linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2005 Hugh Dickins.
  10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  12 *
  13 * Extended attribute support for tmpfs:
  14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  16 *
  17 * tiny-shmem:
  18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  19 *
  20 * This file is released under the GPL.
  21 */
  22
  23#include <linux/fs.h>
  24#include <linux/init.h>
  25#include <linux/vfs.h>
  26#include <linux/mount.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/percpu_counter.h>
  32#include <linux/swap.h>
  33
  34static struct vfsmount *shm_mnt;
  35
  36#ifdef CONFIG_SHMEM
  37/*
  38 * This virtual memory filesystem is heavily based on the ramfs. It
  39 * extends ramfs by the ability to use swap and honor resource limits
  40 * which makes it a completely usable filesystem.
  41 */
  42
  43#include <linux/xattr.h>
  44#include <linux/exportfs.h>
  45#include <linux/posix_acl.h>
  46#include <linux/generic_acl.h>
  47#include <linux/mman.h>
  48#include <linux/string.h>
  49#include <linux/slab.h>
  50#include <linux/backing-dev.h>
  51#include <linux/shmem_fs.h>
  52#include <linux/writeback.h>
  53#include <linux/blkdev.h>
  54#include <linux/security.h>
  55#include <linux/swapops.h>
  56#include <linux/mempolicy.h>
  57#include <linux/namei.h>
  58#include <linux/ctype.h>
  59#include <linux/migrate.h>
  60#include <linux/highmem.h>
  61#include <linux/seq_file.h>
  62#include <linux/magic.h>
  63
  64#include <asm/uaccess.h>
  65#include <asm/div64.h>
  66#include <asm/pgtable.h>
  67
  68/*
  69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
  70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
  71 *
  72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
  73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
  74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
  75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
  76 *
  77 * We use / and * instead of shifts in the definitions below, so that the swap
  78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
  79 */
  80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
  81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
  82
  83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
  84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
  85
  86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
  87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
  88
  89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  91
  92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
  93#define SHMEM_PAGEIN     VM_READ
  94#define SHMEM_TRUNCATE   VM_WRITE
  95
  96/* Definition to limit shmem_truncate's steps between cond_rescheds */
  97#define LATENCY_LIMIT    64
  98
  99/* Pretend that each entry is of this size in directory's i_size */
 100#define BOGO_DIRENT_SIZE 20
 101
 102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
 103enum sgp_type {
 104        SGP_READ,       /* don't exceed i_size, don't allocate page */
 105        SGP_CACHE,      /* don't exceed i_size, may allocate page */
 106        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 107        SGP_WRITE,      /* may exceed i_size, may allocate page */
 108};
 109
 110#ifdef CONFIG_TMPFS
 111static unsigned long shmem_default_max_blocks(void)
 112{
 113        return totalram_pages / 2;
 114}
 115
 116static unsigned long shmem_default_max_inodes(void)
 117{
 118        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 119}
 120#endif
 121
 122static int shmem_getpage(struct inode *inode, unsigned long idx,
 123                         struct page **pagep, enum sgp_type sgp, int *type);
 124
 125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
 126{
 127        /*
 128         * The above definition of ENTRIES_PER_PAGE, and the use of
 129         * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
 130         * might be reconsidered if it ever diverges from PAGE_SIZE.
 131         *
 132         * Mobility flags are masked out as swap vectors cannot move
 133         */
 134        return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
 135                                PAGE_CACHE_SHIFT-PAGE_SHIFT);
 136}
 137
 138static inline void shmem_dir_free(struct page *page)
 139{
 140        __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
 141}
 142
 143static struct page **shmem_dir_map(struct page *page)
 144{
 145        return (struct page **)kmap_atomic(page, KM_USER0);
 146}
 147
 148static inline void shmem_dir_unmap(struct page **dir)
 149{
 150        kunmap_atomic(dir, KM_USER0);
 151}
 152
 153static swp_entry_t *shmem_swp_map(struct page *page)
 154{
 155        return (swp_entry_t *)kmap_atomic(page, KM_USER1);
 156}
 157
 158static inline void shmem_swp_balance_unmap(void)
 159{
 160        /*
 161         * When passing a pointer to an i_direct entry, to code which
 162         * also handles indirect entries and so will shmem_swp_unmap,
 163         * we must arrange for the preempt count to remain in balance.
 164         * What kmap_atomic of a lowmem page does depends on config
 165         * and architecture, so pretend to kmap_atomic some lowmem page.
 166         */
 167        (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
 168}
 169
 170static inline void shmem_swp_unmap(swp_entry_t *entry)
 171{
 172        kunmap_atomic(entry, KM_USER1);
 173}
 174
 175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 176{
 177        return sb->s_fs_info;
 178}
 179
 180/*
 181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 182 * for shared memory and for shared anonymous (/dev/zero) mappings
 183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 184 * consistent with the pre-accounting of private mappings ...
 185 */
 186static inline int shmem_acct_size(unsigned long flags, loff_t size)
 187{
 188        return (flags & VM_NORESERVE) ?
 189                0 : security_vm_enough_memory_kern(VM_ACCT(size));
 190}
 191
 192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 193{
 194        if (!(flags & VM_NORESERVE))
 195                vm_unacct_memory(VM_ACCT(size));
 196}
 197
 198/*
 199 * ... whereas tmpfs objects are accounted incrementally as
 200 * pages are allocated, in order to allow huge sparse files.
 201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 203 */
 204static inline int shmem_acct_block(unsigned long flags)
 205{
 206        return (flags & VM_NORESERVE) ?
 207                security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 208}
 209
 210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 211{
 212        if (flags & VM_NORESERVE)
 213                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 214}
 215
 216static const struct super_operations shmem_ops;
 217static const struct address_space_operations shmem_aops;
 218static const struct file_operations shmem_file_operations;
 219static const struct inode_operations shmem_inode_operations;
 220static const struct inode_operations shmem_dir_inode_operations;
 221static const struct inode_operations shmem_special_inode_operations;
 222static const struct vm_operations_struct shmem_vm_ops;
 223
 224static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 225        .ra_pages       = 0,    /* No readahead */
 226        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 227};
 228
 229static LIST_HEAD(shmem_swaplist);
 230static DEFINE_MUTEX(shmem_swaplist_mutex);
 231
 232static void shmem_free_blocks(struct inode *inode, long pages)
 233{
 234        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 235        if (sbinfo->max_blocks) {
 236                percpu_counter_add(&sbinfo->used_blocks, -pages);
 237                spin_lock(&inode->i_lock);
 238                inode->i_blocks -= pages*BLOCKS_PER_PAGE;
 239                spin_unlock(&inode->i_lock);
 240        }
 241}
 242
 243static int shmem_reserve_inode(struct super_block *sb)
 244{
 245        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 246        if (sbinfo->max_inodes) {
 247                spin_lock(&sbinfo->stat_lock);
 248                if (!sbinfo->free_inodes) {
 249                        spin_unlock(&sbinfo->stat_lock);
 250                        return -ENOSPC;
 251                }
 252                sbinfo->free_inodes--;
 253                spin_unlock(&sbinfo->stat_lock);
 254        }
 255        return 0;
 256}
 257
 258static void shmem_free_inode(struct super_block *sb)
 259{
 260        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 261        if (sbinfo->max_inodes) {
 262                spin_lock(&sbinfo->stat_lock);
 263                sbinfo->free_inodes++;
 264                spin_unlock(&sbinfo->stat_lock);
 265        }
 266}
 267
 268/**
 269 * shmem_recalc_inode - recalculate the size of an inode
 270 * @inode: inode to recalc
 271 *
 272 * We have to calculate the free blocks since the mm can drop
 273 * undirtied hole pages behind our back.
 274 *
 275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 277 *
 278 * It has to be called with the spinlock held.
 279 */
 280static void shmem_recalc_inode(struct inode *inode)
 281{
 282        struct shmem_inode_info *info = SHMEM_I(inode);
 283        long freed;
 284
 285        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 286        if (freed > 0) {
 287                info->alloced -= freed;
 288                shmem_unacct_blocks(info->flags, freed);
 289                shmem_free_blocks(inode, freed);
 290        }
 291}
 292
 293/**
 294 * shmem_swp_entry - find the swap vector position in the info structure
 295 * @info:  info structure for the inode
 296 * @index: index of the page to find
 297 * @page:  optional page to add to the structure. Has to be preset to
 298 *         all zeros
 299 *
 300 * If there is no space allocated yet it will return NULL when
 301 * page is NULL, else it will use the page for the needed block,
 302 * setting it to NULL on return to indicate that it has been used.
 303 *
 304 * The swap vector is organized the following way:
 305 *
 306 * There are SHMEM_NR_DIRECT entries directly stored in the
 307 * shmem_inode_info structure. So small files do not need an addional
 308 * allocation.
 309 *
 310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
 311 * i_indirect which points to a page which holds in the first half
 312 * doubly indirect blocks, in the second half triple indirect blocks:
 313 *
 314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
 315 * following layout (for SHMEM_NR_DIRECT == 16):
 316 *
 317 * i_indirect -> dir --> 16-19
 318 *            |      +-> 20-23
 319 *            |
 320 *            +-->dir2 --> 24-27
 321 *            |        +-> 28-31
 322 *            |        +-> 32-35
 323 *            |        +-> 36-39
 324 *            |
 325 *            +-->dir3 --> 40-43
 326 *                     +-> 44-47
 327 *                     +-> 48-51
 328 *                     +-> 52-55
 329 */
 330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
 331{
 332        unsigned long offset;
 333        struct page **dir;
 334        struct page *subdir;
 335
 336        if (index < SHMEM_NR_DIRECT) {
 337                shmem_swp_balance_unmap();
 338                return info->i_direct+index;
 339        }
 340        if (!info->i_indirect) {
 341                if (page) {
 342                        info->i_indirect = *page;
 343                        *page = NULL;
 344                }
 345                return NULL;                    /* need another page */
 346        }
 347
 348        index -= SHMEM_NR_DIRECT;
 349        offset = index % ENTRIES_PER_PAGE;
 350        index /= ENTRIES_PER_PAGE;
 351        dir = shmem_dir_map(info->i_indirect);
 352
 353        if (index >= ENTRIES_PER_PAGE/2) {
 354                index -= ENTRIES_PER_PAGE/2;
 355                dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
 356                index %= ENTRIES_PER_PAGE;
 357                subdir = *dir;
 358                if (!subdir) {
 359                        if (page) {
 360                                *dir = *page;
 361                                *page = NULL;
 362                        }
 363                        shmem_dir_unmap(dir);
 364                        return NULL;            /* need another page */
 365                }
 366                shmem_dir_unmap(dir);
 367                dir = shmem_dir_map(subdir);
 368        }
 369
 370        dir += index;
 371        subdir = *dir;
 372        if (!subdir) {
 373                if (!page || !(subdir = *page)) {
 374                        shmem_dir_unmap(dir);
 375                        return NULL;            /* need a page */
 376                }
 377                *dir = subdir;
 378                *page = NULL;
 379        }
 380        shmem_dir_unmap(dir);
 381        return shmem_swp_map(subdir) + offset;
 382}
 383
 384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
 385{
 386        long incdec = value? 1: -1;
 387
 388        entry->val = value;
 389        info->swapped += incdec;
 390        if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
 391                struct page *page = kmap_atomic_to_page(entry);
 392                set_page_private(page, page_private(page) + incdec);
 393        }
 394}
 395
 396/**
 397 * shmem_swp_alloc - get the position of the swap entry for the page.
