */
 883#define PROT_SOCK       1024
 884
 885#define SHUTDOWN_MASK   3
 886#define RCV_SHUTDOWN    1
 887#define SEND_SHUTDOWN   2
 888
 889#define SOCK_SNDBUF_LOCK        1
 890#define SOCK_RCVBUF_LOCK        2
 891#define SOCK_BINDADDR_LOCK      4
 892#define SOCK_BINDPORT_LOCK      8
 893
 894/* sock_iocb: used to kick off async processing of socket ios */
 895struct sock_iocb {
 896        struct list_head        list;
 897
 898        int                     flags;
 899        int                     size;
 900        struct socket           *sock;
 901        struct sock             *sk;
 902        struct scm_cookie       *scm;
 903        struct msghdr           *msg, async_msg;
 904        struct kiocb            *kiocb;
 905};
 906
 907static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
 908{
 909        return (struct sock_iocb *)iocb->private;
 910}
 911
 912static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
 913{
 914        return si->kiocb;
 915}
 916
 917struct socket_alloc {
 918        struct socket socket;
 919        struct inode vfs_inode;
 920};
 921
 922static inline struct socket *SOCKET_I(struct inode *inode)
 923{
 924        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
 925}
 926
 927static inline struct inode *SOCK_INODE(struct socket *socket)
 928{
 929        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
 930}
 931
 932/*
 933 * Functions for memory accounting
 934 */
 935extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
 936extern void __sk_mem_reclaim(struct sock *sk);
 937
 938#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 939#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
 940#define SK_MEM_SEND     0
 941#define SK_MEM_RECV     1
 942
 943static inline int sk_mem_pages(int amt)
 944{
 945        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
 946}
 947
 948static inline int sk_has_account(struct sock *sk)
 949{
 950        /* return true if protocol supports memory accounting */
 951        return !!sk->sk_prot->memory_allocated;
 952}
 953
 954static inline int sk_wmem_schedule(struct sock *sk, int size)
 955{
 956        if (!sk_has_account(sk))
 957                return 1;
 958        return size <= sk->sk_forward_alloc ||
 959                __sk_mem_schedule(sk, size, SK_MEM_SEND);
 960}
 961
 962static inline int sk_rmem_schedule(struct sock *sk, int size)
 963{
 964        if (!sk_has_account(sk))
 965                return 1;
 966        return size <= sk->sk_forward_alloc ||
 967                __sk_mem_schedule(sk, size, SK_MEM_RECV);
 968}
 969
 970static inline void sk_mem_reclaim(struct sock *sk)
 971{
 972        if (!sk_has_account(sk))
 973                return;
 974        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
 975                __sk_mem_reclaim(sk);
 976}
 977
 978static inline void sk_mem_reclaim_partial(struct sock *sk)
 979{
 980        if (!sk_has_account(sk))
 981                return;
 982        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
 983                __sk_mem_reclaim(sk);
 984}
 985
 986static inline void sk_mem_charge(struct sock *sk, int size)
 987{
 988        if (!sk_has_account(sk))
 989                return;
 990        sk->sk_forward_alloc -= size;
 991}
 992
 993static inline void sk_mem_uncharge(struct sock *sk, int size)
 994{
 995        if (!sk_has_account(sk))
 996                return;
 997        sk->sk_forward_alloc += size;
 998}
 999
1000static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1001{
1002        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1003        sk->sk_wmem_queued -= skb->truesize;
1004        sk_mem_uncharge(sk, skb->truesize);
1005        __kfree_skb(skb);
1006}
1007
1008/* Used by processes to "lock" a socket state, so that
1009 * interrupts and bottom half handlers won't change it
1010 * from under us. It essentially blocks any incoming
1011 * packets, so that we won't get any new data or any
1012 * packets that change the state of the socket.
1013 *
1014 * While locked, BH processing will add new packets to
1015 * the backlog queue.  This queue is processed by the
1016 * owner of the socket lock right before it is released.
