linux/lib/idr.c
<<
>>
Prefs
   1/*
   2 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
   3 *      Copyright (C) 2002 by Concurrent Computer Corporation
   4 *      Distributed under the GNU GPL license version 2.
   5 *
   6 * Modified by George Anzinger to reuse immediately and to use
   7 * find bit instructions.  Also removed _irq on spinlocks.
   8 *
   9 * Modified by Nadia Derbey to make it RCU safe.
  10 *
  11 * Small id to pointer translation service.
  12 *
  13 * It uses a radix tree like structure as a sparse array indexed
  14 * by the id to obtain the pointer.  The bitmap makes allocating
  15 * a new id quick.
  16 *
  17 * You call it to allocate an id (an int) an associate with that id a
  18 * pointer or what ever, we treat it as a (void *).  You can pass this
  19 * id to a user for him to pass back at a later time.  You then pass
  20 * that id to this code and it returns your pointer.
  21
  22 * You can release ids at any time. When all ids are released, most of
  23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
  24 * don't need to go to the memory "store" during an id allocate, just
  25 * so you don't need to be too concerned about locking and conflicts
  26 * with the slab allocator.
  27 */
  28
  29#ifndef TEST                        // to test in user space...
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/module.h>
  33#endif
  34#include <linux/err.h>
  35#include <linux/string.h>
  36#include <linux/idr.h>
  37
  38static struct kmem_cache *idr_layer_cache;
  39
  40static struct idr_layer *get_from_free_list(struct idr *idp)
  41{
  42        struct idr_layer *p;
  43        unsigned long flags;
  44
  45        spin_lock_irqsave(&idp->lock, flags);
  46        if ((p = idp->id_free)) {
  47                idp->id_free = p->ary[0];
  48                idp->id_free_cnt--;
  49                p->ary[0] = NULL;
  50        }
  51        spin_unlock_irqrestore(&idp->lock, flags);
  52        return(p);
  53}
  54
  55static void idr_layer_rcu_free(struct rcu_head *head)
  56{
  57        struct idr_layer *layer;
  58
  59        layer = container_of(head, struct idr_layer, rcu_head);
  60        kmem_cache_free(idr_layer_cache, layer);
  61}
  62
  63static inline void free_layer(struct idr_layer *p)
  64{
  65        call_rcu(&p->rcu_head, idr_layer_rcu_free);
  66}
  67
  68/* only called when idp->lock is held */
  69static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
  70{
  71        p->ary[0] = idp->id_free;
  72        idp->id_free = p;
  73        idp->id_free_cnt++;
  74}
  75
  76static void move_to_free_list(struct idr *idp, struct idr_layer *p)
  77{
  78        unsigned long flags;
  79
  80        /*
  81         * Depends on the return element being zeroed.
  82         */
  83        spin_lock_irqsave(&idp->lock, flags);
  84        __move_to_free_list(idp, p);
  85        spin_unlock_irqrestore(&idp->lock, flags);
  86}
  87
  88static void idr_mark_full(struct idr_layer **pa, int id)
  89{
  90        struct idr_layer *p = pa[0];
  91        int l = 0;
  92
  93        __set_bit(id & IDR_MASK, &p->bitmap);
  94        /*
  95         * If this layer is full mark the bit in the layer above to
  96         * show that this part of the radix tree is full.  This may
  97         * complete the layer above and require walking up the radix
  98         * tree.
  99         */
 100        while (p->bitmap == IDR_FULL) {
 101                if (!(p = pa[++l]))
 102                        break;
 103                id = id >> IDR_BITS;
 104                __set_bit((id & IDR_MASK), &p->bitmap);
 105        }
 106}
 107
 108/**
 109 * idr_pre_get - reserve resources for idr allocation
 110 * @idp:        idr handle
 111 * @gfp_mask:   memory allocation flags
 112 *
 113 * This function should be called prior to calling the idr_get_new* functions.
