linux/kernel/timer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/timer.c
   3 *
   4 *  Kernel internal timers, basic process system calls
   5 *
   6 *  Copyright (C) 1991, 1992  Linus Torvalds
   7 *
   8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   9 *
  10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13 *              serialize accesses to xtime/lost_ticks).
  14 *                              Copyright (C) 1998  Andrea Arcangeli
  15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  16 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20 */
  21
  22#include <linux/kernel_stat.h>
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/percpu.h>
  26#include <linux/init.h>
  27#include <linux/mm.h>
  28#include <linux/swap.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/notifier.h>
  31#include <linux/thread_info.h>
  32#include <linux/time.h>
  33#include <linux/jiffies.h>
  34#include <linux/posix-timers.h>
  35#include <linux/cpu.h>
  36#include <linux/syscalls.h>
  37#include <linux/delay.h>
  38#include <linux/tick.h>
  39#include <linux/kallsyms.h>
  40#include <linux/irq_work.h>
  41#include <linux/sched.h>
  42#include <linux/slab.h>
  43
  44#include <asm/uaccess.h>
  45#include <asm/unistd.h>
  46#include <asm/div64.h>
  47#include <asm/timex.h>
  48#include <asm/io.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/timer.h>
  52
  53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  54
  55EXPORT_SYMBOL(jiffies_64);
  56
  57/*
  58 * per-CPU timer vector definitions:
  59 */
  60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  62#define TVN_SIZE (1 << TVN_BITS)
  63#define TVR_SIZE (1 << TVR_BITS)
  64#define TVN_MASK (TVN_SIZE - 1)
  65#define TVR_MASK (TVR_SIZE - 1)
  66
  67struct tvec {
  68        struct list_head vec[TVN_SIZE];
  69};
  70
  71struct tvec_root {
  72        struct list_head vec[TVR_SIZE];
  73};
  74
  75struct tvec_base {
  76        spinlock_t lock;
  77        struct timer_list *running_timer;
  78        unsigned long timer_jiffies;
  79        unsigned long next_timer;
  80        struct tvec_root tv1;
  81        struct tvec tv2;
  82        struct tvec tv3;
  83        struct tvec tv4;
  84        struct tvec tv5;
  85} ____cacheline_aligned;
  86
  87struct tvec_base boot_tvec_bases;
  88EXPORT_SYMBOL(boot_tvec_bases);
  89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  90
  91/* Functions below help us manage 'deferrable' flag */
  92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  93{
  94        return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  95}
  96
  97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  98{
  99        return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
 100}
 101
 102static inline void timer_set_deferrable(struct timer_list *timer)
 103{
 104        timer->base = TBASE_MAKE_DEFERRED(timer->base);
 105}
 106
 107static inline void
 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
 109{
 110        timer->base = (struct tvec_base *)((unsigned long)(new_base) |
 111                                      tbase_get_deferrable(timer->base));
 112}
 113
 114static unsigned long round_jiffies_common(unsigned long j, int cpu,
 115                bool force_up)
 116{
 117        int rem;
 118        unsigned long original = j;
 119
 120        /*
 121         * We don't want all cpus firing their timers at once hitting the
 122         * same lock or cachelines, so we skew each extra cpu with an extra
 123         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 124         * already did this.
 125         * The skew is done by adding 3*cpunr, then round, then subtract this
 126         * extra offset again.
 127         */
 128        j += cpu * 3;
 129
 130        rem = j % HZ;
 131
 132        /*
 133         * If the target jiffie is just after a whole second (which can happen
 134         * due to delays of the timer irq, long irq off times etc etc) then
 135         * we should round down to the whole second, not up. Use 1/4th second
 136         * as cutoff for this rounding as an extreme upper bound for this.
 137         * But never round down if @force_up is set.
 138         */
 139        if (rem < HZ/4 && !force_up) /* round down */
 140                j = j - rem;
 141        else /* round up */
 142                j = j - rem + HZ;
 143
 144        /* now that we have rounded, subtract the extra skew again */
 145        j -= cpu * 3;
 146
 147        if (j <= jiffies) /* rounding ate our timeout entirely; */
 148                return original;
 149        return j;
 150}
 151
 152/**
 153 * __round_jiffies - function to round jiffies to a full second
 154 * @j: the time in (absolute) jiffies that should be rounded
 155 * @cpu: the processor number on which the timeout will happen
 156 *
 157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 158 * up or down to (approximately) full seconds. This is useful for timers
 159 * for which the exact time they fire does not matter too much, as long as
 160 * they fire approximately every X seconds.
 161 *
 162 * By rounding these timers to whole seconds, all such timers will fire
 163 * at the same time, rather than at various times spread out. The goal
 164 * of this is to have the CPU wake up less, which saves power.
 165 *
 166 * The exact rounding is skewed for each processor to avoid all
 167 * processors firing at the exact same time, which could lead
 168 * to lock contention or spurious cache line bouncing.
 169 *
 170 * The return value is the rounded version of the @j parameter.
 171 */
 172unsigned long __round_jiffies(unsigned long j, int cpu)
 173{
 174        return round_jiffies_common(j, cpu, false);
 175}
 176EXPORT_SYMBOL_GPL(__round_jiffies);
 177
 178/**
 179 * __round_jiffies_relative - function to round jiffies to a full second
 180 * @j: the time in (relative) jiffies that should be rounded
 181 * @cpu: the processor number on which the timeout will happen
 182 *
 183 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 184 * up or down to (approximately) full seconds. This is useful for timers
 185 * for which the exact time they fire does not matter too much, as long as
 186 * they fire approximately every X seconds.
 187 *
 188 * By rounding these timers to whole seconds, all such timers will fire
 189 * at the same time, rather than at various times spread out. The goal
 190 * of this is to have the CPU wake up less, which saves power.
 191 *
 192 * The exact rounding is skewed for each processor to avoid all
 193 * processors firing at the exact same time, which could lead
 194 * to lock contention or spurious cache line bouncing.
 195 *
 196 * The return value is the rounded version of the @j parameter.
 197 */
 198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 199{
 200        unsigned long j0 = jiffies;
 201
 202        /* Use j0 because jiffies might change while we run */
 203        return round_jiffies_common(j + j0, cpu, false) - j0;
 204}
 205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 206
 207/**
 208 * round_jiffies - function to round jiffies to a full second
 209 * @j: the time in (absolute) jiffies that should be rounded
 210 *
 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
 212 * up or down to (approximately) full seconds. This is useful for timers
 213 * for which the exact time they fire does not matter too much, as long as
 214 * they fire approximately every X seconds.
 215 *
 216 * By rounding these timers to whole seconds, all such timers will fire
 217 * at the same time, rather than at various times spread out. The goal
 218 * of this is to have the CPU wake up less, which saves power.
 219 *
 220 * The return value is the rounded version of the @j parameter.
 221 */
 222unsigned long round_jiffies(unsigned long j)
 223{
 224        return round_jiffies_common(j, raw_smp_processor_id(), false);
 225}
 226EXPORT_SYMBOL_GPL(round_jiffies);
 227
 228/**
 229 * round_jiffies_relative - function to round jiffies to a full second
 230 * @j: the time in (relative) jiffies that should be rounded
 231 *
 232 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 233 * up or down to (approximately) full seconds. This is useful for timers
 234 * for which the exact time they fire does not matter too much, as long as
 235 * they fire approximately every X seconds.
