linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/module.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96
  97#include "internal.h"
  98
  99/* Internal flags */
 100#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 101#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 102#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)           /* Gather statistics */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114struct mempolicy default_policy = {
 115        .refcnt = ATOMIC_INIT(1), /* never free it */
 116        .mode = MPOL_PREFERRED,
 117        .flags = MPOL_F_LOCAL,
 118};
 119
 120static const struct mempolicy_operations {
 121        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122        /*
 123         * If read-side task has no lock to protect task->mempolicy, write-side
 124         * task will rebind the task->mempolicy by two step. The first step is
 125         * setting all the newly nodes, and the second step is cleaning all the
 126         * disallowed nodes. In this way, we can avoid finding no node to alloc
 127         * page.
 128         * If we have a lock to protect task->mempolicy in read-side, we do
 129         * rebind directly.
 130         *
 131         * step:
 132         *      MPOL_REBIND_ONCE - do rebind work at once
 133         *      MPOL_REBIND_STEP1 - set all the newly nodes
 134         *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135         */
 136        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137                        enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143        int nd, k;
 144
 145        for_each_node_mask(nd, *nodemask) {
 146                struct zone *z;
 147
 148                for (k = 0; k <= policy_zone; k++) {
 149                        z = &NODE_DATA(nd)->node_zones[k];
 150                        if (z->present_pages > 0)
 151                                return 1;
 152                }
 153        }
 154
 155        return 0;
 156}
 157
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160        return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164                                   const nodemask_t *rel)
 165{
 166        nodemask_t tmp;
 167        nodes_fold(tmp, *orig, nodes_weight(*rel));
 168        nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173        if (nodes_empty(*nodes))
 174                return -EINVAL;
 175        pol->v.nodes = *nodes;
 176        return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181        if (!nodes)
 182                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 183        else if (nodes_empty(*nodes))
 184                return -EINVAL;                 /*  no allowed nodes */
 185        else
 186                pol->v.preferred_node = first_node(*nodes);
 187        return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192        if (!is_valid_nodemask(nodes))
 193                return -EINVAL;
 194        pol->v.nodes = *nodes;
 195        return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208                     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210        int ret;
 211
 212        /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213        if (pol == NULL)
 214                return 0;
 215        /* Check N_HIGH_MEMORY */
 216        nodes_and(nsc->mask1,
 217                  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219        VM_BUG_ON(!nodes);
 220        if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221                nodes = NULL;   /* explicit local allocation */
 222        else {
 223                if (pol->flags & MPOL_F_RELATIVE_NODES)
 224                        mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225                else
 226                        nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228                if (mpol_store_user_nodemask(pol))
 229                        pol->w.user_nodemask = *nodes;
 230                else
 231                        pol->w.cpuset_mems_allowed =
 232                                                cpuset_current_mems_allowed;
 233        }
 234
 235        if (nodes)
 236                ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237        else
 238                ret = mpol_ops[pol->mode].create(pol, NULL);
 239        return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247                                  nodemask_t *nodes)
 248{
 249        struct mempolicy *policy;
 250
 251        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252                 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254        if (mode == MPOL_DEFAULT) {
 255                if (nodes && !nodes_empty(*nodes))
 256                        return ERR_PTR(-EINVAL);
 257                return NULL;    /* simply delete any existing policy */
 258        }
 259        VM_BUG_ON(!nodes);
 260
 261        /*
 262         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264         * All other modes require a valid pointer to a non-empty nodemask.
 265         */
 266        if (mode == MPOL_PREFERRED) {
 267                if (nodes_empty(*nodes)) {
 268                        if (((flags & MPOL_F_STATIC_NODES) ||
 269                             (flags & MPOL_F_RELATIVE_NODES)))
 270                                return ERR_PTR(-EINVAL);
 271                }
 272        } else if (nodes_empty(*nodes))
 273                return ERR_PTR(-EINVAL);
 274        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275        if (!policy)
 276                return ERR_PTR(-ENOMEM);
 277        atomic_set(&policy->refcnt, 1);
 278        policy->mode = mode;
 279        policy->flags = flags;
 280
 281        return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287        if (!atomic_dec_and_test(&p->refcnt))
 288                return;
 289        kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293                                enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 *      MPOL_REBIND_ONCE  - do rebind work at once
 300 *      MPOL_REBIND_STEP1 - set all the newly nodes
 301 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304                                 enum mpol_rebind_step step)
 305{
 306        nodemask_t tmp;
 307
 308        if (pol->flags & MPOL_F_STATIC_NODES)
 309                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312        else {
 313                /*
 314                 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315                 * result
 316                 */
 317                if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318                        nodes_remap(tmp, pol->v.nodes,
 319                                        pol->w.cpuset_mems_allowed, *nodes);
 320                        pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321                } else if (step == MPOL_REBIND_STEP2) {
 322                        tmp = pol->w.cpuset_mems_allowed;
 323                        pol->w.cpuset_mems_allowed = *nodes;
 324                } else
 325                        BUG();
 326        }
 327
 328        if (nodes_empty(tmp))
 329                tmp = *nodes;
 330
 331        if (step == MPOL_REBIND_STEP1)
 332                nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333        else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334                pol->v.nodes = tmp;
 335        else
 336                BUG();
 337
 338        if (!node_isset(current->il_next, tmp)) {
 339                current->il_next = next_node(current->il_next, tmp);
 340                if (current->il_next >= MAX_NUMNODES)
 341                        current->il_next = first_node(tmp);
 342                if (current->il_next >= MAX_NUMNODES)
 343                        current->il_next = numa_node_id();
 344        }
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348                                  const nodemask_t *nodes,
 349                                  enum mpol_rebind_step step)
 350{
 351        nodemask_t tmp;
 352
 353        if (pol->flags & MPOL_F_STATIC_NODES) {
 354                int node = first_node(pol->w.user_nodemask);
 355
 356                if (node_isset(node, *nodes)) {
 357                        pol->v.preferred_node = node;
 358                        pol->flags &= ~MPOL_F_LOCAL;
 359                } else
 360                        pol->flags |= MPOL_F_LOCAL;
 361        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363                pol->v.preferred_node = first_node(tmp);
 364        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 365                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366                                                   pol->w.cpuset_mems_allowed,
 367                                                   *nodes);
 368                pol->w.cpuset_mems_allowed = *nodes;
 369        }
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 *      MPOL_REBIND_ONCE  - do rebind work at once
 385 *      MPOL_REBIND_STEP1 - set all the newly nodes
 386 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389                                enum mpol_rebind_step step)
 390{
 391        if (!pol)
 392                return;
 393        if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395                return;
 396
 397        if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398                return;
 399
 400        if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401                BUG();
 402
 403        if (step == MPOL_REBIND_STEP1)
 404                pol->flags |= MPOL_F_REBINDING;
 405        else if (step == MPOL_REBIND_STEP2)
 406                pol->flags &= ~MPOL_F_REBINDING;
 407        else if (step >= MPOL_REBIND_NSTEP)
 408                BUG();
 409
 410        mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421                        enum mpol_rebind_step step)
 422{
 423        mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434        struct vm_area_struct *vma;
 435
 436        down_write(&mm->mmap_sem);
 437        for (vma = mm->mmap; vma; vma = vma->vm_next)
 438                mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439        up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443        [MPOL_DEFAULT] = {
 444                .rebind = mpol_rebind_default,
 445        },
 446        [MPOL_INTERLEAVE] = {
 447                .create = mpol_new_interleave,
 448                .rebind = mpol_rebind_nodemask,
 449        },
 450        [MPOL_PREFERRED] = {
 451                .create = mpol_new_preferred,
 452                .rebind = mpol_rebind_preferred,
 453        },
 454        [MPOL_BIND] = {
 455                .create = mpol_new_bind,
 456                .rebind = mpol_rebind_nodemask,
 457        },
 458};
 459
 460static void gather_stats(struct page *, void *, int pte_dirty);
 461static void migrate_page_add(struct page *page, struct list_head *pagelist,
 462                                unsigned long flags);
 463
 464/* Scan through pages checking if pages follow certain conditions. */
 465static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 466                unsigned long addr, unsigned long end,
 467                const nodemask_t *nodes, unsigned long flags,
 468                void *private)
 469{
 470        pte_t *orig_pte;
 471        pte_t *pte;
 472        spinlock_t *ptl;
 473
 474        orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 475        do {
 476                struct page *page;
 477                int nid;
 478
 479                if (!pte_present(*pte))
 480                        continue;
 481                page = vm_normal_page(vma, addr, *pte);
 482                if (!page)
 483                        continue;
 484                /*
 485                 * vm_normal_page() filters out zero pages, but there might
 486                 * still be PageReserved pages to skip, perhaps in a VDSO.
 487                 * And we cannot move PageKsm pages sensibly or safely yet.