 114 * It preallocates enough memory to satisfy the worst possible allocation. The
 115 * caller should pass in GFP_KERNEL if possible.  This of course requires that
 116 * no spinning locks be held.
 117 *
 118 * If the system is REALLY out of memory this function returns %0,
 119 * otherwise %1.
 120 */
 121int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
 122{
 123        while (idp->id_free_cnt < IDR_FREE_MAX) {
 124                struct idr_layer *new;
 125                new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 126                if (new == NULL)
 127                        return (0);
 128                move_to_free_list(idp, new);
 129        }
 130        return 1;
 131}
 132EXPORT_SYMBOL(idr_pre_get);
 133
 134static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
 135{
 136        int n, m, sh;
 137        struct idr_layer *p, *new;
 138        int l, id, oid;
 139        unsigned long bm;
 140
 141        id = *starting_id;
 142 restart:
 143        p = idp->top;
 144        l = idp->layers;
 145        pa[l--] = NULL;
 146        while (1) {
 147                /*
 148                 * We run around this while until we reach the leaf node...
 149                 */
 150                n = (id >> (IDR_BITS*l)) & IDR_MASK;
 151                bm = ~p->bitmap;
 152                m = find_next_bit(&bm, IDR_SIZE, n);
 153                if (m == IDR_SIZE) {
 154                        /* no space available go back to previous layer. */
 155                        l++;
 156                        oid = id;
 157                        id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 158
 159                        /* if already at the top layer, we need to grow */
 160                        if (id >= 1 << (idp->layers * IDR_BITS)) {
 161                                *starting_id = id;
 162                                return IDR_NEED_TO_GROW;
 163                        }
 164                        p = pa[l];
 165                        BUG_ON(!p);
 166
 167                        /* If we need to go up one layer, continue the
 168                         * loop; otherwise, restart from the top.
 169                         */
 170                        sh = IDR_BITS * (l + 1);
 171                        if (oid >> sh == id >> sh)
 172                                continue;
 173                        else
 174                                goto restart;
 175                }
 176                if (m != n) {
 177                        sh = IDR_BITS*l;
 178                        id = ((id >> sh) ^ n ^ m) << sh;
 179                }
 180                if ((id >= MAX_ID_BIT) || (id < 0))
 181                        return IDR_NOMORE_SPACE;
 182                if (l == 0)
 183                        break;
 184                /*
 185                 * Create the layer below if it is missing.
 186                 */
 187                if (!p->ary[m]) {
 188                        new = get_from_free_list(idp);
 189                        if (!new)
 190                                return -1;
 191                        new->layer = l-1;
 192                        rcu_assign_pointer(p->ary[m], new);
 193                        p->count++;
 194                }
 195                pa[l--] = p;
 196                p = p->ary[m];
 197        }
 198
 199        pa[l] = p;
 200        return id;
 201}
 202
 203static int idr_get_empty_slot(struct idr *idp, int starting_id,
 204                              struct idr_layer **pa)
 205{
 206        struct idr_layer *p, *new;
 207        int layers, v, id;
 208        unsigned long flags;
 209
 210        id = starting_id;
 211build_up:
 212        p = idp->top;
 213        layers = idp->layers;
 214        if (unlikely(!p)) {
 215                if (!(p = get_from_free_list(idp)))
 216                        return -1;
 217                p->layer = 0;
 218                layers = 1;
 219        }
 220        /*
 221         * Add a new layer to the top of the tree if the requested
 222         * id is larger than the currently allocated space.
 223         */
 224        while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
 225                layers++;
 226                if (!p->count) {
 227                        /* special case: if the tree is currently empty,
 228                         * then we grow the tree by moving the top node
 229                         * upwards.
 230                         */
 231                        p->layer++;
 232                        continue;
 233                }
 234                if (!(new = get_from_free_list(idp))) {
 235                        /*
 236                         * The allocation failed.  If we built part of
 237                         * the structure tear it down.