 398 * @info:       info structure for the inode
 399 * @index:      index of the page to find
 400 * @sgp:        check and recheck i_size? skip allocation?
 401 *
 402 * If the entry does not exist, allocate it.
 403 */
 404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
 405{
 406        struct inode *inode = &info->vfs_inode;
 407        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 408        struct page *page = NULL;
 409        swp_entry_t *entry;
 410
 411        if (sgp != SGP_WRITE &&
 412            ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
 413                return ERR_PTR(-EINVAL);
 414
 415        while (!(entry = shmem_swp_entry(info, index, &page))) {
 416                if (sgp == SGP_READ)
 417                        return shmem_swp_map(ZERO_PAGE(0));
 418                /*
 419                 * Test used_blocks against 1 less max_blocks, since we have 1 data
 420                 * page (and perhaps indirect index pages) yet to allocate:
 421                 * a waste to allocate index if we cannot allocate data.
 422                 */
 423                if (sbinfo->max_blocks) {
 424                        if (percpu_counter_compare(&sbinfo->used_blocks,
 425                                                sbinfo->max_blocks - 1) >= 0)
 426                                return ERR_PTR(-ENOSPC);
 427                        percpu_counter_inc(&sbinfo->used_blocks);
 428                        spin_lock(&inode->i_lock);
 429                        inode->i_blocks += BLOCKS_PER_PAGE;
 430                        spin_unlock(&inode->i_lock);
 431                }
 432
 433                spin_unlock(&info->lock);
 434                page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
 435                spin_lock(&info->lock);
 436
 437                if (!page) {
 438                        shmem_free_blocks(inode, 1);
 439                        return ERR_PTR(-ENOMEM);
 440                }
 441                if (sgp != SGP_WRITE &&
 442                    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 443                        entry = ERR_PTR(-EINVAL);
 444                        break;
 445                }
 446                if (info->next_index <= index)
 447                        info->next_index = index + 1;
 448        }
 449        if (page) {
 450                /* another task gave its page, or truncated the file */
 451                shmem_free_blocks(inode, 1);
 452                shmem_dir_free(page);
 453        }
 454        if (info->next_index <= index && !IS_ERR(entry))
 455                info->next_index = index + 1;
 456        return entry;
 457}
 458
 459/**
 460 * shmem_free_swp - free some swap entries in a directory
 461 * @dir:        pointer to the directory
 462 * @edir:       pointer after last entry of the directory
 463 * @punch_lock: pointer to spinlock when needed for the holepunch case
 464 */
 465static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
 466                                                spinlock_t *punch_lock)
 467{
 468        spinlock_t *punch_unlock = NULL;
 469        swp_entry_t *ptr;
 470        int freed = 0;
 471
 472        for (ptr = dir; ptr < edir; ptr++) {
 473                if (ptr->val) {
 474                        if (unlikely(punch_lock)) {
 475                                punch_unlock = punch_lock;
 476                                punch_lock = NULL;
 477                                spin_lock(punch_unlock);
 478                                if (!ptr->val)
 479                                        continue;
 480                        }
 481                        free_swap_and_cache(*ptr);
 482                        *ptr = (swp_entry_t){0};
 483                        freed++;
 484                }
 485        }
 486        if (punch_unlock)
 487                spin_unlock(punch_unlock);
 488        return freed;
 489}
 490
 491static int shmem_map_and_free_swp(struct page *subdir, int offset,
 492                int limit, struct page ***dir, spinlock_t *punch_lock)
 493{
 494        swp_entry_t *ptr;
 495        int freed = 0;
 496
 497        ptr = shmem_swp_map(subdir);
 498        for (; offset < limit; offset += LATENCY_LIMIT) {
 499                int size = limit - offset;
 500                if (size > LATENCY_LIMIT)
 501                        size = LATENCY_LIMIT;
 502                freed += shmem_free_swp(ptr+offset, ptr+offset+size,
 503                                                        punch_lock);
 504                if (need_resched()) {
 505                        shmem_swp_unmap(ptr);
 506                        if (*dir) {
 507                                shmem_dir_unmap(*dir);
 508                                *dir = NULL;
 509                        }
 510                        cond_resched();
 511                        ptr = shmem_swp_map(subdir);
 512                }
 513        }
 514        shmem_swp_unmap(ptr);
 515        return freed;
 516}
 517
 518static void shmem_free_pages(struct list_head *next)
 519{
 520        struct page *page;
 521        int freed = 0;
 522
 523        do {
 524                page = container_of(next, struct page, lru);
 525                next = next->next;
 526                shmem_dir_free(page);
 527                freed++;
 528                if (freed >= LATENCY_LIMIT) {
 529                        cond_resched();
 530                        freed = 0;
 531                }
 532        } while (next);
 533}
 534
 535static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
 536{
 537        struct shmem_inode_info *info = SHMEM_I(inode);
 538        unsigned long idx;
 539        unsigned long size;
 540        unsigned long limit;
 541        unsigned long stage;
 542        unsigned long diroff;
 543        struct page **dir;
 544        struct page *topdir;
 545        struct page *middir;
 546        struct page *subdir;
 547        swp_entry_t *ptr;
 548        LIST_HEAD(pages_to_free);
 549        long nr_pages_to_free = 0;
 550        long nr_swaps_freed = 0;
 551        int offset;
 552        int freed;
 553        int punch_hole;
 554        spinlock_t *needs_lock;
 555        spinlock_t *punch_lock;
 556        unsigned long upper_limit;
 557
 558        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 559        idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 560        if (idx >= info->next_index)
 561                return;
 562
 563        spin_lock(&info->lock);
 564        info->flags |= SHMEM_TRUNCATE;
 565        if (likely(end == (loff_t) -1)) {
 566                limit = info->next_index;
 567                upper_limit = SHMEM_MAX_INDEX;
 568                info->next_index = idx;
 569                needs_lock = NULL;
 570                punch_hole = 0;
 571        } else {
 572                if (end + 1 >= inode->i_size) { /* we may free a little more */
 573                        limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
 574                                                        PAGE_CACHE_SHIFT;
 575                        upper_limit = SHMEM_MAX_INDEX;
 576                } else {
 577                        limit = (end + 1) >> PAGE_CACHE_SHIFT;
 578                        upper_limit = limit;
 579                }
 580                needs_lock = &info->lock;
 581                punch_hole = 1;
 582        }
 583
 584        topdir = info->i_indirect;
 585        if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
 586                info->i_indirect = NULL;
 587                nr_pages_to_free++;
 588                list_add(&topdir->lru, &pages_to_free);
 589        }
 590        spin_unlock(&info->lock);
 591
 592        if (info->swapped && idx < SHMEM_NR_DIRECT) {
 593                ptr = info->i_direct;
 594                size = limit;
 595                if (size > SHMEM_NR_DIRECT)
 596                        size = SHMEM_NR_DIRECT;
 597                nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
 598        }
 599
 600        /*
 601         * If there are no indirect blocks or we are punching a hole
 602         * below indirect blocks, nothing to be done.
 603         */
 604        if (!topdir || limit <= SHMEM_NR_DIRECT)
 605                goto done2;
 606
 607        /*
 608         * The truncation case has already dropped info->lock, and we're safe
 609         * because i_size and next_index have already been lowered, preventing
 610         * access beyond.  But in the punch_hole case, we still need to take
 611         * the lock when updating the swap directory, because there might be
 612         * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
 613         * shmem_writepage.  However, whenever we find we can remove a whole
 614         * directory page (not at the misaligned start or end of the range),
 615         * we first NULLify its pointer in the level above, and then have no
 616         * need to take the lock when updating its contents: needs_lock and
 617         * punch_lock (either pointing to info->lock or NULL) manage this.
 618         */
 619
 620        upper_limit -= SHMEM_NR_DIRECT;
 621        limit -= SHMEM_NR_DIRECT;
 622        idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
 623        offset = idx % ENTRIES_PER_PAGE;
 624        idx -= offset;
 625
 626        dir = shmem_dir_map(topdir);
 627        stage = ENTRIES_PER_PAGEPAGE/2;
 628        if (idx < ENTRIES_PER_PAGEPAGE/2) {
 629                middir = topdir;
 630                diroff = idx/ENTRIES_PER_PAGE;
 631        } else {
 632                dir += ENTRIES_PER_PAGE/2;
 633                dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
 634                while (stage <= idx)
 635                        stage += ENTRIES_PER_PAGEPAGE;
 636                middir = *dir;
 637                if (*dir) {
 638                        diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
 639                                ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
 640                        if (!diroff && !offset && upper_limit >= stage) {
 641                                if (needs_lock) {
 642                                        spin_lock(needs_lock);
 643                                        *dir = NULL;
 644                                        spin_unlock(needs_lock);
 645                                        needs_lock = NULL;
 646                                } else
 647                                        *dir = NULL;
 648                                nr_pages_to_free++;
 649                                list_add(&middir->lru, &pages_to_free);
 650                        }
 651                        shmem_dir_unmap(dir);
 652                        dir = shmem_dir_map(middir);
 653                } else {
 654                        diroff = 0;
 655                        offset = 0;
 656                        idx = stage;
 657                }
 658        }
 659
 660        for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
 661                if (unlikely(idx == stage)) {
 662                        shmem_dir_unmap(dir);
 663                        dir = shmem_dir_map(topdir) +
 664                            ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
 665                        while (!*dir) {
 666                                dir++;
 667                                idx += ENTRIES_PER_PAGEPAGE;
 668                                if (idx >= limit)
 669                                        goto done1;
 670                        }
 671                        stage = idx + ENTRIES_PER_PAGEPAGE;
 672                        middir = *dir;
 673                        if (punch_hole)
 674                                needs_lock = &info->lock;
 675                        if (upper_limit >= stage) {
 676                                if (needs_lock) {
 677                                        spin_lock(needs_lock);
 678                                        *dir = NULL;
 679                                        spin_unlock(needs_lock);
 680                                        needs_lock = NULL;
 681                                } else
 682                                        *dir = NULL;
 683                                nr_pages_to_free++;
 684                                list_add(&middir->lru, &pages_to_free);
 685                        }
 686                        shmem_dir_unmap(dir);
 687                        cond_resched();
 688                        dir = shmem_dir_map(middir);
 689                        diroff = 0;
 690                }
 691                punch_lock = needs_lock;
 692                subdir = dir[diroff];
 693                if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
 694                        if (needs_lock) {
 695                                spin_lock(needs_lock);
 696                                dir[diroff] = NULL;
 697                                spin_unlock(needs_lock);
 698                                punch_lock = NULL;
 699                        } else
 700                                dir[diroff] = NULL;
 701                        nr_pages_to_free++;
 702                        list_add(&subdir->lru, &pages_to_free);
 703                }
 704                if (subdir && page_private(subdir) /* has swap entries */) {
 705                        size = limit - idx;
 706                        if (size > ENTRIES_PER_PAGE)
 707                                size = ENTRIES_PER_PAGE;
 708                        freed = shmem_map_and_free_swp(subdir,
 709                                        offset, size, &dir, punch_lock);
 710                        if (!dir)
 711                                dir = shmem_dir_map(middir);
 712                        nr_swaps_freed += freed;
 713                        if (offset || punch_lock) {
 714                                spin_lock(&info->lock);
 715                                set_page_private(subdir,
 716                                        page_private(subdir) - freed);
 717                                spin_unlock(&info->lock);
 718                        } else
 719                                BUG_ON(page_private(subdir) != freed);
 720                }
 721                offset = 0;
 722        }
 723done1:
 724        shmem_dir_unmap(dir);
 725done2:
 726        if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
 727                /*
 728                 * Call truncate_inode_pages again: racing shmem_unuse_inode
 729                 * may have swizzled a page in from swap since
 730                 * truncate_pagecache or generic_delete_inode did it, before we
 731                 * lowered next_index.  Also, though shmem_getpage checks
 732                 * i_size before adding to cache, no recheck after: so fix the
 733                 * narrow window there too.
