linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hash.h>
  37#include <linux/freezer.h>
  38
  39#include <asm/tlbflush.h>
  40#include "internal.h"
  41
  42/*
  43 * A few notes about the KSM scanning process,
  44 * to make it easier to understand the data structures below:
  45 *
  46 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  47 * contents into a data structure that holds pointers to the pages' locations.
  48 *
  49 * Since the contents of the pages may change at any moment, KSM cannot just
  50 * insert the pages into a normal sorted tree and expect it to find anything.
  51 * Therefore KSM uses two data structures - the stable and the unstable tree.
  52 *
  53 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  54 * by their contents.  Because each such page is write-protected, searching on
  55 * this tree is fully assured to be working (except when pages are unmapped),
  56 * and therefore this tree is called the stable tree.
  57 *
  58 * In addition to the stable tree, KSM uses a second data structure called the
  59 * unstable tree: this tree holds pointers to pages which have been found to
  60 * be "unchanged for a period of time".  The unstable tree sorts these pages
  61 * by their contents, but since they are not write-protected, KSM cannot rely
  62 * upon the unstable tree to work correctly - the unstable tree is liable to
  63 * be corrupted as its contents are modified, and so it is called unstable.
  64 *
  65 * KSM solves this problem by several techniques:
  66 *
  67 * 1) The unstable tree is flushed every time KSM completes scanning all
  68 *    memory areas, and then the tree is rebuilt again from the beginning.
  69 * 2) KSM will only insert into the unstable tree, pages whose hash value
  70 *    has not changed since the previous scan of all memory areas.
  71 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  72 *    colors of the nodes and not on their contents, assuring that even when
  73 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  74 *    remains the same (also, searching and inserting nodes in an rbtree uses
  75 *    the same algorithm, so we have no overhead when we flush and rebuild).
  76 * 4) KSM never flushes the stable tree, which means that even if it were to
  77 *    take 10 attempts to find a page in the unstable tree, once it is found,
  78 *    it is secured in the stable tree.  (When we scan a new page, we first
  79 *    compare it against the stable tree, and then against the unstable tree.)
  80 */
  81
  82/**
  83 * struct mm_slot - ksm information per mm that is being scanned
  84 * @link: link to the mm_slots hash list
  85 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  86 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
  87 * @mm: the mm that this information is valid for
  88 */
  89struct mm_slot {
  90        struct hlist_node link;
  91        struct list_head mm_list;
  92        struct rmap_item *rmap_list;
  93        struct mm_struct *mm;
  94};
  95
  96/**
  97 * struct ksm_scan - cursor for scanning
  98 * @mm_slot: the current mm_slot we are scanning
  99 * @address: the next address inside that to be scanned
 100 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 101 * @seqnr: count of completed full scans (needed when removing unstable node)
 102 *
 103 * There is only the one ksm_scan instance of this cursor structure.
 104 */
 105struct ksm_scan {
 106        struct mm_slot *mm_slot;
 107        unsigned long address;
 108        struct rmap_item **rmap_list;
 109        unsigned long seqnr;
 110};
 111
 112/**
 113 * struct stable_node - node of the stable rbtree
 114 * @node: rb node of this ksm page in the stable tree
 115 * @hlist: hlist head of rmap_items using this ksm page
 116 * @kpfn: page frame number of this ksm page
 117 */
 118struct stable_node {
 119        struct rb_node node;
 120        struct hlist_head hlist;
 121        unsigned long kpfn;
 122};
 123
 124/**
 125 * struct rmap_item - reverse mapping item for virtual addresses
 126 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 127 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 128 * @mm: the memory structure this rmap_item is pointing into
 129 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 130 * @oldchecksum: previous checksum of the page at that virtual address
 131 * @node: rb node of this rmap_item in the unstable tree
 132 * @head: pointer to stable_node heading this list in the stable tree
 133 * @hlist: link into hlist of rmap_items hanging off that stable_node
 134 */
 135struct rmap_item {
 136        struct rmap_item *rmap_list;
 137        struct anon_vma *anon_vma;      /* when stable */
 138        struct mm_struct *mm;
 139        unsigned long address;          /* + low bits used for flags below */
 140        unsigned int oldchecksum;       /* when unstable */
 141        union {
 142                struct rb_node node;    /* when node of unstable tree */
 143                struct {                /* when listed from stable tree */
 144                        struct stable_node *head;
 145                        struct hlist_node hlist;
 146                };
 147        };
 148};
 149
 150#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 151#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 152#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 153
 154/* The stable and unstable tree heads */
 155static struct rb_root root_stable_tree = RB_ROOT;
 156static struct rb_root root_unstable_tree = RB_ROOT;
 157
 158#define MM_SLOTS_HASH_SHIFT 10
 159#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
 160static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
 161
 162static struct mm_slot ksm_mm_head = {
 163        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 164};
 165static struct ksm_scan ksm_scan = {
 166        .mm_slot = &ksm_mm_head,
 167};
 168
 169static struct kmem_cache *rmap_item_cache;
 170static struct kmem_cache *stable_node_cache;
 171static struct kmem_cache *mm_slot_cache;
 172
 173/* The number of nodes in the stable tree */
 174static unsigned long ksm_pages_shared;
 175
 176/* The number of page slots additionally sharing those nodes */
 177static unsigned long ksm_pages_sharing;
 178
 179/* The number of nodes in the unstable tree */
 180static unsigned long ksm_pages_unshared;
 181
 182/* The number of rmap_items in use: to calculate pages_volatile */
 183static unsigned long ksm_rmap_items;
 184
 185/* Number of pages ksmd should scan in one batch */
 186static unsigned int ksm_thread_pages_to_scan = 100;
 187
 188/* Milliseconds ksmd should sleep between batches */
 189static unsigned int ksm_thread_sleep_millisecs = 20;
 190
 191#define KSM_RUN_STOP    0
 192#define KSM_RUN_MERGE   1
 193#define KSM_RUN_UNMERGE 2
 194static unsigned int ksm_run = KSM_RUN_STOP;
 195
 196static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 197static DEFINE_MUTEX(ksm_thread_mutex);
 198static DEFINE_SPINLOCK(ksm_mmlist_lock);
 199
 200#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 201                sizeof(struct __struct), __alignof__(struct __struct),\
 202                (__flags), NULL)
 203
 204static int __init ksm_slab_init(void)
 205{
 206        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 207        if (!rmap_item_cache)
 208                goto out;
 209
 210        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 211        if (!stable_node_cache)
 212                goto out_free1;
 213
 214        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 215        if (!mm_slot_cache)
 216                goto out_free2;
 217
 218        return 0;
 219
 220out_free2:
 221        kmem_cache_destroy(stable_node_cache);
 222out_free1:
 223        kmem_cache_destroy(rmap_item_cache);
 224out:
 225        return -ENOMEM;
 226}
 227
 228static void __init ksm_slab_free(void)
 229{
 230        kmem_cache_destroy(mm_slot_cache);
 231        kmem_cache_destroy(stable_node_cache);
 232        kmem_cache_destroy(rmap_item_cache);
 233        mm_slot_cache = NULL;
 234}
 235
 236static inline struct rmap_item *alloc_rmap_item(void)
 237{
 238        struct rmap_item *rmap_item;
 239
 240        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
 241        if (rmap_item)
 242                ksm_rmap_items++;
 243        return rmap_item;
 244}
 245
 246static inline void free_rmap_item(struct rmap_item *rmap_item)
 247{
 248        ksm_rmap_items--;
 249        rmap_item->mm = NULL;   /* debug safety */
 250        kmem_cache_free(rmap_item_cache, rmap_item);
 251}
 252
 253static inline struct stable_node *alloc_stable_node(void)
 254{
 255        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
 256}
 257
 258static inline void free_stable_node(struct stable_node *stable_node)
 259{
 260        kmem_cache_free(stable_node_cache, stable_node);
 261}
 262
 263static inline struct mm_slot *alloc_mm_slot(void)
 264{
 265        if (!mm_slot_cache)     /* initialization failed */
 266                return NULL;
 267        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 268}
 269
 270static inline void free_mm_slot(struct mm_slot *mm_slot)
 271{
 272        kmem_cache_free(mm_slot_cache, mm_slot);
 273}
 274
 275static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 276{
 277        struct mm_slot *mm_slot;
 278        struct hlist_head *bucket;
 279        struct hlist_node *node;
 280
 281        bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
 282        hlist_for_each_entry(mm_slot, node, bucket, link) {
 283                if (mm == mm_slot->mm)
 284                        return mm_slot;
 285        }
 286        return NULL;
 287}
 288
 289static void insert_to_mm_slots_hash(struct mm_struct *mm,
 290                                    struct mm_slot *mm_slot)
 291{
 292        struct hlist_head *bucket;
 293
 294        bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
 295        mm_slot->mm = mm;
 296        hlist_add_head(&mm_slot->link, bucket);
 297}
 298
 299static inline int in_stable_tree(struct rmap_item *rmap_item)
 300{
 301        return rmap_item->address & STABLE_FLAG;
 302}
 303
 304/*
 305 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 306 * page tables after it has passed through ksm_exit() - which, if necessary,
 307 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 308 * a special flag: they can just back out as soon as mm_users goes to zero.