 238                         */
 239                        spin_lock_irqsave(&idp->lock, flags);
 240                        for (new = p; p && p != idp->top; new = p) {
 241                                p = p->ary[0];
 242                                new->ary[0] = NULL;
 243                                new->bitmap = new->count = 0;
 244                                __move_to_free_list(idp, new);
 245                        }
 246                        spin_unlock_irqrestore(&idp->lock, flags);
 247                        return -1;
 248                }
 249                new->ary[0] = p;
 250                new->count = 1;
 251                new->layer = layers-1;
 252                if (p->bitmap == IDR_FULL)
 253                        __set_bit(0, &new->bitmap);
 254                p = new;
 255        }
 256        rcu_assign_pointer(idp->top, p);
 257        idp->layers = layers;
 258        v = sub_alloc(idp, &id, pa);
 259        if (v == IDR_NEED_TO_GROW)
 260                goto build_up;
 261        return(v);
 262}
 263
 264static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
 265{
 266        struct idr_layer *pa[MAX_LEVEL];
 267        int id;
 268
 269        id = idr_get_empty_slot(idp, starting_id, pa);
 270        if (id >= 0) {
 271                /*
 272                 * Successfully found an empty slot.  Install the user
 273                 * pointer and mark the slot full.
 274                 */
 275                rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
 276                                (struct idr_layer *)ptr);
 277                pa[0]->count++;
 278                idr_mark_full(pa, id);
 279        }
 280
 281        return id;
 282}
 283
 284/**
 285 * idr_get_new_above - allocate new idr entry above or equal to a start id
 286 * @idp: idr handle
 287 * @ptr: pointer you want associated with the id
 288 * @starting_id: id to start search at
 289 * @id: pointer to the allocated handle
 290 *
 291 * This is the allocate id function.  It should be called with any
 292 * required locks.
 293 *
 294 * If allocation from IDR's private freelist fails, idr_get_new_above() will
 295 * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
 296 * IDR's preallocation and then retry the idr_get_new_above() call.
 297 *
 298 * If the idr is full idr_get_new_above() will return %-ENOSPC.
 299 *
 300 * @id returns a value in the range @starting_id ... %0x7fffffff
 301 */
 302int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
 303{
 304        int rv;
 305
 306        rv = idr_get_new_above_int(idp, ptr, starting_id);
 307        /*
 308         * This is a cheap hack until the IDR code can be fixed to
 309         * return proper error values.
 310         */
 311        if (rv < 0)
 312                return _idr_rc_to_errno(rv);
 313        *id = rv;
 314        return 0;
 315}
 316EXPORT_SYMBOL(idr_get_new_above);
 317
 318/**
 319 * idr_get_new - allocate new idr entry
 320 * @idp: idr handle
 321 * @ptr: pointer you want associated with the id
 322 * @id: pointer to the allocated handle
 323 *
 324 * If allocation from IDR's private freelist fails, idr_get_new_above() will
 325 * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
 326 * IDR's preallocation and then retry the idr_get_new_above() call.
 327 *
 328 * If the idr is full idr_get_new_above() will return %-ENOSPC.
 329 *
 330 * @id returns a value in the range %0 ... %0x7fffffff
 331 */
 332int idr_get_new(struct idr *idp, void *ptr, int *id)
 333{
 334        int rv;
 335
 336        rv = idr_get_new_above_int(idp, ptr, 0);
 337        /*
 338         * This is a cheap hack until the IDR code can be fixed to
 339         * return proper error values.