 734                 *
 735                 * Recalling truncate_inode_pages_range and unmap_mapping_range
 736                 * every time for punch_hole (which never got a chance to clear
 737                 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
 738                 * yet hardly ever necessary: try to optimize them out later.
 739                 */
 740                truncate_inode_pages_range(inode->i_mapping, start, end);
 741                if (punch_hole)
 742                        unmap_mapping_range(inode->i_mapping, start,
 743                                                        end - start, 1);
 744        }
 745
 746        spin_lock(&info->lock);
 747        info->flags &= ~SHMEM_TRUNCATE;
 748        info->swapped -= nr_swaps_freed;
 749        if (nr_pages_to_free)
 750                shmem_free_blocks(inode, nr_pages_to_free);
 751        shmem_recalc_inode(inode);
 752        spin_unlock(&info->lock);
 753
 754        /*
 755         * Empty swap vector directory pages to be freed?
 756         */
 757        if (!list_empty(&pages_to_free)) {
 758                pages_to_free.prev->next = NULL;
 759                shmem_free_pages(pages_to_free.next);
 760        }
 761}
 762
 763static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
 764{
 765        struct inode *inode = dentry->d_inode;
 766        loff_t newsize = attr->ia_size;
 767        int error;
 768
 769        error = inode_change_ok(inode, attr);
 770        if (error)
 771                return error;
 772
 773        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
 774                                        && newsize != inode->i_size) {
 775                struct page *page = NULL;
 776
 777                if (newsize < inode->i_size) {
 778                        /*
 779                         * If truncating down to a partial page, then
 780                         * if that page is already allocated, hold it
 781                         * in memory until the truncation is over, so
 782                         * truncate_partial_page cannot miss it were
 783                         * it assigned to swap.
 784                         */
 785                        if (newsize & (PAGE_CACHE_SIZE-1)) {
 786                                (void) shmem_getpage(inode,
 787                                        newsize >> PAGE_CACHE_SHIFT,
 788                                                &page, SGP_READ, NULL);
 789                                if (page)
 790                                        unlock_page(page);
 791                        }
 792                        /*
 793                         * Reset SHMEM_PAGEIN flag so that shmem_truncate can
 794                         * detect if any pages might have been added to cache
 795                         * after truncate_inode_pages.  But we needn't bother
 796                         * if it's being fully truncated to zero-length: the
 797                         * nrpages check is efficient enough in that case.
 798                         */
 799                        if (newsize) {
 800                                struct shmem_inode_info *info = SHMEM_I(inode);
 801                                spin_lock(&info->lock);
 802                                info->flags &= ~SHMEM_PAGEIN;
 803                                spin_unlock(&info->lock);
 804                        }
 805                }
 806
 807                /* XXX(truncate): truncate_setsize should be called last */
 808                truncate_setsize(inode, newsize);
 809                if (page)
 810                        page_cache_release(page);
 811                shmem_truncate_range(inode, newsize, (loff_t)-1);
 812        }
 813
 814        setattr_copy(inode, attr);
 815#ifdef CONFIG_TMPFS_POSIX_ACL
 816        if (attr->ia_valid & ATTR_MODE)
 817                error = generic_acl_chmod(inode);
 818#endif
 819        return error;
 820}
 821
 822static void shmem_evict_inode(struct inode *inode)
 823{
 824        struct shmem_inode_info *info = SHMEM_I(inode);
 825
 826        if (inode->i_mapping->a_ops == &shmem_aops) {
 827                truncate_inode_pages(inode->i_mapping, 0);
 828                shmem_unacct_size(info->flags, inode->i_size);
 829                inode->i_size = 0;
 830                shmem_truncate_range(inode, 0, (loff_t)-1);
 831                if (!list_empty(&info->swaplist)) {
 832                        mutex_lock(&shmem_swaplist_mutex);
 833                        list_del_init(&info->swaplist);
 834                        mutex_unlock(&shmem_swaplist_mutex);
 835                }
 836        }
 837        BUG_ON(inode->i_blocks);
 838        shmem_free_inode(inode->i_sb);
 839        end_writeback(inode);
 840}
 841
 842static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
 843{
 844        swp_entry_t *ptr;
 845
 846        for (ptr = dir; ptr < edir; ptr++) {
 847                if (ptr->val == entry.val)
 848                        return ptr - dir;
 849        }
 850        return -1;
 851}
 852
 853static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
 854{
 855        struct address_space *mapping;
 856        unsigned long idx;
 857        unsigned long size;
 858        unsigned long limit;
 859        unsigned long stage;
 860        struct page **dir;
 861        struct page *subdir;
 862        swp_entry_t *ptr;
 863        int offset;
 864        int error;
 865
 866        idx = 0;
 867        ptr = info->i_direct;
 868        spin_lock(&info->lock);
 869        if (!info->swapped) {
 870                list_del_init(&info->swaplist);
 871                goto lost2;
 872        }
 873        limit = info->next_index;
 874        size = limit;
 875        if (size > SHMEM_NR_DIRECT)
 876                size = SHMEM_NR_DIRECT;
 877        offset = shmem_find_swp(entry, ptr, ptr+size);
 878        if (offset >= 0) {
 879                shmem_swp_balance_unmap();
 880                goto found;
 881        }
 882        if (!info->i_indirect)
 883                goto lost2;
 884
 885        dir = shmem_dir_map(info->i_indirect);
 886        stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
 887
 888        for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
 889                if (unlikely(idx == stage)) {
 890                        shmem_dir_unmap(dir-1);
 891                        if (cond_resched_lock(&info->lock)) {
 892                                /* check it has not been truncated */
 893                                if (limit > info->next_index) {
 894                                        limit = info->next_index;
 895                                        if (idx >= limit)
 896                                                goto lost2;
 897                                }
 898                        }
 899                        dir = shmem_dir_map(info->i_indirect) +
 900                            ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
 901                        while (!*dir) {
 902                                dir++;
 903                                idx += ENTRIES_PER_PAGEPAGE;
 904                                if (idx >= limit)
 905                                        goto lost1;
 906                        }
 907                        stage = idx + ENTRIES_PER_PAGEPAGE;
 908                        subdir = *dir;
 909                        shmem_dir_unmap(dir);
 910                        dir = shmem_dir_map(subdir);
 911                }
 912                subdir = *dir;
 913                if (subdir && page_private(subdir)) {
 914                        ptr = shmem_swp_map(subdir);
 915                        size = limit - idx;
 916                        if (size > ENTRIES_PER_PAGE)
 917                                size = ENTRIES_PER_PAGE;
 918                        offset = shmem_find_swp(entry, ptr, ptr+size);
 919                        if (offset >= 0) {
 920                                shmem_dir_unmap(dir);
 921                                goto found;
 922                        }
 923                        shmem_swp_unmap(ptr);
 924                }
 925        }
 926lost1:
 927        shmem_dir_unmap(dir-1);
 928lost2:
 929        spin_unlock(&info->lock);
 930        return 0;
 931found:
 932        idx += offset;
 933        ptr += offset;
 934
 935        /*
 936         * Move _head_ to start search for next from here.
 937         * But be careful: shmem_evict_inode checks list_empty without taking
 938         * mutex, and there's an instant in list_move_tail when info->swaplist
 939         * would appear empty, if it were the only one on shmem_swaplist.  We
 940         * could avoid doing it if inode NULL; or use this minor optimization.
 941         */
 942        if (shmem_swaplist.next != &info->swaplist)
 943                list_move_tail(&shmem_swaplist, &info->swaplist);
 944
 945        /*
 946         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 947         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 948         * beneath us (pagelock doesn't help until the page is in pagecache).
 949         */
 950        mapping = info->vfs_inode.i_mapping;
 951        error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
 952        /* which does mem_cgroup_uncharge_cache_page on error */
 953
 954        if (error == -EEXIST) {
 955                struct page *filepage = find_get_page(mapping, idx);
 956                error = 1;
 957                if (filepage) {
 958                        /*
 959                         * There might be a more uptodate page coming down
 960                         * from a stacked writepage: forget our swappage if so.
 961                         */
 962                        if (PageUptodate(filepage))
 963                                error = 0;
 964                        page_cache_release(filepage);
 965                }
 966        }
 967        if (!error) {
 968                delete_from_swap_cache(page);
 969                set_page_dirty(page);
 970                info->flags |= SHMEM_PAGEIN;
 971                shmem_swp_set(info, ptr, 0);
 972                swap_free(entry);
 973                error = 1;      /* not an error, but entry was found */
 974        }
 975        shmem_swp_unmap(ptr);
 976        spin_unlock(&info->lock);
 977        return error;
 978}
 979
 980/*
 981 * shmem_unuse() search for an eventually swapped out shmem page.
 982 */
 983int shmem_unuse(swp_entry_t entry, struct page *page)
 984{
 985        struct list_head *p, *next;
 986        struct shmem_inode_info *info;
 987        int found = 0;
 988        int error;
 989
 990        /*
 991         * Charge page using GFP_KERNEL while we can wait, before taking
 992         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 993         * Charged back to the user (not to caller) when swap account is used.
 994         * add_to_page_cache() will be called with GFP_NOWAIT.
 995         */
 996        error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 997        if (error)
 998                goto out;
 999        /*
1000         * Try to preload while we can wait, to not make a habit of
1001         * draining atomic reserves; but don't latch on to this cpu,
1002         * it's okay if sometimes we get rescheduled after this.
1003         */
1004        error = radix_tree_preload(GFP_KERNEL);
1005        if (error)
1006                goto uncharge;
1007        radix_tree_preload_end();
1008
1009        mutex_lock(&shmem_swaplist_mutex);
1010        list_for_each_safe(p, next, &shmem_swaplist) {
1011                info = list_entry(p, struct shmem_inode_info, swaplist);
1012                found = shmem_unuse_inode(info, entry, page);
1013                cond_resched();
1014                if (found)
1015                        break;
1016        }
1017        mutex_unlock(&shmem_swaplist_mutex);
1018
1019uncharge:
1020        if (!found)
1021                mem_cgroup_uncharge_cache_page(page);
1022        if (found < 0)
1023                error = found;
1024out:
1025        unlock_page(page);
1026        page_cache_release(page);
1027        return error;
1028}
1029
1030/*
1031 * Move the page from the page cache to the swap cache.