 309 * ksm_test_exit() is used throughout to make this test for exit: in some
 310 * places for correctness, in some places just to avoid unnecessary work.
 311 */
 312static inline bool ksm_test_exit(struct mm_struct *mm)
 313{
 314        return atomic_read(&mm->mm_users) == 0;
 315}
 316
 317/*
 318 * We use break_ksm to break COW on a ksm page: it's a stripped down
 319 *
 320 *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
 321 *              put_page(page);
 322 *
 323 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 324 * in case the application has unmapped and remapped mm,addr meanwhile.
 325 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 326 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 327 */
 328static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 329{
 330        struct page *page;
 331        int ret = 0;
 332
 333        do {
 334                cond_resched();
 335                page = follow_page(vma, addr, FOLL_GET);
 336                if (IS_ERR_OR_NULL(page))
 337                        break;
 338                if (PageKsm(page))
 339                        ret = handle_mm_fault(vma->vm_mm, vma, addr,
 340                                                        FAULT_FLAG_WRITE);
 341                else
 342                        ret = VM_FAULT_WRITE;
 343                put_page(page);
 344        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
 345        /*
 346         * We must loop because handle_mm_fault() may back out if there's
 347         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 348         *
 349         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 350         * COW has been broken, even if the vma does not permit VM_WRITE;
 351         * but note that a concurrent fault might break PageKsm for us.
 352         *
 353         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 354         * backing file, which also invalidates anonymous pages: that's
 355         * okay, that truncation will have unmapped the PageKsm for us.
 356         *
 357         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 358         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 359         * current task has TIF_MEMDIE set, and will be OOM killed on return
 360         * to user; and ksmd, having no mm, would never be chosen for that.
 361         *
 362         * But if the mm is in a limited mem_cgroup, then the fault may fail
 363         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 364         * even ksmd can fail in this way - though it's usually breaking ksm
 365         * just to undo a merge it made a moment before, so unlikely to oom.
 366         *
 367         * That's a pity: we might therefore have more kernel pages allocated
 368         * than we're counting as nodes in the stable tree; but ksm_do_scan
 369         * will retry to break_cow on each pass, so should recover the page
 370         * in due course.  The important thing is to not let VM_MERGEABLE
 371         * be cleared while any such pages might remain in the area.
 372         */
 373        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 374}
 375
 376static void break_cow(struct rmap_item *rmap_item)
 377{
 378        struct mm_struct *mm = rmap_item->mm;
 379        unsigned long addr = rmap_item->address;
 380        struct vm_area_struct *vma;
 381
 382        /*
 383         * It is not an accident that whenever we want to break COW
 384         * to undo, we also need to drop a reference to the anon_vma.
 385         */
 386        put_anon_vma(rmap_item->anon_vma);
 387
 388        down_read(&mm->mmap_sem);
 389        if (ksm_test_exit(mm))
 390                goto out;
 391        vma = find_vma(mm, addr);
 392        if (!vma || vma->vm_start > addr)
 393                goto out;
 394        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 395                goto out;
 396        break_ksm(vma, addr);
 397out:
 398        up_read(&mm->mmap_sem);
 399}
 400
 401static struct page *page_trans_compound_anon(struct page *page)
 402{
 403        if (PageTransCompound(page)) {
 404                struct page *head = compound_trans_head(page);
 405                /*
 406                 * head may actually be splitted and freed from under
 407                 * us but it's ok here.
 408                 */
 409                if (PageAnon(head))
 410                        return head;
 411        }
 412        return NULL;
 413}
 414
 415static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 416{
 417        struct mm_struct *mm = rmap_item->mm;
 418        unsigned long addr = rmap_item->address;
 419        struct vm_area_struct *vma;
 420        struct page *page;
 421
 422        down_read(&mm->mmap_sem);
 423        if (ksm_test_exit(mm))
 424                goto out;
 425        vma = find_vma(mm, addr);
 426        if (!vma || vma->vm_start > addr)
 427                goto out;
 428        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 429                goto out;
 430
 431        page = follow_page(vma, addr, FOLL_GET);
 432        if (IS_ERR_OR_NULL(page))
 433                goto out;
 434        if (PageAnon(page) || page_trans_compound_anon(page)) {
 435                flush_anon_page(vma, page, addr);
 436                flush_dcache_page(page);
 437        } else {
 438                put_page(page);
 439out:            page = NULL;
 440        }
 441        up_read(&mm->mmap_sem);
 442        return page;
 443}
 444
 445static void remove_node_from_stable_tree(struct stable_node *stable_node)
 446{
 447        struct rmap_item *rmap_item;
 448        struct hlist_node *hlist;
 449
 450        hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
 451                if (rmap_item->hlist.next)
 452                        ksm_pages_sharing--;
 453                else
 454                        ksm_pages_shared--;
 455                put_anon_vma(rmap_item->anon_vma);
 456                rmap_item->address &= PAGE_MASK;
 457                cond_resched();
 458        }
 459
 460        rb_erase(&stable_node->node, &root_stable_tree);
 461        free_stable_node(stable_node);
 462}
 463
 464/*
 465 * get_ksm_page: checks if the page indicated by the stable node
 466 * is still its ksm page, despite having held no reference to it.
 467 * In which case we can trust the content of the page, and it
 468 * returns the gotten page; but if the page has now been zapped,
 469 * remove the stale node from the stable tree and return NULL.
 470 *
 471 * You would expect the stable_node to hold a reference to the ksm page.
 472 * But if it increments the page's count, swapping out has to wait for
 473 * ksmd to come around again before it can free the page, which may take
 474 * seconds or even minutes: much too unresponsive.  So instead we use a
 475 * "keyhole reference": access to the ksm page from the stable node peeps
 476 * out through its keyhole to see if that page still holds the right key,
 477 * pointing back to this stable node.  This relies on freeing a PageAnon
 478 * page to reset its page->mapping to NULL, and relies on no other use of
 479 * a page to put something that might look like our key in page->mapping.
 480 *
 481 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
 482 * but this is different - made simpler by ksm_thread_mutex being held, but
 483 * interesting for assuming that no other use of the struct page could ever
 484 * put our expected_mapping into page->mapping (or a field of the union which
 485 * coincides with page->mapping).  The RCU calls are not for KSM at all, but
 486 * to keep the page_count protocol described with page_cache_get_speculative.
 487 *
 488 * Note: it is possible that get_ksm_page() will return NULL one moment,
 489 * then page the next, if the page is in between page_freeze_refs() and
 490 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
 491 * is on its way to being freed; but it is an anomaly to bear in mind.
 492 */
 493static struct page *get_ksm_page(struct stable_node *stable_node)
 494{
 495        struct page *page;
 496        void *expected_mapping;
 497
 498        page = pfn_to_page(stable_node->kpfn);
 499        expected_mapping = (void *)stable_node +
 500                                (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
 501        rcu_read_lock();
 502        if (page->mapping != expected_mapping)
 503                goto stale;
 504        if (!get_page_unless_zero(page))
 505                goto stale;
 506        if (page->mapping != expected_mapping) {
 507                put_page(page);
 508                goto stale;
 509        }
 510        rcu_read_unlock();
 511        return page;
 512stale:
 513        rcu_read_unlock();
 514        remove_node_from_stable_tree(stable_node);
 515        return NULL;
 516}
 517
 518/*
 519 * Removing rmap_item from stable or unstable tree.