 236 *
 237 * By rounding these timers to whole seconds, all such timers will fire
 238 * at the same time, rather than at various times spread out. The goal
 239 * of this is to have the CPU wake up less, which saves power.
 240 *
 241 * The return value is the rounded version of the @j parameter.
 242 */
 243unsigned long round_jiffies_relative(unsigned long j)
 244{
 245        return __round_jiffies_relative(j, raw_smp_processor_id());
 246}
 247EXPORT_SYMBOL_GPL(round_jiffies_relative);
 248
 249/**
 250 * __round_jiffies_up - function to round jiffies up to a full second
 251 * @j: the time in (absolute) jiffies that should be rounded
 252 * @cpu: the processor number on which the timeout will happen
 253 *
 254 * This is the same as __round_jiffies() except that it will never
 255 * round down.  This is useful for timeouts for which the exact time
 256 * of firing does not matter too much, as long as they don't fire too
 257 * early.
 258 */
 259unsigned long __round_jiffies_up(unsigned long j, int cpu)
 260{
 261        return round_jiffies_common(j, cpu, true);
 262}
 263EXPORT_SYMBOL_GPL(__round_jiffies_up);
 264
 265/**
 266 * __round_jiffies_up_relative - function to round jiffies up to a full second
 267 * @j: the time in (relative) jiffies that should be rounded
 268 * @cpu: the processor number on which the timeout will happen
 269 *
 270 * This is the same as __round_jiffies_relative() except that it will never
 271 * round down.  This is useful for timeouts for which the exact time
 272 * of firing does not matter too much, as long as they don't fire too
 273 * early.
 274 */
 275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 276{
 277        unsigned long j0 = jiffies;
 278
 279        /* Use j0 because jiffies might change while we run */
 280        return round_jiffies_common(j + j0, cpu, true) - j0;
 281}
 282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 283
 284/**
 285 * round_jiffies_up - function to round jiffies up to a full second
 286 * @j: the time in (absolute) jiffies that should be rounded
 287 *
 288 * This is the same as round_jiffies() except that it will never
 289 * round down.  This is useful for timeouts for which the exact time
 290 * of firing does not matter too much, as long as they don't fire too
 291 * early.
 292 */
 293unsigned long round_jiffies_up(unsigned long j)
 294{
 295        return round_jiffies_common(j, raw_smp_processor_id(), true);
 296}
 297EXPORT_SYMBOL_GPL(round_jiffies_up);
 298
 299/**
 300 * round_jiffies_up_relative - function to round jiffies up to a full second
 301 * @j: the time in (relative) jiffies that should be rounded
 302 *
 303 * This is the same as round_jiffies_relative() except that it will never
 304 * round down.  This is useful for timeouts for which the exact time
 305 * of firing does not matter too much, as long as they don't fire too
 306 * early.
 307 */
 308unsigned long round_jiffies_up_relative(unsigned long j)
 309{
 310        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 311}
 312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 313
 314/**
 315 * set_timer_slack - set the allowed slack for a timer
 316 * @timer: the timer to be modified
 317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 318 *
 319 * Set the amount of time, in jiffies, that a certain timer has
 320 * in terms of slack. By setting this value, the timer subsystem
 321 * will schedule the actual timer somewhere between
 322 * the time mod_timer() asks for, and that time plus the slack.
 323 *
 324 * By setting the slack to -1, a percentage of the delay is used
 325 * instead.
 326 */
 327void set_timer_slack(struct timer_list *timer, int slack_hz)
 328{
 329        timer->slack = slack_hz;
 330}
 331EXPORT_SYMBOL_GPL(set_timer_slack);
 332
 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
 334{
 335        unsigned long expires = timer->expires;
 336        unsigned long idx = expires - base->timer_jiffies;
 337        struct list_head *vec;
 338
 339        if (idx < TVR_SIZE) {
 340                int i = expires & TVR_MASK;
 341                vec = base->tv1.vec + i;
 342        } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
 343                int i = (expires >> TVR_BITS) & TVN_MASK;
 344                vec = base->tv2.vec + i;
 345        } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
 346                int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
 347                vec = base->tv3.vec + i;
 348        } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
 349                int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
 350                vec = base->tv4.vec + i;
 351        } else if ((signed long) idx < 0) {
 352                /*
 353                 * Can happen if you add a timer with expires == jiffies,
 354                 * or you set a timer to go off in the past
 355                 */
 356                vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
 357        } else {
 358                int i;
 359                /* If the timeout is larger than 0xffffffff on 64-bit
 360                 * architectures then we use the maximum timeout:
 361                 */
 362                if (idx > 0xffffffffUL) {
 363                        idx = 0xffffffffUL;
 364                        expires = idx + base->timer_jiffies;
 365                }
 366                i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
 367                vec = base->tv5.vec + i;
 368        }
 369        /*
 370         * Timers are FIFO:
 371         */
 372        list_add_tail(&timer->entry, vec);
 373}
 374
 375#ifdef CONFIG_TIMER_STATS
 376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
 377{
 378        if (timer->start_site)
 379                return;
 380
 381        timer->start_site = addr;
 382        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 383        timer->start_pid = current->pid;
 384}
 385
 386static void timer_stats_account_timer(struct timer_list *timer)
 387{
 388        unsigned int flag = 0;
 389
 390        if (likely(!timer->start_site))
 391                return;
 392        if (unlikely(tbase_get_deferrable(timer->base)))
 393                flag |= TIMER_STATS_FLAG_DEFERRABLE;
 394
 395        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 396                                 timer->function, timer->start_comm, flag);
 397}
 398
 399#else
 400static void timer_stats_account_timer(struct timer_list *timer) {}
 401#endif
 402
 403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 404
 405static struct debug_obj_descr timer_debug_descr;
 406
 407static void *timer_debug_hint(void *addr)
 408{
 409        return ((struct timer_list *) addr)->function;
 410}
 411
 412/*
 413 * fixup_init is called when:
 414 * - an active object is initialized
 415 */
 416static int timer_fixup_init(void *addr, enum debug_obj_state state)
 417{
 418        struct timer_list *timer = addr;
 419
 420        switch (state) {
 421        case ODEBUG_STATE_ACTIVE:
 422                del_timer_sync(timer);
 423                debug_object_init(timer, &timer_debug_descr);
 424                return 1;
 425        default:
 426                return 0;
 427        }
 428}
 429
 430/*
 431 * fixup_activate is called when:
 432 * - an active object is activated
 433 * - an unknown object is activated (might be a statically initialized object)
 434 */
 435static int timer_fixup_activate(void *addr, enum debug_obj_state state)
 436{
 437        struct timer_list *timer = addr;
 438
 439        switch (state) {
 440
 441        case ODEBUG_STATE_NOTAVAILABLE:
 442                /*
 443                 * This is not really a fixup. The timer was
 444                 * statically initialized. We just make sure that it
 445                 * is tracked in the object tracker.