1032 */
1033static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1034{
1035        struct shmem_inode_info *info;
1036        swp_entry_t *entry, swap;
1037        struct address_space *mapping;
1038        unsigned long index;
1039        struct inode *inode;
1040
1041        BUG_ON(!PageLocked(page));
1042        mapping = page->mapping;
1043        index = page->index;
1044        inode = mapping->host;
1045        info = SHMEM_I(inode);
1046        if (info->flags & VM_LOCKED)
1047                goto redirty;
1048        if (!total_swap_pages)
1049                goto redirty;
1050
1051        /*
1052         * shmem_backing_dev_info's capabilities prevent regular writeback or
1053         * sync from ever calling shmem_writepage; but a stacking filesystem
1054         * may use the ->writepage of its underlying filesystem, in which case
1055         * tmpfs should write out to swap only in response to memory pressure,
1056         * and not for the writeback threads or sync.  However, in those cases,
1057         * we do still want to check if there's a redundant swappage to be
1058         * discarded.
1059         */
1060        if (wbc->for_reclaim)
1061                swap = get_swap_page();
1062        else
1063                swap.val = 0;
1064
1065        /*
1066         * Add inode to shmem_unuse()'s list of swapped-out inodes,
1067         * if it's not already there.  Do it now because we cannot take
1068         * mutex while holding spinlock, and must do so before the page
1069         * is moved to swap cache, when its pagelock no longer protects
1070         * the inode from eviction.  But don't unlock the mutex until
1071         * we've taken the spinlock, because shmem_unuse_inode() will
1072         * prune a !swapped inode from the swaplist under both locks.
1073         */
1074        if (swap.val) {
1075                mutex_lock(&shmem_swaplist_mutex);
1076                if (list_empty(&info->swaplist))
1077                        list_add_tail(&info->swaplist, &shmem_swaplist);
1078        }
1079
1080        spin_lock(&info->lock);
1081        if (swap.val)
1082                mutex_unlock(&shmem_swaplist_mutex);
1083
1084        if (index >= info->next_index) {
1085                BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1086                goto unlock;
1087        }
1088        entry = shmem_swp_entry(info, index, NULL);
1089        if (entry->val) {
1090                /*
1091                 * The more uptodate page coming down from a stacked
1092                 * writepage should replace our old swappage.
1093                 */
1094                free_swap_and_cache(*entry);
1095                shmem_swp_set(info, entry, 0);
1096        }
1097        shmem_recalc_inode(inode);
1098
1099        if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1100                delete_from_page_cache(page);
1101                shmem_swp_set(info, entry, swap.val);
1102                shmem_swp_unmap(entry);
1103                spin_unlock(&info->lock);
1104                swap_shmem_alloc(swap);
1105                BUG_ON(page_mapped(page));
1106                swap_writepage(page, wbc);
1107                return 0;
1108        }
1109
1110        shmem_swp_unmap(entry);
1111unlock:
1112        spin_unlock(&info->lock);
1113        /*
1114         * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1115         * clear SWAP_HAS_CACHE flag.
1116         */
1117        swapcache_free(swap, NULL);
1118redirty:
1119        set_page_dirty(page);
1120        if (wbc->for_reclaim)
1121                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1122        unlock_page(page);
1123        return 0;
1124}
1125
1126#ifdef CONFIG_NUMA
1127#ifdef CONFIG_TMPFS
1128static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1129{
1130        char buffer[64];
1131
1132        if (!mpol || mpol->mode == MPOL_DEFAULT)
1133                return;         /* show nothing */
1134
1135        mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1136
1137        seq_printf(seq, ",mpol=%s", buffer);
1138}
1139
1140static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1141{
1142        struct mempolicy *mpol = NULL;
1143        if (sbinfo->mpol) {
1144                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1145                mpol = sbinfo->mpol;
1146                mpol_get(mpol);
1147                spin_unlock(&sbinfo->stat_lock);
1148        }
1149        return mpol;
1150}
1151#endif /* CONFIG_TMPFS */
1152
1153static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154                        struct shmem_inode_info *info, unsigned long idx)
1155{
1156        struct mempolicy mpol, *spol;
1157        struct vm_area_struct pvma;
1158        struct page *page;
1159
1160        spol = mpol_cond_copy(&mpol,
1161                                mpol_shared_policy_lookup(&info->policy, idx));
1162
1163        /* Create a pseudo vma that just contains the policy */
1164        pvma.vm_start = 0;
1165        pvma.vm_pgoff = idx;
1166        pvma.vm_ops = NULL;
1167        pvma.vm_policy = spol;
1168        page = swapin_readahead(entry, gfp, &pvma, 0);
1169        return page;
1170}
1171
1172static struct page *shmem_alloc_page(gfp_t gfp,
1173                        struct shmem_inode_info *info, unsigned long idx)
1174{
1175        struct vm_area_struct pvma;
1176
1177        /* Create a pseudo vma that just contains the policy */
1178        pvma.vm_start = 0;
1179        pvma.vm_pgoff = idx;
1180        pvma.vm_ops = NULL;
1181        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1182
1183        /*
1184         * alloc_page_vma() will drop the shared policy reference
1185         */
1186        return alloc_page_vma(gfp, &pvma, 0);
1187}
1188#else /* !CONFIG_NUMA */
1189#ifdef CONFIG_TMPFS
1190static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1191{
1192}
1193#endif /* CONFIG_TMPFS */
1194
1195static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1196                        struct shmem_inode_info *info, unsigned long idx)
1197{
1198        return swapin_readahead(entry, gfp, NULL, 0);
1199}
1200
1201static inline struct page *shmem_alloc_page(gfp_t gfp,
1202                        struct shmem_inode_info *info, unsigned long idx)
1203{
1204        return alloc_page(gfp);
1205}
1206#endif /* CONFIG_NUMA */
1207
1208#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1209static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1210{
1211        return NULL;
1212}
1213#endif
1214
1215/*
1216 * shmem_getpage - either get the page from swap or allocate a new one
1217 *
1218 * If we allocate a new one we do not mark it dirty. That's up to the
1219 * vm. If we swap it in we mark it dirty since we also free the swap
1220 * entry since a page cannot live in both the swap and page cache
1221 */
1222static int shmem_getpage(struct inode *inode, unsigned long idx,
1223                        struct page **pagep, enum sgp_type sgp, int *type)
1224{
1225        struct address_space *mapping = inode->i_mapping;
1226        struct shmem_inode_info *info = SHMEM_I(inode);
1227        struct shmem_sb_info *sbinfo;
1228        struct page *filepage = *pagep;
1229        struct page *swappage;
1230        struct page *prealloc_page = NULL;
1231        swp_entry_t *entry;
1232        swp_entry_t swap;
1233        gfp_t gfp;
1234        int error;
1235
1236        if (idx >= SHMEM_MAX_INDEX)
1237                return -EFBIG;
1238
1239        if (type)
1240                *type = 0;
1241
1242        /*
1243         * Normally, filepage is NULL on entry, and either found
1244         * uptodate immediately, or allocated and zeroed, or read
1245         * in under swappage, which is then assigned to filepage.
1246         * But shmem_readpage (required for splice) passes in a locked
1247         * filepage, which may be found not uptodate by other callers
1248         * too, and may need to be copied from the swappage read in.
1249         */
1250repeat:
1251        if (!filepage)
1252                filepage = find_lock_page(mapping, idx);
1253        if (filepage && PageUptodate(filepage))
1254                goto done;
1255        gfp = mapping_gfp_mask(mapping);
1256        if (!filepage) {
1257                /*
1258                 * Try to preload while we can wait, to not make a habit of
1259                 * draining atomic reserves; but don't latch on to this cpu.
1260                 */
1261                error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1262                if (error)
1263                        goto failed;
1264                radix_tree_preload_end();
1265                if (sgp != SGP_READ && !prealloc_page) {
1266                        /* We don't care if this fails */
1267                        prealloc_page = shmem_alloc_page(gfp, info, idx);
1268                        if (prealloc_page) {
1269                                if (mem_cgroup_cache_charge(prealloc_page,
1270                                                current->mm, GFP_KERNEL)) {
1271                                        page_cache_release(prealloc_page);
1272                                        prealloc_page = NULL;
1273                                }
1274                        }
1275                }
1276        }
1277        error = 0;
1278
1279        spin_lock(&info->lock);
1280        shmem_recalc_inode(inode);
1281        entry = shmem_swp_alloc(info, idx, sgp);
1282        if (IS_ERR(entry)) {
1283                spin_unlock(&info->lock);
1284                error = PTR_ERR(entry);
1285                goto failed;
1286        }
1287        swap = *entry;
1288
1289        if (swap.val) {
1290                /* Look it up and read it in.. */
1291                swappage = lookup_swap_cache(swap);
1292                if (!swappage) {
1293                        shmem_swp_unmap(entry);
1294                        /* here we actually do the io */
1295                        if (type && !(*type & VM_FAULT_MAJOR)) {
1296                                __count_vm_event(PGMAJFAULT);
1297                                *type |= VM_FAULT_MAJOR;
1298                        }
1299                        spin_unlock(&info->lock);
1300                        swappage = shmem_swapin(swap, gfp, info, idx);
1301                        if (!swappage) {
1302                                spin_lock(&info->lock);
1303                                entry = shmem_swp_alloc(info, idx, sgp);
1304                                if (IS_ERR(entry))
1305                                        error = PTR_ERR(entry);
1306                                else {
1307                                        if (entry->val == swap.val)
1308                                                error = -ENOMEM;
1309                                        shmem_swp_unmap(entry);
1310                                }
1311                                spin_unlock(&info->lock);
1312                                if (error)
1313                                        goto failed;
1314                                goto repeat;
1315                        }
1316                        wait_on_page_locked(swappage);
1317                        page_cache_release(swappage);
1318                        goto repeat;
1319                }
1320
1321                /* We have to do this with page locked to prevent races */
1322                if (!trylock_page(swappage)) {
1323                        shmem_swp_unmap(entry);
1324                        spin_unlock(&info->lock);
1325                        wait_on_page_locked(swappage);
1326                        page_cache_release(swappage);
1327                        goto repeat;
1328                }
1329                if (PageWriteback(swappage)) {
1330                        shmem_swp_unmap(entry);
1331                        spin_unlock(&info->lock);
1332                        wait_on_page_writeback(swappage);
1333                        unlock_page(swappage);
1334                        page_cache_release(swappage);
1335                        goto repeat;
1336                }
1337                if (!PageUptodate(swappage)) {
1338                        shmem_swp_unmap(entry);
1339                        spin_unlock(&info->lock);
1340                        unlock_page(swappage);
1341                        page_cache_release(swappage);
1342                        error = -EIO;
1343                        goto failed;
1344                }
1345
1346                if (filepage) {
1347                        shmem_swp_set(info, entry, 0);
1348                        shmem_swp_unmap(entry);
1349                        delete_from_swap_cache(swappage);
1350                        spin_unlock(&info->lock);
1351                        copy_highpage(filepage, swappage);
1352                        unlock_page(swappage);
1353                        page_cache_release(swappage);
1354                        flush_dcache_page(filepage);
1355                        SetPageUptodate(filepage);
1356                        set_page_dirty(filepage);
1357                        swap_free(swap);
1358                } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1359                                        idx, GFP_NOWAIT))) {
1360                        info->flags |= SHMEM_PAGEIN;
1361                        shmem_swp_set(info, entry, 0);
1362                        shmem_swp_unmap(entry);
1363                        delete_from_swap_cache(swappage);
1364                        spin_unlock(&info->lock);
1365                        filepage = swappage;
1366                        set_page_dirty(filepage);
1367                        swap_free(swap);
1368                } else {
1369                        shmem_swp_unmap(entry);
1370                        spin_unlock(&info->lock);
1371                        if (error == -ENOMEM) {
1372                                /*
1373                                 * reclaim from proper memory cgroup and
1374                                 * call memcg's OOM if needed.