 520 * This function will clean the information from the stable/unstable tree.
 521 */
 522static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 523{
 524        if (rmap_item->address & STABLE_FLAG) {
 525                struct stable_node *stable_node;
 526                struct page *page;
 527
 528                stable_node = rmap_item->head;
 529                page = get_ksm_page(stable_node);
 530                if (!page)
 531                        goto out;
 532
 533                lock_page(page);
 534                hlist_del(&rmap_item->hlist);
 535                unlock_page(page);
 536                put_page(page);
 537
 538                if (stable_node->hlist.first)
 539                        ksm_pages_sharing--;
 540                else
 541                        ksm_pages_shared--;
 542
 543                put_anon_vma(rmap_item->anon_vma);
 544                rmap_item->address &= PAGE_MASK;
 545
 546        } else if (rmap_item->address & UNSTABLE_FLAG) {
 547                unsigned char age;
 548                /*
 549                 * Usually ksmd can and must skip the rb_erase, because
 550                 * root_unstable_tree was already reset to RB_ROOT.
 551                 * But be careful when an mm is exiting: do the rb_erase
 552                 * if this rmap_item was inserted by this scan, rather
 553                 * than left over from before.
 554                 */
 555                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 556                BUG_ON(age > 1);
 557                if (!age)
 558                        rb_erase(&rmap_item->node, &root_unstable_tree);
 559
 560                ksm_pages_unshared--;
 561                rmap_item->address &= PAGE_MASK;
 562        }
 563out:
 564        cond_resched();         /* we're called from many long loops */
 565}
 566
 567static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 568                                       struct rmap_item **rmap_list)
 569{
 570        while (*rmap_list) {
 571                struct rmap_item *rmap_item = *rmap_list;
 572                *rmap_list = rmap_item->rmap_list;
 573                remove_rmap_item_from_tree(rmap_item);
 574                free_rmap_item(rmap_item);
 575        }
 576}
 577
 578/*
 579 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
 580 * than check every pte of a given vma, the locking doesn't quite work for
 581 * that - an rmap_item is assigned to the stable tree after inserting ksm
 582 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 583 * rmap_items from parent to child at fork time (so as not to waste time
 584 * if exit comes before the next scan reaches it).
 585 *
 586 * Similarly, although we'd like to remove rmap_items (so updating counts
 587 * and freeing memory) when unmerging an area, it's easier to leave that
 588 * to the next pass of ksmd - consider, for example, how ksmd might be
 589 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 590 */
 591static int unmerge_ksm_pages(struct vm_area_struct *vma,
 592                             unsigned long start, unsigned long end)
 593{
 594        unsigned long addr;
 595        int err = 0;
 596
 597        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 598                if (ksm_test_exit(vma->vm_mm))
 599                        break;
 600                if (signal_pending(current))
 601                        err = -ERESTARTSYS;
 602                else
 603                        err = break_ksm(vma, addr);
 604        }
 605        return err;
 606}
 607
 608#ifdef CONFIG_SYSFS
 609/*
 610 * Only called through the sysfs control interface:
 611 */
 612static int unmerge_and_remove_all_rmap_items(void)
 613{
 614        struct mm_slot *mm_slot;
 615        struct mm_struct *mm;
 616        struct vm_area_struct *vma;
 617        int err = 0;
 618
 619        spin_lock(&ksm_mmlist_lock);
 620        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 621                                                struct mm_slot, mm_list);
 622        spin_unlock(&ksm_mmlist_lock);
 623
 624        for (mm_slot = ksm_scan.mm_slot;
 625                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 626                mm = mm_slot->mm;
 627                down_read(&mm->mmap_sem);
 628                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 629                        if (ksm_test_exit(mm))
 630                                break;
 631                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 632                                continue;
 633                        err = unmerge_ksm_pages(vma,
 634                                                vma->vm_start, vma->vm_end);
 635                        if (err)
 636                                goto error;
 637                }
 638
 639                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 640
 641                spin_lock(&ksm_mmlist_lock);
 642                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 643                                                struct mm_slot, mm_list);
 644                if (ksm_test_exit(mm)) {
 645                        hlist_del(&mm_slot->link);
 646                        list_del(&mm_slot->mm_list);
 647                        spin_unlock(&ksm_mmlist_lock);
 648
 649                        free_mm_slot(mm_slot);
 650                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 651                        up_read(&mm->mmap_sem);
 652                        mmdrop(mm);
 653                } else {
 654                        spin_unlock(&ksm_mmlist_lock);
 655                        up_read(&mm->mmap_sem);
 656                }
 657        }
 658
 659        ksm_scan.seqnr = 0;
 660        return 0;
 661
 662error:
 663        up_read(&mm->mmap_sem);
 664        spin_lock(&ksm_mmlist_lock);
 665        ksm_scan.mm_slot = &ksm_mm_head;
 666        spin_unlock(&ksm_mmlist_lock);
 667        return err;
 668}
 669#endif /* CONFIG_SYSFS */
 670
 671static u32 calc_checksum(struct page *page)
 672{
 673        u32 checksum;
 674        void *addr = kmap_atomic(page, KM_USER0);
 675        checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 676        kunmap_atomic(addr, KM_USER0);
 677        return checksum;
 678}
 679
 680static int memcmp_pages(struct page *page1, struct page *page2)
 681{
 682        char *addr1, *addr2;
 683        int ret;
 684
 685        addr1 = kmap_atomic(page1, KM_USER0);
 686        addr2 = kmap_atomic(page2, KM_USER1);
 687        ret = memcmp(addr1, addr2, PAGE_SIZE);
 688        kunmap_atomic(addr2, KM_USER1);
 689        kunmap_atomic(addr1, KM_USER0);
 690        return ret;
 691}
 692
 693static inline int pages_identical(struct page *page1, struct page *page2)
 694{
 695        return !memcmp_pages(page1, page2);
 696}
 697
 698static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 699                              pte_t *orig_pte)
 700{
 701        struct mm_struct *mm = vma->vm_mm;
 702        unsigned long addr;
 703        pte_t *ptep;
 704        spinlock_t *ptl;
 705        int swapped;
 706        int err = -EFAULT;
 707
 708        addr = page_address_in_vma(page, vma);
 709        if (addr == -EFAULT)
 710                goto out;
 711
 712        BUG_ON(PageTransCompound(page));
 713        ptep = page_check_address(page, mm, addr, &ptl, 0);
 714        if (!ptep)
 715                goto out;
 716
 717        if (pte_write(*ptep) || pte_dirty(*ptep)) {
 718                pte_t entry;
 719
 720                swapped = PageSwapCache(page);
 721                flush_cache_page(vma, addr, page_to_pfn(page));
 722                /*
 723                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 724                 * take any lock, therefore the check that we are going to make
 725                 * with the pagecount against the mapcount is racey and
 726                 * O_DIRECT can happen right after the check.
 727                 * So we clear the pte and flush the tlb before the check
 728                 * this assure us that no O_DIRECT can happen after the check
 729                 * or in the middle of the check.
 730                 */
 731                entry = ptep_clear_flush(vma, addr, ptep);
 732                /*
 733                 * Check that no O_DIRECT or similar I/O is in progress on the
 734                 * page
 735                 */
 736                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 737                        set_pte_at(mm, addr, ptep, entry);
 738                        goto out_unlock;
 739                }
 740                if (pte_dirty(entry))
 741                        set_page_dirty(page);
 742                entry = pte_mkclean(pte_wrprotect(entry));
 743                set_pte_at_notify(mm, addr, ptep, entry);
 744        }
 745        *orig_pte = *ptep;
 746        err = 0;
 747
 748out_unlock:
 749        pte_unmap_unlock(ptep, ptl);
 750out:
 751        return err;
 752}
 753
 754/**
 755 * replace_page - replace page in vma by new ksm page
 756 * @vma:      vma that holds the pte pointing to page
 757 * @page:     the page we are replacing by kpage
 758 * @kpage:    the ksm page we replace page by
 759 * @orig_pte: the original value of the pte
 760 *
 761 * Returns 0 on success, -EFAULT on failure.