1017 *
1018 * Since ~2.3.5 it is also exclusive sleep lock serializing
1019 * accesses from user process context.
1020 */
1021#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1022
1023/*
1024 * Macro so as to not evaluate some arguments when
1025 * lockdep is not enabled.
1026 *
1027 * Mark both the sk_lock and the sk_lock.slock as a
1028 * per-address-family lock class.
1029 */
1030#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1031do {                                                                    \
1032        sk->sk_lock.owned = 0;                                          \
1033        init_waitqueue_head(&sk->sk_lock.wq);                           \
1034        spin_lock_init(&(sk)->sk_lock.slock);                           \
1035        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1036                        sizeof((sk)->sk_lock));                         \
1037        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1038                        (skey), (sname));                               \
1039        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1040} while (0)
1041
1042extern void lock_sock_nested(struct sock *sk, int subclass);
1043
1044static inline void lock_sock(struct sock *sk)
1045{
1046        lock_sock_nested(sk, 0);
1047}
1048
1049extern void release_sock(struct sock *sk);
1050
1051/* BH context may only use the following locking interface. */
1052#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1053#define bh_lock_sock_nested(__sk) \
1054                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1055                                SINGLE_DEPTH_NESTING)
1056#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1057
1058extern bool lock_sock_fast(struct sock *sk);
1059/**
1060 * unlock_sock_fast - complement of lock_sock_fast
1061 * @sk: socket
1062 * @slow: slow mode
1063 *
1064 * fast unlock socket for user context.
1065 * If slow mode is on, we call regular release_sock()
1066 */
1067static inline void unlock_sock_fast(struct sock *sk, bool slow)
1068{
1069        if (slow)
1070                release_sock(sk);
1071        else
1072                spin_unlock_bh(&sk->sk_lock.slock);
1073}
1074
1075
1076extern struct sock              *sk_alloc(struct net *net, int family,
1077                                          gfp_t priority,
1078                                          struct proto *prot);
1079extern void                     sk_free(struct sock *sk);
1080extern void                     sk_release_kernel(struct sock *sk);
1081extern struct sock              *sk_clone(const struct sock *sk,
1082                                          const gfp_t priority);
1083
1084extern struct sk_buff           *sock_wmalloc(struct sock *sk,
1085                                              unsigned long size, int force,
1086                                              gfp_t priority);
1087extern struct sk_buff           *sock_rmalloc(struct sock *sk,
1088                                              unsigned long size, int force,
1089                                              gfp_t priority);
1090extern void                     sock_wfree(struct sk_buff *skb);
1091extern void                     sock_rfree(struct sk_buff *skb);
1092
1093extern int                      sock_setsockopt(struct socket *sock, int level,
1094                                                int op, char __user *optval,
1095                                                unsigned int optlen);
1096
1097extern int                      sock_getsockopt(struct socket *sock, int level,
1098                                                int op, char __user *optval, 
1099                                                int __user *optlen);
1100extern struct sk_buff           *sock_alloc_send_skb(struct sock *sk,
1101                                                     unsigned long size,
1102                                                     int noblock,
1103                                                     int *errcode);
1104extern struct sk_buff           *sock_alloc_send_pskb(struct sock *sk,
1105                                                      unsigned long header_len,
1106                                                      unsigned long data_len,
1107                                                      int noblock,
1108                                                      int *errcode);
1109extern void *sock_kmalloc(struct sock *sk, int size,
1110                          gfp_t priority);
1111extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1112extern void sk_send_sigurg(struct sock *sk);
1113
1114#ifdef CONFIG_CGROUPS
1115extern void sock_update_classid(struct sock *sk);
1116#else
1117static inline void sock_update_classid(struct sock *sk)
1118{
1119}
1120#endif
1121
1122/*
1123 * Functions to fill in entries in struct proto_ops when a protocol
1124 * does not implement a particular function.