 488                 */
 489                if (PageReserved(page) || PageKsm(page))
 490                        continue;
 491                nid = page_to_nid(page);
 492                if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 493                        continue;
 494
 495                if (flags & MPOL_MF_STATS)
 496                        gather_stats(page, private, pte_dirty(*pte));
 497                else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 498                        migrate_page_add(page, private, flags);
 499                else
 500                        break;
 501        } while (pte++, addr += PAGE_SIZE, addr != end);
 502        pte_unmap_unlock(orig_pte, ptl);
 503        return addr != end;
 504}
 505
 506static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 507                unsigned long addr, unsigned long end,
 508                const nodemask_t *nodes, unsigned long flags,
 509                void *private)
 510{
 511        pmd_t *pmd;
 512        unsigned long next;
 513
 514        pmd = pmd_offset(pud, addr);
 515        do {
 516                next = pmd_addr_end(addr, end);
 517                split_huge_page_pmd(vma->vm_mm, pmd);
 518                if (pmd_none_or_clear_bad(pmd))
 519                        continue;
 520                if (check_pte_range(vma, pmd, addr, next, nodes,
 521                                    flags, private))
 522                        return -EIO;
 523        } while (pmd++, addr = next, addr != end);
 524        return 0;
 525}
 526
 527static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 528                unsigned long addr, unsigned long end,
 529                const nodemask_t *nodes, unsigned long flags,
 530                void *private)
 531{
 532        pud_t *pud;
 533        unsigned long next;
 534
 535        pud = pud_offset(pgd, addr);
 536        do {
 537                next = pud_addr_end(addr, end);
 538                if (pud_none_or_clear_bad(pud))
 539                        continue;
 540                if (check_pmd_range(vma, pud, addr, next, nodes,
 541                                    flags, private))
 542                        return -EIO;
 543        } while (pud++, addr = next, addr != end);
 544        return 0;
 545}
 546
 547static inline int check_pgd_range(struct vm_area_struct *vma,
 548                unsigned long addr, unsigned long end,
 549                const nodemask_t *nodes, unsigned long flags,
 550                void *private)
 551{
 552        pgd_t *pgd;
 553        unsigned long next;
 554
 555        pgd = pgd_offset(vma->vm_mm, addr);
 556        do {
 557                next = pgd_addr_end(addr, end);
 558                if (pgd_none_or_clear_bad(pgd))
 559                        continue;
 560                if (check_pud_range(vma, pgd, addr, next, nodes,
 561                                    flags, private))
 562                        return -EIO;
 563        } while (pgd++, addr = next, addr != end);
 564        return 0;
 565}
 566
 567/*
 568 * Check if all pages in a range are on a set of nodes.
 569 * If pagelist != NULL then isolate pages from the LRU and
 570 * put them on the pagelist.
 571 */
 572static struct vm_area_struct *
 573check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 574                const nodemask_t *nodes, unsigned long flags, void *private)
 575{
 576        int err;
 577        struct vm_area_struct *first, *vma, *prev;
 578
 579
 580        first = find_vma(mm, start);
 581        if (!first)
 582                return ERR_PTR(-EFAULT);
 583        prev = NULL;
 584        for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 585                if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 586                        if (!vma->vm_next && vma->vm_end < end)
 587                                return ERR_PTR(-EFAULT);
 588                        if (prev && prev->vm_end < vma->vm_start)
 589                                return ERR_PTR(-EFAULT);
 590                }
 591                if (!is_vm_hugetlb_page(vma) &&
 592                    ((flags & MPOL_MF_STRICT) ||
 593                     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 594                                vma_migratable(vma)))) {
 595                        unsigned long endvma = vma->vm_end;
 596
 597                        if (endvma > end)
 598                                endvma = end;
 599                        if (vma->vm_start > start)
 600                                start = vma->vm_start;
 601                        err = check_pgd_range(vma, start, endvma, nodes,
 602                                                flags, private);
 603                        if (err) {
 604                                first = ERR_PTR(err);
 605                                break;
 606                        }
 607                }
 608                prev = vma;
 609        }
 610        return first;
 611}
 612
 613/* Apply policy to a single VMA */
 614static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 615{
 616        int err = 0;
 617        struct mempolicy *old = vma->vm_policy;
 618
 619        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 620                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 621                 vma->vm_ops, vma->vm_file,
 622                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 623
 624        if (vma->vm_ops && vma->vm_ops->set_policy)
 625                err = vma->vm_ops->set_policy(vma, new);
 626        if (!err) {
 627                mpol_get(new);
 628                vma->vm_policy = new;
 629                mpol_put(old);
 630        }
 631        return err;
 632}
 633
 634/* Step 2: apply policy to a range and do splits. */
 635static int mbind_range(struct mm_struct *mm, unsigned long start,
 636                       unsigned long end, struct mempolicy *new_pol)
 637{
 638        struct vm_area_struct *next;
 639        struct vm_area_struct *prev;
 640        struct vm_area_struct *vma;
 641        int err = 0;
 642        pgoff_t pgoff;
 643        unsigned long vmstart;
 644        unsigned long vmend;
 645
 646        vma = find_vma_prev(mm, start, &prev);
 647        if (!vma || vma->vm_start > start)
 648                return -EFAULT;
 649
 650        for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 651                next = vma->vm_next;
 652                vmstart = max(start, vma->vm_start);
 653                vmend   = min(end, vma->vm_end);
 654
 655                pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 656                prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 657                                  vma->anon_vma, vma->vm_file, pgoff, new_pol);
 658                if (prev) {
 659                        vma = prev;
 660                        next = vma->vm_next;
 661                        continue;
 662                }
 663                if (vma->vm_start != vmstart) {
 664                        err = split_vma(vma->vm_mm, vma, vmstart, 1);
 665                        if (err)
 666                                goto out;
 667                }
 668                if (vma->vm_end != vmend) {
 669                        err = split_vma(vma->vm_mm, vma, vmend, 0);
 670                        if (err)
 671                                goto out;
 672                }
 673                err = policy_vma(vma, new_pol);
 674                if (err)
 675                        goto out;
 676        }
 677
 678 out:
 679        return err;
 680}
 681
 682/*
 683 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 684 * mempolicy.  Allows more rapid checking of this (combined perhaps
 685 * with other PF_* flag bits) on memory allocation hot code paths.
 686 *
 687 * If called from outside this file, the task 'p' should -only- be
 688 * a newly forked child not yet visible on the task list, because
 689 * manipulating the task flags of a visible task is not safe.
 690 *
 691 * The above limitation is why this routine has the funny name
 692 * mpol_fix_fork_child_flag().
 693 *
 694 * It is also safe to call this with a task pointer of current,
 695 * which the static wrapper mpol_set_task_struct_flag() does,
 696 * for use within this file.
 697 */
 698
 699void mpol_fix_fork_child_flag(struct task_struct *p)
 700{
 701        if (p->mempolicy)
 702                p->flags |= PF_MEMPOLICY;
 703        else
 704                p->flags &= ~PF_MEMPOLICY;
 705}
 706
 707static void mpol_set_task_struct_flag(void)
 708{
 709        mpol_fix_fork_child_flag(current);
 710}
 711
 712/* Set the process memory policy */
 713static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 714                             nodemask_t *nodes)
 715{
 716        struct mempolicy *new, *old;
 717        struct mm_struct *mm = current->mm;
 718        NODEMASK_SCRATCH(scratch);
 719        int ret;
 720
 721        if (!scratch)
 722                return -ENOMEM;
 723
 724        new = mpol_new(mode, flags, nodes);
 725        if (IS_ERR(new)) {
 726                ret = PTR_ERR(new);
 727                goto out;
 728        }
 729        /*
 730         * prevent changing our mempolicy while show_numa_maps()
 731         * is using it.
 732         * Note:  do_set_mempolicy() can be called at init time
 733         * with no 'mm'.
 734         */
 735        if (mm)
 736                down_write(&mm->mmap_sem);
 737        task_lock(current);
 738        ret = mpol_set_nodemask(new, nodes, scratch);
 739        if (ret) {
 740                task_unlock(current);
 741                if (mm)
 742                        up_write(&mm->mmap_sem);
 743                mpol_put(new);
 744                goto out;
 745        }
 746        old = current->mempolicy;
 747        current->mempolicy = new;
 748        mpol_set_task_struct_flag();
 749        if (new && new->mode == MPOL_INTERLEAVE &&
 750            nodes_weight(new->v.nodes))
 751                current->il_next = first_node(new->v.nodes);
 752        task_unlock(current);
 753        if (mm)
 754                up_write(&mm->mmap_sem);
 755
 756        mpol_put(old);
 757        ret = 0;
 758out:
 759        NODEMASK_SCRATCH_FREE(scratch);
 760        return ret;
 761}
 762
 763/*
 764 * Return nodemask for policy for get_mempolicy() query
 765 *
 766 * Called with task's alloc_lock held
 767 */
 768static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 769{
 770        nodes_clear(*nodes);
 771        if (p == &default_policy)
 772                return;
 773
 774        switch (p->mode) {
 775        case MPOL_BIND:
 776                /* Fall through */
 777        case MPOL_INTERLEAVE:
 778                *nodes = p->v.nodes;
 779                break;
 780        case MPOL_PREFERRED:
 781                if (!(p->flags & MPOL_F_LOCAL))
 782                        node_set(p->v.preferred_node, *nodes);
 783                /* else return empty node mask for local allocation */
 784                break;
 785        default:
 786                BUG();
 787        }
 788}
 789
 790static int lookup_node(struct mm_struct *mm, unsigned long addr)
 791{
 792        struct page *p;
 793        int err;
 794
 795        err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 796        if (err >= 0) {
 797                err = page_to_nid(p);
 798                put_page(p);
 799        }
 800        return err;
 801}
 802
 803/* Retrieve NUMA policy */
 804static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 805                             unsigned long addr, unsigned long flags)
 806{
 807        int err;
 808        struct mm_struct *mm = current->mm;
 809        struct vm_area_struct *vma = NULL;
 810        struct mempolicy *pol = current->mempolicy;
 811
 812        if (flags &
 813                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 814                return -EINVAL;
 815
 816        if (flags & MPOL_F_MEMS_ALLOWED) {
 817                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 818                        return -EINVAL;
 819                *policy = 0;    /* just so it's initialized */
 820                task_lock(current);
 821                *nmask  = cpuset_current_mems_allowed;
 822                task_unlock(current);
 823                return 0;
 824        }
 825
 826        if (flags & MPOL_F_ADDR) {
 827                /*
 828                 * Do NOT fall back to task policy if the
 829                 * vma/shared policy at addr is NULL.  We
 830                 * want to return MPOL_DEFAULT in this case.
