linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118
 119#include        <asm/cacheflush.h>
 120#include        <asm/tlbflush.h>
 121#include        <asm/page.h>
 122
 123/*
 124 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 125 *                0 for faster, smaller code (especially in the critical paths).
 126 *
 127 * STATS        - 1 to collect stats for /proc/slabinfo.
 128 *                0 for faster, smaller code (especially in the critical paths).
 129 *
 130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 131 */
 132
 133#ifdef CONFIG_DEBUG_SLAB
 134#define DEBUG           1
 135#define STATS           1
 136#define FORCED_DEBUG    1
 137#else
 138#define DEBUG           0
 139#define STATS           0
 140#define FORCED_DEBUG    0
 141#endif
 142
 143/* Shouldn't this be in a header file somewhere? */
 144#define BYTES_PER_WORD          sizeof(void *)
 145#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 146
 147#ifndef ARCH_KMALLOC_FLAGS
 148#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 149#endif
 150
 151/* Legal flag mask for kmem_cache_create(). */
 152#if DEBUG
 153# define CREATE_MASK    (SLAB_RED_ZONE | \
 154                         SLAB_POISON | SLAB_HWCACHE_ALIGN | \
 155                         SLAB_CACHE_DMA | \
 156                         SLAB_STORE_USER | \
 157                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 158                         SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 159                         SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 160#else
 161# define CREATE_MASK    (SLAB_HWCACHE_ALIGN | \
 162                         SLAB_CACHE_DMA | \
 163                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 164                         SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 165                         SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 166#endif
 167
 168/*
 169 * kmem_bufctl_t:
 170 *
 171 * Bufctl's are used for linking objs within a slab
 172 * linked offsets.
 173 *
 174 * This implementation relies on "struct page" for locating the cache &
 175 * slab an object belongs to.
 176 * This allows the bufctl structure to be small (one int), but limits
 177 * the number of objects a slab (not a cache) can contain when off-slab
 178 * bufctls are used. The limit is the size of the largest general cache
 179 * that does not use off-slab slabs.
 180 * For 32bit archs with 4 kB pages, is this 56.
 181 * This is not serious, as it is only for large objects, when it is unwise
 182 * to have too many per slab.
 183 * Note: This limit can be raised by introducing a general cache whose size
 184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 185 */
 186
 187typedef unsigned int kmem_bufctl_t;
 188#define BUFCTL_END      (((kmem_bufctl_t)(~0U))-0)
 189#define BUFCTL_FREE     (((kmem_bufctl_t)(~0U))-1)
 190#define BUFCTL_ACTIVE   (((kmem_bufctl_t)(~0U))-2)
 191#define SLAB_LIMIT      (((kmem_bufctl_t)(~0U))-3)
 192
 193/*
 194 * struct slab_rcu
 195 *
 196 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 197 * arrange for kmem_freepages to be called via RCU.  This is useful if
 198 * we need to approach a kernel structure obliquely, from its address
 199 * obtained without the usual locking.  We can lock the structure to
 200 * stabilize it and check it's still at the given address, only if we
 201 * can be sure that the memory has not been meanwhile reused for some
 202 * other kind of object (which our subsystem's lock might corrupt).
 203 *
 204 * rcu_read_lock before reading the address, then rcu_read_unlock after
 205 * taking the spinlock within the structure expected at that address.
 206 */
 207struct slab_rcu {
 208        struct rcu_head head;
 209        struct kmem_cache *cachep;
 210        void *addr;
 211};
 212
 213/*
 214 * struct slab
 215 *
 216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 217 * for a slab, or allocated from an general cache.
 218 * Slabs are chained into three list: fully used, partial, fully free slabs.
 219 */
 220struct slab {
 221        union {
 222                struct {
 223                        struct list_head list;
 224                        unsigned long colouroff;
 225                        void *s_mem;            /* including colour offset */
 226                        unsigned int inuse;     /* num of objs active in slab */
 227                        kmem_bufctl_t free;
 228                        unsigned short nodeid;
 229                };
 230                struct slab_rcu __slab_cover_slab_rcu;
 231        };
 232};
 233
 234/*
 235 * struct array_cache
 236 *
 237 * Purpose:
 238 * - LIFO ordering, to hand out cache-warm objects from _alloc
 239 * - reduce the number of linked list operations
 240 * - reduce spinlock operations
 241 *
 242 * The limit is stored in the per-cpu structure to reduce the data cache
 243 * footprint.
 244 *
 245 */
 246struct array_cache {
 247        unsigned int avail;
 248        unsigned int limit;
 249        unsigned int batchcount;
 250        unsigned int touched;
 251        spinlock_t lock;
 252        void *entry[];  /*
 253                         * Must have this definition in here for the proper
 254                         * alignment of array_cache. Also simplifies accessing
 255                         * the entries.
 256                         */
 257};
 258
 259/*
 260 * bootstrap: The caches do not work without cpuarrays anymore, but the
 261 * cpuarrays are allocated from the generic caches...
 262 */
 263#define BOOT_CPUCACHE_ENTRIES   1
 264struct arraycache_init {
 265        struct array_cache cache;
 266        void *entries[BOOT_CPUCACHE_ENTRIES];
 267};
 268
 269/*
 270 * The slab lists for all objects.