 762 */
 763static int replace_page(struct vm_area_struct *vma, struct page *page,
 764                        struct page *kpage, pte_t orig_pte)
 765{
 766        struct mm_struct *mm = vma->vm_mm;
 767        pgd_t *pgd;
 768        pud_t *pud;
 769        pmd_t *pmd;
 770        pte_t *ptep;
 771        spinlock_t *ptl;
 772        unsigned long addr;
 773        int err = -EFAULT;
 774
 775        addr = page_address_in_vma(page, vma);
 776        if (addr == -EFAULT)
 777                goto out;
 778
 779        pgd = pgd_offset(mm, addr);
 780        if (!pgd_present(*pgd))
 781                goto out;
 782
 783        pud = pud_offset(pgd, addr);
 784        if (!pud_present(*pud))
 785                goto out;
 786
 787        pmd = pmd_offset(pud, addr);
 788        BUG_ON(pmd_trans_huge(*pmd));
 789        if (!pmd_present(*pmd))
 790                goto out;
 791
 792        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 793        if (!pte_same(*ptep, orig_pte)) {
 794                pte_unmap_unlock(ptep, ptl);
 795                goto out;
 796        }
 797
 798        get_page(kpage);
 799        page_add_anon_rmap(kpage, vma, addr);
 800
 801        flush_cache_page(vma, addr, pte_pfn(*ptep));
 802        ptep_clear_flush(vma, addr, ptep);
 803        set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 804
 805        page_remove_rmap(page);
 806        if (!page_mapped(page))
 807                try_to_free_swap(page);
 808        put_page(page);
 809
 810        pte_unmap_unlock(ptep, ptl);
 811        err = 0;
 812out:
 813        return err;
 814}
 815
 816static int page_trans_compound_anon_split(struct page *page)
 817{
 818        int ret = 0;
 819        struct page *transhuge_head = page_trans_compound_anon(page);
 820        if (transhuge_head) {
 821                /* Get the reference on the head to split it. */
 822                if (get_page_unless_zero(transhuge_head)) {
 823                        /*
 824                         * Recheck we got the reference while the head
 825                         * was still anonymous.
 826                         */
 827                        if (PageAnon(transhuge_head))
 828                                ret = split_huge_page(transhuge_head);
 829                        else
 830                                /*
 831                                 * Retry later if split_huge_page run
 832                                 * from under us.
 833                                 */
 834                                ret = 1;
 835                        put_page(transhuge_head);
 836                } else
 837                        /* Retry later if split_huge_page run from under us. */
 838                        ret = 1;
 839        }
 840        return ret;
 841}
 842
 843/*
 844 * try_to_merge_one_page - take two pages and merge them into one
 845 * @vma: the vma that holds the pte pointing to page
 846 * @page: the PageAnon page that we want to replace with kpage
 847 * @kpage: the PageKsm page that we want to map instead of page,
 848 *         or NULL the first time when we want to use page as kpage.
 849 *
 850 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 851 */
 852static int try_to_merge_one_page(struct vm_area_struct *vma,
 853                                 struct page *page, struct page *kpage)
 854{
 855        pte_t orig_pte = __pte(0);
 856        int err = -EFAULT;
 857
 858        if (page == kpage)                      /* ksm page forked */
 859                return 0;
 860
 861        if (!(vma->vm_flags & VM_MERGEABLE))
 862                goto out;
 863        if (PageTransCompound(page) && page_trans_compound_anon_split(page))
 864                goto out;
 865        BUG_ON(PageTransCompound(page));
 866        if (!PageAnon(page))
 867                goto out;
 868
 869        /*
 870         * We need the page lock to read a stable PageSwapCache in
 871         * write_protect_page().  We use trylock_page() instead of
 872         * lock_page() because we don't want to wait here - we
 873         * prefer to continue scanning and merging different pages,
 874         * then come back to this page when it is unlocked.
 875         */
 876        if (!trylock_page(page))
 877                goto out;
 878        /*
 879         * If this anonymous page is mapped only here, its pte may need
 880         * to be write-protected.  If it's mapped elsewhere, all of its
 881         * ptes are necessarily already write-protected.  But in either
 882         * case, we need to lock and check page_count is not raised.
 883         */
 884        if (write_protect_page(vma, page, &orig_pte) == 0) {
 885                if (!kpage) {
 886                        /*
 887                         * While we hold page lock, upgrade page from
 888                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
 889                         * stable_tree_insert() will update stable_node.
 890                         */
 891                        set_page_stable_node(page, NULL);
 892                        mark_page_accessed(page);
 893                        err = 0;
 894                } else if (pages_identical(page, kpage))
 895                        err = replace_page(vma, page, kpage, orig_pte);
 896        }
 897
 898        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
 899                munlock_vma_page(page);
 900                if (!PageMlocked(kpage)) {
 901                        unlock_page(page);
 902                        lock_page(kpage);
 903                        mlock_vma_page(kpage);
 904                        page = kpage;           /* for final unlock */
 905                }
 906        }
 907
 908        unlock_page(page);
 909out:
 910        return err;
 911}
 912
 913/*
 914 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
 915 * but no new kernel page is allocated: kpage must already be a ksm page.
 916 *
 917 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 918 */
 919static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
 920                                      struct page *page, struct page *kpage)
 921{
 922        struct mm_struct *mm = rmap_item->mm;
 923        struct vm_area_struct *vma;
 924        int err = -EFAULT;
 925
 926        down_read(&mm->mmap_sem);
 927        if (ksm_test_exit(mm))
 928                goto out;
 929        vma = find_vma(mm, rmap_item->address);
 930        if (!vma || vma->vm_start > rmap_item->address)
 931                goto out;
 932
 933        err = try_to_merge_one_page(vma, page, kpage);
 934        if (err)
 935                goto out;
 936
 937        /* Must get reference to anon_vma while still holding mmap_sem */
 938        rmap_item->anon_vma = vma->anon_vma;
 939        get_anon_vma(vma->anon_vma);
 940out:
 941        up_read(&mm->mmap_sem);
 942        return err;
 943}
 944
 945/*
 946 * try_to_merge_two_pages - take two identical pages and prepare them
 947 * to be merged into one page.
 948 *
 949 * This function returns the kpage if we successfully merged two identical
 950 * pages into one ksm page, NULL otherwise.
 951 *
 952 * Note that this function upgrades page to ksm page: if one of the pages
 953 * is already a ksm page, try_to_merge_with_ksm_page should be used.
 954 */
 955static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
 956                                           struct page *page,
 957                                           struct rmap_item *tree_rmap_item,
 958                                           struct page *tree_page)
 959{
 960        int err;
 961
 962        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
 963        if (!err) {
 964                err = try_to_merge_with_ksm_page(tree_rmap_item,
 965                                                        tree_page, page);
 966                /*
 967                 * If that fails, we have a ksm page with only one pte
 968                 * pointing to it: so break it.
 969                 */
 970                if (err)
 971                        break_cow(rmap_item);
 972        }
 973        return err ? NULL : page;
 974}
 975
 976/*
 977 * stable_tree_search - search for page inside the stable tree
 978 *
 979 * This function checks if there is a page inside the stable tree
 980 * with identical content to the page that we are scanning right now.
 981 *
 982 * This function returns the stable tree node of identical content if found,
 983 * NULL otherwise.
 984 */
 985static struct page *stable_tree_search(struct page *page)
 986{
 987        struct rb_node *node = root_stable_tree.rb_node;
 988        struct stable_node *stable_node;
 989
 990        stable_node = page_stable_node(page);
 991        if (stable_node) {                      /* ksm page forked */
 992                get_page(page);
 993                return page;
 994        }
 995
 996        while (node) {
 997                struct page *tree_page;
 998                int ret;
 999
1000                cond_resched();
1001                stable_node = rb_entry(node, struct stable_node, node);
1002                tree_page = get_ksm_page(stable_node);
1003                if (!tree_page)
1004                        return NULL;
1005
1006                ret = memcmp_pages(page, tree_page);
1007
1008                if (ret < 0) {
1009                        put_page(tree_page);
1010                        node = node->rb_left;
1011                } else if (ret > 0) {
1012                        put_page(tree_page);
1013                        node = node->rb_right;
1014                } else
1015                        return tree_page;
1016        }
1017
1018        return NULL;
1019}
1020
1021/*
1022 * stable_tree_insert - insert rmap_item pointing to new ksm page
1023 * into the stable tree.