 831                 */
 832                down_read(&mm->mmap_sem);
 833                vma = find_vma_intersection(mm, addr, addr+1);
 834                if (!vma) {
 835                        up_read(&mm->mmap_sem);
 836                        return -EFAULT;
 837                }
 838                if (vma->vm_ops && vma->vm_ops->get_policy)
 839                        pol = vma->vm_ops->get_policy(vma, addr);
 840                else
 841                        pol = vma->vm_policy;
 842        } else if (addr)
 843                return -EINVAL;
 844
 845        if (!pol)
 846                pol = &default_policy;  /* indicates default behavior */
 847
 848        if (flags & MPOL_F_NODE) {
 849                if (flags & MPOL_F_ADDR) {
 850                        err = lookup_node(mm, addr);
 851                        if (err < 0)
 852                                goto out;
 853                        *policy = err;
 854                } else if (pol == current->mempolicy &&
 855                                pol->mode == MPOL_INTERLEAVE) {
 856                        *policy = current->il_next;
 857                } else {
 858                        err = -EINVAL;
 859                        goto out;
 860                }
 861        } else {
 862                *policy = pol == &default_policy ? MPOL_DEFAULT :
 863                                                pol->mode;
 864                /*
 865                 * Internal mempolicy flags must be masked off before exposing
 866                 * the policy to userspace.
 867                 */
 868                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 869        }
 870
 871        if (vma) {
 872                up_read(&current->mm->mmap_sem);
 873                vma = NULL;
 874        }
 875
 876        err = 0;
 877        if (nmask) {
 878                if (mpol_store_user_nodemask(pol)) {
 879                        *nmask = pol->w.user_nodemask;
 880                } else {
 881                        task_lock(current);
 882                        get_policy_nodemask(pol, nmask);
 883                        task_unlock(current);
 884                }
 885        }
 886
 887 out:
 888        mpol_cond_put(pol);
 889        if (vma)
 890                up_read(&current->mm->mmap_sem);
 891        return err;
 892}
 893
 894#ifdef CONFIG_MIGRATION
 895/*
 896 * page migration
 897 */
 898static void migrate_page_add(struct page *page, struct list_head *pagelist,
 899                                unsigned long flags)
 900{
 901        /*
 902         * Avoid migrating a page that is shared with others.
 903         */
 904        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 905                if (!isolate_lru_page(page)) {
 906                        list_add_tail(&page->lru, pagelist);
 907                        inc_zone_page_state(page, NR_ISOLATED_ANON +
 908                                            page_is_file_cache(page));
 909                }
 910        }
 911}
 912
 913static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 914{
 915        return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 916}
 917
 918/*
 919 * Migrate pages from one node to a target node.
 920 * Returns error or the number of pages not migrated.
 921 */
 922static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 923                           int flags)
 924{
 925        nodemask_t nmask;
 926        LIST_HEAD(pagelist);
 927        int err = 0;
 928        struct vm_area_struct *vma;
 929
 930        nodes_clear(nmask);
 931        node_set(source, nmask);
 932
 933        vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 934                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 935        if (IS_ERR(vma))
 936                return PTR_ERR(vma);
 937
 938        if (!list_empty(&pagelist)) {
 939                err = migrate_pages(&pagelist, new_node_page, dest,
 940                                                                false, true);
 941                if (err)
 942                        putback_lru_pages(&pagelist);
 943        }
 944
 945        return err;
 946}
 947
 948/*
 949 * Move pages between the two nodesets so as to preserve the physical
 950 * layout as much as possible.
 951 *
 952 * Returns the number of page that could not be moved.
 953 */
 954int do_migrate_pages(struct mm_struct *mm,
 955        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 956{
 957        int busy = 0;
 958        int err;
 959        nodemask_t tmp;
 960
 961        err = migrate_prep();
 962        if (err)
 963                return err;
 964
 965        down_read(&mm->mmap_sem);
 966
 967        err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 968        if (err)
 969                goto out;
 970
 971        /*
 972         * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 973         * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 974         * bit in 'tmp', and return that <source, dest> pair for migration.
 975         * The pair of nodemasks 'to' and 'from' define the map.
 976         *
 977         * If no pair of bits is found that way, fallback to picking some
 978         * pair of 'source' and 'dest' bits that are not the same.  If the
 979         * 'source' and 'dest' bits are the same, this represents a node
 980         * that will be migrating to itself, so no pages need move.
 981         *
 982         * If no bits are left in 'tmp', or if all remaining bits left
 983         * in 'tmp' correspond to the same bit in 'to', return false
 984         * (nothing left to migrate).
 985         *
 986         * This lets us pick a pair of nodes to migrate between, such that
 987         * if possible the dest node is not already occupied by some other
 988         * source node, minimizing the risk of overloading the memory on a
 989         * node that would happen if we migrated incoming memory to a node
 990         * before migrating outgoing memory source that same node.
 991         *
 992         * A single scan of tmp is sufficient.  As we go, we remember the
 993         * most recent <s, d> pair that moved (s != d).  If we find a pair
 994         * that not only moved, but what's better, moved to an empty slot
 995         * (d is not set in tmp), then we break out then, with that pair.
 996         * Otherwise when we finish scanning from_tmp, we at least have the
 997         * most recent <s, d> pair that moved.  If we get all the way through
 998         * the scan of tmp without finding any node that moved, much less
 999         * moved to an empty node, then there is nothing left worth migrating.
1000         */
1001
1002        tmp = *from_nodes;
1003        while (!nodes_empty(tmp)) {
1004                int s,d;
1005                int source = -1;
1006                int dest = 0;
1007
1008                for_each_node_mask(s, tmp) {
1009                        d = node_remap(s, *from_nodes, *to_nodes);
1010                        if (s == d)
1011                                continue;
1012
1013                        source = s;     /* Node moved. Memorize */
1014                        dest = d;
1015
1016                        /* dest not in remaining from nodes? */
1017                        if (!node_isset(dest, tmp))
1018                                break;
1019                }
1020                if (source == -1)
1021                        break;
1022
1023                node_clear(source, tmp);
1024                err = migrate_to_node(mm, source, dest, flags);
1025                if (err > 0)
1026                        busy += err;
1027                if (err < 0)
1028                        break;
1029        }
1030out:
1031        up_read(&mm->mmap_sem);
1032        if (err < 0)
1033                return err;
1034        return busy;
1035
1036}
1037
1038/*
1039 * Allocate a new page for page migration based on vma policy.
1040 * Start assuming that page is mapped by vma pointed to by @private.
1041 * Search forward from there, if not.  N.B., this assumes that the
1042 * list of pages handed to migrate_pages()--which is how we get here--
1043 * is in virtual address order.
1044 */
1045static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1046{
1047        struct vm_area_struct *vma = (struct vm_area_struct *)private;
1048        unsigned long uninitialized_var(address);
1049
1050        while (vma) {
1051                address = page_address_in_vma(page, vma);
1052                if (address != -EFAULT)
1053                        break;
1054                vma = vma->vm_next;
1055        }
1056
1057        /*
1058         * if !vma, alloc_page_vma() will use task or system default policy
1059         */
1060        return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1061}
1062#else
1063
1064static void migrate_page_add(struct page *page, struct list_head *pagelist,
1065                                unsigned long flags)
1066{
1067}
1068
1069int do_migrate_pages(struct mm_struct *mm,
1070        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1071{
1072        return -ENOSYS;
1073}
1074
1075static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1076{
1077        return NULL;
1078}
1079#endif
1080
1081static long do_mbind(unsigned long start, unsigned long len,
1082                     unsigned short mode, unsigned short mode_flags,
1083                     nodemask_t *nmask, unsigned long flags)
1084{
1085        struct vm_area_struct *vma;
1086        struct mm_struct *mm = current->mm;
1087        struct mempolicy *new;
1088        unsigned long end;
1089        int err;
1090        LIST_HEAD(pagelist);
1091
1092        if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1093                                     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1094                return -EINVAL;
1095        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1096                return -EPERM;
1097
1098        if (start & ~PAGE_MASK)
1099                return -EINVAL;
1100
1101        if (mode == MPOL_DEFAULT)
1102                flags &= ~MPOL_MF_STRICT;
1103
1104        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1105        end = start + len;
1106
1107        if (end < start)
1108                return -EINVAL;
1109        if (end == start)
1110                return 0;
1111
1112        new = mpol_new(mode, mode_flags, nmask);
1113        if (IS_ERR(new))
1114                return PTR_ERR(new);
1115
1116        /*
1117         * If we are using the default policy then operation
1118         * on discontinuous address spaces is okay after all
1119         */
1120        if (!new)
1121                flags |= MPOL_MF_DISCONTIG_OK;
1122
1123        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1124                 start, start + len, mode, mode_flags,
1125                 nmask ? nodes_addr(*nmask)[0] : -1);
1126
1127        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1128
1129                err = migrate_prep();
1130                if (err)
1131                        goto mpol_out;
1132        }
1133        {
1134                NODEMASK_SCRATCH(scratch);
1135                if (scratch) {
1136                        down_write(&mm->mmap_sem);
1137                        task_lock(current);
1138                        err = mpol_set_nodemask(new, nmask, scratch);
1139                        task_unlock(current);
1140                        if (err)
1141                                up_write(&mm->mmap_sem);
1142                } else
1143                        err = -ENOMEM;
1144                NODEMASK_SCRATCH_FREE(scratch);
1145        }
1146        if (err)
1147                goto mpol_out;
1148
1149        vma = check_range(mm, start, end, nmask,
1150                          flags | MPOL_MF_INVERT, &pagelist);
1151
1152        err = PTR_ERR(vma);
1153        if (!IS_ERR(vma)) {
1154                int nr_failed = 0;
1155
1156                err = mbind_range(mm, start, end, new);
1157
1158                if (!list_empty(&pagelist)) {
1159                        nr_failed = migrate_pages(&pagelist, new_vma_page,
1160                                                (unsigned long)vma,
1161                                                false, true);
1162                        if (nr_failed)
1163                                putback_lru_pages(&pagelist);
1164                }
1165
1166                if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1167                        err = -EIO;
1168        } else
1169                putback_lru_pages(&pagelist);
1170
1171        up_write(&mm->mmap_sem);
1172 mpol_out:
1173        mpol_put(new);
1174        return err;
1175}
1176
1177/*
1178 * User space interface with variable sized bitmaps for nodelists.