 271 */
 272struct kmem_list3 {
 273        struct list_head slabs_partial; /* partial list first, better asm code */
 274        struct list_head slabs_full;
 275        struct list_head slabs_free;
 276        unsigned long free_objects;
 277        unsigned int free_limit;
 278        unsigned int colour_next;       /* Per-node cache coloring */
 279        spinlock_t list_lock;
 280        struct array_cache *shared;     /* shared per node */
 281        struct array_cache **alien;     /* on other nodes */
 282        unsigned long next_reap;        /* updated without locking */
 283        int free_touched;               /* updated without locking */
 284};
 285
 286/*
 287 * Need this for bootstrapping a per node allocator.
 288 */
 289#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 290static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 291#define CACHE_CACHE 0
 292#define SIZE_AC MAX_NUMNODES
 293#define SIZE_L3 (2 * MAX_NUMNODES)
 294
 295static int drain_freelist(struct kmem_cache *cache,
 296                        struct kmem_list3 *l3, int tofree);
 297static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 298                        int node);
 299static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 300static void cache_reap(struct work_struct *unused);
 301
 302/*
 303 * This function must be completely optimized away if a constant is passed to
 304 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
 305 */
 306static __always_inline int index_of(const size_t size)
 307{
 308        extern void __bad_size(void);
 309
 310        if (__builtin_constant_p(size)) {
 311                int i = 0;
 312
 313#define CACHE(x) \
 314        if (size <=x) \
 315                return i; \
 316        else \
 317                i++;
 318#include <linux/kmalloc_sizes.h>
 319#undef CACHE
 320                __bad_size();
 321        } else
 322                __bad_size();
 323        return 0;
 324}
 325
 326static int slab_early_init = 1;
 327
 328#define INDEX_AC index_of(sizeof(struct arraycache_init))
 329#define INDEX_L3 index_of(sizeof(struct kmem_list3))
 330
 331static void kmem_list3_init(struct kmem_list3 *parent)
 332{
 333        INIT_LIST_HEAD(&parent->slabs_full);
 334        INIT_LIST_HEAD(&parent->slabs_partial);
 335        INIT_LIST_HEAD(&parent->slabs_free);
 336        parent->shared = NULL;
 337        parent->alien = NULL;
 338        parent->colour_next = 0;
 339        spin_lock_init(&parent->list_lock);
 340        parent->free_objects = 0;
 341        parent->free_touched = 0;
 342}
 343
 344#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 345        do {                                                            \
 346                INIT_LIST_HEAD(listp);                                  \
 347                list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
 348        } while (0)
 349
 350#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 351        do {                                                            \
 352        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 353        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 354        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 355        } while (0)
 356
 357#define CFLGS_OFF_SLAB          (0x80000000UL)
 358#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 359
 360#define BATCHREFILL_LIMIT       16
 361/*
 362 * Optimization question: fewer reaps means less probability for unnessary
 363 * cpucache drain/refill cycles.
 364 *
 365 * OTOH the cpuarrays can contain lots of objects,
 366 * which could lock up otherwise freeable slabs.
 367 */
 368#define REAPTIMEOUT_CPUC        (2*HZ)
 369#define REAPTIMEOUT_LIST3       (4*HZ)
 370
 371#if STATS
 372#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 373#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 374#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 375#define STATS_INC_GROWN(x)      ((x)->grown++)
 376#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 377#define STATS_SET_HIGH(x)                                               \
 378        do {                                                            \
 379                if ((x)->num_active > (x)->high_mark)                   \
 380                        (x)->high_mark = (x)->num_active;               \
 381        } while (0)
 382#define STATS_INC_ERR(x)        ((x)->errors++)
 383#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 384#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 385#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 386#define STATS_SET_FREEABLE(x, i)                                        \
 387        do {                                                            \
 388                if ((x)->max_freeable < i)                              \
 389                        (x)->max_freeable = i;                          \
 390        } while (0)
 391#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 392#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 393#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 394#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 395#else
 396#define STATS_INC_ACTIVE(x)     do { } while (0)
 397#define STATS_DEC_ACTIVE(x)     do { } while (0)
 398#define STATS_INC_ALLOCED(x)    do { } while (0)
 399#define STATS_INC_GROWN(x)      do { } while (0)
 400#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 401#define STATS_SET_HIGH(x)       do { } while (0)
 402#define STATS_INC_ERR(x)        do { } while (0)
 403#define STATS_INC_NODEALLOCS(x) do { } while (0)
 404#define STATS_INC_NODEFREES(x)  do { } while (0)
 405#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 406#define STATS_SET_FREEABLE(x, i) do { } while (0)
 407#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 408#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 409#define STATS_INC_FREEHIT(x)    do { } while (0)
 410#define STATS_INC_FREEMISS(x)   do { } while (0)
 411#endif
 412
 413#if DEBUG
 414
 415/*
 416 * memory layout of objects:
 417 * 0            : objp
 418 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 419 *              the end of an object is aligned with the end of the real
 420 *              allocation. Catches writes behind the end of the allocation.
 421 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 422 *              redzone word.
 423 * cachep->obj_offset: The real object.