1024 *
1025 * This function returns the stable tree node just allocated on success,
1026 * NULL otherwise.
1027 */
1028static struct stable_node *stable_tree_insert(struct page *kpage)
1029{
1030        struct rb_node **new = &root_stable_tree.rb_node;
1031        struct rb_node *parent = NULL;
1032        struct stable_node *stable_node;
1033
1034        while (*new) {
1035                struct page *tree_page;
1036                int ret;
1037
1038                cond_resched();
1039                stable_node = rb_entry(*new, struct stable_node, node);
1040                tree_page = get_ksm_page(stable_node);
1041                if (!tree_page)
1042                        return NULL;
1043
1044                ret = memcmp_pages(kpage, tree_page);
1045                put_page(tree_page);
1046
1047                parent = *new;
1048                if (ret < 0)
1049                        new = &parent->rb_left;
1050                else if (ret > 0)
1051                        new = &parent->rb_right;
1052                else {
1053                        /*
1054                         * It is not a bug that stable_tree_search() didn't
1055                         * find this node: because at that time our page was
1056                         * not yet write-protected, so may have changed since.
1057                         */
1058                        return NULL;
1059                }
1060        }
1061
1062        stable_node = alloc_stable_node();
1063        if (!stable_node)
1064                return NULL;
1065
1066        rb_link_node(&stable_node->node, parent, new);
1067        rb_insert_color(&stable_node->node, &root_stable_tree);
1068
1069        INIT_HLIST_HEAD(&stable_node->hlist);
1070
1071        stable_node->kpfn = page_to_pfn(kpage);
1072        set_page_stable_node(kpage, stable_node);
1073
1074        return stable_node;
1075}
1076
1077/*
1078 * unstable_tree_search_insert - search for identical page,
1079 * else insert rmap_item into the unstable tree.
1080 *
1081 * This function searches for a page in the unstable tree identical to the
1082 * page currently being scanned; and if no identical page is found in the
1083 * tree, we insert rmap_item as a new object into the unstable tree.
1084 *
1085 * This function returns pointer to rmap_item found to be identical
1086 * to the currently scanned page, NULL otherwise.
1087 *
1088 * This function does both searching and inserting, because they share
1089 * the same walking algorithm in an rbtree.
1090 */
1091static
1092struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1093                                              struct page *page,
1094                                              struct page **tree_pagep)
1095
1096{
1097        struct rb_node **new = &root_unstable_tree.rb_node;
1098        struct rb_node *parent = NULL;
1099
1100        while (*new) {
1101                struct rmap_item *tree_rmap_item;
1102                struct page *tree_page;
1103                int ret;
1104
1105                cond_resched();
1106                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1107                tree_page = get_mergeable_page(tree_rmap_item);
1108                if (IS_ERR_OR_NULL(tree_page))
1109                        return NULL;
1110
1111                /*
1112                 * Don't substitute a ksm page for a forked page.
1113                 */
1114                if (page == tree_page) {
1115                        put_page(tree_page);
1116                        return NULL;
1117                }
1118
1119                ret = memcmp_pages(page, tree_page);
1120
1121                parent = *new;
1122                if (ret < 0) {
1123                        put_page(tree_page);
1124                        new = &parent->rb_left;
1125                } else if (ret > 0) {
1126                        put_page(tree_page);
1127                        new = &parent->rb_right;
1128                } else {
1129                        *tree_pagep = tree_page;
1130                        return tree_rmap_item;
1131                }
1132        }
1133
1134        rmap_item->address |= UNSTABLE_FLAG;
1135        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1136        rb_link_node(&rmap_item->node, parent, new);
1137        rb_insert_color(&rmap_item->node, &root_unstable_tree);
1138
1139        ksm_pages_unshared++;
1140        return NULL;
1141}
1142
1143/*
1144 * stable_tree_append - add another rmap_item to the linked list of
1145 * rmap_items hanging off a given node of the stable tree, all sharing
1146 * the same ksm page.
1147 */
1148static void stable_tree_append(struct rmap_item *rmap_item,
1149                               struct stable_node *stable_node)
1150{
1151        rmap_item->head = stable_node;
1152        rmap_item->address |= STABLE_FLAG;
1153        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1154
1155        if (rmap_item->hlist.next)
1156                ksm_pages_sharing++;
1157        else
1158                ksm_pages_shared++;
1159}
1160
1161/*
1162 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1163 * if not, compare checksum to previous and if it's the same, see if page can
1164 * be inserted into the unstable tree, or merged with a page already there and
1165 * both transferred to the stable tree.
1166 *
1167 * @page: the page that we are searching identical page to.
1168 * @rmap_item: the reverse mapping into the virtual address of this page
1169 */
1170static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1171{
1172        struct rmap_item *tree_rmap_item;
1173        struct page *tree_page = NULL;
1174        struct stable_node *stable_node;
1175        struct page *kpage;
1176        unsigned int checksum;
1177        int err;
1178
1179        remove_rmap_item_from_tree(rmap_item);
1180
1181        /* We first start with searching the page inside the stable tree */
1182        kpage = stable_tree_search(page);
1183        if (kpage) {
1184                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1185                if (!err) {
1186                        /*
1187                         * The page was successfully merged:
1188                         * add its rmap_item to the stable tree.
1189                         */
1190                        lock_page(kpage);
1191                        stable_tree_append(rmap_item, page_stable_node(kpage));
1192                        unlock_page(kpage);
1193                }
1194                put_page(kpage);
1195                return;
1196        }
1197
1198        /*
1199         * If the hash value of the page has changed from the last time
1200         * we calculated it, this page is changing frequently: therefore we
1201         * don't want to insert it in the unstable tree, and we don't want
1202         * to waste our time searching for something identical to it there.
1203         */
1204        checksum = calc_checksum(page);
1205        if (rmap_item->oldchecksum != checksum) {
1206                rmap_item->oldchecksum = checksum;
1207                return;
1208        }
1209
1210        tree_rmap_item =
1211                unstable_tree_search_insert(rmap_item, page, &tree_page);
1212        if (tree_rmap_item) {
1213                kpage = try_to_merge_two_pages(rmap_item, page,
1214                                                tree_rmap_item, tree_page);
1215                put_page(tree_page);
1216                /*
1217                 * As soon as we merge this page, we want to remove the
1218                 * rmap_item of the page we have merged with from the unstable
1219                 * tree, and insert it instead as new node in the stable tree.
1220                 */
1221                if (kpage) {
1222                        remove_rmap_item_from_tree(tree_rmap_item);
1223
1224                        lock_page(kpage);
1225                        stable_node = stable_tree_insert(kpage);
1226                        if (stable_node) {
1227                                stable_tree_append(tree_rmap_item, stable_node);
1228                                stable_tree_append(rmap_item, stable_node);
1229                        }
1230                        unlock_page(kpage);
1231
1232                        /*
1233                         * If we fail to insert the page into the stable tree,
1234                         * we will have 2 virtual addresses that are pointing
1235                         * to a ksm page left outside the stable tree,
1236                         * in which case we need to break_cow on both.
1237                         */
1238                        if (!stable_node) {
1239                                break_cow(tree_rmap_item);
1240                                break_cow(rmap_item);
1241                        }
1242                }
1243        }
1244}
1245
1246static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1247                                            struct rmap_item **rmap_list,
1248                                            unsigned long addr)
1249{
1250        struct rmap_item *rmap_item;
1251
1252        while (*rmap_list) {
1253                rmap_item = *rmap_list;
1254                if ((rmap_item->address & PAGE_MASK) == addr)
1255                        return rmap_item;
1256                if (rmap_item->address > addr)
1257                        break;
1258                *rmap_list = rmap_item->rmap_list;
1259                remove_rmap_item_from_tree(rmap_item);
1260                free_rmap_item(rmap_item);
1261        }
1262
1263        rmap_item = alloc_rmap_item();
1264        if (rmap_item) {
1265                /* It has already been zeroed */
1266                rmap_item->mm = mm_slot->mm;
1267                rmap_item->address = addr;
1268                rmap_item->rmap_list = *rmap_list;
1269                *rmap_list = rmap_item;
1270        }
1271        return rmap_item;
1272}
1273
1274static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1275{
1276        struct mm_struct *mm;
1277        struct mm_slot *slot;
1278        struct vm_area_struct *vma;
1279        struct rmap_item *rmap_item;
1280
1281        if (list_empty(&ksm_mm_head.mm_list))
1282                return NULL;
1283
1284        slot = ksm_scan.mm_slot;
1285        if (slot == &ksm_mm_head) {
1286                /*
1287                 * A number of pages can hang around indefinitely on per-cpu
1288                 * pagevecs, raised page count preventing write_protect_page
1289                 * from merging them.  Though it doesn't really matter much,
1290                 * it is puzzling to see some stuck in pages_volatile until
1291                 * other activity jostles them out, and they also prevented
1292                 * LTP's KSM test from succeeding deterministically; so drain
1293                 * them here (here rather than on entry to ksm_do_scan(),
1294                 * so we don't IPI too often when pages_to_scan is set low).