1179 */
1180
1181/* Copy a node mask from user space. */
1182static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1183                     unsigned long maxnode)
1184{
1185        unsigned long k;
1186        unsigned long nlongs;
1187        unsigned long endmask;
1188
1189        --maxnode;
1190        nodes_clear(*nodes);
1191        if (maxnode == 0 || !nmask)
1192                return 0;
1193        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1194                return -EINVAL;
1195
1196        nlongs = BITS_TO_LONGS(maxnode);
1197        if ((maxnode % BITS_PER_LONG) == 0)
1198                endmask = ~0UL;
1199        else
1200                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1201
1202        /* When the user specified more nodes than supported just check
1203           if the non supported part is all zero. */
1204        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1205                if (nlongs > PAGE_SIZE/sizeof(long))
1206                        return -EINVAL;
1207                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1208                        unsigned long t;
1209                        if (get_user(t, nmask + k))
1210                                return -EFAULT;
1211                        if (k == nlongs - 1) {
1212                                if (t & endmask)
1213                                        return -EINVAL;
1214                        } else if (t)
1215                                return -EINVAL;
1216                }
1217                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1218                endmask = ~0UL;
1219        }
1220
1221        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1222                return -EFAULT;
1223        nodes_addr(*nodes)[nlongs-1] &= endmask;
1224        return 0;
1225}
1226
1227/* Copy a kernel node mask to user space */
1228static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1229                              nodemask_t *nodes)
1230{
1231        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1232        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1233
1234        if (copy > nbytes) {
1235                if (copy > PAGE_SIZE)
1236                        return -EINVAL;
1237                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1238                        return -EFAULT;
1239                copy = nbytes;
1240        }
1241        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1242}
1243
1244SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1245                unsigned long, mode, unsigned long __user *, nmask,
1246                unsigned long, maxnode, unsigned, flags)
1247{
1248        nodemask_t nodes;
1249        int err;
1250        unsigned short mode_flags;
1251
1252        mode_flags = mode & MPOL_MODE_FLAGS;
1253        mode &= ~MPOL_MODE_FLAGS;
1254        if (mode >= MPOL_MAX)
1255                return -EINVAL;
1256        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1257            (mode_flags & MPOL_F_RELATIVE_NODES))
1258                return -EINVAL;
1259        err = get_nodes(&nodes, nmask, maxnode);
1260        if (err)
1261                return err;
1262        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1263}
1264
1265/* Set the process memory policy */
1266SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1267                unsigned long, maxnode)
1268{
1269        int err;
1270        nodemask_t nodes;
1271        unsigned short flags;
1272
1273        flags = mode & MPOL_MODE_FLAGS;
1274        mode &= ~MPOL_MODE_FLAGS;
1275        if ((unsigned int)mode >= MPOL_MAX)
1276                return -EINVAL;
1277        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1278                return -EINVAL;
1279        err = get_nodes(&nodes, nmask, maxnode);
1280        if (err)
1281                return err;
1282        return do_set_mempolicy(mode, flags, &nodes);
1283}
1284
1285SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1286                const unsigned long __user *, old_nodes,
1287                const unsigned long __user *, new_nodes)
1288{
1289        const struct cred *cred = current_cred(), *tcred;
1290        struct mm_struct *mm = NULL;
1291        struct task_struct *task;
1292        nodemask_t task_nodes;
1293        int err;
1294        nodemask_t *old;
1295        nodemask_t *new;
1296        NODEMASK_SCRATCH(scratch);
1297
1298        if (!scratch)
1299                return -ENOMEM;
1300
1301        old = &scratch->mask1;
1302        new = &scratch->mask2;
1303
1304        err = get_nodes(old, old_nodes, maxnode);
1305        if (err)
1306                goto out;
1307
1308        err = get_nodes(new, new_nodes, maxnode);
1309        if (err)
1310                goto out;
1311
1312        /* Find the mm_struct */
1313        rcu_read_lock();
1314        task = pid ? find_task_by_vpid(pid) : current;
1315        if (!task) {
1316                rcu_read_unlock();
1317                err = -ESRCH;
1318                goto out;
1319        }
1320        mm = get_task_mm(task);
1321        rcu_read_unlock();
1322
1323        err = -EINVAL;
1324        if (!mm)
1325                goto out;
1326
1327        /*
1328         * Check if this process has the right to modify the specified
1329         * process. The right exists if the process has administrative
1330         * capabilities, superuser privileges or the same
1331         * userid as the target process.
1332         */
1333        rcu_read_lock();
1334        tcred = __task_cred(task);
1335        if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1336            cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1337            !capable(CAP_SYS_NICE)) {
1338                rcu_read_unlock();
1339                err = -EPERM;
1340                goto out;
1341        }
1342        rcu_read_unlock();
1343
1344        task_nodes = cpuset_mems_allowed(task);
1345        /* Is the user allowed to access the target nodes? */
1346        if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1347                err = -EPERM;
1348                goto out;
1349        }
1350
1351        if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1352                err = -EINVAL;
1353                goto out;
1354        }
1355
1356        err = security_task_movememory(task);
1357        if (err)
1358                goto out;
1359
1360        err = do_migrate_pages(mm, old, new,
1361                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1362out:
1363        if (mm)
1364                mmput(mm);
1365        NODEMASK_SCRATCH_FREE(scratch);
1366
1367        return err;
1368}
1369
1370
1371/* Retrieve NUMA policy */
1372SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1373                unsigned long __user *, nmask, unsigned long, maxnode,
1374                unsigned long, addr, unsigned long, flags)
1375{
1376        int err;
1377        int uninitialized_var(pval);
1378        nodemask_t nodes;
1379
1380        if (nmask != NULL && maxnode < MAX_NUMNODES)
1381                return -EINVAL;
1382
1383        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1384
1385        if (err)
1386                return err;
1387
1388        if (policy && put_user(pval, policy))
1389                return -EFAULT;
1390
1391        if (nmask)
1392                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1393
1394        return err;
1395}
1396
1397#ifdef CONFIG_COMPAT
1398
1399asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1400                                     compat_ulong_t __user *nmask,
1401                                     compat_ulong_t maxnode,
1402                                     compat_ulong_t addr, compat_ulong_t flags)
1403{
1404        long err;
1405        unsigned long __user *nm = NULL;
1406        unsigned long nr_bits, alloc_size;
1407        DECLARE_BITMAP(bm, MAX_NUMNODES);
1408
1409        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1410        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1411
1412        if (nmask)
1413                nm = compat_alloc_user_space(alloc_size);
1414
1415        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1416
1417        if (!err && nmask) {
1418                err = copy_from_user(bm, nm, alloc_size);
1419                /* ensure entire bitmap is zeroed */
1420                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1421                err |= compat_put_bitmap(nmask, bm, nr_bits);
1422        }
1423
1424        return err;
1425}
1426
1427asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1428                                     compat_ulong_t maxnode)
1429{
1430        long err = 0;
1431        unsigned long __user *nm = NULL;
1432        unsigned long nr_bits, alloc_size;
1433        DECLARE_BITMAP(bm, MAX_NUMNODES);
1434
1435        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1436        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1437
1438        if (nmask) {
1439                err = compat_get_bitmap(bm, nmask, nr_bits);
1440                nm = compat_alloc_user_space(alloc_size);
1441                err |= copy_to_user(nm, bm, alloc_size);
1442        }
1443
1444        if (err)
1445                return -EFAULT;
1446
1447        return sys_set_mempolicy(mode, nm, nr_bits+1);
1448}
1449
1450asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1451                             compat_ulong_t mode, compat_ulong_t __user *nmask,
1452                             compat_ulong_t maxnode, compat_ulong_t flags)
1453{
1454        long err = 0;
1455        unsigned long __user *nm = NULL;
1456        unsigned long nr_bits, alloc_size;
1457        nodemask_t bm;
1458
1459        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1460        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1461
1462        if (nmask) {
1463                err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1464                nm = compat_alloc_user_space(alloc_size);
1465                err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1466        }
1467
1468        if (err)
1469                return -EFAULT;
1470
1471        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1472}
1473
1474#endif
1475
1476/*
1477 * get_vma_policy(@task, @vma, @addr)
1478 * @task - task for fallback if vma policy == default
1479 * @vma   - virtual memory area whose policy is sought
1480 * @addr  - address in @vma for shared policy lookup
1481 *
1482 * Returns effective policy for a VMA at specified address.
