linux/init/calibrate.c
<<
>>
Prefs
   1/* calibrate.c: default delay calibration
   2 *
   3 * Excised from init/main.c
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/jiffies.h>
   8#include <linux/delay.h>
   9#include <linux/init.h>
  10#include <linux/timex.h>
  11#include <linux/smp.h>
  12
  13unsigned long lpj_fine;
  14unsigned long preset_lpj;
  15static int __init lpj_setup(char *str)
  16{
  17        preset_lpj = simple_strtoul(str,NULL,0);
  18        return 1;
  19}
  20
  21__setup("lpj=", lpj_setup);
  22
  23#ifdef ARCH_HAS_READ_CURRENT_TIMER
  24
  25/* This routine uses the read_current_timer() routine and gets the
  26 * loops per jiffy directly, instead of guessing it using delay().
  27 * Also, this code tries to handle non-maskable asynchronous events
  28 * (like SMIs)
  29 */
  30#define DELAY_CALIBRATION_TICKS                 ((HZ < 100) ? 1 : (HZ/100))
  31#define MAX_DIRECT_CALIBRATION_RETRIES          5
  32
  33static unsigned long __cpuinit calibrate_delay_direct(void)
  34{
  35        unsigned long pre_start, start, post_start;
  36        unsigned long pre_end, end, post_end;
  37        unsigned long start_jiffies;
  38        unsigned long timer_rate_min, timer_rate_max;
  39        unsigned long good_timer_sum = 0;
  40        unsigned long good_timer_count = 0;
  41        int i;
  42
  43        if (read_current_timer(&pre_start) < 0 )
  44                return 0;
  45
  46        /*
  47         * A simple loop like
  48         *      while ( jiffies < start_jiffies+1)
  49         *              start = read_current_timer();
  50         * will not do. As we don't really know whether jiffy switch
  51         * happened first or timer_value was read first. And some asynchronous
  52         * event can happen between these two events introducing errors in lpj.
  53         *
  54         * So, we do
  55         * 1. pre_start <- When we are sure that jiffy switch hasn't happened
  56         * 2. check jiffy switch
  57         * 3. start <- timer value before or after jiffy switch
  58         * 4. post_start <- When we are sure that jiffy switch has happened
  59         *
  60         * Note, we don't know anything about order of 2 and 3.
  61         * Now, by looking at post_start and pre_start difference, we can
  62         * check whether any asynchronous event happened or not
  63         */
  64
  65        for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  66                pre_start = 0;
  67                read_current_timer(&start);
  68                start_jiffies = jiffies;
  69                while (time_before_eq(jiffies, start_jiffies + 1)) {
  70                        pre_start = start;
  71                        read_current_timer(&start);
  72                }
  73                read_current_timer(&post_start);
  74
  75                pre_end = 0;
  76                end = post_start;
  77                while (time_before_eq(jiffies, start_jiffies + 1 +
  78                                               DELAY_CALIBRATION_TICKS)) {
  79                        pre_end = end;
  80                        read_current_timer(&end);
  81                }
  82                read_current_timer(&post_end);
  83
  84                timer_rate_max = (post_end - pre_start) /
  85                                        DELAY_CALIBRATION_TICKS;
  86                timer_rate_min = (pre_end - post_start) /
  87                                        DELAY_CALIBRATION_TICKS;
  88
  89                /*
  90                 * If the upper limit and lower limit of the timer_rate is
  91                 * >= 12.5% apart, redo calibration.
  92                 */
  93                if (pre_start != 0 && pre_end != 0 &&
  94                    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
  95                        good_timer_count++;
  96                        good_timer_sum += timer_rate_max;
  97                }
  98        }
  99
 100        if (good_timer_count)
 101                return (good_timer_sum/good_timer_count);
 102
 103        printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
 104               "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
 105        return 0;
 106}
 107#else
 108static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
 109#endif
 110
 111/*
 112 * This is the number of bits of precision for the loops_per_jiffy.  Each
 113 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
 114 * to start with a good estimate.
 115 * For the boot cpu we can skip the delay calibration and assign it a value
 116 * calculated based on the timer frequency.
 117 * For the rest of the CPUs we cannot assume that the timer frequency is same as
 118 * the cpu frequency, hence do the calibration for those.
 119 */
 120#define LPS_PREC 8
 121
 122static unsigned long __cpuinit calibrate_delay_converge(void)
 123{
 124        /* First stage - slowly accelerate to find initial bounds */
 125        unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
 126        int trials = 0, band = 0, trial_in_band = 0;
 127
 128        lpj = (1<<12);
 129
 130        /* wait for "start of" clock tick */
 131        ticks = jiffies;
 132        while (ticks == jiffies)
 133                ; /* nothing */
 134        /* Go .. */
 135        ticks = jiffies;
 136        do {
 137                if (++trial_in_band == (1<<band)) {
 138                        ++band;
 139                        trial_in_band = 0;
 140                }
 141                __delay(lpj * band);
 142                trials += band;
 143        } while (ticks == jiffies);
 144        /*
 145         * We overshot, so retreat to a clear underestimate. Then estimate
 146         * the largest likely undershoot. This defines our chop bounds.
 147         */
 148        trials -= band;
 149        loopadd_base = lpj * band;
 150        lpj_base = lpj * trials;
 151
 152recalibrate:
 153        lpj = lpj_base;
 154        loopadd = loopadd_base;
 155
 156        /*
 157         * Do a binary approximation to get lpj set to
 158         * equal one clock (up to LPS_PREC bits)
 159         */
 160        chop_limit = lpj >> LPS_PREC;
 161        while (loopadd > chop_limit) {
 162                lpj += loopadd;
 163                ticks = jiffies;
 164                while (ticks == jiffies)
 165                        ; /* nothing */
 166                ticks = jiffies;
 167                __delay(lpj);
 168                if (jiffies != ticks)   /* longer than 1 tick */
 169                        lpj -= loopadd;
 170                loopadd >>= 1;
 171        }
 172        /*
 173         * If we incremented every single time possible, presume we've
 174         * massively underestimated initially, and retry with a higher
 175         * start, and larger range. (Only seen on x86_64, due to SMIs)
 176         */
 177        if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
 178                lpj_base = lpj;
 179                loopadd_base <<= 2;
 180                goto recalibrate;
 181        }
 182
 183        return lpj;
 184}
 185
 186void __cpuinit calibrate_delay(void)
 187{
 188        static bool printed;
 189
 190        if (preset_lpj) {
 191                loops_per_jiffy = preset_lpj;
 192                if (!printed)
 193                        pr_info("Calibrating delay loop (skipped) "
 194                                "preset value.. ");
 195        } else if ((!printed) && lpj_fine) {
 196                loops_per_jiffy = lpj_fine;
 197                pr_info("Calibrating delay loop (skipped), "
 198                        "value calculated using timer frequency.. ");
 199        } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
 200                if (!printed)
 201                        pr_info("Calibrating delay using timer "
 202                                "specific routine.. ");
 203        } else {
 204                if (!printed)
 205                        pr_info("Calibrating delay loop... ");
 206                loops_per_jiffy = calibrate_delay_converge();
 207        }
 208        if (!printed)
 209                pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
 210                        loops_per_jiffy/(500000/HZ),
 211                        (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
 212
 213        printed = true;
 214}
 215