1295                 */
1296                lru_add_drain_all();
1297
1298                root_unstable_tree = RB_ROOT;
1299
1300                spin_lock(&ksm_mmlist_lock);
1301                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1302                ksm_scan.mm_slot = slot;
1303                spin_unlock(&ksm_mmlist_lock);
1304next_mm:
1305                ksm_scan.address = 0;
1306                ksm_scan.rmap_list = &slot->rmap_list;
1307        }
1308
1309        mm = slot->mm;
1310        down_read(&mm->mmap_sem);
1311        if (ksm_test_exit(mm))
1312                vma = NULL;
1313        else
1314                vma = find_vma(mm, ksm_scan.address);
1315
1316        for (; vma; vma = vma->vm_next) {
1317                if (!(vma->vm_flags & VM_MERGEABLE))
1318                        continue;
1319                if (ksm_scan.address < vma->vm_start)
1320                        ksm_scan.address = vma->vm_start;
1321                if (!vma->anon_vma)
1322                        ksm_scan.address = vma->vm_end;
1323
1324                while (ksm_scan.address < vma->vm_end) {
1325                        if (ksm_test_exit(mm))
1326                                break;
1327                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1328                        if (IS_ERR_OR_NULL(*page)) {
1329                                ksm_scan.address += PAGE_SIZE;
1330                                cond_resched();
1331                                continue;
1332                        }
1333                        if (PageAnon(*page) ||
1334                            page_trans_compound_anon(*page)) {
1335                                flush_anon_page(vma, *page, ksm_scan.address);
1336                                flush_dcache_page(*page);
1337                                rmap_item = get_next_rmap_item(slot,
1338                                        ksm_scan.rmap_list, ksm_scan.address);
1339                                if (rmap_item) {
1340                                        ksm_scan.rmap_list =
1341                                                        &rmap_item->rmap_list;
1342                                        ksm_scan.address += PAGE_SIZE;
1343                                } else
1344                                        put_page(*page);
1345                                up_read(&mm->mmap_sem);
1346                                return rmap_item;
1347                        }
1348                        put_page(*page);
1349                        ksm_scan.address += PAGE_SIZE;
1350                        cond_resched();
1351                }
1352        }
1353
1354        if (ksm_test_exit(mm)) {
1355                ksm_scan.address = 0;
1356                ksm_scan.rmap_list = &slot->rmap_list;
1357        }
1358        /*
1359         * Nuke all the rmap_items that are above this current rmap:
1360         * because there were no VM_MERGEABLE vmas with such addresses.
1361         */
1362        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1363
1364        spin_lock(&ksm_mmlist_lock);
1365        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1366                                                struct mm_slot, mm_list);
1367        if (ksm_scan.address == 0) {
1368                /*
1369                 * We've completed a full scan of all vmas, holding mmap_sem
1370                 * throughout, and found no VM_MERGEABLE: so do the same as
1371                 * __ksm_exit does to remove this mm from all our lists now.
1372                 * This applies either when cleaning up after __ksm_exit
1373                 * (but beware: we can reach here even before __ksm_exit),
1374                 * or when all VM_MERGEABLE areas have been unmapped (and
1375                 * mmap_sem then protects against race with MADV_MERGEABLE).
1376                 */
1377                hlist_del(&slot->link);
1378                list_del(&slot->mm_list);
1379                spin_unlock(&ksm_mmlist_lock);
1380
1381                free_mm_slot(slot);
1382                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1383                up_read(&mm->mmap_sem);
1384                mmdrop(mm);
1385        } else {
1386                spin_unlock(&ksm_mmlist_lock);
1387                up_read(&mm->mmap_sem);
1388        }
1389
1390        /* Repeat until we've completed scanning the whole list */
1391        slot = ksm_scan.mm_slot;
1392        if (slot != &ksm_mm_head)
1393                goto next_mm;
1394
1395        ksm_scan.seqnr++;
1396        return NULL;
1397}
1398
1399/**
1400 * ksm_do_scan  - the ksm scanner main worker function.
1401 * @scan_npages - number of pages we want to scan before we return.
1402 */
1403static void ksm_do_scan(unsigned int scan_npages)
1404{
1405        struct rmap_item *rmap_item;
1406        struct page *uninitialized_var(page);
1407
1408        while (scan_npages-- && likely(!freezing(current))) {
1409                cond_resched();
1410                rmap_item = scan_get_next_rmap_item(&page);
1411                if (!rmap_item)
1412                        return;
1413                if (!PageKsm(page) || !in_stable_tree(rmap_item))
1414                        cmp_and_merge_page(page, rmap_item);
1415                put_page(page);
1416        }
1417}
1418
1419static int ksmd_should_run(void)
1420{
1421        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1422}
1423
1424static int ksm_scan_thread(void *nothing)
1425{
1426        set_freezable();
1427        set_user_nice(current, 5);
1428
1429        while (!kthread_should_stop()) {
1430                mutex_lock(&ksm_thread_mutex);
1431                if (ksmd_should_run())
1432                        ksm_do_scan(ksm_thread_pages_to_scan);
1433                mutex_unlock(&ksm_thread_mutex);
1434
1435                try_to_freeze();
1436
1437                if (ksmd_should_run()) {
1438                        schedule_timeout_interruptible(
1439                                msecs_to_jiffies(ksm_thread_sleep_millisecs));
1440                } else {
1441                        wait_event_freezable(ksm_thread_wait,
1442                                ksmd_should_run() || kthread_should_stop());
1443                }
1444        }
1445        return 0;
1446}
1447
1448int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1449                unsigned long end, int advice, unsigned long *vm_flags)
1450{
1451        struct mm_struct *mm = vma->vm_mm;
1452        int err;
1453
1454        switch (advice) {
1455        case MADV_MERGEABLE:
1456                /*
1457                 * Be somewhat over-protective for now!
1458                 */
1459                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1460                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1461                                 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1462                                 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1463                        return 0;               /* just ignore the advice */
1464
1465                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1466                        err = __ksm_enter(mm);
1467                        if (err)
1468                                return err;
1469                }
1470
1471                *vm_flags |= VM_MERGEABLE;
1472                break;
1473
1474        case MADV_UNMERGEABLE:
1475                if (!(*vm_flags & VM_MERGEABLE))
1476                        return 0;               /* just ignore the advice */
1477
1478                if (vma->anon_vma) {
1479                        err = unmerge_ksm_pages(vma, start, end);
1480                        if (err)
1481                                return err;
1482                }
1483
1484                *vm_flags &= ~VM_MERGEABLE;
1485                break;
1486        }
1487
1488        return 0;
1489}
1490
1491int __ksm_enter(struct mm_struct *mm)
1492{
1493        struct mm_slot *mm_slot;
1494        int needs_wakeup;
1495
1496        mm_slot = alloc_mm_slot();
1497        if (!mm_slot)
1498                return -ENOMEM;
1499
1500        /* Check ksm_run too?  Would need tighter locking */
1501        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1502
1503        spin_lock(&ksm_mmlist_lock);
1504        insert_to_mm_slots_hash(mm, mm_slot);
1505        /*
1506         * Insert just behind the scanning cursor, to let the area settle
1507         * down a little; when fork is followed by immediate exec, we don't
1508         * want ksmd to waste time setting up and tearing down an rmap_list.