1483 * Falls back to @task or system default policy, as necessary.
1484 * Current or other task's task mempolicy and non-shared vma policies
1485 * are protected by the task's mmap_sem, which must be held for read by
1486 * the caller.
1487 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1488 * count--added by the get_policy() vm_op, as appropriate--to protect against
1489 * freeing by another task.  It is the caller's responsibility to free the
1490 * extra reference for shared policies.
1491 */
1492static struct mempolicy *get_vma_policy(struct task_struct *task,
1493                struct vm_area_struct *vma, unsigned long addr)
1494{
1495        struct mempolicy *pol = task->mempolicy;
1496
1497        if (vma) {
1498                if (vma->vm_ops && vma->vm_ops->get_policy) {
1499                        struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1500                                                                        addr);
1501                        if (vpol)
1502                                pol = vpol;
1503                } else if (vma->vm_policy)
1504                        pol = vma->vm_policy;
1505        }
1506        if (!pol)
1507                pol = &default_policy;
1508        return pol;
1509}
1510
1511/*
1512 * Return a nodemask representing a mempolicy for filtering nodes for
1513 * page allocation
1514 */
1515static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1516{
1517        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1518        if (unlikely(policy->mode == MPOL_BIND) &&
1519                        gfp_zone(gfp) >= policy_zone &&
1520                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1521                return &policy->v.nodes;
1522
1523        return NULL;
1524}
1525
1526/* Return a zonelist indicated by gfp for node representing a mempolicy */
1527static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1528        int nd)
1529{
1530        switch (policy->mode) {
1531        case MPOL_PREFERRED:
1532                if (!(policy->flags & MPOL_F_LOCAL))
1533                        nd = policy->v.preferred_node;
1534                break;
1535        case MPOL_BIND:
1536                /*
1537                 * Normally, MPOL_BIND allocations are node-local within the
1538                 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1539                 * current node isn't part of the mask, we use the zonelist for
1540                 * the first node in the mask instead.
1541                 */
1542                if (unlikely(gfp & __GFP_THISNODE) &&
1543                                unlikely(!node_isset(nd, policy->v.nodes)))
1544                        nd = first_node(policy->v.nodes);
1545                break;
1546        default:
1547                BUG();
1548        }
1549        return node_zonelist(nd, gfp);
1550}
1551
1552/* Do dynamic interleaving for a process */
1553static unsigned interleave_nodes(struct mempolicy *policy)
1554{
1555        unsigned nid, next;
1556        struct task_struct *me = current;
1557
1558        nid = me->il_next;
1559        next = next_node(nid, policy->v.nodes);
1560        if (next >= MAX_NUMNODES)
1561                next = first_node(policy->v.nodes);
1562        if (next < MAX_NUMNODES)
1563                me->il_next = next;
1564        return nid;
1565}
1566
1567/*
1568 * Depending on the memory policy provide a node from which to allocate the
1569 * next slab entry.
1570 * @policy must be protected by freeing by the caller.  If @policy is
1571 * the current task's mempolicy, this protection is implicit, as only the
1572 * task can change it's policy.  The system default policy requires no
1573 * such protection.
1574 */
1575unsigned slab_node(struct mempolicy *policy)
1576{
1577        if (!policy || policy->flags & MPOL_F_LOCAL)
1578                return numa_node_id();
1579
1580        switch (policy->mode) {
1581        case MPOL_PREFERRED:
1582                /*
1583                 * handled MPOL_F_LOCAL above
1584                 */
1585                return policy->v.preferred_node;
1586
1587        case MPOL_INTERLEAVE:
1588                return interleave_nodes(policy);
1589
1590        case MPOL_BIND: {
1591                /*
1592                 * Follow bind policy behavior and start allocation at the
1593                 * first node.
1594                 */
1595                struct zonelist *zonelist;
1596                struct zone *zone;
1597                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1598                zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1599                (void)first_zones_zonelist(zonelist, highest_zoneidx,
1600                                                        &policy->v.nodes,
1601                                                        &zone);
1602                return zone ? zone->node : numa_node_id();
1603        }
1604
1605        default:
1606                BUG();
1607        }
1608}
1609
1610/* Do static interleaving for a VMA with known offset. */
1611static unsigned offset_il_node(struct mempolicy *pol,
1612                struct vm_area_struct *vma, unsigned long off)
1613{
1614        unsigned nnodes = nodes_weight(pol->v.nodes);
1615        unsigned target;
1616        int c;
1617        int nid = -1;
1618
1619        if (!nnodes)
1620                return numa_node_id();
1621        target = (unsigned int)off % nnodes;
1622        c = 0;
1623        do {
1624                nid = next_node(nid, pol->v.nodes);
1625                c++;
1626        } while (c <= target);
1627        return nid;
1628}
1629
1630/* Determine a node number for interleave */
1631static inline unsigned interleave_nid(struct mempolicy *pol,
1632                 struct vm_area_struct *vma, unsigned long addr, int shift)
1633{
1634        if (vma) {
1635                unsigned long off;
1636
1637                /*
1638                 * for small pages, there is no difference between
1639                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1640                 * for huge pages, since vm_pgoff is in units of small
1641                 * pages, we need to shift off the always 0 bits to get
1642                 * a useful offset.
1643                 */
1644                BUG_ON(shift < PAGE_SHIFT);
1645                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1646                off += (addr - vma->vm_start) >> shift;
1647                return offset_il_node(pol, vma, off);
1648        } else
1649                return interleave_nodes(pol);
1650}
1651
1652#ifdef CONFIG_HUGETLBFS
1653/*
1654 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1655 * @vma = virtual memory area whose policy is sought
1656 * @addr = address in @vma for shared policy lookup and interleave policy
1657 * @gfp_flags = for requested zone
1658 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1659 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1660 *
1661 * Returns a zonelist suitable for a huge page allocation and a pointer
1662 * to the struct mempolicy for conditional unref after allocation.
1663 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1664 * @nodemask for filtering the zonelist.
1665 *
1666 * Must be protected by get_mems_allowed()
1667 */
1668struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1669                                gfp_t gfp_flags, struct mempolicy **mpol,
1670                                nodemask_t **nodemask)
1671{
1672        struct zonelist *zl;
1673
1674        *mpol = get_vma_policy(current, vma, addr);
1675        *nodemask = NULL;       /* assume !MPOL_BIND */
1676
1677        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1678                zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1679                                huge_page_shift(hstate_vma(vma))), gfp_flags);
1680        } else {
1681                zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1682                if ((*mpol)->mode == MPOL_BIND)
1683                        *nodemask = &(*mpol)->v.nodes;
1684        }
1685        return zl;
1686}
1687
1688/*
1689 * init_nodemask_of_mempolicy
1690 *
1691 * If the current task's mempolicy is "default" [NULL], return 'false'
1692 * to indicate default policy.  Otherwise, extract the policy nodemask
1693 * for 'bind' or 'interleave' policy into the argument nodemask, or
1694 * initialize the argument nodemask to contain the single node for
1695 * 'preferred' or 'local' policy and return 'true' to indicate presence
1696 * of non-default mempolicy.
1697 *
1698 * We don't bother with reference counting the mempolicy [mpol_get/put]
1699 * because the current task is examining it's own mempolicy and a task's
1700 * mempolicy is only ever changed by the task itself.
1701 *
1702 * N.B., it is the caller's responsibility to free a returned nodemask.
1703 */
1704bool init_nodemask_of_mempolicy(nodemask_t *mask)
1705{
1706        struct mempolicy *mempolicy;
1707        int nid;
1708
1709        if (!(mask && current->mempolicy))
1710                return false;
1711
1712        task_lock(current);
1713        mempolicy = current->mempolicy;
1714        switch (mempolicy->mode) {
1715        case MPOL_PREFERRED:
1716                if (mempolicy->flags & MPOL_F_LOCAL)
1717                        nid = numa_node_id();
1718                else
1719                        nid = mempolicy->v.preferred_node;
1720                init_nodemask_of_node(mask, nid);
1721                break;
1722
1723        case MPOL_BIND:
1724                /* Fall through */
1725        case MPOL_INTERLEAVE:
1726                *mask =  mempolicy->v.nodes;
1727                break;
1728
1729        default:
1730                BUG();
1731        }
1732        task_unlock(current);
1733
1734        return true;
1735}
1736#endif
1737
1738/*
1739 * mempolicy_nodemask_intersects
1740 *
1741 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1742 * policy.  Otherwise, check for intersection between mask and the policy
1743 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1744 * policy, always return true since it may allocate elsewhere on fallback.
1745 *
1746 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1747 */
1748bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1749                                        const nodemask_t *mask)
1750{
1751        struct mempolicy *mempolicy;
1752        bool ret = true;
1753
1754        if (!mask)
1755                return ret;
1756        task_lock(tsk);
1757        mempolicy = tsk->mempolicy;
1758        if (!mempolicy)
1759                goto out;
1760
1761        switch (mempolicy->mode) {
1762        case MPOL_PREFERRED:
1763                /*
1764                 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1765                 * allocate from, they may fallback to other nodes when oom.