 340         */
 341        if (rv < 0)
 342                return _idr_rc_to_errno(rv);
 343        *id = rv;
 344        return 0;
 345}
 346EXPORT_SYMBOL(idr_get_new);
 347
 348static void idr_remove_warning(int id)
 349{
 350        printk(KERN_WARNING
 351                "idr_remove called for id=%d which is not allocated.\n", id);
 352        dump_stack();
 353}
 354
 355static void sub_remove(struct idr *idp, int shift, int id)
 356{
 357        struct idr_layer *p = idp->top;
 358        struct idr_layer **pa[MAX_LEVEL];
 359        struct idr_layer ***paa = &pa[0];
 360        struct idr_layer *to_free;
 361        int n;
 362
 363        *paa = NULL;
 364        *++paa = &idp->top;
 365
 366        while ((shift > 0) && p) {
 367                n = (id >> shift) & IDR_MASK;
 368                __clear_bit(n, &p->bitmap);
 369                *++paa = &p->ary[n];
 370                p = p->ary[n];
 371                shift -= IDR_BITS;
 372        }
 373        n = id & IDR_MASK;
 374        if (likely(p != NULL && test_bit(n, &p->bitmap))){
 375                __clear_bit(n, &p->bitmap);
 376                rcu_assign_pointer(p->ary[n], NULL);
 377                to_free = NULL;
 378                while(*paa && ! --((**paa)->count)){
 379                        if (to_free)
 380                                free_layer(to_free);
 381                        to_free = **paa;
 382                        **paa-- = NULL;
 383                }
 384                if (!*paa)
 385                        idp->layers = 0;
 386                if (to_free)
 387                        free_layer(to_free);
 388        } else
 389                idr_remove_warning(id);
 390}
 391
 392/**
 393 * idr_remove - remove the given id and free its slot
 394 * @idp: idr handle
 395 * @id: unique key
 396 */
 397void idr_remove(struct idr *idp, int id)
 398{
 399        struct idr_layer *p;
 400        struct idr_layer *to_free;
 401
 402        /* Mask off upper bits we don't use for the search. */
 403        id &= MAX_ID_MASK;
 404
 405        sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
 406        if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
 407            idp->top->ary[0]) {
 408                /*
 409                 * Single child at leftmost slot: we can shrink the tree.
 410                 * This level is not needed anymore since when layers are
 411                 * inserted, they are inserted at the top of the existing
 412                 * tree.
 413                 */
 414                to_free = idp->top;
 415                p = idp->top->ary[0];
 416                rcu_assign_pointer(idp->top, p);
 417                --idp->layers;
 418                to_free->bitmap = to_free->count = 0;
 419                free_layer(to_free);
 420        }
 421        while (idp->id_free_cnt >= IDR_FREE_MAX) {
 422                p = get_from_free_list(idp);
 423                /*
 424                 * Note: we don't call the rcu callback here, since the only
 425                 * layers that fall into the freelist are those that have been
 426                 * preallocated.
 427                 */
 428                kmem_cache_free(idr_layer_cache, p);
 429        }
 430        return;
 431}
 432EXPORT_SYMBOL(idr_remove);
 433
 434/**
 435 * idr_remove_all - remove all ids from the given idr tree
 436 * @idp: idr handle
 437 *
 438 * idr_destroy() only frees up unused, cached idp_layers, but this
 439 * function will remove all id mappings and leave all idp_layers
 440 * unused.
 441 *
 442 * A typical clean-up sequence for objects stored in an idr tree will
 443 * use idr_for_each() to free all objects, if necessay, then
 444 * idr_remove_all() to remove all ids, and idr_destroy() to free
 445 * up the cached idr_layers.