1125 */
1126extern int                      sock_no_bind(struct socket *, 
1127                                             struct sockaddr *, int);
1128extern int                      sock_no_connect(struct socket *,
1129                                                struct sockaddr *, int, int);
1130extern int                      sock_no_socketpair(struct socket *,
1131                                                   struct socket *);
1132extern int                      sock_no_accept(struct socket *,
1133                                               struct socket *, int);
1134extern int                      sock_no_getname(struct socket *,
1135                                                struct sockaddr *, int *, int);
1136extern unsigned int             sock_no_poll(struct file *, struct socket *,
1137                                             struct poll_table_struct *);
1138extern int                      sock_no_ioctl(struct socket *, unsigned int,
1139                                              unsigned long);
1140extern int                      sock_no_listen(struct socket *, int);
1141extern int                      sock_no_shutdown(struct socket *, int);
1142extern int                      sock_no_getsockopt(struct socket *, int , int,
1143                                                   char __user *, int __user *);
1144extern int                      sock_no_setsockopt(struct socket *, int, int,
1145                                                   char __user *, unsigned int);
1146extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1147                                                struct msghdr *, size_t);
1148extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1149                                                struct msghdr *, size_t, int);
1150extern int                      sock_no_mmap(struct file *file,
1151                                             struct socket *sock,
1152                                             struct vm_area_struct *vma);
1153extern ssize_t                  sock_no_sendpage(struct socket *sock,
1154                                                struct page *page,
1155                                                int offset, size_t size, 
1156                                                int flags);
1157
1158/*
1159 * Functions to fill in entries in struct proto_ops when a protocol
1160 * uses the inet style.
1161 */
1162extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1163                                  char __user *optval, int __user *optlen);
1164extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1165                               struct msghdr *msg, size_t size, int flags);
1166extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1167                                  char __user *optval, unsigned int optlen);
1168extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1169                int optname, char __user *optval, int __user *optlen);
1170extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1171                int optname, char __user *optval, unsigned int optlen);
1172
1173extern void sk_common_release(struct sock *sk);
1174
1175/*
1176 *      Default socket callbacks and setup code
1177 */
1178 
1179/* Initialise core socket variables */
1180extern void sock_init_data(struct socket *sock, struct sock *sk);
1181
1182extern void sk_filter_release_rcu(struct rcu_head *rcu);
1183
1184/**
1185 *      sk_filter_release - release a socket filter
1186 *      @fp: filter to remove
1187 *
1188 *      Remove a filter from a socket and release its resources.
1189 */
1190
1191static inline void sk_filter_release(struct sk_filter *fp)
1192{
1193        if (atomic_dec_and_test(&fp->refcnt))
1194                call_rcu(&fp->rcu, sk_filter_release_rcu);
1195}
1196
1197static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1198{
1199        unsigned int size = sk_filter_len(fp);
1200
1201        atomic_sub(size, &sk->sk_omem_alloc);
1202        sk_filter_release(fp);
1203}
1204
1205static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1206{
1207        atomic_inc(&fp->refcnt);
1208        atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1209}
1210
1211/*
1212 * Socket reference counting postulates.
1213 *
1214 * * Each user of socket SHOULD hold a reference count.
1215 * * Each access point to socket (an hash table bucket, reference from a list,
1216 *   running timer, skb in flight MUST hold a reference count.
1217 * * When reference count hits 0, it means it will never increase back.
1218 * * When reference count hits 0, it means that no references from
1219 *   outside exist to this socket and current process on current CPU
1220 *   is last user and may/should destroy this socket.
1221 * * sk_free is called from any context: process, BH, IRQ. When
1222 *   it is called, socket has no references from outside -> sk_free
1223 *   may release descendant resources allocated by the socket, but
1224 *   to the time when it is called, socket is NOT referenced by any
1225 *   hash tables, lists etc.
1226 * * Packets, delivered from outside (from network or from another process)
1227 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1228 *   when they sit in queue. Otherwise, packets will leak to hole, when
1229 *   socket is looked up by one cpu and unhasing is made by another CPU.
1230 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1231 *   (leak to backlog). Packet socket does all the processing inside
1232 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1233 *   use separate SMP lock, so that they are prone too.