 446                 */
 447                if (timer->entry.next == NULL &&
 448                    timer->entry.prev == TIMER_ENTRY_STATIC) {
 449                        debug_object_init(timer, &timer_debug_descr);
 450                        debug_object_activate(timer, &timer_debug_descr);
 451                        return 0;
 452                } else {
 453                        WARN_ON_ONCE(1);
 454                }
 455                return 0;
 456
 457        case ODEBUG_STATE_ACTIVE:
 458                WARN_ON(1);
 459
 460        default:
 461                return 0;
 462        }
 463}
 464
 465/*
 466 * fixup_free is called when:
 467 * - an active object is freed
 468 */
 469static int timer_fixup_free(void *addr, enum debug_obj_state state)
 470{
 471        struct timer_list *timer = addr;
 472
 473        switch (state) {
 474        case ODEBUG_STATE_ACTIVE:
 475                del_timer_sync(timer);
 476                debug_object_free(timer, &timer_debug_descr);
 477                return 1;
 478        default:
 479                return 0;
 480        }
 481}
 482
 483static struct debug_obj_descr timer_debug_descr = {
 484        .name           = "timer_list",
 485        .debug_hint     = timer_debug_hint,
 486        .fixup_init     = timer_fixup_init,
 487        .fixup_activate = timer_fixup_activate,
 488        .fixup_free     = timer_fixup_free,
 489};
 490
 491static inline void debug_timer_init(struct timer_list *timer)
 492{
 493        debug_object_init(timer, &timer_debug_descr);
 494}
 495
 496static inline void debug_timer_activate(struct timer_list *timer)
 497{
 498        debug_object_activate(timer, &timer_debug_descr);
 499}
 500
 501static inline void debug_timer_deactivate(struct timer_list *timer)
 502{
 503        debug_object_deactivate(timer, &timer_debug_descr);
 504}
 505
 506static inline void debug_timer_free(struct timer_list *timer)
 507{
 508        debug_object_free(timer, &timer_debug_descr);
 509}
 510
 511static void __init_timer(struct timer_list *timer,
 512                         const char *name,
 513                         struct lock_class_key *key);
 514
 515void init_timer_on_stack_key(struct timer_list *timer,
 516                             const char *name,
 517                             struct lock_class_key *key)
 518{
 519        debug_object_init_on_stack(timer, &timer_debug_descr);
 520        __init_timer(timer, name, key);
 521}
 522EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 523
 524void destroy_timer_on_stack(struct timer_list *timer)
 525{
 526        debug_object_free(timer, &timer_debug_descr);
 527}
 528EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 529
 530#else
 531static inline void debug_timer_init(struct timer_list *timer) { }
 532static inline void debug_timer_activate(struct timer_list *timer) { }
 533static inline void debug_timer_deactivate(struct timer_list *timer) { }
 534#endif
 535
 536static inline void debug_init(struct timer_list *timer)
 537{
 538        debug_timer_init(timer);
 539        trace_timer_init(timer);
 540}
 541
 542static inline void
 543debug_activate(struct timer_list *timer, unsigned long expires)
 544{
 545        debug_timer_activate(timer);
 546        trace_timer_start(timer, expires);
 547}
 548
 549static inline void debug_deactivate(struct timer_list *timer)
 550{
 551        debug_timer_deactivate(timer);
 552        trace_timer_cancel(timer);
 553}
 554
 555static void __init_timer(struct timer_list *timer,
 556                         const char *name,
 557                         struct lock_class_key *key)
 558{
 559        timer->entry.next = NULL;
 560        timer->base = __raw_get_cpu_var(tvec_bases);
 561        timer->slack = -1;
 562#ifdef CONFIG_TIMER_STATS
 563        timer->start_site = NULL;
 564        timer->start_pid = -1;
 565        memset(timer->start_comm, 0, TASK_COMM_LEN);
 566#endif
 567        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 568}
 569
 570void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
 571                                         const char *name,
 572                                         struct lock_class_key *key,
 573                                         void (*function)(unsigned long),
 574                                         unsigned long data)
 575{
 576        timer->function = function;
 577        timer->data = data;
 578        init_timer_on_stack_key(timer, name, key);
 579        timer_set_deferrable(timer);
 580}
 581EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
 582
 583/**
 584 * init_timer_key - initialize a timer
 585 * @timer: the timer to be initialized
 586 * @name: name of the timer
 587 * @key: lockdep class key of the fake lock used for tracking timer
 588 *       sync lock dependencies
 589 *
 590 * init_timer_key() must be done to a timer prior calling *any* of the
 591 * other timer functions.
 592 */
 593void init_timer_key(struct timer_list *timer,
 594                    const char *name,
 595                    struct lock_class_key *key)
 596{
 597        debug_init(timer);
 598        __init_timer(timer, name, key);
 599}
 600EXPORT_SYMBOL(init_timer_key);
 601
 602void init_timer_deferrable_key(struct timer_list *timer,
 603                               const char *name,
 604                               struct lock_class_key *key)
 605{
 606        init_timer_key(timer, name, key);
 607        timer_set_deferrable(timer);
 608}
 609EXPORT_SYMBOL(init_timer_deferrable_key);
 610
 611static inline void detach_timer(struct timer_list *timer,
 612                                int clear_pending)
 613{
 614        struct list_head *entry = &timer->entry;
 615
 616        debug_deactivate(timer);
 617
 618        __list_del(entry->prev, entry->next);
 619        if (clear_pending)
 620                entry->next = NULL;
 621        entry->prev = LIST_POISON2;
 622}
 623
 624/*
 625 * We are using hashed locking: holding per_cpu(tvec_bases).lock
 626 * means that all timers which are tied to this base via timer->base are
 627 * locked, and the base itself is locked too.
 628 *
 629 * So __run_timers/migrate_timers can safely modify all timers which could
 630 * be found on ->tvX lists.
 631 *
 632 * When the timer's base is locked, and the timer removed from list, it is
 633 * possible to set timer->base = NULL and drop the lock: the timer remains
 634 * locked.
 635 */
 636static struct tvec_base *lock_timer_base(struct timer_list *timer,
 637                                        unsigned long *flags)
 638        __acquires(timer->base->lock)
 639{
 640        struct tvec_base *base;
 641
 642        for (;;) {
 643                struct tvec_base *prelock_base = timer->base;
 644                base = tbase_get_base(prelock_base);
 645                if (likely(base != NULL)) {
 646                        spin_lock_irqsave(&base->lock, *flags);
 647                        if (likely(prelock_base == timer->base))
 648                                return base;
 649                        /* The timer has migrated to another CPU */
 650                        spin_unlock_irqrestore(&base->lock, *flags);
 651                }
 652                cpu_relax();
 653        }
 654}
 655
 656static inline int
 657__mod_timer(struct timer_list *timer, unsigned long expires,
 658                                                bool pending_only, int pinned)
 659{
 660        struct tvec_base *base, *new_base;
 661        unsigned long flags;
 662        int ret = 0 , cpu;
 663
 664        timer_stats_timer_set_start_info(timer);
 665        BUG_ON(!timer->function);
 666
 667        base = lock_timer_base(timer, &flags);
 668
 669        if (timer_pending(timer)) {
 670                detach_timer(timer, 0);
 671                if (timer->expires == base->next_timer &&
 672                    !tbase_get_deferrable(timer->base))
 673                        base->next_timer = base->timer_jiffies;
 674                ret = 1;
 675        } else {
 676                if (pending_only)
 677                        goto out_unlock;
 678        }
 679
 680        debug_activate(timer, expires);
 681
 682        cpu = smp_processor_id();
 683
 684#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
 685        if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
 686                cpu = get_nohz_timer_target();
 687#endif
 688        new_base = per_cpu(tvec_bases, cpu);
 689
 690        if (base != new_base) {
 691                /*
 692                 * We are trying to schedule the timer on the local CPU.