1375                                 */
1376                                error = mem_cgroup_shmem_charge_fallback(
1377                                                                swappage,
1378                                                                current->mm,
1379                                                                gfp);
1380                                if (error) {
1381                                        unlock_page(swappage);
1382                                        page_cache_release(swappage);
1383                                        goto failed;
1384                                }
1385                        }
1386                        unlock_page(swappage);
1387                        page_cache_release(swappage);
1388                        goto repeat;
1389                }
1390        } else if (sgp == SGP_READ && !filepage) {
1391                shmem_swp_unmap(entry);
1392                filepage = find_get_page(mapping, idx);
1393                if (filepage &&
1394                    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1395                        spin_unlock(&info->lock);
1396                        wait_on_page_locked(filepage);
1397                        page_cache_release(filepage);
1398                        filepage = NULL;
1399                        goto repeat;
1400                }
1401                spin_unlock(&info->lock);
1402        } else {
1403                shmem_swp_unmap(entry);
1404                sbinfo = SHMEM_SB(inode->i_sb);
1405                if (sbinfo->max_blocks) {
1406                        if (percpu_counter_compare(&sbinfo->used_blocks,
1407                                                sbinfo->max_blocks) >= 0 ||
1408                            shmem_acct_block(info->flags))
1409                                goto nospace;
1410                        percpu_counter_inc(&sbinfo->used_blocks);
1411                        spin_lock(&inode->i_lock);
1412                        inode->i_blocks += BLOCKS_PER_PAGE;
1413                        spin_unlock(&inode->i_lock);
1414                } else if (shmem_acct_block(info->flags))
1415                        goto nospace;
1416
1417                if (!filepage) {
1418                        int ret;
1419
1420                        if (!prealloc_page) {
1421                                spin_unlock(&info->lock);
1422                                filepage = shmem_alloc_page(gfp, info, idx);
1423                                if (!filepage) {
1424                                        shmem_unacct_blocks(info->flags, 1);
1425                                        shmem_free_blocks(inode, 1);
1426                                        error = -ENOMEM;
1427                                        goto failed;
1428                                }
1429                                SetPageSwapBacked(filepage);
1430
1431                                /*
1432                                 * Precharge page while we can wait, compensate
1433                                 * after
1434                                 */
1435                                error = mem_cgroup_cache_charge(filepage,
1436                                        current->mm, GFP_KERNEL);
1437                                if (error) {
1438                                        page_cache_release(filepage);
1439                                        shmem_unacct_blocks(info->flags, 1);
1440                                        shmem_free_blocks(inode, 1);
1441                                        filepage = NULL;
1442                                        goto failed;
1443                                }
1444
1445                                spin_lock(&info->lock);
1446                        } else {
1447                                filepage = prealloc_page;
1448                                prealloc_page = NULL;
1449                                SetPageSwapBacked(filepage);
1450                        }
1451
1452                        entry = shmem_swp_alloc(info, idx, sgp);
1453                        if (IS_ERR(entry))
1454                                error = PTR_ERR(entry);
1455                        else {
1456                                swap = *entry;
1457                                shmem_swp_unmap(entry);
1458                        }
1459                        ret = error || swap.val;
1460                        if (ret)
1461                                mem_cgroup_uncharge_cache_page(filepage);
1462                        else
1463                                ret = add_to_page_cache_lru(filepage, mapping,
1464                                                idx, GFP_NOWAIT);
1465                        /*
1466                         * At add_to_page_cache_lru() failure, uncharge will
1467                         * be done automatically.
1468                         */
1469                        if (ret) {
1470                                spin_unlock(&info->lock);
1471                                page_cache_release(filepage);
1472                                shmem_unacct_blocks(info->flags, 1);
1473                                shmem_free_blocks(inode, 1);
1474                                filepage = NULL;
1475                                if (error)
1476                                        goto failed;
1477                                goto repeat;
1478                        }
1479                        info->flags |= SHMEM_PAGEIN;
1480                }
1481
1482                info->alloced++;
1483                spin_unlock(&info->lock);
1484                clear_highpage(filepage);
1485                flush_dcache_page(filepage);
1486                SetPageUptodate(filepage);
1487                if (sgp == SGP_DIRTY)
1488                        set_page_dirty(filepage);
1489        }
1490done:
1491        *pagep = filepage;
1492        error = 0;
1493        goto out;
1494
1495nospace:
1496        /*
1497         * Perhaps the page was brought in from swap between find_lock_page
1498         * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1499         * but must also avoid reporting a spurious ENOSPC while working on a
1500         * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1501         * is already in page cache, which prevents this race from occurring.)
1502         */
1503        if (!filepage) {
1504                struct page *page = find_get_page(mapping, idx);
1505                if (page) {
1506                        spin_unlock(&info->lock);
1507                        page_cache_release(page);
1508                        goto repeat;
1509                }
1510        }
1511        spin_unlock(&info->lock);
1512        error = -ENOSPC;
1513failed:
1514        if (*pagep != filepage) {
1515                unlock_page(filepage);
1516                page_cache_release(filepage);
1517        }
1518out:
1519        if (prealloc_page) {
1520                mem_cgroup_uncharge_cache_page(prealloc_page);
1521                page_cache_release(prealloc_page);
1522        }
1523        return error;
1524}
1525
1526static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1527{
1528        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1529        int error;
1530        int ret;
1531
1532        if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1533                return VM_FAULT_SIGBUS;
1534
1535        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1536        if (error)
1537                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1538
1539        return ret | VM_FAULT_LOCKED;
1540}
1541
1542#ifdef CONFIG_NUMA
1543static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1544{
1545        struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1546        return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1547}
1548
1549static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1550                                          unsigned long addr)
1551{
1552        struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1553        unsigned long idx;
1554
1555        idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1556        return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1557}
1558#endif
1559
1560int shmem_lock(struct file *file, int lock, struct user_struct *user)
1561{
1562        struct inode *inode = file->f_path.dentry->d_inode;
1563        struct shmem_inode_info *info = SHMEM_I(inode);
1564        int retval = -ENOMEM;
1565
1566        spin_lock(&info->lock);
1567        if (lock && !(info->flags & VM_LOCKED)) {
1568                if (!user_shm_lock(inode->i_size, user))
1569                        goto out_nomem;
1570                info->flags |= VM_LOCKED;
1571                mapping_set_unevictable(file->f_mapping);
1572        }
1573        if (!lock && (info->flags & VM_LOCKED) && user) {
1574                user_shm_unlock(inode->i_size, user);
1575                info->flags &= ~VM_LOCKED;
1576                mapping_clear_unevictable(file->f_mapping);
1577                scan_mapping_unevictable_pages(file->f_mapping);
1578        }
1579        retval = 0;
1580
1581out_nomem:
1582        spin_unlock(&info->lock);
1583        return retval;
1584}
1585
1586static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1587{
1588        file_accessed(file);
1589        vma->vm_ops = &shmem_vm_ops;
1590        vma->vm_flags |= VM_CAN_NONLINEAR;
1591        return 0;
1592}
1593
1594static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1595                                     int mode, dev_t dev, unsigned long flags)
1596{
1597        struct inode *inode;
1598        struct shmem_inode_info *info;
1599        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1600
1601        if (shmem_reserve_inode(sb))
1602                return NULL;
1603
1604        inode = new_inode(sb);
1605        if (inode) {
1606                inode->i_ino = get_next_ino();
1607                inode_init_owner(inode, dir, mode);
1608                inode->i_blocks = 0;
1609                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1610                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1611                inode->i_generation = get_seconds();
1612                info = SHMEM_I(inode);
1613                memset(info, 0, (char *)inode - (char *)info);
1614                spin_lock_init(&info->lock);
1615                info->flags = flags & VM_NORESERVE;
1616                INIT_LIST_HEAD(&info->swaplist);
1617                cache_no_acl(inode);
1618
1619                switch (mode & S_IFMT) {
1620                default:
1621                        inode->i_op = &shmem_special_inode_operations;
1622                        init_special_inode(inode, mode, dev);
1623                        break;
1624                case S_IFREG:
1625                        inode->i_mapping->a_ops = &shmem_aops;
1626                        inode->i_op = &shmem_inode_operations;
1627                        inode->i_fop = &shmem_file_operations;
1628                        mpol_shared_policy_init(&info->policy,
1629                                                 shmem_get_sbmpol(sbinfo));
1630                        break;
1631                case S_IFDIR:
1632                        inc_nlink(inode);
1633                        /* Some things misbehave if size == 0 on a directory */
1634                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1635                        inode->i_op = &shmem_dir_inode_operations;
1636                        inode->i_fop = &simple_dir_operations;
1637                        break;
1638                case S_IFLNK:
1639                        /*
1640                         * Must not load anything in the rbtree,
1641                         * mpol_free_shared_policy will not be called.
1642                         */
1643                        mpol_shared_policy_init(&info->policy, NULL);
1644                        break;
1645                }
1646        } else
1647                shmem_free_inode(sb);
1648        return inode;
1649}
1650
1651#ifdef CONFIG_TMPFS
1652static const struct inode_operations shmem_symlink_inode_operations;
1653static const struct inode_operations shmem_symlink_inline_operations;
1654
1655/*
1656 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1657 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1658 * below the loop driver, in the generic fashion that many filesystems support.
1659 */
1660static int shmem_readpage(struct file *file, struct page *page)
1661{
1662        struct inode *inode = page->mapping->host;
1663        int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1664        unlock_page(page);
1665        return error;
1666}
1667
1668static int
1669shmem_write_begin(struct file *file, struct address_space *mapping,
1670                        loff_t pos, unsigned len, unsigned flags,
1671                        struct page **pagep, void **fsdata)
1672{
1673        struct inode *inode = mapping->host;
1674        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1675        *pagep = NULL;
1676        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1677}
1678
1679static int
1680shmem_write_end(struct file *file, struct address_space *mapping,
1681                        loff_t pos, unsigned len, unsigned copied,
1682                        struct page *page, void *fsdata)
1683{
1684        struct inode *inode = mapping->host;
1685
1686        if (pos + copied > inode->i_size)
1687                i_size_write(inode, pos + copied);
1688
1689        set_page_dirty(page);
1690        unlock_page(page);
1691        page_cache_release(page);
1692
1693        return copied;
1694}
1695
1696static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1697{
1698        struct inode *inode = filp->f_path.dentry->d_inode;
1699        struct address_space *mapping = inode->i_mapping;
1700        unsigned long index, offset;
1701        enum sgp_type sgp = SGP_READ;
1702
1703        /*
1704         * Might this read be for a stacking filesystem?  Then when reading
1705         * holes of a sparse file, we actually need to allocate those pages,
1706         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1707         */
1708        if (segment_eq(get_fs(), KERNEL_DS))
1709                sgp = SGP_DIRTY;
1710
1711        index = *ppos >> PAGE_CACHE_SHIFT;
1712        offset = *ppos & ~PAGE_CACHE_MASK;
1713
1714        for (;;) {
1715                struct page *page = NULL;
1716                unsigned long end_index, nr, ret;
1717                loff_t i_size = i_size_read(inode);
1718
1719                end_index = i_size >> PAGE_CACHE_SHIFT;
1720                if (index > end_index)
1721                        break;
1722                if (index == end_index) {
1723                        nr = i_size & ~PAGE_CACHE_MASK;
1724                        if (nr <= offset)
1725                                break;
1726                }
1727
1728                desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1729                if (desc->error) {
1730                        if (desc->error == -EINVAL)
1731                                desc->error = 0;
1732                        break;
1733                }
1734                if (page)
1735                        unlock_page(page);
1736
1737                /*
1738                 * We must evaluate after, since reads (unlike writes)
1739                 * are called without i_mutex protection against truncate
1740                 */
1741                nr = PAGE_CACHE_SIZE;
1742                i_size = i_size_read(inode);
1743                end_index = i_size >> PAGE_CACHE_SHIFT;
1744                if (index == end_index) {
1745                        nr = i_size & ~PAGE_CACHE_MASK;
1746                        if (nr <= offset) {
1747                                if (page)
1748                                        page_cache_release(page);
1749                                break;
1750                        }
1751                }
1752                nr -= offset;
1753
1754                if (page) {
1755                        /*
1756                         * If users can be writing to this page using arbitrary
1757                         * virtual addresses, take care about potential aliasing
1758                         * before reading the page on the kernel side.