 424 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 425 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 426 *                                      [BYTES_PER_WORD long]
 427 */
 428static int obj_offset(struct kmem_cache *cachep)
 429{
 430        return cachep->obj_offset;
 431}
 432
 433static int obj_size(struct kmem_cache *cachep)
 434{
 435        return cachep->obj_size;
 436}
 437
 438static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 439{
 440        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 441        return (unsigned long long*) (objp + obj_offset(cachep) -
 442                                      sizeof(unsigned long long));
 443}
 444
 445static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 446{
 447        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 448        if (cachep->flags & SLAB_STORE_USER)
 449                return (unsigned long long *)(objp + cachep->buffer_size -
 450                                              sizeof(unsigned long long) -
 451                                              REDZONE_ALIGN);
 452        return (unsigned long long *) (objp + cachep->buffer_size -
 453                                       sizeof(unsigned long long));
 454}
 455
 456static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 457{
 458        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 459        return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 460}
 461
 462#else
 463
 464#define obj_offset(x)                   0
 465#define obj_size(cachep)                (cachep->buffer_size)
 466#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 467#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 468#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 469
 470#endif
 471
 472#ifdef CONFIG_TRACING
 473size_t slab_buffer_size(struct kmem_cache *cachep)
 474{
 475        return cachep->buffer_size;
 476}
 477EXPORT_SYMBOL(slab_buffer_size);
 478#endif
 479
 480/*
 481 * Do not go above this order unless 0 objects fit into the slab.
 482 */
 483#define BREAK_GFP_ORDER_HI      1
 484#define BREAK_GFP_ORDER_LO      0
 485static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
 486
 487/*
 488 * Functions for storing/retrieving the cachep and or slab from the page
 489 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 490 * these are used to find the cache which an obj belongs to.
 491 */
 492static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 493{
 494        page->lru.next = (struct list_head *)cache;
 495}
 496
 497static inline struct kmem_cache *page_get_cache(struct page *page)
 498{
 499        page = compound_head(page);
 500        BUG_ON(!PageSlab(page));
 501        return (struct kmem_cache *)page->lru.next;
 502}
 503
 504static inline void page_set_slab(struct page *page, struct slab *slab)
 505{
 506        page->lru.prev = (struct list_head *)slab;
 507}
 508
 509static inline struct slab *page_get_slab(struct page *page)
 510{
 511        BUG_ON(!PageSlab(page));
 512        return (struct slab *)page->lru.prev;
 513}
 514
 515static inline struct kmem_cache *virt_to_cache(const void *obj)
 516{
 517        struct page *page = virt_to_head_page(obj);
 518        return page_get_cache(page);
 519}
 520
 521static inline struct slab *virt_to_slab(const void *obj)
 522{
 523        struct page *page = virt_to_head_page(obj);
 524        return page_get_slab(page);
 525}
 526
 527static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
 528                                 unsigned int idx)
 529{
 530        return slab->s_mem + cache->buffer_size * idx;
 531}
 532
 533/*
 534 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 535 *   Using the fact that buffer_size is a constant for a particular cache,
 536 *   we can replace (offset / cache->buffer_size) by
 537 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 538 */
 539static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 540                                        const struct slab *slab, void *obj)
 541{
 542        u32 offset = (obj - slab->s_mem);
 543        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 544}
 545
 546/*
 547 * These are the default caches for kmalloc. Custom caches can have other sizes.
 548 */
 549struct cache_sizes malloc_sizes[] = {
 550#define CACHE(x) { .cs_size = (x) },
 551#include <linux/kmalloc_sizes.h>
 552        CACHE(ULONG_MAX)
 553#undef CACHE
 554};
 555EXPORT_SYMBOL(malloc_sizes);
 556
 557/* Must match cache_sizes above. Out of line to keep cache footprint low. */
 558struct cache_names {
 559        char *name;
 560        char *name_dma;
 561};
 562
 563static struct cache_names __initdata cache_names[] = {
 564#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 565#include <linux/kmalloc_sizes.h>
 566        {NULL,}
 567#undef CACHE
 568};
 569
 570static struct arraycache_init initarray_cache __initdata =
 571    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 572static struct arraycache_init initarray_generic =
 573    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 574
 575/* internal cache of cache description objs */
 576static struct kmem_cache cache_cache = {
 577        .batchcount = 1,
 578        .limit = BOOT_CPUCACHE_ENTRIES,
 579        .shared = 1,
 580        .buffer_size = sizeof(struct kmem_cache),
 581        .name = "kmem_cache",
 582};
 583
 584#define BAD_ALIEN_MAGIC 0x01020304ul
 585
 586/*
 587 * chicken and egg problem: delay the per-cpu array allocation
 588 * until the general caches are up.
 589 */
 590static enum {
 591        NONE,
 592        PARTIAL_AC,
 593        PARTIAL_L3,
 594        EARLY,
 595        FULL
 596} g_cpucache_up;
 597
 598/*
 599 * used by boot code to determine if it can use slab based allocator
 600 */
 601int slab_is_available(void)
 602{
 603        return g_cpucache_up >= EARLY;
 604}
 605
 606#ifdef CONFIG_LOCKDEP
 607
 608/*
 609 * Slab sometimes uses the kmalloc slabs to store the slab headers
 610 * for other slabs "off slab".
 611 * The locking for this is tricky in that it nests within the locks
 612 * of all other slabs in a few places; to deal with this special
 613 * locking we put on-slab caches into a separate lock-class.