 693                 * However we can't change timer's base while it is running,
 694                 * otherwise del_timer_sync() can't detect that the timer's
 695                 * handler yet has not finished. This also guarantees that
 696                 * the timer is serialized wrt itself.
 697                 */
 698                if (likely(base->running_timer != timer)) {
 699                        /* See the comment in lock_timer_base() */
 700                        timer_set_base(timer, NULL);
 701                        spin_unlock(&base->lock);
 702                        base = new_base;
 703                        spin_lock(&base->lock);
 704                        timer_set_base(timer, base);
 705                }
 706        }
 707
 708        timer->expires = expires;
 709        if (time_before(timer->expires, base->next_timer) &&
 710            !tbase_get_deferrable(timer->base))
 711                base->next_timer = timer->expires;
 712        internal_add_timer(base, timer);
 713
 714out_unlock:
 715        spin_unlock_irqrestore(&base->lock, flags);
 716
 717        return ret;
 718}
 719
 720/**
 721 * mod_timer_pending - modify a pending timer's timeout
 722 * @timer: the pending timer to be modified
 723 * @expires: new timeout in jiffies
 724 *
 725 * mod_timer_pending() is the same for pending timers as mod_timer(),
 726 * but will not re-activate and modify already deleted timers.
 727 *
 728 * It is useful for unserialized use of timers.
 729 */
 730int mod_timer_pending(struct timer_list *timer, unsigned long expires)
 731{
 732        return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
 733}
 734EXPORT_SYMBOL(mod_timer_pending);
 735
 736/*
 737 * Decide where to put the timer while taking the slack into account
 738 *
 739 * Algorithm:
 740 *   1) calculate the maximum (absolute) time
 741 *   2) calculate the highest bit where the expires and new max are different
 742 *   3) use this bit to make a mask
 743 *   4) use the bitmask to round down the maximum time, so that all last
 744 *      bits are zeros
 745 */
 746static inline
 747unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
 748{
 749        unsigned long expires_limit, mask;
 750        int bit;
 751
 752        expires_limit = expires;
 753
 754        if (timer->slack >= 0) {
 755                expires_limit = expires + timer->slack;
 756        } else {
 757                unsigned long now = jiffies;
 758
 759                /* No slack, if already expired else auto slack 0.4% */
 760                if (time_after(expires, now))
 761                        expires_limit = expires + (expires - now)/256;
 762        }
 763        mask = expires ^ expires_limit;
 764        if (mask == 0)
 765                return expires;
 766
 767        bit = find_last_bit(&mask, BITS_PER_LONG);
 768
 769        mask = (1 << bit) - 1;
 770
 771        expires_limit = expires_limit & ~(mask);
 772
 773        return expires_limit;
 774}
 775
 776/**
 777 * mod_timer - modify a timer's timeout
 778 * @timer: the timer to be modified
 779 * @expires: new timeout in jiffies
 780 *
 781 * mod_timer() is a more efficient way to update the expire field of an
 782 * active timer (if the timer is inactive it will be activated)
 783 *
 784 * mod_timer(timer, expires) is equivalent to:
 785 *
 786 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 787 *
 788 * Note that if there are multiple unserialized concurrent users of the
 789 * same timer, then mod_timer() is the only safe way to modify the timeout,
 790 * since add_timer() cannot modify an already running timer.
 791 *
 792 * The function returns whether it has modified a pending timer or not.
 793 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 794 * active timer returns 1.)
 795 */
 796int mod_timer(struct timer_list *timer, unsigned long expires)
 797{
 798        /*
 799         * This is a common optimization triggered by the
 800         * networking code - if the timer is re-modified
 801         * to be the same thing then just return:
 802         */
 803        if (timer_pending(timer) && timer->expires == expires)
 804                return 1;
 805
 806        expires = apply_slack(timer, expires);
 807
 808        return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
 809}
 810EXPORT_SYMBOL(mod_timer);
 811
 812/**
 813 * mod_timer_pinned - modify a timer's timeout
 814 * @timer: the timer to be modified
 815 * @expires: new timeout in jiffies
 816 *
 817 * mod_timer_pinned() is a way to update the expire field of an
 818 * active timer (if the timer is inactive it will be activated)
 819 * and not allow the timer to be migrated to a different CPU.
 820 *
 821 * mod_timer_pinned(timer, expires) is equivalent to:
 822 *
 823 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 824 */
 825int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
 826{
 827        if (timer->expires == expires && timer_pending(timer))
 828                return 1;
 829
 830        return __mod_timer(timer, expires, false, TIMER_PINNED);
 831}
 832EXPORT_SYMBOL(mod_timer_pinned);
 833
 834/**
 835 * add_timer - start a timer
 836 * @timer: the timer to be added
 837 *
 838 * The kernel will do a ->function(->data) callback from the
 839 * timer interrupt at the ->expires point in the future. The
 840 * current time is 'jiffies'.
 841 *
 842 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 843 * fields must be set prior calling this function.
 844 *
 845 * Timers with an ->expires field in the past will be executed in the next
 846 * timer tick.
 847 */
 848void add_timer(struct timer_list *timer)
 849{
 850        BUG_ON(timer_pending(timer));
 851        mod_timer(timer, timer->expires);
 852}
 853EXPORT_SYMBOL(add_timer);
 854
 855/**
 856 * add_timer_on - start a timer on a particular CPU
 857 * @timer: the timer to be added
 858 * @cpu: the CPU to start it on
 859 *
 860 * This is not very scalable on SMP. Double adds are not possible.
 861 */
 862void add_timer_on(struct timer_list *timer, int cpu)
 863{
 864        struct tvec_base *base = per_cpu(tvec_bases, cpu);
 865        unsigned long flags;
 866
 867        timer_stats_timer_set_start_info(timer);
 868        BUG_ON(timer_pending(timer) || !timer->function);
 869        spin_lock_irqsave(&base->lock, flags);
 870        timer_set_base(timer, base);
 871        debug_activate(timer, timer->expires);
 872        if (time_before(timer->expires, base->next_timer) &&
 873            !tbase_get_deferrable(timer->base))
 874                base->next_timer = timer->expires;
 875        internal_add_timer(base, timer);
 876        /*
 877         * Check whether the other CPU is idle and needs to be
 878         * triggered to reevaluate the timer wheel when nohz is
 879         * active. We are protected against the other CPU fiddling
 880         * with the timer by holding the timer base lock. This also
 881         * makes sure that a CPU on the way to idle can not evaluate
 882         * the timer wheel.
 883         */
 884        wake_up_idle_cpu(cpu);
 885        spin_unlock_irqrestore(&base->lock, flags);
 886}
 887EXPORT_SYMBOL_GPL(add_timer_on);
 888
 889/**
 890 * del_timer - deactive a timer.
 891 * @timer: the timer to be deactivated
 892 *
 893 * del_timer() deactivates a timer - this works on both active and inactive
 894 * timers.
 895 *
 896 * The function returns whether it has deactivated a pending timer or not.
 897 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 898 * active timer returns 1.)