1766                 * Thus, it's possible for tsk to have allocated memory from
1767                 * nodes in mask.
1768                 */
1769                break;
1770        case MPOL_BIND:
1771        case MPOL_INTERLEAVE:
1772                ret = nodes_intersects(mempolicy->v.nodes, *mask);
1773                break;
1774        default:
1775                BUG();
1776        }
1777out:
1778        task_unlock(tsk);
1779        return ret;
1780}
1781
1782/* Allocate a page in interleaved policy.
1783   Own path because it needs to do special accounting. */
1784static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1785                                        unsigned nid)
1786{
1787        struct zonelist *zl;
1788        struct page *page;
1789
1790        zl = node_zonelist(nid, gfp);
1791        page = __alloc_pages(gfp, order, zl);
1792        if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1793                inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1794        return page;
1795}
1796
1797/**
1798 *      alloc_pages_vma - Allocate a page for a VMA.
1799 *
1800 *      @gfp:
1801 *      %GFP_USER    user allocation.
1802 *      %GFP_KERNEL  kernel allocations,
1803 *      %GFP_HIGHMEM highmem/user allocations,
1804 *      %GFP_FS      allocation should not call back into a file system.
1805 *      %GFP_ATOMIC  don't sleep.
1806 *
1807 *      @order:Order of the GFP allocation.
1808 *      @vma:  Pointer to VMA or NULL if not available.
1809 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1810 *
1811 *      This function allocates a page from the kernel page pool and applies
1812 *      a NUMA policy associated with the VMA or the current process.
1813 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1814 *      mm_struct of the VMA to prevent it from going away. Should be used for
1815 *      all allocations for pages that will be mapped into
1816 *      user space. Returns NULL when no page can be allocated.
1817 *
1818 *      Should be called with the mm_sem of the vma hold.
1819 */
1820struct page *
1821alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1822                unsigned long addr, int node)
1823{
1824        struct mempolicy *pol = get_vma_policy(current, vma, addr);
1825        struct zonelist *zl;
1826        struct page *page;
1827
1828        get_mems_allowed();
1829        if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1830                unsigned nid;
1831
1832                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1833                mpol_cond_put(pol);
1834                page = alloc_page_interleave(gfp, order, nid);
1835                put_mems_allowed();
1836                return page;
1837        }
1838        zl = policy_zonelist(gfp, pol, node);
1839        if (unlikely(mpol_needs_cond_ref(pol))) {
1840                /*
1841                 * slow path: ref counted shared policy
1842                 */
1843                struct page *page =  __alloc_pages_nodemask(gfp, order,
1844                                                zl, policy_nodemask(gfp, pol));
1845                __mpol_put(pol);
1846                put_mems_allowed();
1847                return page;
1848        }
1849        /*
1850         * fast path:  default or task policy
1851         */
1852        page = __alloc_pages_nodemask(gfp, order, zl,
1853                                      policy_nodemask(gfp, pol));
1854        put_mems_allowed();
1855        return page;
1856}
1857
1858/**
1859 *      alloc_pages_current - Allocate pages.
1860 *
1861 *      @gfp:
1862 *              %GFP_USER   user allocation,
1863 *              %GFP_KERNEL kernel allocation,
1864 *              %GFP_HIGHMEM highmem allocation,
1865 *              %GFP_FS     don't call back into a file system.
1866 *              %GFP_ATOMIC don't sleep.
1867 *      @order: Power of two of allocation size in pages. 0 is a single page.
1868 *
1869 *      Allocate a page from the kernel page pool.  When not in
1870 *      interrupt context and apply the current process NUMA policy.
1871 *      Returns NULL when no page can be allocated.
1872 *
1873 *      Don't call cpuset_update_task_memory_state() unless
1874 *      1) it's ok to take cpuset_sem (can WAIT), and
1875 *      2) allocating for current task (not interrupt).
1876 */
1877struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1878{
1879        struct mempolicy *pol = current->mempolicy;
1880        struct page *page;
1881
1882        if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1883                pol = &default_policy;
1884
1885        get_mems_allowed();
1886        /*
1887         * No reference counting needed for current->mempolicy
1888         * nor system default_policy
1889         */
1890        if (pol->mode == MPOL_INTERLEAVE)
1891                page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1892        else
1893                page = __alloc_pages_nodemask(gfp, order,
1894                                policy_zonelist(gfp, pol, numa_node_id()),
1895                                policy_nodemask(gfp, pol));
1896        put_mems_allowed();
1897        return page;
1898}
1899EXPORT_SYMBOL(alloc_pages_current);
1900
1901/*
1902 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1903 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1904 * with the mems_allowed returned by cpuset_mems_allowed().  This
1905 * keeps mempolicies cpuset relative after its cpuset moves.  See
1906 * further kernel/cpuset.c update_nodemask().
1907 *
1908 * current's mempolicy may be rebinded by the other task(the task that changes
1909 * cpuset's mems), so we needn't do rebind work for current task.
1910 */
1911
1912/* Slow path of a mempolicy duplicate */
1913struct mempolicy *__mpol_dup(struct mempolicy *old)
1914{
1915        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1916
1917        if (!new)
1918                return ERR_PTR(-ENOMEM);
1919
1920        /* task's mempolicy is protected by alloc_lock */
1921        if (old == current->mempolicy) {
1922                task_lock(current);
1923                *new = *old;
1924                task_unlock(current);
1925        } else
1926                *new = *old;
1927
1928        rcu_read_lock();
1929        if (current_cpuset_is_being_rebound()) {
1930                nodemask_t mems = cpuset_mems_allowed(current);
1931                if (new->flags & MPOL_F_REBINDING)
1932                        mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1933                else
1934                        mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1935        }
1936        rcu_read_unlock();
1937        atomic_set(&new->refcnt, 1);
1938        return new;
1939}
1940
1941/*
1942 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1943 * eliminate the * MPOL_F_* flags that require conditional ref and
1944 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1945 * after return.  Use the returned value.
1946 *
1947 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1948 * policy lookup, even if the policy needs/has extra ref on lookup.
1949 * shmem_readahead needs this.
1950 */
1951struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1952                                                struct mempolicy *frompol)
1953{
1954        if (!mpol_needs_cond_ref(frompol))
1955                return frompol;
1956
1957        *tompol = *frompol;
1958        tompol->flags &= ~MPOL_F_SHARED;        /* copy doesn't need unref */
1959        __mpol_put(frompol);
1960        return tompol;
1961}
1962
1963/* Slow path of a mempolicy comparison */
1964int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1965{
1966        if (!a || !b)
1967                return 0;
1968        if (a->mode != b->mode)
1969                return 0;
1970        if (a->flags != b->flags)
1971                return 0;
1972        if (mpol_store_user_nodemask(a))
1973                if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1974                        return 0;
1975
1976        switch (a->mode) {
1977        case MPOL_BIND:
1978                /* Fall through */
1979        case MPOL_INTERLEAVE:
1980                return nodes_equal(a->v.nodes, b->v.nodes);
1981        case MPOL_PREFERRED:
1982                return a->v.preferred_node == b->v.preferred_node;
1983        default:
1984                BUG();
1985                return 0;
1986        }
1987}
1988
1989/*
1990 * Shared memory backing store policy support.
1991 *
1992 * Remember policies even when nobody has shared memory mapped.
1993 * The policies are kept in Red-Black tree linked from the inode.
1994 * They are protected by the sp->lock spinlock, which should be held
1995 * for any accesses to the tree.