 614 *
 615 * We set lock class for alien array caches which are up during init.
 616 * The lock annotation will be lost if all cpus of a node goes down and
 617 * then comes back up during hotplug
 618 */
 619static struct lock_class_key on_slab_l3_key;
 620static struct lock_class_key on_slab_alc_key;
 621
 622static void init_node_lock_keys(int q)
 623{
 624        struct cache_sizes *s = malloc_sizes;
 625
 626        if (g_cpucache_up != FULL)
 627                return;
 628
 629        for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
 630                struct array_cache **alc;
 631                struct kmem_list3 *l3;
 632                int r;
 633
 634                l3 = s->cs_cachep->nodelists[q];
 635                if (!l3 || OFF_SLAB(s->cs_cachep))
 636                        continue;
 637                lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
 638                alc = l3->alien;
 639                /*
 640                 * FIXME: This check for BAD_ALIEN_MAGIC
 641                 * should go away when common slab code is taught to
 642                 * work even without alien caches.
 643                 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 644                 * for alloc_alien_cache,
 645                 */
 646                if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 647                        continue;
 648                for_each_node(r) {
 649                        if (alc[r])
 650                                lockdep_set_class(&alc[r]->lock,
 651                                        &on_slab_alc_key);
 652                }
 653        }
 654}
 655
 656static inline void init_lock_keys(void)
 657{
 658        int node;
 659
 660        for_each_node(node)
 661                init_node_lock_keys(node);
 662}
 663#else
 664static void init_node_lock_keys(int q)
 665{
 666}
 667
 668static inline void init_lock_keys(void)
 669{
 670}
 671#endif
 672
 673/*
 674 * Guard access to the cache-chain.
 675 */
 676static DEFINE_MUTEX(cache_chain_mutex);
 677static struct list_head cache_chain;
 678
 679static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 680
 681static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 682{
 683        return cachep->array[smp_processor_id()];
 684}
 685
 686static inline struct kmem_cache *__find_general_cachep(size_t size,
 687                                                        gfp_t gfpflags)
 688{
 689        struct cache_sizes *csizep = malloc_sizes;
 690
 691#if DEBUG
 692        /* This happens if someone tries to call
 693         * kmem_cache_create(), or __kmalloc(), before
 694         * the generic caches are initialized.
 695         */
 696        BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
 697#endif
 698        if (!size)
 699                return ZERO_SIZE_PTR;
 700
 701        while (size > csizep->cs_size)
 702                csizep++;
 703
 704        /*
 705         * Really subtle: The last entry with cs->cs_size==ULONG_MAX
 706         * has cs_{dma,}cachep==NULL. Thus no special case
 707         * for large kmalloc calls required.
 708         */
 709#ifdef CONFIG_ZONE_DMA
 710        if (unlikely(gfpflags & GFP_DMA))
 711                return csizep->cs_dmacachep;
 712#endif
 713        return csizep->cs_cachep;
 714}
 715
 716static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 717{
 718        return __find_general_cachep(size, gfpflags);
 719}
 720
 721static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 722{
 723        return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 724}
 725
 726/*
 727 * Calculate the number of objects and left-over bytes for a given buffer size.
 728 */
 729static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 730                           size_t align, int flags, size_t *left_over,
 731                           unsigned int *num)
 732{
 733        int nr_objs;
 734        size_t mgmt_size;
 735        size_t slab_size = PAGE_SIZE << gfporder;
 736
 737        /*
 738         * The slab management structure can be either off the slab or
 739         * on it. For the latter case, the memory allocated for a
 740         * slab is used for:
 741         *
 742         * - The struct slab
 743         * - One kmem_bufctl_t for each object
 744         * - Padding to respect alignment of @align
 745         * - @buffer_size bytes for each object
 746         *
 747         * If the slab management structure is off the slab, then the
 748         * alignment will already be calculated into the size. Because
 749         * the slabs are all pages aligned, the objects will be at the
 750         * correct alignment when allocated.
 751         */
 752        if (flags & CFLGS_OFF_SLAB) {
 753                mgmt_size = 0;
 754                nr_objs = slab_size / buffer_size;
 755
 756                if (nr_objs > SLAB_LIMIT)
 757                        nr_objs = SLAB_LIMIT;
 758        } else {
 759                /*
 760                 * Ignore padding for the initial guess. The padding
 761                 * is at most @align-1 bytes, and @buffer_size is at
 762                 * least @align. In the worst case, this result will
 763                 * be one greater than the number of objects that fit
 764                 * into the memory allocation when taking the padding
 765                 * into account.
 766                 */
 767                nr_objs = (slab_size - sizeof(struct slab)) /
 768                          (buffer_size + sizeof(kmem_bufctl_t));
 769
 770                /*
 771                 * This calculated number will be either the right
 772                 * amount, or one greater than what we want.