 899 */
 900int del_timer(struct timer_list *timer)
 901{
 902        struct tvec_base *base;
 903        unsigned long flags;
 904        int ret = 0;
 905
 906        timer_stats_timer_clear_start_info(timer);
 907        if (timer_pending(timer)) {
 908                base = lock_timer_base(timer, &flags);
 909                if (timer_pending(timer)) {
 910                        detach_timer(timer, 1);
 911                        if (timer->expires == base->next_timer &&
 912                            !tbase_get_deferrable(timer->base))
 913                                base->next_timer = base->timer_jiffies;
 914                        ret = 1;
 915                }
 916                spin_unlock_irqrestore(&base->lock, flags);
 917        }
 918
 919        return ret;
 920}
 921EXPORT_SYMBOL(del_timer);
 922
 923/**
 924 * try_to_del_timer_sync - Try to deactivate a timer
 925 * @timer: timer do del
 926 *
 927 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 928 * exit the timer is not queued and the handler is not running on any CPU.
 929 */
 930int try_to_del_timer_sync(struct timer_list *timer)
 931{
 932        struct tvec_base *base;
 933        unsigned long flags;
 934        int ret = -1;
 935
 936        base = lock_timer_base(timer, &flags);
 937
 938        if (base->running_timer == timer)
 939                goto out;
 940
 941        timer_stats_timer_clear_start_info(timer);
 942        ret = 0;
 943        if (timer_pending(timer)) {
 944                detach_timer(timer, 1);
 945                if (timer->expires == base->next_timer &&
 946                    !tbase_get_deferrable(timer->base))
 947                        base->next_timer = base->timer_jiffies;
 948                ret = 1;
 949        }
 950out:
 951        spin_unlock_irqrestore(&base->lock, flags);
 952
 953        return ret;
 954}
 955EXPORT_SYMBOL(try_to_del_timer_sync);
 956
 957#ifdef CONFIG_SMP
 958/**
 959 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 960 * @timer: the timer to be deactivated
 961 *
 962 * This function only differs from del_timer() on SMP: besides deactivating
 963 * the timer it also makes sure the handler has finished executing on other
 964 * CPUs.
 965 *
 966 * Synchronization rules: Callers must prevent restarting of the timer,
 967 * otherwise this function is meaningless. It must not be called from
 968 * interrupt contexts. The caller must not hold locks which would prevent
 969 * completion of the timer's handler. The timer's handler must not call
 970 * add_timer_on(). Upon exit the timer is not queued and the handler is
 971 * not running on any CPU.
 972 *
 973 * Note: You must not hold locks that are held in interrupt context
 974 *   while calling this function. Even if the lock has nothing to do
 975 *   with the timer in question.  Here's why:
 976 *
 977 *    CPU0                             CPU1
 978 *    ----                             ----
 979 *                                   <SOFTIRQ>
 980 *                                   call_timer_fn();
 981 *                                     base->running_timer = mytimer;
 982 *  spin_lock_irq(somelock);
 983 *                                     <IRQ>
 984 *                                        spin_lock(somelock);
 985 *  del_timer_sync(mytimer);
 986 *   while (base->running_timer == mytimer);
 987 *
 988 * Now del_timer_sync() will never return and never release somelock.
 989 * The interrupt on the other CPU is waiting to grab somelock but
 990 * it has interrupted the softirq that CPU0 is waiting to finish.
 991 *
 992 * The function returns whether it has deactivated a pending timer or not.
 993 */
 994int del_timer_sync(struct timer_list *timer)
 995{
 996#ifdef CONFIG_LOCKDEP
 997        unsigned long flags;
 998
 999        /*
1000         * If lockdep gives a backtrace here, please reference
1001         * the synchronization rules above.
1002         */
1003        local_irq_save(flags);
1004        lock_map_acquire(&timer->lockdep_map);
1005        lock_map_release(&timer->lockdep_map);
1006        local_irq_restore(flags);
1007#endif
1008        /*
1009         * don't use it in hardirq context, because it
1010         * could lead to deadlock.
1011         */
1012        WARN_ON(in_irq());
1013        for (;;) {
1014                int ret = try_to_del_timer_sync(timer);
1015                if (ret >= 0)
1016                        return ret;
1017                cpu_relax();
1018        }
1019}
1020EXPORT_SYMBOL(del_timer_sync);
1021#endif
1022
1023static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1024{
1025        /* cascade all the timers from tv up one level */
1026        struct timer_list *timer, *tmp;
1027        struct list_head tv_list;
1028
1029        list_replace_init(tv->vec + index, &tv_list);
1030
1031        /*
1032         * We are removing _all_ timers from the list, so we
1033         * don't have to detach them individually.
1034         */
1035        list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1036                BUG_ON(tbase_get_base(timer->base) != base);
1037                internal_add_timer(base, timer);
1038        }
1039
1040        return index;
1041}
1042
1043static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1044                          unsigned long data)
1045{
1046        int preempt_count = preempt_count();
1047
1048#ifdef CONFIG_LOCKDEP
1049        /*
1050         * It is permissible to free the timer from inside the
1051         * function that is called from it, this we need to take into
1052         * account for lockdep too. To avoid bogus "held lock freed"
1053         * warnings as well as problems when looking into
1054         * timer->lockdep_map, make a copy and use that here.
1055         */
1056        struct lockdep_map lockdep_map = timer->lockdep_map;
1057#endif
1058        /*
1059         * Couple the lock chain with the lock chain at
1060         * del_timer_sync() by acquiring the lock_map around the fn()
1061         * call here and in del_timer_sync().
1062         */
1063        lock_map_acquire(&lockdep_map);
1064
1065        trace_timer_expire_entry(timer);
1066        fn(data);
1067        trace_timer_expire_exit(timer);
1068
1069        lock_map_release(&lockdep_map);
1070
1071        if (preempt_count != preempt_count()) {
1072                WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1073                          fn, preempt_count, preempt_count());
1074                /*
1075                 * Restore the preempt count. That gives us a decent
1076                 * chance to survive and extract information. If the
1077                 * callback kept a lock held, bad luck, but not worse
1078                 * than the BUG() we had.
1079                 */
1080                preempt_count() = preempt_count;
1081        }
1082}
1083
1084#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1085
1086/**
1087 * __run_timers - run all expired timers (if any) on this CPU.
1088 * @base: the timer vector to be processed.
1089 *
1090 * This function cascades all vectors and executes all expired timer
1091 * vectors.