1509         */
1510        list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1511        spin_unlock(&ksm_mmlist_lock);
1512
1513        set_bit(MMF_VM_MERGEABLE, &mm->flags);
1514        atomic_inc(&mm->mm_count);
1515
1516        if (needs_wakeup)
1517                wake_up_interruptible(&ksm_thread_wait);
1518
1519        return 0;
1520}
1521
1522void __ksm_exit(struct mm_struct *mm)
1523{
1524        struct mm_slot *mm_slot;
1525        int easy_to_free = 0;
1526
1527        /*
1528         * This process is exiting: if it's straightforward (as is the
1529         * case when ksmd was never running), free mm_slot immediately.
1530         * But if it's at the cursor or has rmap_items linked to it, use
1531         * mmap_sem to synchronize with any break_cows before pagetables
1532         * are freed, and leave the mm_slot on the list for ksmd to free.
1533         * Beware: ksm may already have noticed it exiting and freed the slot.
1534         */
1535
1536        spin_lock(&ksm_mmlist_lock);
1537        mm_slot = get_mm_slot(mm);
1538        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1539                if (!mm_slot->rmap_list) {
1540                        hlist_del(&mm_slot->link);
1541                        list_del(&mm_slot->mm_list);
1542                        easy_to_free = 1;
1543                } else {
1544                        list_move(&mm_slot->mm_list,
1545                                  &ksm_scan.mm_slot->mm_list);
1546                }
1547        }
1548        spin_unlock(&ksm_mmlist_lock);
1549
1550        if (easy_to_free) {
1551                free_mm_slot(mm_slot);
1552                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1553                mmdrop(mm);
1554        } else if (mm_slot) {
1555                down_write(&mm->mmap_sem);
1556                up_write(&mm->mmap_sem);
1557        }
1558}
1559
1560struct page *ksm_does_need_to_copy(struct page *page,
1561                        struct vm_area_struct *vma, unsigned long address)
1562{
1563        struct page *new_page;
1564
1565        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1566        if (new_page) {
1567                copy_user_highpage(new_page, page, address, vma);
1568
1569                SetPageDirty(new_page);
1570                __SetPageUptodate(new_page);
1571                SetPageSwapBacked(new_page);
1572                __set_page_locked(new_page);
1573
1574                if (page_evictable(new_page, vma))
1575                        lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1576                else
1577                        add_page_to_unevictable_list(new_page);
1578        }
1579
1580        return new_page;
1581}
1582
1583int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1584                        unsigned long *vm_flags)
1585{
1586        struct stable_node *stable_node;
1587        struct rmap_item *rmap_item;
1588        struct hlist_node *hlist;
1589        unsigned int mapcount = page_mapcount(page);
1590        int referenced = 0;
1591        int search_new_forks = 0;
1592
1593        VM_BUG_ON(!PageKsm(page));
1594        VM_BUG_ON(!PageLocked(page));
1595
1596        stable_node = page_stable_node(page);
1597        if (!stable_node)
1598                return 0;
1599again:
1600        hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1601                struct anon_vma *anon_vma = rmap_item->anon_vma;
1602                struct anon_vma_chain *vmac;
1603                struct vm_area_struct *vma;
1604
1605                anon_vma_lock(anon_vma);
1606                list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1607                        vma = vmac->vma;
1608                        if (rmap_item->address < vma->vm_start ||
1609                            rmap_item->address >= vma->vm_end)
1610                                continue;
1611                        /*
1612                         * Initially we examine only the vma which covers this
1613                         * rmap_item; but later, if there is still work to do,
1614                         * we examine covering vmas in other mms: in case they
1615                         * were forked from the original since ksmd passed.
1616                         */
1617                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1618                                continue;
1619
1620                        if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1621                                continue;
1622
1623                        referenced += page_referenced_one(page, vma,
1624                                rmap_item->address, &mapcount, vm_flags);
1625                        if (!search_new_forks || !mapcount)
1626                                break;
1627                }
1628                anon_vma_unlock(anon_vma);
1629                if (!mapcount)
1630                        goto out;
1631        }
1632        if (!search_new_forks++)
1633                goto again;
1634out:
1635        return referenced;
1636}
1637
1638int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1639{
1640        struct stable_node *stable_node;
1641        struct hlist_node *hlist;
1642        struct rmap_item *rmap_item;
1643        int ret = SWAP_AGAIN;
1644        int search_new_forks = 0;
1645
1646        VM_BUG_ON(!PageKsm(page));
1647        VM_BUG_ON(!PageLocked(page));
1648
1649        stable_node = page_stable_node(page);
1650        if (!stable_node)
1651                return SWAP_FAIL;
1652again:
1653        hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1654                struct anon_vma *anon_vma = rmap_item->anon_vma;
1655                struct anon_vma_chain *vmac;
1656                struct vm_area_struct *vma;
1657
1658                anon_vma_lock(anon_vma);
1659                list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1660                        vma = vmac->vma;
1661                        if (rmap_item->address < vma->vm_start ||
1662                            rmap_item->address >= vma->vm_end)
1663                                continue;
1664                        /*
1665                         * Initially we examine only the vma which covers this
1666                         * rmap_item; but later, if there is still work to do,
1667                         * we examine covering vmas in other mms: in case they
1668                         * were forked from the original since ksmd passed.
1669                         */
1670                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1671                                continue;
1672
1673                        ret = try_to_unmap_one(page, vma,
1674                                        rmap_item->address, flags);
1675                        if (ret != SWAP_AGAIN || !page_mapped(page)) {
1676                                anon_vma_unlock(anon_vma);
1677                                goto out;
1678                        }
1679                }
1680                anon_vma_unlock(anon_vma);
1681        }
1682        if (!search_new_forks++)
1683                goto again;
1684out:
1685        return ret;
1686}
1687
1688#ifdef CONFIG_MIGRATION
1689int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1690                  struct vm_area_struct *, unsigned long, void *), void *arg)
1691{
1692        struct stable_node *stable_node;
1693        struct hlist_node *hlist;
1694        struct rmap_item *rmap_item;
1695        int ret = SWAP_AGAIN;
1696        int search_new_forks = 0;
1697
1698        VM_BUG_ON(!PageKsm(page));
1699        VM_BUG_ON(!PageLocked(page));
1700
1701        stable_node = page_stable_node(page);
1702        if (!stable_node)
1703                return ret;
1704again:
1705        hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1706                struct anon_vma *anon_vma = rmap_item->anon_vma;
1707                struct anon_vma_chain *vmac;
1708                struct vm_area_struct *vma;
1709
1710                anon_vma_lock(anon_vma);
1711                list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1712                        vma = vmac->vma;
1713                        if (rmap_item->address < vma->vm_start ||
1714                            rmap_item->address >= vma->vm_end)
1715                                continue;
1716                        /*
1717                         * Initially we examine only the vma which covers this
1718                         * rmap_item; but later, if there is still work to do,
1719                         * we examine covering vmas in other mms: in case they
1720                         * were forked from the original since ksmd passed.
1721                         */
1722                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1723                                continue;
1724
1725                        ret = rmap_one(page, vma, rmap_item->address, arg);
1726                        if (ret != SWAP_AGAIN) {
1727                                anon_vma_unlock(anon_vma);
1728                                goto out;
1729                        }
1730                }
1731                anon_vma_unlock(anon_vma);
1732        }
1733        if (!search_new_forks++)
1734                goto again;
1735out:
1736        return ret;
1737}
1738
1739void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1740{
1741        struct stable_node *stable_node;
1742
1743        VM_BUG_ON(!PageLocked(oldpage));
1744        VM_BUG_ON(!PageLocked(newpage));
1745        VM_BUG_ON(newpage->mapping != oldpage->mapping);
1746
1747        stable_node = page_stable_node(newpage);
1748        if (stable_node) {
1749                VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1750                stable_node->kpfn = page_to_pfn(newpage);
1751        }
1752}
1753#endif /* CONFIG_MIGRATION */
1754
1755#ifdef CONFIG_MEMORY_HOTREMOVE
1756static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1757                                                 unsigned long end_pfn)
1758{
1759        struct rb_node *node;
1760
1761        for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1762                struct stable_node *stable_node;
1763
1764                stable_node = rb_entry(node, struct stable_node, node);
1765                if (stable_node->kpfn >= start_pfn &&
1766                    stable_node->kpfn < end_pfn)
1767                        return stable_node;
1768        }
1769        return NULL;
1770}
1771
1772static int ksm_memory_callback(struct notifier_block *self,
1773                               unsigned long action, void *arg)
1774{
1775        struct memory_notify *mn = arg;
1776        struct stable_node *stable_node;
1777
1778        switch (action) {
1779        case MEM_GOING_OFFLINE:
1780                /*
1781                 * Keep it very simple for now: just lock out ksmd and
1782                 * MADV_UNMERGEABLE while any memory is going offline.