 773                 */
 774                if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
 775                       > slab_size)
 776                        nr_objs--;
 777
 778                if (nr_objs > SLAB_LIMIT)
 779                        nr_objs = SLAB_LIMIT;
 780
 781                mgmt_size = slab_mgmt_size(nr_objs, align);
 782        }
 783        *num = nr_objs;
 784        *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 785}
 786
 787#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 788
 789static void __slab_error(const char *function, struct kmem_cache *cachep,
 790                        char *msg)
 791{
 792        printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 793               function, cachep->name, msg);
 794        dump_stack();
 795}
 796
 797/*
 798 * By default on NUMA we use alien caches to stage the freeing of
 799 * objects allocated from other nodes. This causes massive memory
 800 * inefficiencies when using fake NUMA setup to split memory into a
 801 * large number of small nodes, so it can be disabled on the command
 802 * line
 803  */
 804
 805static int use_alien_caches __read_mostly = 1;
 806static int __init noaliencache_setup(char *s)
 807{
 808        use_alien_caches = 0;
 809        return 1;
 810}
 811__setup("noaliencache", noaliencache_setup);
 812
 813#ifdef CONFIG_NUMA
 814/*
 815 * Special reaping functions for NUMA systems called from cache_reap().
 816 * These take care of doing round robin flushing of alien caches (containing
 817 * objects freed on different nodes from which they were allocated) and the
 818 * flushing of remote pcps by calling drain_node_pages.
 819 */
 820static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 821
 822static void init_reap_node(int cpu)
 823{
 824        int node;
 825
 826        node = next_node(cpu_to_mem(cpu), node_online_map);
 827        if (node == MAX_NUMNODES)
 828                node = first_node(node_online_map);
 829
 830        per_cpu(slab_reap_node, cpu) = node;
 831}
 832
 833static void next_reap_node(void)
 834{
 835        int node = __this_cpu_read(slab_reap_node);
 836
 837        node = next_node(node, node_online_map);
 838        if (unlikely(node >= MAX_NUMNODES))
 839                node = first_node(node_online_map);
 840        __this_cpu_write(slab_reap_node, node);
 841}
 842
 843#else
 844#define init_reap_node(cpu) do { } while (0)
 845#define next_reap_node(void) do { } while (0)
 846#endif
 847
 848/*
 849 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 850 * via the workqueue/eventd.
 851 * Add the CPU number into the expiration time to minimize the possibility of
 852 * the CPUs getting into lockstep and contending for the global cache chain
 853 * lock.
 854 */
 855static void __cpuinit start_cpu_timer(int cpu)
 856{
 857        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 858
 859        /*
 860         * When this gets called from do_initcalls via cpucache_init(),
 861         * init_workqueues() has already run, so keventd will be setup
 862         * at that time.
 863         */
 864        if (keventd_up() && reap_work->work.func == NULL) {
 865                init_reap_node(cpu);
 866                INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
 867                schedule_delayed_work_on(cpu, reap_work,
 868                                        __round_jiffies_relative(HZ, cpu));
 869        }
 870}
 871
 872static struct array_cache *alloc_arraycache(int node, int entries,
 873                                            int batchcount, gfp_t gfp)
 874{
 875        int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 876        struct array_cache *nc = NULL;
 877
 878        nc = kmalloc_node(memsize, gfp, node);
 879        /*
 880         * The array_cache structures contain pointers to free object.
 881         * However, when such objects are allocated or transferred to another
 882         * cache the pointers are not cleared and they could be counted as
 883         * valid references during a kmemleak scan. Therefore, kmemleak must
 884         * not scan such objects.
 885         */
 886        kmemleak_no_scan(nc);
 887        if (nc) {
 888                nc->avail = 0;
 889                nc->limit = entries;
 890                nc->batchcount = batchcount;
 891                nc->touched = 0;
 892                spin_lock_init(&nc->lock);
 893        }
 894        return nc;
 895}
 896
 897/*
 898 * Transfer objects in one arraycache to another.
 899 * Locking must be handled by the caller.
 900 *
 901 * Return the number of entries transferred.
 902 */
 903static int transfer_objects(struct array_cache *to,
 904                struct array_cache *from, unsigned int max)
 905{
 906        /* Figure out how many entries to transfer */
 907        int nr = min3(from->avail, max, to->limit - to->avail);
 908
 909        if (!nr)
 910                return 0;
 911
 912        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 913                        sizeof(void *) *nr);
 914
 915        from->avail -= nr;
 916        to->avail += nr;
 917        return nr;
 918}
 919
 920#ifndef CONFIG_NUMA
 921
 922#define drain_alien_cache(cachep, alien) do { } while (0)
 923#define reap_alien(cachep, l3) do { } while (0)
 924
 925static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 926{
 927        return (struct array_cache **)BAD_ALIEN_MAGIC;
 928}
 929
 930static inline void free_alien_cache(struct array_cache **ac_ptr)
 931{
 932}
 933
 934static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 935{
 936        return 0;
 937}
 938
 939static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 940                gfp_t flags)
 941{
 942        return NULL;
 943}
 944
 945static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 946                 gfp_t flags, int nodeid)
 947{
 948        return NULL;
 949}
 950
 951#else   /* CONFIG_NUMA */
 952
 953static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 954static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 955
 956static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 957{
 958        struct array_cache **ac_ptr;
 959        int memsize = sizeof(void *) * nr_node_ids;
 960        int i;
 961
 962        if (limit > 1)
 963                limit = 12;
 964        ac_ptr = kzalloc_node(memsize, gfp, node);
 965        if (ac_ptr) {
 966                for_each_node(i) {
 967                        if (i == node || !node_online(i))
 968                                continue;
 969                        ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
 970                        if (!ac_ptr[i]) {
 971                                for (i--; i >= 0; i--)
 972                                        kfree(ac_ptr[i]);
 973                                kfree(ac_ptr);
 974                                return NULL;
 975                        }
 976                }
 977        }
 978        return ac_ptr;
 979}
 980
 981static void free_alien_cache(struct array_cache **ac_ptr)
 982{
 983        int i;
 984
 985        if (!ac_ptr)
 986                return;
 987        for_each_node(i)
 988            kfree(ac_ptr[i]);
 989        kfree(ac_ptr);
 990}
 991
 992static void __drain_alien_cache(struct kmem_cache *cachep,
 993                                struct array_cache *ac, int node)
 994{
 995        struct kmem_list3 *rl3 = cachep->nodelists[node];
 996
 997        if (ac->avail) {
 998                spin_lock(&rl3->list_lock);
 999                /*
1000                 * Stuff objects into the remote nodes shared array first.