1759                         */
1760                        if (mapping_writably_mapped(mapping))
1761                                flush_dcache_page(page);
1762                        /*
1763                         * Mark the page accessed if we read the beginning.
1764                         */
1765                        if (!offset)
1766                                mark_page_accessed(page);
1767                } else {
1768                        page = ZERO_PAGE(0);
1769                        page_cache_get(page);
1770                }
1771
1772                /*
1773                 * Ok, we have the page, and it's up-to-date, so
1774                 * now we can copy it to user space...
1775                 *
1776                 * The actor routine returns how many bytes were actually used..
1777                 * NOTE! This may not be the same as how much of a user buffer
1778                 * we filled up (we may be padding etc), so we can only update
1779                 * "pos" here (the actor routine has to update the user buffer
1780                 * pointers and the remaining count).
1781                 */
1782                ret = actor(desc, page, offset, nr);
1783                offset += ret;
1784                index += offset >> PAGE_CACHE_SHIFT;
1785                offset &= ~PAGE_CACHE_MASK;
1786
1787                page_cache_release(page);
1788                if (ret != nr || !desc->count)
1789                        break;
1790
1791                cond_resched();
1792        }
1793
1794        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1795        file_accessed(filp);
1796}
1797
1798static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1799                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1800{
1801        struct file *filp = iocb->ki_filp;
1802        ssize_t retval;
1803        unsigned long seg;
1804        size_t count;
1805        loff_t *ppos = &iocb->ki_pos;
1806
1807        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1808        if (retval)
1809                return retval;
1810
1811        for (seg = 0; seg < nr_segs; seg++) {
1812                read_descriptor_t desc;
1813
1814                desc.written = 0;
1815                desc.arg.buf = iov[seg].iov_base;
1816                desc.count = iov[seg].iov_len;
1817                if (desc.count == 0)
1818                        continue;
1819                desc.error = 0;
1820                do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1821                retval += desc.written;
1822                if (desc.error) {
1823                        retval = retval ?: desc.error;
1824                        break;
1825                }
1826                if (desc.count > 0)
1827                        break;
1828        }
1829        return retval;
1830}
1831
1832static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1833{
1834        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1835
1836        buf->f_type = TMPFS_MAGIC;
1837        buf->f_bsize = PAGE_CACHE_SIZE;
1838        buf->f_namelen = NAME_MAX;
1839        if (sbinfo->max_blocks) {
1840                buf->f_blocks = sbinfo->max_blocks;
1841                buf->f_bavail = buf->f_bfree =
1842                                sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1843        }
1844        if (sbinfo->max_inodes) {
1845                buf->f_files = sbinfo->max_inodes;
1846                buf->f_ffree = sbinfo->free_inodes;
1847        }
1848        /* else leave those fields 0 like simple_statfs */
1849        return 0;
1850}
1851
1852/*
1853 * File creation. Allocate an inode, and we're done..
1854 */
1855static int
1856shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1857{
1858        struct inode *inode;
1859        int error = -ENOSPC;
1860
1861        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1862        if (inode) {
1863                error = security_inode_init_security(inode, dir,
1864                                                     &dentry->d_name, NULL,
1865                                                     NULL, NULL);
1866                if (error) {
1867                        if (error != -EOPNOTSUPP) {
1868                                iput(inode);
1869                                return error;
1870                        }
1871                }
1872#ifdef CONFIG_TMPFS_POSIX_ACL
1873                error = generic_acl_init(inode, dir);
1874                if (error) {
1875                        iput(inode);
1876                        return error;
1877                }
1878#else
1879                error = 0;
1880#endif
1881                dir->i_size += BOGO_DIRENT_SIZE;
1882                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1883                d_instantiate(dentry, inode);
1884                dget(dentry); /* Extra count - pin the dentry in core */
1885        }
1886        return error;
1887}
1888
1889static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1890{
1891        int error;
1892
1893        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1894                return error;
1895        inc_nlink(dir);
1896        return 0;
1897}
1898
1899static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1900                struct nameidata *nd)
1901{
1902        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1903}
1904
1905/*
1906 * Link a file..
1907 */
1908static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1909{
1910        struct inode *inode = old_dentry->d_inode;
1911        int ret;
1912
1913        /*
1914         * No ordinary (disk based) filesystem counts links as inodes;
1915         * but each new link needs a new dentry, pinning lowmem, and
1916         * tmpfs dentries cannot be pruned until they are unlinked.
1917         */
1918        ret = shmem_reserve_inode(inode->i_sb);
1919        if (ret)
1920                goto out;
1921
1922        dir->i_size += BOGO_DIRENT_SIZE;
1923        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1924        inc_nlink(inode);
1925        ihold(inode);   /* New dentry reference */
1926        dget(dentry);           /* Extra pinning count for the created dentry */
1927        d_instantiate(dentry, inode);
1928out:
1929        return ret;
1930}
1931
1932static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1933{
1934        struct inode *inode = dentry->d_inode;
1935
1936        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1937                shmem_free_inode(inode->i_sb);
1938
1939        dir->i_size -= BOGO_DIRENT_SIZE;
1940        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1941        drop_nlink(inode);
1942        dput(dentry);   /* Undo the count from "create" - this does all the work */
1943        return 0;
1944}
1945
1946static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1947{
1948        if (!simple_empty(dentry))
1949                return -ENOTEMPTY;
1950
1951        drop_nlink(dentry->d_inode);
1952        drop_nlink(dir);
1953        return shmem_unlink(dir, dentry);
1954}
1955
1956/*
1957 * The VFS layer already does all the dentry stuff for rename,
1958 * we just have to decrement the usage count for the target if
1959 * it exists so that the VFS layer correctly free's it when it
1960 * gets overwritten.
1961 */
1962static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1963{
1964        struct inode *inode = old_dentry->d_inode;
1965        int they_are_dirs = S_ISDIR(inode->i_mode);
1966
1967        if (!simple_empty(new_dentry))
1968                return -ENOTEMPTY;
1969
1970        if (new_dentry->d_inode) {
1971                (void) shmem_unlink(new_dir, new_dentry);
1972                if (they_are_dirs)
1973                        drop_nlink(old_dir);
1974        } else if (they_are_dirs) {
1975                drop_nlink(old_dir);
1976                inc_nlink(new_dir);
1977        }
1978
1979        old_dir->i_size -= BOGO_DIRENT_SIZE;
1980        new_dir->i_size += BOGO_DIRENT_SIZE;
1981        old_dir->i_ctime = old_dir->i_mtime =
1982        new_dir->i_ctime = new_dir->i_mtime =
1983        inode->i_ctime = CURRENT_TIME;
1984        return 0;
1985}
1986
1987static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1988{
1989        int error;
1990        int len;
1991        struct inode *inode;
1992        struct page *page = NULL;
1993        char *kaddr;
1994        struct shmem_inode_info *info;
1995
1996        len = strlen(symname) + 1;
1997        if (len > PAGE_CACHE_SIZE)
1998                return -ENAMETOOLONG;
1999
2000        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2001        if (!inode)
2002                return -ENOSPC;
2003
2004        error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2005                                             NULL, NULL);
2006        if (error) {
2007                if (error != -EOPNOTSUPP) {
2008                        iput(inode);
2009                        return error;
2010                }
2011                error = 0;
2012        }
2013
2014        info = SHMEM_I(inode);
2015        inode->i_size = len-1;
2016        if (len <= (char *)inode - (char *)info) {
2017                /* do it inline */
2018                memcpy(info, symname, len);
2019                inode->i_op = &shmem_symlink_inline_operations;
2020        } else {
2021                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2022                if (error) {
2023                        iput(inode);
2024                        return error;
2025                }
2026                inode->i_mapping->a_ops = &shmem_aops;
2027                inode->i_op = &shmem_symlink_inode_operations;
2028                kaddr = kmap_atomic(page, KM_USER0);
2029                memcpy(kaddr, symname, len);
2030                kunmap_atomic(kaddr, KM_USER0);
2031                set_page_dirty(page);
2032                unlock_page(page);
2033                page_cache_release(page);
2034        }
2035        dir->i_size += BOGO_DIRENT_SIZE;
2036        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2037        d_instantiate(dentry, inode);
2038        dget(dentry);
2039        return 0;
2040}
2041
2042static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2043{
2044        nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2045        return NULL;
2046}
2047
2048static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2049{
2050        struct page *page = NULL;
2051        int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2052        nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2053        if (page)
2054                unlock_page(page);
2055        return page;
2056}
2057
2058static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2059{
2060        if (!IS_ERR(nd_get_link(nd))) {
2061                struct page *page = cookie;
2062                kunmap(page);
2063                mark_page_accessed(page);
2064                page_cache_release(page);
2065        }
2066}
2067
2068static const struct inode_operations shmem_symlink_inline_operations = {
2069        .readlink       = generic_readlink,
2070        .follow_link    = shmem_follow_link_inline,
2071};
2072
2073static const struct inode_operations shmem_symlink_inode_operations = {
2074        .readlink       = generic_readlink,
2075        .follow_link    = shmem_follow_link,
2076        .put_link       = shmem_put_link,
2077};
2078
2079#ifdef CONFIG_TMPFS_POSIX_ACL
2080/*
2081 * Superblocks without xattr inode operations will get security.* xattr
2082 * support from the VFS "for free". As soon as we have any other xattrs
2083 * like ACLs, we also need to implement the security.* handlers at
2084 * filesystem level, though.