 446 */
 447void idr_remove_all(struct idr *idp)
 448{
 449        int n, id, max;
 450        int bt_mask;
 451        struct idr_layer *p;
 452        struct idr_layer *pa[MAX_LEVEL];
 453        struct idr_layer **paa = &pa[0];
 454
 455        n = idp->layers * IDR_BITS;
 456        p = idp->top;
 457        rcu_assign_pointer(idp->top, NULL);
 458        max = 1 << n;
 459
 460        id = 0;
 461        while (id < max) {
 462                while (n > IDR_BITS && p) {
 463                        n -= IDR_BITS;
 464                        *paa++ = p;
 465                        p = p->ary[(id >> n) & IDR_MASK];
 466                }
 467
 468                bt_mask = id;
 469                id += 1 << n;
 470                /* Get the highest bit that the above add changed from 0->1. */
 471                while (n < fls(id ^ bt_mask)) {
 472                        if (p)
 473                                free_layer(p);
 474                        n += IDR_BITS;
 475                        p = *--paa;
 476                }
 477        }
 478        idp->layers = 0;
 479}
 480EXPORT_SYMBOL(idr_remove_all);
 481
 482/**
 483 * idr_destroy - release all cached layers within an idr tree
 484 * @idp: idr handle
 485 */
 486void idr_destroy(struct idr *idp)
 487{
 488        while (idp->id_free_cnt) {
 489                struct idr_layer *p = get_from_free_list(idp);
 490                kmem_cache_free(idr_layer_cache, p);
 491        }
 492}
 493EXPORT_SYMBOL(idr_destroy);
 494
 495/**
 496 * idr_find - return pointer for given id
 497 * @idp: idr handle
 498 * @id: lookup key
 499 *
 500 * Return the pointer given the id it has been registered with.  A %NULL
 501 * return indicates that @id is not valid or you passed %NULL in
 502 * idr_get_new().
 503 *
 504 * This function can be called under rcu_read_lock(), given that the leaf
 505 * pointers lifetimes are correctly managed.
 506 */
 507void *idr_find(struct idr *idp, int id)
 508{
 509        int n;
 510        struct idr_layer *p;
 511
 512        p = rcu_dereference_raw(idp->top);
 513        if (!p)
 514                return NULL;
 515        n = (p->layer+1) * IDR_BITS;
 516
 517        /* Mask off upper bits we don't use for the search. */
 518        id &= MAX_ID_MASK;
 519
 520        if (id >= (1 << n))
 521                return NULL;
 522        BUG_ON(n == 0);
 523
 524        while (n > 0 && p) {
 525                n -= IDR_BITS;
 526                BUG_ON(n != p->layer*IDR_BITS);
 527                p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 528        }
 529        return((void *)p);
 530}
 531EXPORT_SYMBOL(idr_find);
 532
 533/**
 534 * idr_for_each - iterate through all stored pointers
 535 * @idp: idr handle
 536 * @fn: function to be called for each pointer
 537 * @data: data passed back to callback function
 538 *
 539 * Iterate over the pointers registered with the given idr.  The
 540 * callback function will be called for each pointer currently
 541 * registered, passing the id, the pointer and the data pointer passed
 542 * to this function.  It is not safe to modify the idr tree while in
 543 * the callback, so functions such as idr_get_new and idr_remove are
 544 * not allowed.
 545 *
 546 * We check the return of @fn each time. If it returns anything other
 547 * than %0, we break out and return that value.
 548 *
 549 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 550 */
 551int idr_for_each(struct idr *idp,
 552                 int (*fn)(int id, void *p, void *data), void *data)
 553{
 554        int n, id, max, error = 0;
 555        struct idr_layer *p;
 556        struct idr_layer *pa[MAX_LEVEL];
 557        struct idr_layer **paa = &pa[0];
 558
 559        n = idp->layers * IDR_BITS;
 560        p = rcu_dereference_raw(idp->top);
 561        max = 1 << n;
 562
 563        id = 0;
 564        while (id < max) {
 565                while (n > 0 && p) {
 566                        n -= IDR_BITS;
 567                        *paa++ = p;
 568                        p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 569                }
 570
 571                if (p) {
 572                        error = fn(id, (void *)p, data);
 573                        if (error)
 574                                break;
 575                }
 576
 577                id += 1 << n;
 578                while (n < fls(id)) {
 579                        n += IDR_BITS;
 580                        p = *--paa;
 581                }
 582        }
 583
 584        return error;
 585}
 586EXPORT_SYMBOL(idr_for_each);
 587
 588/**
 589 * idr_get_next - lookup next object of id to given id.