1783                 * mutex_lock_nested() is necessary because lockdep was alarmed
1784                 * that here we take ksm_thread_mutex inside notifier chain
1785                 * mutex, and later take notifier chain mutex inside
1786                 * ksm_thread_mutex to unlock it.   But that's safe because both
1787                 * are inside mem_hotplug_mutex.
1788                 */
1789                mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1790                break;
1791
1792        case MEM_OFFLINE:
1793                /*
1794                 * Most of the work is done by page migration; but there might
1795                 * be a few stable_nodes left over, still pointing to struct
1796                 * pages which have been offlined: prune those from the tree.
1797                 */
1798                while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1799                                        mn->start_pfn + mn->nr_pages)) != NULL)
1800                        remove_node_from_stable_tree(stable_node);
1801                /* fallthrough */
1802
1803        case MEM_CANCEL_OFFLINE:
1804                mutex_unlock(&ksm_thread_mutex);
1805                break;
1806        }
1807        return NOTIFY_OK;
1808}
1809#endif /* CONFIG_MEMORY_HOTREMOVE */
1810
1811#ifdef CONFIG_SYSFS
1812/*
1813 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1814 */
1815
1816#define KSM_ATTR_RO(_name) \
1817        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1818#define KSM_ATTR(_name) \
1819        static struct kobj_attribute _name##_attr = \
1820                __ATTR(_name, 0644, _name##_show, _name##_store)
1821
1822static ssize_t sleep_millisecs_show(struct kobject *kobj,
1823                                    struct kobj_attribute *attr, char *buf)
1824{
1825        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1826}
1827
1828static ssize_t sleep_millisecs_store(struct kobject *kobj,
1829                                     struct kobj_attribute *attr,
1830                                     const char *buf, size_t count)
1831{
1832        unsigned long msecs;
1833        int err;
1834
1835        err = strict_strtoul(buf, 10, &msecs);
1836        if (err || msecs > UINT_MAX)
1837                return -EINVAL;
1838
1839        ksm_thread_sleep_millisecs = msecs;
1840
1841        return count;
1842}
1843KSM_ATTR(sleep_millisecs);
1844
1845static ssize_t pages_to_scan_show(struct kobject *kobj,
1846                                  struct kobj_attribute *attr, char *buf)
1847{
1848        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1849}
1850
1851static ssize_t pages_to_scan_store(struct kobject *kobj,
1852                                   struct kobj_attribute *attr,
1853                                   const char *buf, size_t count)
1854{
1855        int err;
1856        unsigned long nr_pages;
1857
1858        err = strict_strtoul(buf, 10, &nr_pages);
1859        if (err || nr_pages > UINT_MAX)
1860                return -EINVAL;
1861
1862        ksm_thread_pages_to_scan = nr_pages;
1863
1864        return count;
1865}
1866KSM_ATTR(pages_to_scan);
1867
1868static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1869                        char *buf)
1870{
1871        return sprintf(buf, "%u\n", ksm_run);
1872}
1873
1874static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1875                         const char *buf, size_t count)
1876{
1877        int err;
1878        unsigned long flags;
1879
1880        err = strict_strtoul(buf, 10, &flags);
1881        if (err || flags > UINT_MAX)
1882                return -EINVAL;
1883        if (flags > KSM_RUN_UNMERGE)
1884                return -EINVAL;
1885
1886        /*
1887         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1888         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1889         * breaking COW to free the pages_shared (but leaves mm_slots
1890         * on the list for when ksmd may be set running again).
1891         */
1892
1893        mutex_lock(&ksm_thread_mutex);
1894        if (ksm_run != flags) {
1895                ksm_run = flags;
1896                if (flags & KSM_RUN_UNMERGE) {
1897                        current->flags |= PF_OOM_ORIGIN;
1898                        err = unmerge_and_remove_all_rmap_items();
1899                        current->flags &= ~PF_OOM_ORIGIN;
1900                        if (err) {
1901                                ksm_run = KSM_RUN_STOP;
1902                                count = err;
1903                        }
1904                }
1905        }
1906        mutex_unlock(&ksm_thread_mutex);
1907
1908        if (flags & KSM_RUN_MERGE)
1909                wake_up_interruptible(&ksm_thread_wait);
1910
1911        return count;
1912}
1913KSM_ATTR(run);
1914
1915static ssize_t pages_shared_show(struct kobject *kobj,
1916                                 struct kobj_attribute *attr, char *buf)
1917{
1918        return sprintf(buf, "%lu\n", ksm_pages_shared);
1919}
1920KSM_ATTR_RO(pages_shared);
1921
1922static ssize_t pages_sharing_show(struct kobject *kobj,
1923                                  struct kobj_attribute *attr, char *buf)
1924{
1925        return sprintf(buf, "%lu\n", ksm_pages_sharing);
1926}
1927KSM_ATTR_RO(pages_sharing);
1928
1929static ssize_t pages_unshared_show(struct kobject *kobj,
1930                                   struct kobj_attribute *attr, char *buf)
1931{
1932        return sprintf(buf, "%lu\n", ksm_pages_unshared);
1933}
1934KSM_ATTR_RO(pages_unshared);
1935
1936static ssize_t pages_volatile_show(struct kobject *kobj,
1937                                   struct kobj_attribute *attr, char *buf)
1938{
1939        long ksm_pages_volatile;
1940
1941        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1942                                - ksm_pages_sharing - ksm_pages_unshared;
1943        /*
1944         * It was not worth any locking to calculate that statistic,
1945         * but it might therefore sometimes be negative: conceal that.
1946         */
1947        if (ksm_pages_volatile < 0)
1948                ksm_pages_volatile = 0;
1949        return sprintf(buf, "%ld\n", ksm_pages_volatile);
1950}
1951KSM_ATTR_RO(pages_volatile);
1952
1953static ssize_t full_scans_show(struct kobject *kobj,
1954                               struct kobj_attribute *attr, char *buf)
1955{
1956        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1957}
1958KSM_ATTR_RO(full_scans);
1959
1960static struct attribute *ksm_attrs[] = {
1961        &sleep_millisecs_attr.attr,
1962        &pages_to_scan_attr.attr,
1963        &run_attr.attr,
1964        &pages_shared_attr.attr,
1965        &pages_sharing_attr.attr,
1966        &pages_unshared_attr.attr,
1967        &pages_volatile_attr.attr,
1968        &full_scans_attr.attr,
1969        NULL,
1970};
1971
1972static struct attribute_group ksm_attr_group = {
1973        .attrs = ksm_attrs,
1974        .name = "ksm",
1975};
1976#endif /* CONFIG_SYSFS */
1977
1978static int __init ksm_init(void)
1979{
1980        struct task_struct *ksm_thread;
1981        int err;
1982
1983        err = ksm_slab_init();
1984        if (err)
1985                goto out;
1986
1987        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1988        if (IS_ERR(ksm_thread)) {
1989                printk(KERN_ERR "ksm: creating kthread failed\n");
1990                err = PTR_ERR(ksm_thread);
1991                goto out_free;
1992        }
1993
1994#ifdef CONFIG_SYSFS
1995        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1996        if (err) {
1997                printk(KERN_ERR "ksm: register sysfs failed\n");
1998                kthread_stop(ksm_thread);
1999                goto out_free;
2000        }
2001#else
2002        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2003
2004#endif /* CONFIG_SYSFS */
2005
2006#ifdef CONFIG_MEMORY_HOTREMOVE
2007        /*
2008         * Choose a high priority since the callback takes ksm_thread_mutex:
2009         * later callbacks could only be taking locks which nest within that.
2010         */
2011        hotplug_memory_notifier(ksm_memory_callback, 100);
2012#endif
2013        return 0;
2014
2015out_free:
2016        ksm_slab_free();
2017out:
2018        return err;
2019}
2020module_init(ksm_init)
2021