1996 */
1997
1998/* lookup first element intersecting start-end */
1999/* Caller holds sp->lock */
2000static struct sp_node *
2001sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2002{
2003        struct rb_node *n = sp->root.rb_node;
2004
2005        while (n) {
2006                struct sp_node *p = rb_entry(n, struct sp_node, nd);
2007
2008                if (start >= p->end)
2009                        n = n->rb_right;
2010                else if (end <= p->start)
2011                        n = n->rb_left;
2012                else
2013                        break;
2014        }
2015        if (!n)
2016                return NULL;
2017        for (;;) {
2018                struct sp_node *w = NULL;
2019                struct rb_node *prev = rb_prev(n);
2020                if (!prev)
2021                        break;
2022                w = rb_entry(prev, struct sp_node, nd);
2023                if (w->end <= start)
2024                        break;
2025                n = prev;
2026        }
2027        return rb_entry(n, struct sp_node, nd);
2028}
2029
2030/* Insert a new shared policy into the list. */
2031/* Caller holds sp->lock */
2032static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2033{
2034        struct rb_node **p = &sp->root.rb_node;
2035        struct rb_node *parent = NULL;
2036        struct sp_node *nd;
2037
2038        while (*p) {
2039                parent = *p;
2040                nd = rb_entry(parent, struct sp_node, nd);
2041                if (new->start < nd->start)
2042                        p = &(*p)->rb_left;
2043                else if (new->end > nd->end)
2044                        p = &(*p)->rb_right;
2045                else
2046                        BUG();
2047        }
2048        rb_link_node(&new->nd, parent, p);
2049        rb_insert_color(&new->nd, &sp->root);
2050        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2051                 new->policy ? new->policy->mode : 0);
2052}
2053
2054/* Find shared policy intersecting idx */
2055struct mempolicy *
2056mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2057{
2058        struct mempolicy *pol = NULL;
2059        struct sp_node *sn;
2060
2061        if (!sp->root.rb_node)
2062                return NULL;
2063        spin_lock(&sp->lock);
2064        sn = sp_lookup(sp, idx, idx+1);
2065        if (sn) {
2066                mpol_get(sn->policy);
2067                pol = sn->policy;
2068        }
2069        spin_unlock(&sp->lock);
2070        return pol;
2071}
2072
2073static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2074{
2075        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2076        rb_erase(&n->nd, &sp->root);
2077        mpol_put(n->policy);
2078        kmem_cache_free(sn_cache, n);
2079}
2080
2081static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2082                                struct mempolicy *pol)
2083{
2084        struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2085
2086        if (!n)
2087                return NULL;
2088        n->start = start;
2089        n->end = end;
2090        mpol_get(pol);
2091        pol->flags |= MPOL_F_SHARED;    /* for unref */
2092        n->policy = pol;
2093        return n;
2094}
2095
2096/* Replace a policy range. */
2097static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2098                                 unsigned long end, struct sp_node *new)
2099{
2100        struct sp_node *n, *new2 = NULL;
2101
2102restart:
2103        spin_lock(&sp->lock);
2104        n = sp_lookup(sp, start, end);
2105        /* Take care of old policies in the same range. */
2106        while (n && n->start < end) {
2107                struct rb_node *next = rb_next(&n->nd);
2108                if (n->start >= start) {
2109                        if (n->end <= end)
2110                                sp_delete(sp, n);
2111                        else
2112                                n->start = end;
2113                } else {
2114                        /* Old policy spanning whole new range. */
2115                        if (n->end > end) {
2116                                if (!new2) {
2117                                        spin_unlock(&sp->lock);
2118                                        new2 = sp_alloc(end, n->end, n->policy);
2119                                        if (!new2)
2120                                                return -ENOMEM;
2121                                        goto restart;
2122                                }
2123                                n->end = start;
2124                                sp_insert(sp, new2);
2125                                new2 = NULL;
2126                                break;
2127                        } else
2128                                n->end = start;
2129                }
2130                if (!next)
2131                        break;
2132                n = rb_entry(next, struct sp_node, nd);
2133        }
2134        if (new)
2135                sp_insert(sp, new);
2136        spin_unlock(&sp->lock);
2137        if (new2) {
2138                mpol_put(new2->policy);
2139                kmem_cache_free(sn_cache, new2);
2140        }
2141        return 0;
2142}
2143
2144/**
2145 * mpol_shared_policy_init - initialize shared policy for inode
2146 * @sp: pointer to inode shared policy
2147 * @mpol:  struct mempolicy to install
2148 *
2149 * Install non-NULL @mpol in inode's shared policy rb-tree.
2150 * On entry, the current task has a reference on a non-NULL @mpol.
2151 * This must be released on exit.
2152 * This is called at get_inode() calls and we can use GFP_KERNEL.
2153 */
2154void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2155{
2156        int ret;
2157
2158        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2159        spin_lock_init(&sp->lock);
2160
2161        if (mpol) {
2162                struct vm_area_struct pvma;
2163                struct mempolicy *new;
2164                NODEMASK_SCRATCH(scratch);
2165
2166                if (!scratch)
2167                        goto put_mpol;
2168                /* contextualize the tmpfs mount point mempolicy */
2169                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2170                if (IS_ERR(new))
2171                        goto free_scratch; /* no valid nodemask intersection */
2172
2173                task_lock(current);
2174                ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2175                task_unlock(current);
2176                if (ret)
2177                        goto put_new;
2178
2179                /* Create pseudo-vma that contains just the policy */
2180                memset(&pvma, 0, sizeof(struct vm_area_struct));
2181                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2182                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2183
2184put_new:
2185                mpol_put(new);                  /* drop initial ref */
2186free_scratch:
2187                NODEMASK_SCRATCH_FREE(scratch);
2188put_mpol:
2189                mpol_put(mpol); /* drop our incoming ref on sb mpol */
2190        }
2191}
2192
2193int mpol_set_shared_policy(struct shared_policy *info,
2194                        struct vm_area_struct *vma, struct mempolicy *npol)
2195{
2196        int err;
2197        struct sp_node *new = NULL;
2198        unsigned long sz = vma_pages(vma);
2199
2200        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2201                 vma->vm_pgoff,
2202                 sz, npol ? npol->mode : -1,
2203                 npol ? npol->flags : -1,
2204                 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2205
2206        if (npol) {
2207                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2208                if (!new)
2209                        return -ENOMEM;
2210        }
2211        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2212        if (err && new)
2213                kmem_cache_free(sn_cache, new);
2214        return err;
2215}
2216
2217/* Free a backing policy store on inode delete. */
2218void mpol_free_shared_policy(struct shared_policy *p)
2219{
2220        struct sp_node *n;
2221        struct rb_node *next;
2222
2223        if (!p->root.rb_node)
2224                return;
2225        spin_lock(&p->lock);
2226        next = rb_first(&p->root);
2227        while (next) {
2228                n = rb_entry(next, struct sp_node, nd);
2229                next = rb_next(&n->nd);
2230                rb_erase(&n->nd, &p->root);
2231                mpol_put(n->policy);
2232                kmem_cache_free(sn_cache, n);
2233        }
2234        spin_unlock(&p->lock);
2235}
2236
2237/* assumes fs == KERNEL_DS */
2238void __init numa_policy_init(void)
2239{
2240        nodemask_t interleave_nodes;
2241        unsigned long largest = 0;
2242        int nid, prefer = 0;
2243
2244        policy_cache = kmem_cache_create("numa_policy",
2245                                         sizeof(struct mempolicy),
2246                                         0, SLAB_PANIC, NULL);
2247
2248        sn_cache = kmem_cache_create("shared_policy_node",
2249                                     sizeof(struct sp_node),
2250                                     0, SLAB_PANIC, NULL);
2251
2252        /*
2253         * Set interleaving policy for system init. Interleaving is only
2254         * enabled across suitably sized nodes (default is >= 16MB), or
2255         * fall back to the largest node if they're all smaller.
2256         */
2257        nodes_clear(interleave_nodes);
2258        for_each_node_state(nid, N_HIGH_MEMORY) {
2259                unsigned long total_pages = node_present_pages(nid);
2260
2261                /* Preserve the largest node */
2262                if (largest < total_pages) {
2263                        largest = total_pages;
2264                        prefer = nid;
2265                }
2266
2267                /* Interleave this node? */
2268                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2269                        node_set(nid, interleave_nodes);
2270        }
2271
2272        /* All too small, use the largest */
2273        if (unlikely(nodes_empty(interleave_nodes)))
2274                node_set(prefer, interleave_nodes);
2275
2276        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2277                printk("numa_policy_init: interleaving failed\n");
2278}
2279
2280/* Reset policy of current process to default */
2281void numa_default_policy(void)
2282{
2283        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2284}
2285
2286/*
2287 * Parse and format mempolicy from/to strings
2288 */
2289
2290/*
2291 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2292 * Used only for mpol_parse_str() and mpol_to_str()
2293 */
2294#define MPOL_LOCAL MPOL_MAX
2295static const char * const policy_modes[] =
2296{
2297        [MPOL_DEFAULT]    = "default",
2298        [MPOL_PREFERRED]  = "prefer",
2299        [MPOL_BIND]       = "bind",
2300        [MPOL_INTERLEAVE] = "interleave",
2301        [MPOL_LOCAL]      = "local"
2302};
2303
2304
2305#ifdef CONFIG_TMPFS
2306/**
2307 * mpol_parse_str - parse string to mempolicy
2308 * @str:  string containing mempolicy to parse
2309 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2310 * @no_context:  flag whether to "contextualize" the mempolicy
2311 *
2312 * Format of input:
2313 *      <mode>[=<flags>][:<nodelist>]
2314 *
2315 * if @no_context is true, save the input nodemask in w.user_nodemask in
2316 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2317 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2318 * mount option.  Note that if 'static' or 'relative' mode flags were
2319 * specified, the input nodemask will already have been saved.  Saving
2320 * it again is redundant, but safe.
2321 *
2322 * On success, returns 0, else 1
2323 */
2324int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2325{
2326        struct mempolicy *new = NULL;
2327        unsigned short mode;
2328        unsigned short uninitialized_var(mode_flags);
2329        nodemask_t nodes;
2330        char *nodelist = strchr(str, ':');
2331        char *flags = strchr(str, '=');
2332        int err = 1;
2333
2334        if (nodelist) {
2335                /* NUL-terminate mode or flags string */
2336                *nodelist++ = '\0';
2337                if (nodelist_parse(nodelist, nodes))
2338                        goto out;
2339                if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2340                        goto out;
2341        } else
2342                nodes_clear(nodes);
2343
2344        if (flags)
2345                *flags++ = '\0';        /* terminate mode string */
2346
2347        for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2348                if (!strcmp(str, policy_modes[mode])) {
2349                        break;
2350                }
2351        }
2352        if (mode > MPOL_LOCAL)
2353                goto out;
2354
2355        switch (mode) {
2356        case MPOL_PREFERRED:
2357                /*
2358                 * Insist on a nodelist of one node only
2359                 */
2360                if (nodelist) {
2361                        char *rest = nodelist;
2362                        while (isdigit(*rest))
2363                                rest++;
2364                        if (*rest)
2365                                goto out;
2366                }
2367                break;
2368        case MPOL_INTERLEAVE:
2369                /*
2370                 * Default to online nodes with memory if no nodelist
2371                 */
2372                if (!nodelist)
2373                        nodes = node_states[N_HIGH_MEMORY];
2374                break;
2375        case MPOL_LOCAL:
2376                /*
2377                 * Don't allow a nodelist;  mpol_new() checks flags
2378                 */
2379                if (nodelist)
2380                        goto out;
2381                mode = MPOL_PREFERRED;
2382                break;
2383        case MPOL_DEFAULT:
2384                /*
2385                 * Insist on a empty nodelist
2386                 */
2387                if (!nodelist)
2388                        err = 0;
2389                goto out;
2390        case MPOL_BIND:
2391                /*
2392                 * Insist on a nodelist
2393                 */
2394                if (!nodelist)
2395                        goto out;
2396        }
2397
2398        mode_flags = 0;
2399        if (flags) {
2400                /*
2401                 * Currently, we only support two mutually exclusive
2402                 * mode flags.