1234 */
1235
1236/* Ungrab socket and destroy it, if it was the last reference. */
1237static inline void sock_put(struct sock *sk)
1238{
1239        if (atomic_dec_and_test(&sk->sk_refcnt))
1240                sk_free(sk);
1241}
1242
1243extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1244                          const int nested);
1245
1246static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1247{
1248        sk->sk_tx_queue_mapping = tx_queue;
1249}
1250
1251static inline void sk_tx_queue_clear(struct sock *sk)
1252{
1253        sk->sk_tx_queue_mapping = -1;
1254}
1255
1256static inline int sk_tx_queue_get(const struct sock *sk)
1257{
1258        return sk ? sk->sk_tx_queue_mapping : -1;
1259}
1260
1261static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1262{
1263        sk_tx_queue_clear(sk);
1264        sk->sk_socket = sock;
1265}
1266
1267static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1268{
1269        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1270        return &rcu_dereference_raw(sk->sk_wq)->wait;
1271}
1272/* Detach socket from process context.
1273 * Announce socket dead, detach it from wait queue and inode.
1274 * Note that parent inode held reference count on this struct sock,
1275 * we do not release it in this function, because protocol
1276 * probably wants some additional cleanups or even continuing
1277 * to work with this socket (TCP).
1278 */
1279static inline void sock_orphan(struct sock *sk)
1280{
1281        write_lock_bh(&sk->sk_callback_lock);
1282        sock_set_flag(sk, SOCK_DEAD);
1283        sk_set_socket(sk, NULL);
1284        sk->sk_wq  = NULL;
1285        write_unlock_bh(&sk->sk_callback_lock);
1286}
1287
1288static inline void sock_graft(struct sock *sk, struct socket *parent)
1289{
1290        write_lock_bh(&sk->sk_callback_lock);
1291        sk->sk_wq = parent->wq;
1292        parent->sk = sk;
1293        sk_set_socket(sk, parent);
1294        security_sock_graft(sk, parent);
1295        write_unlock_bh(&sk->sk_callback_lock);
1296}
1297
1298extern int sock_i_uid(struct sock *sk);
1299extern unsigned long sock_i_ino(struct sock *sk);
1300
1301static inline struct dst_entry *
1302__sk_dst_get(struct sock *sk)
1303{
1304        return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1305                                                       sock_owned_by_user(sk) ||
1306                                                       lockdep_is_held(&sk->sk_lock.slock));
1307}
1308
1309static inline struct dst_entry *
1310sk_dst_get(struct sock *sk)
1311{
1312        struct dst_entry *dst;
1313
1314        rcu_read_lock();
1315        dst = rcu_dereference(sk->sk_dst_cache);
1316        if (dst)
1317                dst_hold(dst);
1318        rcu_read_unlock();
1319        return dst;
1320}
1321
1322extern void sk_reset_txq(struct sock *sk);
1323
1324static inline void dst_negative_advice(struct sock *sk)
1325{
1326        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1327
1328        if (dst && dst->ops->negative_advice) {
1329                ndst = dst->ops->negative_advice(dst);
1330
1331                if (ndst != dst) {
1332                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1333                        sk_reset_txq(sk);
1334                }
1335        }
1336}
1337
1338static inline void
1339__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1340{
1341        struct dst_entry *old_dst;
1342
1343        sk_tx_queue_clear(sk);
1344        /*
1345         * This can be called while sk is owned by the caller only,
1346         * with no state that can be checked in a rcu_dereference_check() cond
1347         */
1348        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1349        rcu_assign_pointer(sk->sk_dst_cache, dst);
1350        dst_release(old_dst);
1351}
1352
1353static inline void
1354sk_dst_set(struct sock *sk, struct dst_entry *dst)
1355{
1356        spin_lock(&sk->sk_dst_lock);
1357        __sk_dst_set(sk, dst);
1358        spin_unlock(&sk->sk_dst_lock);
1359}
1360
1361static inline void
1362__sk_dst_reset(struct sock *sk)