2085 */
2086
2087static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2088                                        size_t list_len, const char *name,
2089                                        size_t name_len, int handler_flags)
2090{
2091        return security_inode_listsecurity(dentry->d_inode, list, list_len);
2092}
2093
2094static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2095                void *buffer, size_t size, int handler_flags)
2096{
2097        if (strcmp(name, "") == 0)
2098                return -EINVAL;
2099        return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2100}
2101
2102static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2103                const void *value, size_t size, int flags, int handler_flags)
2104{
2105        if (strcmp(name, "") == 0)
2106                return -EINVAL;
2107        return security_inode_setsecurity(dentry->d_inode, name, value,
2108                                          size, flags);
2109}
2110
2111static const struct xattr_handler shmem_xattr_security_handler = {
2112        .prefix = XATTR_SECURITY_PREFIX,
2113        .list   = shmem_xattr_security_list,
2114        .get    = shmem_xattr_security_get,
2115        .set    = shmem_xattr_security_set,
2116};
2117
2118static const struct xattr_handler *shmem_xattr_handlers[] = {
2119        &generic_acl_access_handler,
2120        &generic_acl_default_handler,
2121        &shmem_xattr_security_handler,
2122        NULL
2123};
2124#endif
2125
2126static struct dentry *shmem_get_parent(struct dentry *child)
2127{
2128        return ERR_PTR(-ESTALE);
2129}
2130
2131static int shmem_match(struct inode *ino, void *vfh)
2132{
2133        __u32 *fh = vfh;
2134        __u64 inum = fh[2];
2135        inum = (inum << 32) | fh[1];
2136        return ino->i_ino == inum && fh[0] == ino->i_generation;
2137}
2138
2139static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2140                struct fid *fid, int fh_len, int fh_type)
2141{
2142        struct inode *inode;
2143        struct dentry *dentry = NULL;
2144        u64 inum = fid->raw[2];
2145        inum = (inum << 32) | fid->raw[1];
2146
2147        if (fh_len < 3)
2148                return NULL;
2149
2150        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2151                        shmem_match, fid->raw);
2152        if (inode) {
2153                dentry = d_find_alias(inode);
2154                iput(inode);
2155        }
2156
2157        return dentry;
2158}
2159
2160static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2161                                int connectable)
2162{
2163        struct inode *inode = dentry->d_inode;
2164
2165        if (*len < 3) {
2166                *len = 3;
2167                return 255;
2168        }
2169
2170        if (inode_unhashed(inode)) {
2171                /* Unfortunately insert_inode_hash is not idempotent,
2172                 * so as we hash inodes here rather than at creation
2173                 * time, we need a lock to ensure we only try
2174                 * to do it once
2175                 */
2176                static DEFINE_SPINLOCK(lock);
2177                spin_lock(&lock);
2178                if (inode_unhashed(inode))
2179                        __insert_inode_hash(inode,
2180                                            inode->i_ino + inode->i_generation);
2181                spin_unlock(&lock);
2182        }
2183
2184        fh[0] = inode->i_generation;
2185        fh[1] = inode->i_ino;
2186        fh[2] = ((__u64)inode->i_ino) >> 32;
2187
2188        *len = 3;
2189        return 1;
2190}
2191
2192static const struct export_operations shmem_export_ops = {
2193        .get_parent     = shmem_get_parent,
2194        .encode_fh      = shmem_encode_fh,
2195        .fh_to_dentry   = shmem_fh_to_dentry,
2196};
2197
2198static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2199                               bool remount)
2200{
2201        char *this_char, *value, *rest;
2202
2203        while (options != NULL) {
2204                this_char = options;
2205                for (;;) {
2206                        /*
2207                         * NUL-terminate this option: unfortunately,
2208                         * mount options form a comma-separated list,
2209                         * but mpol's nodelist may also contain commas.
2210                         */
2211                        options = strchr(options, ',');
2212                        if (options == NULL)
2213                                break;
2214                        options++;
2215                        if (!isdigit(*options)) {
2216                                options[-1] = '\0';
2217                                break;
2218                        }
2219                }
2220                if (!*this_char)
2221                        continue;
2222                if ((value = strchr(this_char,'=')) != NULL) {
2223                        *value++ = 0;
2224                } else {
2225                        printk(KERN_ERR
2226                            "tmpfs: No value for mount option '%s'\n",
2227                            this_char);
2228                        return 1;
2229                }
2230
2231                if (!strcmp(this_char,"size")) {
2232                        unsigned long long size;
2233                        size = memparse(value,&rest);
2234                        if (*rest == '%') {
2235                                size <<= PAGE_SHIFT;
2236                                size *= totalram_pages;
2237                                do_div(size, 100);
2238                                rest++;
2239                        }
2240                        if (*rest)
2241                                goto bad_val;
2242                        sbinfo->max_blocks =
2243                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2244                } else if (!strcmp(this_char,"nr_blocks")) {
2245                        sbinfo->max_blocks = memparse(value, &rest);
2246                        if (*rest)
2247                                goto bad_val;
2248                } else if (!strcmp(this_char,"nr_inodes")) {
2249                        sbinfo->max_inodes = memparse(value, &rest);
2250                        if (*rest)
2251                                goto bad_val;
2252                } else if (!strcmp(this_char,"mode")) {
2253                        if (remount)
2254                                continue;
2255                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2256                        if (*rest)
2257                                goto bad_val;
2258                } else if (!strcmp(this_char,"uid")) {
2259                        if (remount)
2260                                continue;
2261                        sbinfo->uid = simple_strtoul(value, &rest, 0);
2262                        if (*rest)
2263                                goto bad_val;
2264                } else if (!strcmp(this_char,"gid")) {
2265                        if (remount)
2266                                continue;
2267                        sbinfo->gid = simple_strtoul(value, &rest, 0);
2268                        if (*rest)
2269                                goto bad_val;
2270                } else if (!strcmp(this_char,"mpol")) {
2271                        if (mpol_parse_str(value, &sbinfo->mpol, 1))
2272                                goto bad_val;
2273                } else {
2274                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2275                               this_char);
2276                        return 1;
2277                }
2278        }
2279        return 0;
2280
2281bad_val:
2282        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2283               value, this_char);
2284        return 1;
2285
2286}
2287
2288static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2289{
2290        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2291        struct shmem_sb_info config = *sbinfo;
2292        unsigned long inodes;
2293        int error = -EINVAL;
2294
2295        if (shmem_parse_options(data, &config, true))
2296                return error;
2297
2298        spin_lock(&sbinfo->stat_lock);
2299        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2300        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2301                goto out;
2302        if (config.max_inodes < inodes)
2303                goto out;
2304        /*
2305         * Those tests also disallow limited->unlimited while any are in
2306         * use, so i_blocks will always be zero when max_blocks is zero;
2307         * but we must separately disallow unlimited->limited, because
2308         * in that case we have no record of how much is already in use.
2309         */
2310        if (config.max_blocks && !sbinfo->max_blocks)
2311                goto out;
2312        if (config.max_inodes && !sbinfo->max_inodes)
2313                goto out;
2314
2315        error = 0;
2316        sbinfo->max_blocks  = config.max_blocks;
2317        sbinfo->max_inodes  = config.max_inodes;
2318        sbinfo->free_inodes = config.max_inodes - inodes;
2319
2320        mpol_put(sbinfo->mpol);
2321        sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2322out:
2323        spin_unlock(&sbinfo->stat_lock);
2324        return error;
2325}
2326
2327static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2328{
2329        struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2330
2331        if (sbinfo->max_blocks != shmem_default_max_blocks())
2332                seq_printf(seq, ",size=%luk",
2333                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2334        if (sbinfo->max_inodes != shmem_default_max_inodes())
2335                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2336        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2337                seq_printf(seq, ",mode=%03o", sbinfo->mode);
2338        if (sbinfo->uid != 0)
2339                seq_printf(seq, ",uid=%u", sbinfo->uid);
2340        if (sbinfo->gid != 0)
2341                seq_printf(seq, ",gid=%u", sbinfo->gid);
2342        shmem_show_mpol(seq, sbinfo->mpol);
2343        return 0;
2344}
2345#endif /* CONFIG_TMPFS */
2346
2347static void shmem_put_super(struct super_block *sb)
2348{
2349        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2350
2351        percpu_counter_destroy(&sbinfo->used_blocks);
2352        kfree(sbinfo);
2353        sb->s_fs_info = NULL;
2354}
2355
2356int shmem_fill_super(struct super_block *sb, void *data, int silent)
2357{
2358        struct inode *inode;
2359        struct dentry *root;
2360        struct shmem_sb_info *sbinfo;
2361        int err = -ENOMEM;
2362
2363        /* Round up to L1_CACHE_BYTES to resist false sharing */
2364        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2365                                L1_CACHE_BYTES), GFP_KERNEL);
2366        if (!sbinfo)
2367                return -ENOMEM;
2368
2369        sbinfo->mode = S_IRWXUGO | S_ISVTX;
2370        sbinfo->uid = current_fsuid();
2371        sbinfo->gid = current_fsgid();
2372        sb->s_fs_info = sbinfo;
2373
2374#ifdef CONFIG_TMPFS
2375        /*
2376         * Per default we only allow half of the physical ram per
2377         * tmpfs instance, limiting inodes to one per page of lowmem;
2378         * but the internal instance is left unlimited.