 590 * @idp: idr handle
 591 * @nextidp:  pointer to lookup key
 592 *
 593 * Returns pointer to registered object with id, which is next number to
 594 * given id. After being looked up, *@nextidp will be updated for the next
 595 * iteration.
 596 */
 597
 598void *idr_get_next(struct idr *idp, int *nextidp)
 599{
 600        struct idr_layer *p, *pa[MAX_LEVEL];
 601        struct idr_layer **paa = &pa[0];
 602        int id = *nextidp;
 603        int n, max;
 604
 605        /* find first ent */
 606        n = idp->layers * IDR_BITS;
 607        max = 1 << n;
 608        p = rcu_dereference_raw(idp->top);
 609        if (!p)
 610                return NULL;
 611
 612        while (id < max) {
 613                while (n > 0 && p) {
 614                        n -= IDR_BITS;
 615                        *paa++ = p;
 616                        p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 617                }
 618
 619                if (p) {
 620                        *nextidp = id;
 621                        return p;
 622                }
 623
 624                id += 1 << n;
 625                while (n < fls(id)) {
 626                        n += IDR_BITS;
 627                        p = *--paa;
 628                }
 629        }
 630        return NULL;
 631}
 632EXPORT_SYMBOL(idr_get_next);
 633
 634
 635/**
 636 * idr_replace - replace pointer for given id
 637 * @idp: idr handle
 638 * @ptr: pointer you want associated with the id
 639 * @id: lookup key
 640 *
 641 * Replace the pointer registered with an id and return the old value.
 642 * A %-ENOENT return indicates that @id was not found.
 643 * A %-EINVAL return indicates that @id was not within valid constraints.
 644 *
 645 * The caller must serialize with writers.
 646 */
 647void *idr_replace(struct idr *idp, void *ptr, int id)
 648{
 649        int n;
 650        struct idr_layer *p, *old_p;
 651
 652        p = idp->top;
 653        if (!p)
 654                return ERR_PTR(-EINVAL);
 655
 656        n = (p->layer+1) * IDR_BITS;
 657
 658        id &= MAX_ID_MASK;
 659
 660        if (id >= (1 << n))
 661                return ERR_PTR(-EINVAL);
 662
 663        n -= IDR_BITS;
 664        while ((n > 0) && p) {
 665                p = p->ary[(id >> n) & IDR_MASK];
 666                n -= IDR_BITS;
 667        }
 668
 669        n = id & IDR_MASK;
 670        if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
 671                return ERR_PTR(-ENOENT);
 672
 673        old_p = p->ary[n];
 674        rcu_assign_pointer(p->ary[n], ptr);
 675
 676        return old_p;
 677}
 678EXPORT_SYMBOL(idr_replace);
 679
 680void __init idr_init_cache(void)
 681{
 682        idr_layer_cache = kmem_cache_create("idr_layer_cache",
 683                                sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
 684}
 685
 686/**
 687 * idr_init - initialize idr handle
 688 * @idp:        idr handle
 689 *
 690 * This function is use to set up the handle (@idp) that you will pass
 691 * to the rest of the functions.
 692 */
 693void idr_init(struct idr *idp)
 694{
 695        memset(idp, 0, sizeof(struct idr));
 696        spin_lock_init(&idp->lock);
 697}
 698EXPORT_SYMBOL(idr_init);
 699
 700
 701/**
 702 * DOC: IDA description
 703 * IDA - IDR based ID allocator
 704 *
 705 * This is id allocator without id -> pointer translation.  Memory
 706 * usage is much lower than full blown idr because each id only
 707 * occupies a bit.  ida uses a custom leaf node which contains
 708 * IDA_BITMAP_BITS slots.