1363{
1364        __sk_dst_set(sk, NULL);
1365}
1366
1367static inline void
1368sk_dst_reset(struct sock *sk)
1369{
1370        spin_lock(&sk->sk_dst_lock);
1371        __sk_dst_reset(sk);
1372        spin_unlock(&sk->sk_dst_lock);
1373}
1374
1375extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1376
1377extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1378
1379static inline int sk_can_gso(const struct sock *sk)
1380{
1381        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1382}
1383
1384extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1385
1386static inline void sk_nocaps_add(struct sock *sk, int flags)
1387{
1388        sk->sk_route_nocaps |= flags;
1389        sk->sk_route_caps &= ~flags;
1390}
1391
1392static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1393                                   struct sk_buff *skb, struct page *page,
1394                                   int off, int copy)
1395{
1396        if (skb->ip_summed == CHECKSUM_NONE) {
1397                int err = 0;
1398                __wsum csum = csum_and_copy_from_user(from,
1399                                                     page_address(page) + off,
1400                                                            copy, 0, &err);
1401                if (err)
1402                        return err;
1403                skb->csum = csum_block_add(skb->csum, csum, skb->len);
1404        } else if (copy_from_user(page_address(page) + off, from, copy))
1405                return -EFAULT;
1406
1407        skb->len             += copy;
1408        skb->data_len        += copy;
1409        skb->truesize        += copy;
1410        sk->sk_wmem_queued   += copy;
1411        sk_mem_charge(sk, copy);
1412        return 0;
1413}
1414
1415/**
1416 * sk_wmem_alloc_get - returns write allocations
1417 * @sk: socket
1418 *
1419 * Returns sk_wmem_alloc minus initial offset of one
1420 */
1421static inline int sk_wmem_alloc_get(const struct sock *sk)
1422{
1423        return atomic_read(&sk->sk_wmem_alloc) - 1;
1424}
1425
1426/**
1427 * sk_rmem_alloc_get - returns read allocations
1428 * @sk: socket
1429 *
1430 * Returns sk_rmem_alloc
1431 */
1432static inline int sk_rmem_alloc_get(const struct sock *sk)
1433{
1434        return atomic_read(&sk->sk_rmem_alloc);
1435}
1436
1437/**
1438 * sk_has_allocations - check if allocations are outstanding
1439 * @sk: socket
1440 *
1441 * Returns true if socket has write or read allocations
1442 */
1443static inline int sk_has_allocations(const struct sock *sk)
1444{
1445        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1446}
1447
1448/**
1449 * wq_has_sleeper - check if there are any waiting processes
1450 * @wq: struct socket_wq
1451 *
1452 * Returns true if socket_wq has waiting processes
1453 *
1454 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1455 * barrier call. They were added due to the race found within the tcp code.
1456 *
1457 * Consider following tcp code paths:
1458 *
1459 * CPU1                  CPU2
1460 *
1461 * sys_select            receive packet
1462 *   ...                 ...
1463 *   __add_wait_queue    update tp->rcv_nxt
1464 *   ...                 ...
1465 *   tp->rcv_nxt check   sock_def_readable
1466 *   ...                 {
1467 *   schedule               rcu_read_lock();
1468 *                          wq = rcu_dereference(sk->sk_wq);
1469 *                          if (wq && waitqueue_active(&wq->wait))
1470 *                              wake_up_interruptible(&wq->wait)
1471 *                          ...
1472 *                       }
1473 *
1474 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1475 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1476 * could then endup calling schedule and sleep forever if there are no more
1477 * data on the socket.
1478 *
1479 */
1480static inline bool wq_has_sleeper(struct socket_wq *wq)
1481{
1482
1483        /*
1484         * We need to be sure we are in sync with the
1485         * add_wait_queue modifications to the wait queue.
1486         *
1487         * This memory barrier is paired in the sock_poll_wait.