1092 */
1093static inline void __run_timers(struct tvec_base *base)
1094{
1095        struct timer_list *timer;
1096
1097        spin_lock_irq(&base->lock);
1098        while (time_after_eq(jiffies, base->timer_jiffies)) {
1099                struct list_head work_list;
1100                struct list_head *head = &work_list;
1101                int index = base->timer_jiffies & TVR_MASK;
1102
1103                /*
1104                 * Cascade timers:
1105                 */
1106                if (!index &&
1107                        (!cascade(base, &base->tv2, INDEX(0))) &&
1108                                (!cascade(base, &base->tv3, INDEX(1))) &&
1109                                        !cascade(base, &base->tv4, INDEX(2)))
1110                        cascade(base, &base->tv5, INDEX(3));
1111                ++base->timer_jiffies;
1112                list_replace_init(base->tv1.vec + index, &work_list);
1113                while (!list_empty(head)) {
1114                        void (*fn)(unsigned long);
1115                        unsigned long data;
1116
1117                        timer = list_first_entry(head, struct timer_list,entry);
1118                        fn = timer->function;
1119                        data = timer->data;
1120
1121                        timer_stats_account_timer(timer);
1122
1123                        base->running_timer = timer;
1124                        detach_timer(timer, 1);
1125
1126                        spin_unlock_irq(&base->lock);
1127                        call_timer_fn(timer, fn, data);
1128                        spin_lock_irq(&base->lock);
1129                }
1130        }
1131        base->running_timer = NULL;
1132        spin_unlock_irq(&base->lock);
1133}
1134
1135#ifdef CONFIG_NO_HZ
1136/*
1137 * Find out when the next timer event is due to happen. This
1138 * is used on S/390 to stop all activity when a CPU is idle.
1139 * This function needs to be called with interrupts disabled.
1140 */
1141static unsigned long __next_timer_interrupt(struct tvec_base *base)
1142{
1143        unsigned long timer_jiffies = base->timer_jiffies;
1144        unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1145        int index, slot, array, found = 0;
1146        struct timer_list *nte;
1147        struct tvec *varray[4];
1148
1149        /* Look for timer events in tv1. */
1150        index = slot = timer_jiffies & TVR_MASK;
1151        do {
1152                list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1153                        if (tbase_get_deferrable(nte->base))
1154                                continue;
1155
1156                        found = 1;
1157                        expires = nte->expires;
1158                        /* Look at the cascade bucket(s)? */
1159                        if (!index || slot < index)
1160                                goto cascade;
1161                        return expires;
1162                }
1163                slot = (slot + 1) & TVR_MASK;
1164        } while (slot != index);
1165
1166cascade:
1167        /* Calculate the next cascade event */
1168        if (index)
1169                timer_jiffies += TVR_SIZE - index;
1170        timer_jiffies >>= TVR_BITS;
1171
1172        /* Check tv2-tv5. */
1173        varray[0] = &base->tv2;
1174        varray[1] = &base->tv3;
1175        varray[2] = &base->tv4;
1176        varray[3] = &base->tv5;
1177
1178        for (array = 0; array < 4; array++) {
1179                struct tvec *varp = varray[array];
1180
1181                index = slot = timer_jiffies & TVN_MASK;
1182                do {
1183                        list_for_each_entry(nte, varp->vec + slot, entry) {
1184                                if (tbase_get_deferrable(nte->base))
1185                                        continue;
1186
1187                                found = 1;
1188                                if (time_before(nte->expires, expires))
1189                                        expires = nte->expires;
1190                        }
1191                        /*
1192                         * Do we still search for the first timer or are
1193                         * we looking up the cascade buckets ?
1194                         */
1195                        if (found) {
1196                                /* Look at the cascade bucket(s)? */
1197                                if (!index || slot < index)
1198                                        break;
1199                                return expires;
1200                        }
1201                        slot = (slot + 1) & TVN_MASK;
1202                } while (slot != index);
1203
1204                if (index)
1205                        timer_jiffies += TVN_SIZE - index;
1206                timer_jiffies >>= TVN_BITS;
1207        }
1208        return expires;
1209}
1210
1211/*
1212 * Check, if the next hrtimer event is before the next timer wheel
1213 * event:
1214 */
1215static unsigned long cmp_next_hrtimer_event(unsigned long now,
1216                                            unsigned long expires)
1217{
1218        ktime_t hr_delta = hrtimer_get_next_event();
1219        struct timespec tsdelta;
1220        unsigned long delta;
1221
1222        if (hr_delta.tv64 == KTIME_MAX)
1223                return expires;
1224
1225        /*
1226         * Expired timer available, let it expire in the next tick
1227         */
1228        if (hr_delta.tv64 <= 0)
1229                return now + 1;
1230
1231        tsdelta = ktime_to_timespec(hr_delta);
1232        delta = timespec_to_jiffies(&tsdelta);
1233
1234        /*
1235         * Limit the delta to the max value, which is checked in
1236         * tick_nohz_stop_sched_tick():
1237         */
1238        if (delta > NEXT_TIMER_MAX_DELTA)
1239                delta = NEXT_TIMER_MAX_DELTA;
1240
1241        /*
1242         * Take rounding errors in to account and make sure, that it
1243         * expires in the next tick. Otherwise we go into an endless
1244         * ping pong due to tick_nohz_stop_sched_tick() retriggering
1245         * the timer softirq
1246         */
1247        if (delta < 1)
1248                delta = 1;
1249        now += delta;
1250        if (time_before(now, expires))
1251                return now;
1252        return expires;
1253}
1254
1255/**
1256 * get_next_timer_interrupt - return the jiffy of the next pending timer
1257 * @now: current time (in jiffies)
1258 */
1259unsigned long get_next_timer_interrupt(unsigned long now)
1260{
1261        struct tvec_base *base = __this_cpu_read(tvec_bases);
1262        unsigned long expires;
1263
1264        /*
1265         * Pretend that there is no timer pending if the cpu is offline.
1266         * Possible pending timers will be migrated later to an active cpu.
1267         */
1268        if (cpu_is_offline(smp_processor_id()))
1269                return now + NEXT_TIMER_MAX_DELTA;
1270        spin_lock(&base->lock);
1271        if (time_before_eq(base->next_timer, base->timer_jiffies))
1272                base->next_timer = __next_timer_interrupt(base);
1273        expires = base->next_timer;
1274        spin_unlock(&base->lock);
1275
1276        if (time_before_eq(expires, now))
1277                return now;
1278
1279        return cmp_next_hrtimer_event(now, expires);
1280}
1281#endif
1282
1283/*
1284 * Called from the timer interrupt handler to charge one tick to the current
1285 * process.  user_tick is 1 if the tick is user time, 0 for system.
1286 */
1287void update_process_times(int user_tick)
1288{
1289        struct task_struct *p = current;
1290        int cpu = smp_processor_id();
1291
1292        /* Note: this timer irq context must be accounted for as well. */
1293        account_process_tick(p, user_tick);
1294        run_local_timers();
1295        rcu_check_callbacks(cpu, user_tick);
1296        printk_tick();
1297#ifdef CONFIG_IRQ_WORK
1298        if (in_irq())
1299                irq_work_run();
1300#endif
1301        scheduler_tick();
1302        run_posix_cpu_timers(p);
1303}
1304
1305/*
1306 * This function runs timers and the timer-tq in bottom half context.
1307 */
1308static void run_timer_softirq(struct softirq_action *h)
1309{
1310        struct tvec_base *base = __this_cpu_read(tvec_bases);
1311
1312        hrtimer_run_pending();
1313
1314        if (time_after_eq(jiffies, base->timer_jiffies))
1315                __run_timers(base);
1316}
1317
1318/*
1319 * Called by the local, per-CPU timer interrupt on SMP.
1320 */
1321void run_local_timers(void)
1322{
1323        hrtimer_run_queues();
1324        raise_softirq(TIMER_SOFTIRQ);
1325}
1326
1327#ifdef __ARCH_WANT_SYS_ALARM
1328
1329/*
1330 * For backwards compatibility?  This can be done in libc so Alpha
1331 * and all newer ports shouldn't need it.