1001                 * That way we could avoid the overhead of putting the objects
1002                 * into the free lists and getting them back later.
1003                 */
1004                if (rl3->shared)
1005                        transfer_objects(rl3->shared, ac, ac->limit);
1006
1007                free_block(cachep, ac->entry, ac->avail, node);
1008                ac->avail = 0;
1009                spin_unlock(&rl3->list_lock);
1010        }
1011}
1012
1013/*
1014 * Called from cache_reap() to regularly drain alien caches round robin.
1015 */
1016static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1017{
1018        int node = __this_cpu_read(slab_reap_node);
1019
1020        if (l3->alien) {
1021                struct array_cache *ac = l3->alien[node];
1022
1023                if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1024                        __drain_alien_cache(cachep, ac, node);
1025                        spin_unlock_irq(&ac->lock);
1026                }
1027        }
1028}
1029
1030static void drain_alien_cache(struct kmem_cache *cachep,
1031                                struct array_cache **alien)
1032{
1033        int i = 0;
1034        struct array_cache *ac;
1035        unsigned long flags;
1036
1037        for_each_online_node(i) {
1038                ac = alien[i];
1039                if (ac) {
1040                        spin_lock_irqsave(&ac->lock, flags);
1041                        __drain_alien_cache(cachep, ac, i);
1042                        spin_unlock_irqrestore(&ac->lock, flags);
1043                }
1044        }
1045}
1046
1047static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1048{
1049        struct slab *slabp = virt_to_slab(objp);
1050        int nodeid = slabp->nodeid;
1051        struct kmem_list3 *l3;
1052        struct array_cache *alien = NULL;
1053        int node;
1054
1055        node = numa_mem_id();
1056
1057        /*
1058         * Make sure we are not freeing a object from another node to the array
1059         * cache on this cpu.
1060         */
1061        if (likely(slabp->nodeid == node))
1062                return 0;
1063
1064        l3 = cachep->nodelists[node];
1065        STATS_INC_NODEFREES(cachep);
1066        if (l3->alien && l3->alien[nodeid]) {
1067                alien = l3->alien[nodeid];
1068                spin_lock(&alien->lock);
1069                if (unlikely(alien->avail == alien->limit)) {
1070                        STATS_INC_ACOVERFLOW(cachep);
1071                        __drain_alien_cache(cachep, alien, nodeid);
1072                }
1073                alien->entry[alien->avail++] = objp;
1074                spin_unlock(&alien->lock);
1075        } else {
1076                spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1077                free_block(cachep, &objp, 1, nodeid);
1078                spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1079        }
1080        return 1;
1081}
1082#endif
1083
1084/*
1085 * Allocates and initializes nodelists for a node on each slab cache, used for
1086 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1087 * will be allocated off-node since memory is not yet online for the new node.
1088 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1089 * already in use.
1090 *
1091 * Must hold cache_chain_mutex.
1092 */
1093static int init_cache_nodelists_node(int node)
1094{
1095        struct kmem_cache *cachep;
1096        struct kmem_list3 *l3;
1097        const int memsize = sizeof(struct kmem_list3);
1098
1099        list_for_each_entry(cachep, &cache_chain, next) {
1100                /*
1101                 * Set up the size64 kmemlist for cpu before we can
1102                 * begin anything. Make sure some other cpu on this
1103                 * node has not already allocated this
1104                 */
1105                if (!cachep->nodelists[node]) {
1106                        l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1107                        if (!l3)
1108                                return -ENOMEM;
1109                        kmem_list3_init(l3);
1110                        l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1111                            ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1112
1113                        /*
1114                         * The l3s don't come and go as CPUs come and
1115                         * go.  cache_chain_mutex is sufficient
1116                         * protection here.