2403                 */
2404                if (!strcmp(flags, "static"))
2405                        mode_flags |= MPOL_F_STATIC_NODES;
2406                else if (!strcmp(flags, "relative"))
2407                        mode_flags |= MPOL_F_RELATIVE_NODES;
2408                else
2409                        goto out;
2410        }
2411
2412        new = mpol_new(mode, mode_flags, &nodes);
2413        if (IS_ERR(new))
2414                goto out;
2415
2416        if (no_context) {
2417                /* save for contextualization */
2418                new->w.user_nodemask = nodes;
2419        } else {
2420                int ret;
2421                NODEMASK_SCRATCH(scratch);
2422                if (scratch) {
2423                        task_lock(current);
2424                        ret = mpol_set_nodemask(new, &nodes, scratch);
2425                        task_unlock(current);
2426                } else
2427                        ret = -ENOMEM;
2428                NODEMASK_SCRATCH_FREE(scratch);
2429                if (ret) {
2430                        mpol_put(new);
2431                        goto out;
2432                }
2433        }
2434        err = 0;
2435
2436out:
2437        /* Restore string for error message */
2438        if (nodelist)
2439                *--nodelist = ':';
2440        if (flags)
2441                *--flags = '=';
2442        if (!err)
2443                *mpol = new;
2444        return err;
2445}
2446#endif /* CONFIG_TMPFS */
2447
2448/**
2449 * mpol_to_str - format a mempolicy structure for printing
2450 * @buffer:  to contain formatted mempolicy string
2451 * @maxlen:  length of @buffer
2452 * @pol:  pointer to mempolicy to be formatted
2453 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2454 *
2455 * Convert a mempolicy into a string.
2456 * Returns the number of characters in buffer (if positive)
2457 * or an error (negative)
2458 */
2459int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2460{
2461        char *p = buffer;
2462        int l;
2463        nodemask_t nodes;
2464        unsigned short mode;
2465        unsigned short flags = pol ? pol->flags : 0;
2466
2467        /*
2468         * Sanity check:  room for longest mode, flag and some nodes
2469         */
2470        VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2471
2472        if (!pol || pol == &default_policy)
2473                mode = MPOL_DEFAULT;
2474        else
2475                mode = pol->mode;
2476
2477        switch (mode) {
2478        case MPOL_DEFAULT:
2479                nodes_clear(nodes);
2480                break;
2481
2482        case MPOL_PREFERRED:
2483                nodes_clear(nodes);
2484                if (flags & MPOL_F_LOCAL)
2485                        mode = MPOL_LOCAL;      /* pseudo-policy */
2486                else
2487                        node_set(pol->v.preferred_node, nodes);
2488                break;
2489
2490        case MPOL_BIND:
2491                /* Fall through */
2492        case MPOL_INTERLEAVE:
2493                if (no_context)
2494                        nodes = pol->w.user_nodemask;
2495                else
2496                        nodes = pol->v.nodes;
2497                break;
2498
2499        default:
2500                BUG();
2501        }
2502
2503        l = strlen(policy_modes[mode]);
2504        if (buffer + maxlen < p + l + 1)
2505                return -ENOSPC;
2506
2507        strcpy(p, policy_modes[mode]);
2508        p += l;
2509
2510        if (flags & MPOL_MODE_FLAGS) {
2511                if (buffer + maxlen < p + 2)
2512                        return -ENOSPC;
2513                *p++ = '=';
2514
2515                /*
2516                 * Currently, the only defined flags are mutually exclusive
2517                 */
2518                if (flags & MPOL_F_STATIC_NODES)
2519                        p += snprintf(p, buffer + maxlen - p, "static");
2520                else if (flags & MPOL_F_RELATIVE_NODES)
2521                        p += snprintf(p, buffer + maxlen - p, "relative");
2522        }
2523
2524        if (!nodes_empty(nodes)) {
2525                if (buffer + maxlen < p + 2)
2526                        return -ENOSPC;
2527                *p++ = ':';
2528                p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2529        }
2530        return p - buffer;
2531}
2532
2533struct numa_maps {
2534        unsigned long pages;
2535        unsigned long anon;
2536        unsigned long active;
2537        unsigned long writeback;
2538        unsigned long mapcount_max;
2539        unsigned long dirty;
2540        unsigned long swapcache;
2541        unsigned long node[MAX_NUMNODES];
2542};
2543
2544static void gather_stats(struct page *page, void *private, int pte_dirty)
2545{
2546        struct numa_maps *md = private;
2547        int count = page_mapcount(page);
2548
2549        md->pages++;
2550        if (pte_dirty || PageDirty(page))
2551                md->dirty++;
2552
2553        if (PageSwapCache(page))
2554                md->swapcache++;
2555
2556        if (PageActive(page) || PageUnevictable(page))
2557                md->active++;
2558
2559        if (PageWriteback(page))
2560                md->writeback++;
2561
2562        if (PageAnon(page))
2563                md->anon++;
2564
2565        if (count > md->mapcount_max)
2566                md->mapcount_max = count;
2567
2568        md->node[page_to_nid(page)]++;
2569}
2570
2571#ifdef CONFIG_HUGETLB_PAGE
2572static void check_huge_range(struct vm_area_struct *vma,
2573                unsigned long start, unsigned long end,
2574                struct numa_maps *md)
2575{
2576        unsigned long addr;
2577        struct page *page;
2578        struct hstate *h = hstate_vma(vma);
2579        unsigned long sz = huge_page_size(h);
2580
2581        for (addr = start; addr < end; addr += sz) {
2582                pte_t *ptep = huge_pte_offset(vma->vm_mm,
2583                                                addr & huge_page_mask(h));
2584                pte_t pte;
2585
2586                if (!ptep)
2587                        continue;
2588
2589                pte = *ptep;
2590                if (pte_none(pte))
2591                        continue;
2592
2593                page = pte_page(pte);
2594                if (!page)
2595                        continue;
2596
2597                gather_stats(page, md, pte_dirty(*ptep));
2598        }
2599}
2600#else
2601static inline void check_huge_range(struct vm_area_struct *vma,
2602                unsigned long start, unsigned long end,
2603                struct numa_maps *md)
2604{
2605}
2606#endif
2607
2608/*
2609 * Display pages allocated per node and memory policy via /proc.
2610 */
2611int show_numa_map(struct seq_file *m, void *v)
2612{
2613        struct proc_maps_private *priv = m->private;
2614        struct vm_area_struct *vma = v;
2615        struct numa_maps *md;
2616        struct file *file = vma->vm_file;
2617        struct mm_struct *mm = vma->vm_mm;
2618        struct mempolicy *pol;
2619        int n;
2620        char buffer[50];
2621
2622        if (!mm)
2623                return 0;
2624
2625        md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2626        if (!md)
2627                return 0;
2628
2629        pol = get_vma_policy(priv->task, vma, vma->vm_start);
2630        mpol_to_str(buffer, sizeof(buffer), pol, 0);
2631        mpol_cond_put(pol);
2632
2633        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2634
2635        if (file) {
2636                seq_printf(m, " file=");
2637                seq_path(m, &file->f_path, "\n\t= ");
2638        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2639                seq_printf(m, " heap");
2640        } else if (vma->vm_start <= mm->start_stack &&
2641                        vma->vm_end >= mm->start_stack) {
2642                seq_printf(m, " stack");
2643        }
2644
2645        if (is_vm_hugetlb_page(vma)) {
2646                check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2647                seq_printf(m, " huge");
2648        } else {
2649                check_pgd_range(vma, vma->vm_start, vma->vm_end,
2650                        &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2651        }
2652
2653        if (!md->pages)
2654                goto out;
2655
2656        if (md->anon)
2657                seq_printf(m," anon=%lu",md->anon);
2658
2659        if (md->dirty)
2660                seq_printf(m," dirty=%lu",md->dirty);
2661
2662        if (md->pages != md->anon && md->pages != md->dirty)
2663                seq_printf(m, " mapped=%lu", md->pages);
2664
2665        if (md->mapcount_max > 1)
2666                seq_printf(m, " mapmax=%lu", md->mapcount_max);
2667
2668        if (md->swapcache)
2669                seq_printf(m," swapcache=%lu", md->swapcache);
2670
2671        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2672                seq_printf(m," active=%lu", md->active);
2673
2674        if (md->writeback)
2675                seq_printf(m," writeback=%lu", md->writeback);
2676
2677        for_each_node_state(n, N_HIGH_MEMORY)
2678                if (md->node[n])
2679                        seq_printf(m, " N%d=%lu", n, md->node[n]);
2680out:
2681        seq_putc(m, '\n');
2682        kfree(md);
2683
2684        if (m->count < m->size)
2685                m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2686        return 0;
2687}
2688