1332 */
1333SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1334{
1335        return alarm_setitimer(seconds);
1336}
1337
1338#endif
1339
1340#ifndef __alpha__
1341
1342/*
1343 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
1344 * should be moved into arch/i386 instead?
1345 */
1346
1347/**
1348 * sys_getpid - return the thread group id of the current process
1349 *
1350 * Note, despite the name, this returns the tgid not the pid.  The tgid and
1351 * the pid are identical unless CLONE_THREAD was specified on clone() in
1352 * which case the tgid is the same in all threads of the same group.
1353 *
1354 * This is SMP safe as current->tgid does not change.
1355 */
1356SYSCALL_DEFINE0(getpid)
1357{
1358        return task_tgid_vnr(current);
1359}
1360
1361/*
1362 * Accessing ->real_parent is not SMP-safe, it could
1363 * change from under us. However, we can use a stale
1364 * value of ->real_parent under rcu_read_lock(), see
1365 * release_task()->call_rcu(delayed_put_task_struct).
1366 */
1367SYSCALL_DEFINE0(getppid)
1368{
1369        int pid;
1370
1371        rcu_read_lock();
1372        pid = task_tgid_vnr(current->real_parent);
1373        rcu_read_unlock();
1374
1375        return pid;
1376}
1377
1378SYSCALL_DEFINE0(getuid)
1379{
1380        /* Only we change this so SMP safe */
1381        return current_uid();
1382}
1383
1384SYSCALL_DEFINE0(geteuid)
1385{
1386        /* Only we change this so SMP safe */
1387        return current_euid();
1388}
1389
1390SYSCALL_DEFINE0(getgid)
1391{
1392        /* Only we change this so SMP safe */
1393        return current_gid();
1394}
1395
1396SYSCALL_DEFINE0(getegid)
1397{
1398        /* Only we change this so SMP safe */
1399        return  current_egid();
1400}
1401
1402#endif
1403
1404static void process_timeout(unsigned long __data)
1405{
1406        wake_up_process((struct task_struct *)__data);
1407}
1408
1409/**
1410 * schedule_timeout - sleep until timeout
1411 * @timeout: timeout value in jiffies
1412 *
1413 * Make the current task sleep until @timeout jiffies have
1414 * elapsed. The routine will return immediately unless
1415 * the current task state has been set (see set_current_state()).
1416 *
1417 * You can set the task state as follows -
1418 *
1419 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1420 * pass before the routine returns. The routine will return 0
1421 *
1422 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1423 * delivered to the current task. In this case the remaining time
1424 * in jiffies will be returned, or 0 if the timer expired in time
1425 *
1426 * The current task state is guaranteed to be TASK_RUNNING when this
1427 * routine returns.
1428 *
1429 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1430 * the CPU away without a bound on the timeout. In this case the return
1431 * value will be %MAX_SCHEDULE_TIMEOUT.
1432 *
1433 * In all cases the return value is guaranteed to be non-negative.
1434 */
1435signed long __sched schedule_timeout(signed long timeout)
1436{
1437        struct timer_list timer;
1438        unsigned long expire;
1439
1440        switch (timeout)
1441        {
1442        case MAX_SCHEDULE_TIMEOUT:
1443                /*
1444                 * These two special cases are useful to be comfortable
1445                 * in the caller. Nothing more. We could take
1446                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1447                 * but I' d like to return a valid offset (>=0) to allow
1448                 * the caller to do everything it want with the retval.
1449                 */
1450                schedule();
1451                goto out;
1452        default:
1453                /*
1454                 * Another bit of PARANOID. Note that the retval will be
1455                 * 0 since no piece of kernel is supposed to do a check
1456                 * for a negative retval of schedule_timeout() (since it
1457                 * should never happens anyway). You just have the printk()
1458                 * that will tell you if something is gone wrong and where.
1459                 */
1460                if (timeout < 0) {
1461                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1462                                "value %lx\n", timeout);
1463                        dump_stack();
1464                        current->state = TASK_RUNNING;
1465                        goto out;
1466                }
1467        }
1468
1469        expire = timeout + jiffies;
1470
1471        setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1472        __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1473        schedule();
1474        del_singleshot_timer_sync(&timer);
1475
1476        /* Remove the timer from the object tracker */
1477        destroy_timer_on_stack(&timer);
1478
1479        timeout = expire - jiffies;
1480
1481 out:
1482        return timeout < 0 ? 0 : timeout;
1483}
1484EXPORT_SYMBOL(schedule_timeout);
1485
1486/*
1487 * We can use __set_current_state() here because schedule_timeout() calls
1488 * schedule() unconditionally.
1489 */
1490signed long __sched schedule_timeout_interruptible(signed long timeout)
1491{
1492        __set_current_state(TASK_INTERRUPTIBLE);
1493        return schedule_timeout(timeout);
1494}
1495EXPORT_SYMBOL(schedule_timeout_interruptible);
1496
1497signed long __sched schedule_timeout_killable(signed long timeout)
1498{
1499        __set_current_state(TASK_KILLABLE);
1500        return schedule_timeout(timeout);
1501}
1502EXPORT_SYMBOL(schedule_timeout_killable);
1503
1504signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1505{
1506        __set_current_state(TASK_UNINTERRUPTIBLE);
1507        return schedule_timeout(timeout);
1508}
1509EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1510
1511/* Thread ID - the internal kernel "pid" */
1512SYSCALL_DEFINE0(gettid)
1513{
1514        return task_pid_vnr(current);
1515}
1516
1517/**
1518 * do_sysinfo - fill in sysinfo struct
1519 * @info: pointer to buffer to fill
1520 */
1521int do_sysinfo(struct sysinfo *info)
1522{
1523        unsigned long mem_total, sav_total;
1524        unsigned int mem_unit, bitcount;
1525        struct timespec tp;
1526
1527        memset(info, 0, sizeof(struct sysinfo));
1528
1529        ktime_get_ts(&tp);
1530        monotonic_to_bootbased(&tp);
1531        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1532
1533        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1534
1535        info->procs = nr_threads;
1536
1537        si_meminfo(info);
1538        si_swapinfo(info);
1539
1540        /*
1541         * If the sum of all the available memory (i.e. ram + swap)
1542         * is less than can be stored in a 32 bit unsigned long then
1543         * we can be binary compatible with 2.2.x kernels.  If not,
1544         * well, in that case 2.2.x was broken anyways...
1545         *
1546         *  -Erik Andersen <andersee@debian.org>
1547         */
1548
1549        mem_total = info->totalram + info->totalswap;
1550        if (mem_total < info->totalram || mem_total < info->totalswap)
1551                goto out;
1552        bitcount = 0;
1553        mem_unit = info->mem_unit;
1554        while (mem_unit > 1) {
1555                bitcount++;
1556                mem_unit >>= 1;
1557                sav_total = mem_total;
1558                mem_total <<= 1;
1559                if (mem_total < sav_total)
1560                        goto out;
1561        }
1562
1563        /*
1564         * If mem_total did not overflow, multiply all memory values by
1565         * info->mem_unit and set it to 1.  This leaves things compatible
1566         * with 2.2.x, and also retains compatibility with earlier 2.4.x
1567         * kernels...