1488         */
1489        smp_mb();
1490        return wq && waitqueue_active(&wq->wait);
1491}
1492
1493/**
1494 * sock_poll_wait - place memory barrier behind the poll_wait call.
1495 * @filp:           file
1496 * @wait_address:   socket wait queue
1497 * @p:              poll_table
1498 *
1499 * See the comments in the wq_has_sleeper function.
1500 */
1501static inline void sock_poll_wait(struct file *filp,
1502                wait_queue_head_t *wait_address, poll_table *p)
1503{
1504        if (p && wait_address) {
1505                poll_wait(filp, wait_address, p);
1506                /*
1507                 * We need to be sure we are in sync with the
1508                 * socket flags modification.
1509                 *
1510                 * This memory barrier is paired in the wq_has_sleeper.
1511                */
1512                smp_mb();
1513        }
1514}
1515
1516/*
1517 *      Queue a received datagram if it will fit. Stream and sequenced
1518 *      protocols can't normally use this as they need to fit buffers in
1519 *      and play with them.
1520 *
1521 *      Inlined as it's very short and called for pretty much every
1522 *      packet ever received.
1523 */
1524
1525static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1526{
1527        skb_orphan(skb);
1528        skb->sk = sk;
1529        skb->destructor = sock_wfree;
1530        /*
1531         * We used to take a refcount on sk, but following operation
1532         * is enough to guarantee sk_free() wont free this sock until
1533         * all in-flight packets are completed
1534         */
1535        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1536}
1537
1538static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1539{
1540        skb_orphan(skb);
1541        skb->sk = sk;
1542        skb->destructor = sock_rfree;
1543        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1544        sk_mem_charge(sk, skb->truesize);
1545}
1546
1547extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1548                           unsigned long expires);
1549
1550extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1551
1552extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1553
1554extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1555
1556/*
1557 *      Recover an error report and clear atomically
1558 */
1559 
1560static inline int sock_error(struct sock *sk)
1561{
1562        int err;
1563        if (likely(!sk->sk_err))
1564                return 0;
1565        err = xchg(&sk->sk_err, 0);
1566        return -err;
1567}
1568
1569static inline unsigned long sock_wspace(struct sock *sk)
1570{
1571        int amt = 0;
1572
1573        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1574                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1575                if (amt < 0) 
1576                        amt = 0;
1577        }
1578        return amt;
1579}
1580
1581static inline void sk_wake_async(struct sock *sk, int how, int band)
1582{
1583        if (sock_flag(sk, SOCK_FASYNC))
1584                sock_wake_async(sk->sk_socket, how, band);
1585}
1586
1587#define SOCK_MIN_SNDBUF 2048
1588/*
1589 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1590 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1591 */
1592#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1593
1594static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1595{
1596        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1597                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1598                sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1599        }
1600}
1601
1602struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1603
1604static inline struct page *sk_stream_alloc_page(struct sock *sk)
1605{
1606        struct page *page = NULL;
1607
1608        page = alloc_pages(sk->sk_allocation, 0);
1609        if (!page) {
1610                sk->sk_prot->enter_memory_pressure(sk);
1611                sk_stream_moderate_sndbuf(sk);
1612        }
1613        return page;
1614}
1615
1616/*
1617 *      Default write policy as shown to user space via poll/select/SIGIO
1618 */
1619static inline int sock_writeable(const struct sock *sk) 
1620{
1621        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1622}
1623
1624static inline gfp_t gfp_any(void)
1625{
1626        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1627}
1628
1629static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1630{
1631        return noblock ? 0 : sk->sk_rcvtimeo;
1632}
1633
1634static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1635{
1636        return noblock ? 0 : sk->sk_sndtimeo;
1637}
1638
1639static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1640{
1641        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1642}
1643
1644/* Alas, with timeout socket operations are not restartable.
1645 * Compare this to poll().