1117                         */
1118                        cachep->nodelists[node] = l3;
1119                }
1120
1121                spin_lock_irq(&cachep->nodelists[node]->list_lock);
1122                cachep->nodelists[node]->free_limit =
1123                        (1 + nr_cpus_node(node)) *
1124                        cachep->batchcount + cachep->num;
1125                spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1126        }
1127        return 0;
1128}
1129
1130static void __cpuinit cpuup_canceled(long cpu)
1131{
1132        struct kmem_cache *cachep;
1133        struct kmem_list3 *l3 = NULL;
1134        int node = cpu_to_mem(cpu);
1135        const struct cpumask *mask = cpumask_of_node(node);
1136
1137        list_for_each_entry(cachep, &cache_chain, next) {
1138                struct array_cache *nc;
1139                struct array_cache *shared;
1140                struct array_cache **alien;
1141
1142                /* cpu is dead; no one can alloc from it. */
1143                nc = cachep->array[cpu];
1144                cachep->array[cpu] = NULL;
1145                l3 = cachep->nodelists[node];
1146
1147                if (!l3)
1148                        goto free_array_cache;
1149
1150                spin_lock_irq(&l3->list_lock);
1151
1152                /* Free limit for this kmem_list3 */
1153                l3->free_limit -= cachep->batchcount;
1154                if (nc)
1155                        free_block(cachep, nc->entry, nc->avail, node);
1156
1157                if (!cpumask_empty(mask)) {
1158                        spin_unlock_irq(&l3->list_lock);
1159                        goto free_array_cache;
1160                }
1161
1162                shared = l3->shared;
1163                if (shared) {
1164                        free_block(cachep, shared->entry,
1165                                   shared->avail, node);
1166                        l3->shared = NULL;
1167                }
1168
1169                alien = l3->alien;
1170                l3->alien = NULL;
1171
1172                spin_unlock_irq(&l3->list_lock);
1173
1174                kfree(shared);
1175                if (alien) {
1176                        drain_alien_cache(cachep, alien);
1177                        free_alien_cache(alien);
1178                }
1179free_array_cache:
1180                kfree(nc);
1181        }
1182        /*
1183         * In the previous loop, all the objects were freed to
1184         * the respective cache's slabs,  now we can go ahead and
1185         * shrink each nodelist to its limit.
1186         */
1187        list_for_each_entry(cachep, &cache_chain, next) {
1188                l3 = cachep->nodelists[node];
1189                if (!l3)
1190                        continue;
1191                drain_freelist(cachep, l3, l3->free_objects);
1192        }
1193}
1194
1195static int __cpuinit cpuup_prepare(long cpu)
1196{
1197        struct kmem_cache *cachep;
1198        struct kmem_list3 *l3 = NULL;
1199        int node = cpu_to_mem(cpu);
1200        int err;
1201
1202        /*
1203         * We need to do this right in the beginning since
1204         * alloc_arraycache's are going to use this list.
1205         * kmalloc_node allows us to add the slab to the right
1206         * kmem_list3 and not this cpu's kmem_list3
1207         */
1208        err = init_cache_nodelists_node(node);
1209        if (err < 0)
1210                goto bad;
1211
1212        /*
1213         * Now we can go ahead with allocating the shared arrays and
1214         * array caches
1215         */
1216        list_for_each_entry(cachep, &cache_chain, next) {
1217                struct array_cache *nc;
1218                struct array_cache *shared = NULL;
1219                struct array_cache **alien = NULL;
1220
1221                nc = alloc_arraycache(node, cachep->limit,
1222                                        cachep->batchcount, GFP_KERNEL);
1223                if (!nc)
1224                        goto bad;
1225                if (cachep->shared) {
1226                        shared = alloc_arraycache(node,
1227                                cachep->shared * cachep->batchcount,
1228                                0xbaadf00d, GFP_KERNEL);
1229                        if (!shared) {
1230                                kfree(nc);
1231                                goto bad;
1232                        }
1233                }
1234                if (use_alien_caches) {
1235                        alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1236                        if (!alien) {
1237                                kfree(shared);
1238                                kfree(nc);
1239                                goto bad;
1240                        }
1241                }
1242                cachep->array[cpu] = nc;
1243                l3 = cachep->nodelists[node];
1244                BUG_ON(!l3);
1245
1246                spin_lock_irq(&l3->list_lock);
1247                if (!l3->shared) {
1248                        /*
1249                         * We are serialised from CPU_DEAD or
1250                         * CPU_UP_CANCELLED by the cpucontrol lock
1251                         */
1252                        l3->shared = shared;
1253                        shared = NULL;
1254                }
1255#ifdef CONFIG_NUMA
1256                if (!l3->alien) {
1257                        l3->alien = alien;
1258                        alien = NULL;
1259                }
1260#endif
1261                spin_unlock_irq(&l3->list_lock);
1262                kfree(shared);
1263                free_alien_cache(alien);
1264        }
1265        init_node_lock_keys(node);
1266
1267        return 0;
1268bad:
1269        cpuup_canceled(cpu);
1270        return -ENOMEM;
1271}
1272
1273static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1274                                    unsigned long action, void *hcpu)
1275{
1276        long cpu = (long)hcpu;
1277        int err = 0;
1278
1279        switch (action) {
1280        case CPU_UP_PREPARE:
1281        case CPU_UP_PREPARE_FROZEN:
1282                mutex_lock(&cache_chain_mutex);
1283                err = cpuup_prepare(cpu);
1284                mutex_unlock(&cache_chain_mutex);
1285                break;
1286        case CPU_ONLINE:
1287        case CPU_ONLINE_FROZEN:
1288                start_cpu_timer(cpu);
1289                break;
1290#ifdef CONFIG_HOTPLUG_CPU
1291        case CPU_DOWN_PREPARE:
1292        case CPU_DOWN_PREPARE_FROZEN:
1293                /*
1294                 * Shutdown cache reaper. Note that the cache_chain_mutex is
1295                 * held so that if cache_reap() is invoked it cannot do
1296                 * anything expensive but will only modify reap_work
1297                 * and reschedule the timer.