1568         */
1569
1570        info->mem_unit = 1;
1571        info->totalram <<= bitcount;
1572        info->freeram <<= bitcount;
1573        info->sharedram <<= bitcount;
1574        info->bufferram <<= bitcount;
1575        info->totalswap <<= bitcount;
1576        info->freeswap <<= bitcount;
1577        info->totalhigh <<= bitcount;
1578        info->freehigh <<= bitcount;
1579
1580out:
1581        return 0;
1582}
1583
1584SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1585{
1586        struct sysinfo val;
1587
1588        do_sysinfo(&val);
1589
1590        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1591                return -EFAULT;
1592
1593        return 0;
1594}
1595
1596static int __cpuinit init_timers_cpu(int cpu)
1597{
1598        int j;
1599        struct tvec_base *base;
1600        static char __cpuinitdata tvec_base_done[NR_CPUS];
1601
1602        if (!tvec_base_done[cpu]) {
1603                static char boot_done;
1604
1605                if (boot_done) {
1606                        /*
1607                         * The APs use this path later in boot
1608                         */
1609                        base = kmalloc_node(sizeof(*base),
1610                                                GFP_KERNEL | __GFP_ZERO,
1611                                                cpu_to_node(cpu));
1612                        if (!base)
1613                                return -ENOMEM;
1614
1615                        /* Make sure that tvec_base is 2 byte aligned */
1616                        if (tbase_get_deferrable(base)) {
1617                                WARN_ON(1);
1618                                kfree(base);
1619                                return -ENOMEM;
1620                        }
1621                        per_cpu(tvec_bases, cpu) = base;
1622                } else {
1623                        /*
1624                         * This is for the boot CPU - we use compile-time
1625                         * static initialisation because per-cpu memory isn't
1626                         * ready yet and because the memory allocators are not
1627                         * initialised either.
1628                         */
1629                        boot_done = 1;
1630                        base = &boot_tvec_bases;
1631                }
1632                tvec_base_done[cpu] = 1;
1633        } else {
1634                base = per_cpu(tvec_bases, cpu);
1635        }
1636
1637        spin_lock_init(&base->lock);
1638
1639        for (j = 0; j < TVN_SIZE; j++) {
1640                INIT_LIST_HEAD(base->tv5.vec + j);
1641                INIT_LIST_HEAD(base->tv4.vec + j);
1642                INIT_LIST_HEAD(base->tv3.vec + j);
1643                INIT_LIST_HEAD(base->tv2.vec + j);
1644        }
1645        for (j = 0; j < TVR_SIZE; j++)
1646                INIT_LIST_HEAD(base->tv1.vec + j);
1647
1648        base->timer_jiffies = jiffies;
1649        base->next_timer = base->timer_jiffies;
1650        return 0;
1651}
1652
1653#ifdef CONFIG_HOTPLUG_CPU
1654static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1655{
1656        struct timer_list *timer;
1657
1658        while (!list_empty(head)) {
1659                timer = list_first_entry(head, struct timer_list, entry);
1660                detach_timer(timer, 0);
1661                timer_set_base(timer, new_base);
1662                if (time_before(timer->expires, new_base->next_timer) &&
1663                    !tbase_get_deferrable(timer->base))
1664                        new_base->next_timer = timer->expires;
1665                internal_add_timer(new_base, timer);
1666        }
1667}
1668
1669static void __cpuinit migrate_timers(int cpu)
1670{
1671        struct tvec_base *old_base;
1672        struct tvec_base *new_base;
1673        int i;
1674
1675        BUG_ON(cpu_online(cpu));
1676        old_base = per_cpu(tvec_bases, cpu);
1677        new_base = get_cpu_var(tvec_bases);
1678        /*
1679         * The caller is globally serialized and nobody else
1680         * takes two locks at once, deadlock is not possible.
1681         */
1682        spin_lock_irq(&new_base->lock);
1683        spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1684
1685        BUG_ON(old_base->running_timer);
1686
1687        for (i = 0; i < TVR_SIZE; i++)
1688                migrate_timer_list(new_base, old_base->tv1.vec + i);
1689        for (i = 0; i < TVN_SIZE; i++) {
1690                migrate_timer_list(new_base, old_base->tv2.vec + i);
1691                migrate_timer_list(new_base, old_base->tv3.vec + i);
1692                migrate_timer_list(new_base, old_base->tv4.vec + i);
1693                migrate_timer_list(new_base, old_base->tv5.vec + i);
1694        }
1695
1696        spin_unlock(&old_base->lock);
1697        spin_unlock_irq(&new_base->lock);
1698        put_cpu_var(tvec_bases);
1699}
1700#endif /* CONFIG_HOTPLUG_CPU */
1701
1702static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1703                                unsigned long action, void *hcpu)
1704{
1705        long cpu = (long)hcpu;
1706        int err;
1707
1708        switch(action) {
1709        case CPU_UP_PREPARE:
1710        case CPU_UP_PREPARE_FROZEN:
1711                err = init_timers_cpu(cpu);
1712                if (err < 0)
1713                        return notifier_from_errno(err);
1714                break;
1715#ifdef CONFIG_HOTPLUG_CPU
1716        case CPU_DEAD:
1717        case CPU_DEAD_FROZEN:
1718                migrate_timers(cpu);
1719                break;
1720#endif
1721        default:
1722                break;
1723        }
1724        return NOTIFY_OK;
1725}
1726
1727static struct notifier_block __cpuinitdata timers_nb = {
1728        .notifier_call  = timer_cpu_notify,
1729};
1730
1731
1732void __init init_timers(void)
1733{
1734        int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1735                                (void *)(long)smp_processor_id());
1736
1737        init_timer_stats();
1738
1739        BUG_ON(err != NOTIFY_OK);
1740        register_cpu_notifier(&timers_nb);
1741        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1742}
1743
1744/**
1745 * msleep - sleep safely even with waitqueue interruptions
1746 * @msecs: Time in milliseconds to sleep for
1747 */
1748void msleep(unsigned int msecs)
1749{
1750        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1751
1752        while (timeout)
1753                timeout = schedule_timeout_uninterruptible(timeout);
1754}
1755
1756EXPORT_SYMBOL(msleep);
1757
1758/**
1759 * msleep_interruptible - sleep waiting for signals
1760 * @msecs: Time in milliseconds to sleep for
1761 */
1762unsigned long msleep_interruptible(unsigned int msecs)
1763{
1764        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1765
1766        while (timeout && !signal_pending(current))
1767                timeout = schedule_timeout_interruptible(timeout);
1768        return jiffies_to_msecs(timeout);
1769}
1770
1771EXPORT_SYMBOL(msleep_interruptible);
1772
1773static int __sched do_usleep_range(unsigned long min, unsigned long max)
1774{
1775        ktime_t kmin;
1776        unsigned long delta;
1777
1778        kmin = ktime_set(0, min * NSEC_PER_USEC);
1779        delta = (max - min) * NSEC_PER_USEC;
1780        return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1781}
1782
1783/**
1784 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1785 * @min: Minimum time in usecs to sleep
1786 * @max: Maximum time in usecs to sleep
1787 */
1788void usleep_range(unsigned long min, unsigned long max)
1789{
1790        __set_current_state(TASK_UNINTERRUPTIBLE);
1791        do_usleep_range(min, max);
1792}
1793EXPORT_SYMBOL(usleep_range);
1794