 709 *
 710 * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 711 */
 712
 713static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
 714{
 715        unsigned long flags;
 716
 717        if (!ida->free_bitmap) {
 718                spin_lock_irqsave(&ida->idr.lock, flags);
 719                if (!ida->free_bitmap) {
 720                        ida->free_bitmap = bitmap;
 721                        bitmap = NULL;
 722                }
 723                spin_unlock_irqrestore(&ida->idr.lock, flags);
 724        }
 725
 726        kfree(bitmap);
 727}
 728
 729/**
 730 * ida_pre_get - reserve resources for ida allocation
 731 * @ida:        ida handle
 732 * @gfp_mask:   memory allocation flag
 733 *
 734 * This function should be called prior to locking and calling the
 735 * following function.  It preallocates enough memory to satisfy the
 736 * worst possible allocation.
 737 *
 738 * If the system is REALLY out of memory this function returns %0,
 739 * otherwise %1.
 740 */
 741int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
 742{
 743        /* allocate idr_layers */
 744        if (!idr_pre_get(&ida->idr, gfp_mask))
 745                return 0;
 746
 747        /* allocate free_bitmap */
 748        if (!ida->free_bitmap) {
 749                struct ida_bitmap *bitmap;
 750
 751                bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
 752                if (!bitmap)
 753                        return 0;
 754
 755                free_bitmap(ida, bitmap);
 756        }
 757
 758        return 1;
 759}
 760EXPORT_SYMBOL(ida_pre_get);
 761
 762/**
 763 * ida_get_new_above - allocate new ID above or equal to a start id
 764 * @ida:        ida handle
 765 * @starting_id: id to start search at
 766 * @p_id:       pointer to the allocated handle
 767 *
 768 * Allocate new ID above or equal to @ida.  It should be called with
 769 * any required locks.
 770 *
 771 * If memory is required, it will return %-EAGAIN, you should unlock
 772 * and go back to the ida_pre_get() call.  If the ida is full, it will
 773 * return %-ENOSPC.
 774 *
 775 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
 776 */
 777int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
 778{
 779        struct idr_layer *pa[MAX_LEVEL];
 780        struct ida_bitmap *bitmap;
 781        unsigned long flags;
 782        int idr_id = starting_id / IDA_BITMAP_BITS;
 783        int offset = starting_id % IDA_BITMAP_BITS;
 784        int t, id;
 785
 786 restart:
 787        /* get vacant slot */
 788        t = idr_get_empty_slot(&ida->idr, idr_id, pa);
 789        if (t < 0)
 790                return _idr_rc_to_errno(t);
 791
 792        if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
 793                return -ENOSPC;
 794
 795        if (t != idr_id)
 796                offset = 0;
 797        idr_id = t;
 798
 799        /* if bitmap isn't there, create a new one */
 800        bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
 801        if (!bitmap) {
 802                spin_lock_irqsave(&ida->idr.lock, flags);
 803                bitmap = ida->free_bitmap;
 804                ida->free_bitmap = NULL;
 805                spin_unlock_irqrestore(&ida->idr.lock, flags);
 806
 807                if (!bitmap)
 808                        return -EAGAIN;
 809
 810                memset(bitmap, 0, sizeof(struct ida_bitmap));
 811                rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
 812                                (void *)bitmap);
 813                pa[0]->count++;
 814        }
 815
 816        /* lookup for empty slot */
 817        t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
 818        if (t == IDA_BITMAP_BITS) {
 819                /* no empty slot after offset, continue to the next chunk */
 820                idr_id++;
 821                offset = 0;
 822                goto restart;
 823        }
 824
 825        id = idr_id * IDA_BITMAP_BITS + t;
 826        if (id >= MAX_ID_BIT)
 827                return -ENOSPC;
 828
 829        __set_bit(t, bitmap->bitmap);
 830        if (++bitmap->nr_busy == IDA_BITMAP_BITS)
 831                idr_mark_full(pa, idr_id);
 832
 833        *p_id = id;
 834
 835        /* Each leaf node can handle nearly a thousand slots and the
 836         * whole idea of ida is to have small memory foot print.