2379         */
2380        if (!(sb->s_flags & MS_NOUSER)) {
2381                sbinfo->max_blocks = shmem_default_max_blocks();
2382                sbinfo->max_inodes = shmem_default_max_inodes();
2383                if (shmem_parse_options(data, sbinfo, false)) {
2384                        err = -EINVAL;
2385                        goto failed;
2386                }
2387        }
2388        sb->s_export_op = &shmem_export_ops;
2389#else
2390        sb->s_flags |= MS_NOUSER;
2391#endif
2392
2393        spin_lock_init(&sbinfo->stat_lock);
2394        if (percpu_counter_init(&sbinfo->used_blocks, 0))
2395                goto failed;
2396        sbinfo->free_inodes = sbinfo->max_inodes;
2397
2398        sb->s_maxbytes = SHMEM_MAX_BYTES;
2399        sb->s_blocksize = PAGE_CACHE_SIZE;
2400        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2401        sb->s_magic = TMPFS_MAGIC;
2402        sb->s_op = &shmem_ops;
2403        sb->s_time_gran = 1;
2404#ifdef CONFIG_TMPFS_POSIX_ACL
2405        sb->s_xattr = shmem_xattr_handlers;
2406        sb->s_flags |= MS_POSIXACL;
2407#endif
2408
2409        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2410        if (!inode)
2411                goto failed;
2412        inode->i_uid = sbinfo->uid;
2413        inode->i_gid = sbinfo->gid;
2414        root = d_alloc_root(inode);
2415        if (!root)
2416                goto failed_iput;
2417        sb->s_root = root;
2418        return 0;
2419
2420failed_iput:
2421        iput(inode);
2422failed:
2423        shmem_put_super(sb);
2424        return err;
2425}
2426
2427static struct kmem_cache *shmem_inode_cachep;
2428
2429static struct inode *shmem_alloc_inode(struct super_block *sb)
2430{
2431        struct shmem_inode_info *p;
2432        p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2433        if (!p)
2434                return NULL;
2435        return &p->vfs_inode;
2436}
2437
2438static void shmem_i_callback(struct rcu_head *head)
2439{
2440        struct inode *inode = container_of(head, struct inode, i_rcu);
2441        INIT_LIST_HEAD(&inode->i_dentry);
2442        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2443}
2444
2445static void shmem_destroy_inode(struct inode *inode)
2446{
2447        if ((inode->i_mode & S_IFMT) == S_IFREG) {
2448                /* only struct inode is valid if it's an inline symlink */
2449                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2450        }
2451        call_rcu(&inode->i_rcu, shmem_i_callback);
2452}
2453
2454static void init_once(void *foo)
2455{
2456        struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2457
2458        inode_init_once(&p->vfs_inode);
2459}
2460
2461static int init_inodecache(void)
2462{
2463        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2464                                sizeof(struct shmem_inode_info),
2465                                0, SLAB_PANIC, init_once);
2466        return 0;
2467}
2468
2469static void destroy_inodecache(void)
2470{
2471        kmem_cache_destroy(shmem_inode_cachep);
2472}
2473
2474static const struct address_space_operations shmem_aops = {
2475        .writepage      = shmem_writepage,
2476        .set_page_dirty = __set_page_dirty_no_writeback,
2477#ifdef CONFIG_TMPFS
2478        .readpage       = shmem_readpage,
2479        .write_begin    = shmem_write_begin,
2480        .write_end      = shmem_write_end,
2481#endif
2482        .migratepage    = migrate_page,
2483        .error_remove_page = generic_error_remove_page,
2484};
2485
2486static const struct file_operations shmem_file_operations = {
2487        .mmap           = shmem_mmap,
2488#ifdef CONFIG_TMPFS
2489        .llseek         = generic_file_llseek,
2490        .read           = do_sync_read,
2491        .write          = do_sync_write,
2492        .aio_read       = shmem_file_aio_read,
2493        .aio_write      = generic_file_aio_write,
2494        .fsync          = noop_fsync,
2495        .splice_read    = generic_file_splice_read,
2496        .splice_write   = generic_file_splice_write,
2497#endif
2498};
2499
2500static const struct inode_operations shmem_inode_operations = {
2501        .setattr        = shmem_notify_change,
2502        .truncate_range = shmem_truncate_range,
2503#ifdef CONFIG_TMPFS_POSIX_ACL
2504        .setxattr       = generic_setxattr,
2505        .getxattr       = generic_getxattr,
2506        .listxattr      = generic_listxattr,
2507        .removexattr    = generic_removexattr,
2508        .check_acl      = generic_check_acl,
2509#endif
2510
2511};
2512
2513static const struct inode_operations shmem_dir_inode_operations = {
2514#ifdef CONFIG_TMPFS
2515        .create         = shmem_create,
2516        .lookup         = simple_lookup,
2517        .link           = shmem_link,
2518        .unlink         = shmem_unlink,
2519        .symlink        = shmem_symlink,
2520        .mkdir          = shmem_mkdir,
2521        .rmdir          = shmem_rmdir,
2522        .mknod          = shmem_mknod,
2523        .rename         = shmem_rename,
2524#endif
2525#ifdef CONFIG_TMPFS_POSIX_ACL
2526        .setattr        = shmem_notify_change,
2527        .setxattr       = generic_setxattr,
2528        .getxattr       = generic_getxattr,
2529        .listxattr      = generic_listxattr,
2530        .removexattr    = generic_removexattr,
2531        .check_acl      = generic_check_acl,
2532#endif
2533};
2534
2535static const struct inode_operations shmem_special_inode_operations = {
2536#ifdef CONFIG_TMPFS_POSIX_ACL
2537        .setattr        = shmem_notify_change,
2538        .setxattr       = generic_setxattr,
2539        .getxattr       = generic_getxattr,
2540        .listxattr      = generic_listxattr,
2541        .removexattr    = generic_removexattr,
2542        .check_acl      = generic_check_acl,
2543#endif
2544};
2545
2546static const struct super_operations shmem_ops = {
2547        .alloc_inode    = shmem_alloc_inode,
2548        .destroy_inode  = shmem_destroy_inode,
2549#ifdef CONFIG_TMPFS
2550        .statfs         = shmem_statfs,
2551        .remount_fs     = shmem_remount_fs,
2552        .show_options   = shmem_show_options,
2553#endif
2554        .evict_inode    = shmem_evict_inode,
2555        .drop_inode     = generic_delete_inode,
2556        .put_super      = shmem_put_super,
2557};
2558
2559static const struct vm_operations_struct shmem_vm_ops = {
2560        .fault          = shmem_fault,
2561#ifdef CONFIG_NUMA
2562        .set_policy     = shmem_set_policy,
2563        .get_policy     = shmem_get_policy,
2564#endif
2565};
2566
2567
2568static struct dentry *shmem_mount(struct file_system_type *fs_type,
2569        int flags, const char *dev_name, void *data)
2570{
2571        return mount_nodev(fs_type, flags, data, shmem_fill_super);
2572}
2573
2574static struct file_system_type tmpfs_fs_type = {
2575        .owner          = THIS_MODULE,
2576        .name           = "tmpfs",
2577        .mount          = shmem_mount,
2578        .kill_sb        = kill_litter_super,
2579};
2580
2581int __init init_tmpfs(void)
2582{
2583        int error;
2584
2585        error = bdi_init(&shmem_backing_dev_info);
2586        if (error)
2587                goto out4;
2588
2589        error = init_inodecache();
2590        if (error)
2591                goto out3;
2592
2593        error = register_filesystem(&tmpfs_fs_type);
2594        if (error) {
2595                printk(KERN_ERR "Could not register tmpfs\n");
2596                goto out2;
2597        }
2598
2599        shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2600                                tmpfs_fs_type.name, NULL);
2601        if (IS_ERR(shm_mnt)) {
2602                error = PTR_ERR(shm_mnt);
2603                printk(KERN_ERR "Could not kern_mount tmpfs\n");
2604                goto out1;
2605        }
2606        return 0;
2607
2608out1:
2609        unregister_filesystem(&tmpfs_fs_type);
2610out2:
2611        destroy_inodecache();
2612out3:
2613        bdi_destroy(&shmem_backing_dev_info);
2614out4:
2615        shm_mnt = ERR_PTR(error);
2616        return error;
2617}
2618
2619#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2620/**
2621 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2622 * @inode: the inode to be searched
2623 * @pgoff: the offset to be searched
2624 * @pagep: the pointer for the found page to be stored
2625 * @ent: the pointer for the found swap entry to be stored
2626 *
2627 * If a page is found, refcount of it is incremented. Callers should handle
2628 * these refcount.
2629 */
2630void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2631                                        struct page **pagep, swp_entry_t *ent)
2632{
2633        swp_entry_t entry = { .val = 0 }, *ptr;
2634        struct page *page = NULL;
2635        struct shmem_inode_info *info = SHMEM_I(inode);
2636
2637        if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2638                goto out;
2639
2640        spin_lock(&info->lock);
2641        ptr = shmem_swp_entry(info, pgoff, NULL);
2642#ifdef CONFIG_SWAP
2643        if (ptr && ptr->val) {
2644                entry.val = ptr->val;
2645                page = find_get_page(&swapper_space, entry.val);
2646        } else
2647#endif
2648                page = find_get_page(inode->i_mapping, pgoff);
2649        if (ptr)
2650                shmem_swp_unmap(ptr);
2651        spin_unlock(&info->lock);
2652out:
2653        *pagep = page;
2654        *ent = entry;
2655}
2656#endif
2657
2658#else /* !CONFIG_SHMEM */
2659
2660/*
2661 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2662 *
2663 * This is intended for small system where the benefits of the full
2664 * shmem code (swap-backed and resource-limited) are outweighed by
2665 * their complexity. On systems without swap this code should be
2666 * effectively equivalent, but much lighter weight.
2667 */
2668
2669#include <linux/ramfs.h>
2670
2671static struct file_system_type tmpfs_fs_type = {
2672        .name           = "tmpfs",
2673        .mount          = ramfs_mount,
2674        .kill_sb        = kill_litter_super,
2675};
2676
2677int __init init_tmpfs(void)
2678{
2679        BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2680
2681        shm_mnt = kern_mount(&tmpfs_fs_type);
2682        BUG_ON(IS_ERR(shm_mnt));
2683
2684        return 0;
2685}
2686
2687int shmem_unuse(swp_entry_t entry, struct page *page)
2688{
2689        return 0;
2690}
2691
2692int shmem_lock(struct file *file, int lock, struct user_struct *user)
2693{
2694        return 0;
2695}
2696
2697#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2698/**
2699 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2700 * @inode: the inode to be searched
2701 * @pgoff: the offset to be searched
2702 * @pagep: the pointer for the found page to be stored
2703 * @ent: the pointer for the found swap entry to be stored
2704 *
2705 * If a page is found, refcount of it is incremented. Callers should handle
2706 * these refcount.
2707 */
2708void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2709                                        struct page **pagep, swp_entry_t *ent)
2710{
2711        struct page *page = NULL;
2712
2713        if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2714                goto out;
2715        page = find_get_page(inode->i_mapping, pgoff);
2716out:
2717        *pagep = page;
2718        *ent = (swp_entry_t){ .val = 0 };
2719}
2720#endif
2721
2722#define shmem_vm_ops                            generic_file_vm_ops
2723#define shmem_file_operations                   ramfs_file_operations
2724#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2725#define shmem_acct_size(flags, size)            0
2726#define shmem_unacct_size(flags, size)          do {} while (0)
2727#define SHMEM_MAX_BYTES                         MAX_LFS_FILESIZE
2728
2729#endif /* CONFIG_SHMEM */
2730
2731/* common code */
2732
2733/**
2734 * shmem_file_setup - get an unlinked file living in tmpfs
2735 * @name: name for dentry (to be seen in /proc/<pid>/maps
2736 * @size: size to be set for the file
2737 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2738 */
2739struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2740{
2741        int error;
2742        struct file *file;
2743        struct inode *inode;
2744        struct path path;
2745        struct dentry *root;
2746        struct qstr this;
2747
2748        if (IS_ERR(shm_mnt))
2749                return (void *)shm_mnt;
2750
2751        if (size < 0 || size > SHMEM_MAX_BYTES)
2752                return ERR_PTR(-EINVAL);
2753
2754        if (shmem_acct_size(flags, size))
2755                return ERR_PTR(-ENOMEM);
2756
2757        error = -ENOMEM;
2758        this.name = name;
2759        this.len = strlen(name);
2760        this.hash = 0; /* will go */
2761        root = shm_mnt->mnt_root;
2762        path.dentry = d_alloc(root, &this);
2763        if (!path.dentry)
2764                goto put_memory;
2765        path.mnt = mntget(shm_mnt);
2766
2767        error = -ENOSPC;
2768        inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2769        if (!inode)
2770                goto put_dentry;
2771
2772        d_instantiate(path.dentry, inode);
2773        inode->i_size = size;
2774        inode->i_nlink = 0;     /* It is unlinked */
2775#ifndef CONFIG_MMU
2776        error = ramfs_nommu_expand_for_mapping(inode, size);
2777        if (error)
2778                goto put_dentry;
2779#endif
2780
2781        error = -ENFILE;
2782        file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2783                  &shmem_file_operations);
2784        if (!file)
2785                goto put_dentry;
2786
2787        return file;
2788
2789put_dentry:
2790        path_put(&path);
2791put_memory:
2792        shmem_unacct_size(flags, size);
2793        return ERR_PTR(error);
2794}
2795EXPORT_SYMBOL_GPL(shmem_file_setup);
2796
2797/**
2798 * shmem_zero_setup - setup a shared anonymous mapping
2799 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2800 */
2801int shmem_zero_setup(struct vm_area_struct *vma)
2802{
2803        struct file *file;
2804        loff_t size = vma->vm_end - vma->vm_start;
2805
2806        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2807        if (IS_ERR(file))
2808                return PTR_ERR(file);
2809
2810        if (vma->vm_file)
2811                fput(vma->vm_file);
2812        vma->vm_file = file;
2813        vma->vm_ops = &shmem_vm_ops;
2814        vma->vm_flags |= VM_CAN_NONLINEAR;
2815        return 0;
2816}
2817