1646 */
1647static inline int sock_intr_errno(long timeo)
1648{
1649        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1650}
1651
1652extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1653        struct sk_buff *skb);
1654
1655static __inline__ void
1656sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1657{
1658        ktime_t kt = skb->tstamp;
1659        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1660
1661        /*
1662         * generate control messages if
1663         * - receive time stamping in software requested (SOCK_RCVTSTAMP
1664         *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1665         * - software time stamp available and wanted
1666         *   (SOCK_TIMESTAMPING_SOFTWARE)
1667         * - hardware time stamps available and wanted
1668         *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1669         *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1670         */
1671        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1672            sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1673            (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1674            (hwtstamps->hwtstamp.tv64 &&
1675             sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1676            (hwtstamps->syststamp.tv64 &&
1677             sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1678                __sock_recv_timestamp(msg, sk, skb);
1679        else
1680                sk->sk_stamp = kt;
1681}
1682
1683extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1684                                     struct sk_buff *skb);
1685
1686static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1687                                          struct sk_buff *skb)
1688{
1689#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
1690                           (1UL << SOCK_RCVTSTAMP)                      | \
1691                           (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)       | \
1692                           (1UL << SOCK_TIMESTAMPING_SOFTWARE)          | \
1693                           (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)      | \
1694                           (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1695
1696        if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1697                __sock_recv_ts_and_drops(msg, sk, skb);
1698        else
1699                sk->sk_stamp = skb->tstamp;
1700}
1701
1702/**
1703 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1704 * @sk:         socket sending this packet
1705 * @tx_flags:   filled with instructions for time stamping
1706 *
1707 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1708 * parameters are invalid.
1709 */
1710extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1711
1712/**
1713 * sk_eat_skb - Release a skb if it is no longer needed
1714 * @sk: socket to eat this skb from
1715 * @skb: socket buffer to eat
1716 * @copied_early: flag indicating whether DMA operations copied this data early
1717 *
1718 * This routine must be called with interrupts disabled or with the socket
1719 * locked so that the sk_buff queue operation is ok.
1720*/
1721#ifdef CONFIG_NET_DMA
1722static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1723{
1724        __skb_unlink(skb, &sk->sk_receive_queue);
1725        if (!copied_early)
1726                __kfree_skb(skb);
1727        else
1728                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1729}
1730#else
1731static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1732{
1733        __skb_unlink(skb, &sk->sk_receive_queue);
1734        __kfree_skb(skb);
1735}
1736#endif
1737
1738static inline
1739struct net *sock_net(const struct sock *sk)
1740{
1741        return read_pnet(&sk->sk_net);
1742}
1743
1744static inline
1745void sock_net_set(struct sock *sk, struct net *net)
1746{
1747        write_pnet(&sk->sk_net, net);
1748}
1749
1750/*
1751 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1752 * They should not hold a reference to a namespace in order to allow
1753 * to stop it.
1754 * Sockets after sk_change_net should be released using sk_release_kernel
1755 */
1756static inline void sk_change_net(struct sock *sk, struct net *net)
1757{
1758        put_net(sock_net(sk));
1759        sock_net_set(sk, hold_net(net));
1760}
1761
1762static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1763{
1764        if (unlikely(skb->sk)) {
1765                struct sock *sk = skb->sk;
1766
1767                skb->destructor = NULL;
1768                skb->sk = NULL;
1769                return sk;
1770        }
1771        return NULL;
1772}
1773
1774extern void sock_enable_timestamp(struct sock *sk, int flag);
1775extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1776extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1777
1778/* 
1779 *      Enable debug/info messages 
1780 */
1781extern int net_msg_warn;
1782#define NETDEBUG(fmt, args...) \
1783        do { if (net_msg_warn) printk(fmt,##args); } while (0)
1784
1785#define LIMIT_NETDEBUG(fmt, args...) \
1786        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1787
1788extern __u32 sysctl_wmem_max;
1789extern __u32 sysctl_rmem_max;
1790
1791extern void sk_init(void);
1792
1793extern int sysctl_optmem_max;
1794
1795extern __u32 sysctl_wmem_default;
1796extern __u32 sysctl_rmem_default;
1797
1798#endif  /* _SOCK_H */
1799