 837         * Throw away extra resources one by one after each successful
 838         * allocation.
 839         */
 840        if (ida->idr.id_free_cnt || ida->free_bitmap) {
 841                struct idr_layer *p = get_from_free_list(&ida->idr);
 842                if (p)
 843                        kmem_cache_free(idr_layer_cache, p);
 844        }
 845
 846        return 0;
 847}
 848EXPORT_SYMBOL(ida_get_new_above);
 849
 850/**
 851 * ida_get_new - allocate new ID
 852 * @ida:        idr handle
 853 * @p_id:       pointer to the allocated handle
 854 *
 855 * Allocate new ID.  It should be called with any required locks.
 856 *
 857 * If memory is required, it will return %-EAGAIN, you should unlock
 858 * and go back to the idr_pre_get() call.  If the idr is full, it will
 859 * return %-ENOSPC.
 860 *
 861 * @id returns a value in the range %0 ... %0x7fffffff.
 862 */
 863int ida_get_new(struct ida *ida, int *p_id)
 864{
 865        return ida_get_new_above(ida, 0, p_id);
 866}
 867EXPORT_SYMBOL(ida_get_new);
 868
 869/**
 870 * ida_remove - remove the given ID
 871 * @ida:        ida handle
 872 * @id:         ID to free
 873 */
 874void ida_remove(struct ida *ida, int id)
 875{
 876        struct idr_layer *p = ida->idr.top;
 877        int shift = (ida->idr.layers - 1) * IDR_BITS;
 878        int idr_id = id / IDA_BITMAP_BITS;
 879        int offset = id % IDA_BITMAP_BITS;
 880        int n;
 881        struct ida_bitmap *bitmap;
 882
 883        /* clear full bits while looking up the leaf idr_layer */
 884        while ((shift > 0) && p) {
 885                n = (idr_id >> shift) & IDR_MASK;
 886                __clear_bit(n, &p->bitmap);
 887                p = p->ary[n];
 888                shift -= IDR_BITS;
 889        }
 890
 891        if (p == NULL)
 892                goto err;
 893
 894        n = idr_id & IDR_MASK;
 895        __clear_bit(n, &p->bitmap);
 896
 897        bitmap = (void *)p->ary[n];
 898        if (!test_bit(offset, bitmap->bitmap))
 899                goto err;
 900
 901        /* update bitmap and remove it if empty */
 902        __clear_bit(offset, bitmap->bitmap);
 903        if (--bitmap->nr_busy == 0) {
 904                __set_bit(n, &p->bitmap);       /* to please idr_remove() */
 905                idr_remove(&ida->idr, idr_id);
 906                free_bitmap(ida, bitmap);
 907        }
 908
 909        return;
 910
 911 err:
 912        printk(KERN_WARNING
 913               "ida_remove called for id=%d which is not allocated.\n", id);
 914}
 915EXPORT_SYMBOL(ida_remove);
 916
 917/**
 918 * ida_destroy - release all cached layers within an ida tree
 919 * @ida:                ida handle
 920 */
 921void ida_destroy(struct ida *ida)
 922{
 923        idr_destroy(&ida->idr);
 924        kfree(ida->free_bitmap);
 925}
 926EXPORT_SYMBOL(ida_destroy);
 927
 928/**
 929 * ida_init - initialize ida handle
 930 * @ida:        ida handle
 931 *
 932 * This function is use to set up the handle (@ida) that you will pass
 933 * to the rest of the functions.
 934 */
 935void ida_init(struct ida *ida)
 936{
 937        memset(ida, 0, sizeof(struct ida));
 938        idr_init(&ida->idr);
 939
 940}
 941EXPORT_SYMBOL(ida_init);
 942