1298                */
1299                cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1300                /* Now the cache_reaper is guaranteed to be not running. */
1301                per_cpu(slab_reap_work, cpu).work.func = NULL;
1302                break;
1303        case CPU_DOWN_FAILED:
1304        case CPU_DOWN_FAILED_FROZEN:
1305                start_cpu_timer(cpu);
1306                break;
1307        case CPU_DEAD:
1308        case CPU_DEAD_FROZEN:
1309                /*
1310                 * Even if all the cpus of a node are down, we don't free the
1311                 * kmem_list3 of any cache. This to avoid a race between
1312                 * cpu_down, and a kmalloc allocation from another cpu for
1313                 * memory from the node of the cpu going down.  The list3
1314                 * structure is usually allocated from kmem_cache_create() and
1315                 * gets destroyed at kmem_cache_destroy().
1316                 */
1317                /* fall through */
1318#endif
1319        case CPU_UP_CANCELED:
1320        case CPU_UP_CANCELED_FROZEN:
1321                mutex_lock(&cache_chain_mutex);
1322                cpuup_canceled(cpu);
1323                mutex_unlock(&cache_chain_mutex);
1324                break;
1325        }
1326        return notifier_from_errno(err);
1327}
1328
1329static struct notifier_block __cpuinitdata cpucache_notifier = {
1330        &cpuup_callback, NULL, 0
1331};
1332
1333#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1334/*
1335 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1336 * Returns -EBUSY if all objects cannot be drained so that the node is not
1337 * removed.
1338 *
1339 * Must hold cache_chain_mutex.
1340 */
1341static int __meminit drain_cache_nodelists_node(int node)
1342{
1343        struct kmem_cache *cachep;
1344        int ret = 0;
1345
1346        list_for_each_entry(cachep, &cache_chain, next) {
1347                struct kmem_list3 *l3;
1348
1349                l3 = cachep->nodelists[node];
1350                if (!l3)
1351                        continue;
1352
1353                drain_freelist(cachep, l3, l3->free_objects);
1354
1355                if (!list_empty(&l3->slabs_full) ||
1356                    !list_empty(&l3->slabs_partial)) {
1357                        ret = -EBUSY;
1358                        break;
1359                }
1360        }
1361        return ret;
1362}
1363
1364static int __meminit slab_memory_callback(struct notifier_block *self,
1365                                        unsigned long action, void *arg)
1366{
1367        struct memory_notify *mnb = arg;
1368        int ret = 0;
1369        int nid;
1370
1371        nid = mnb->status_change_nid;
1372        if (nid < 0)
1373                goto out;
1374
1375        switch (action) {
1376        case MEM_GOING_ONLINE:
1377                mutex_lock(&cache_chain_mutex);
1378                ret = init_cache_nodelists_node(nid);
1379                mutex_unlock(&cache_chain_mutex);
1380                break;
1381        case MEM_GOING_OFFLINE:
1382                mutex_lock(&cache_chain_mutex);
1383                ret = drain_cache_nodelists_node(nid);
1384                mutex_unlock(&cache_chain_mutex);
1385                break;
1386        case MEM_ONLINE:
1387        case MEM_OFFLINE:
1388        case MEM_CANCEL_ONLINE:
1389        case MEM_CANCEL_OFFLINE:
1390                break;
1391        }
1392out:
1393        return notifier_from_errno(ret);
1394}
1395#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1396
1397/*
1398 * swap the static kmem_list3 with kmalloced memory
1399 */
1400static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1401                                int nodeid)
1402{
1403        struct kmem_list3 *ptr;
1404
1405        ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1406        BUG_ON(!ptr);
1407
1408        memcpy(ptr, list, sizeof(struct kmem_list3));
1409        /*
1410         * Do not assume that spinlocks can be initialized via memcpy:
1411         */
1412        spin_lock_init(&ptr->list_lock);
1413
1414        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1415        cachep->nodelists[nodeid] = ptr;
1416}
1417
1418/*
1419 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1420 * size of kmem_list3.
1421 */
1422static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1423{
1424        int node;
1425
1426        for_each_online_node(node) {
1427                cachep->nodelists[node] = &initkmem_list3[index + node];
1428                cachep->nodelists[node]->next_reap = jiffies +
1429                    REAPTIMEOUT_LIST3 +
1430                    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1431        }
1432}
1433
1434/*
1435 * Initialisation.  Called after the page allocator have been initialised and
1436 * before smp_init().
1437 */
1438void __init kmem_cache_init(void)
1439{
1440        size_t left_over;
1441        struct cache_sizes *sizes;
1442        struct cache_names *names;
1443        int i;
1444        int order;
1445        int node;
1446
1447        if (num_possible_nodes() == 1)
1448                use_alien_caches = 0;
1449
1450        for (i = 0; i < NUM_INIT_LISTS; i++) {
1451                kmem_list3_init(&initkmem_list3[i]);
1452                if (i < MAX_NUMNODES)
1453                        cache_cache.nodelists[i] = NULL;
1454        }
1455        set_up_list3s(&cache_cache, CACHE_CACHE);
1456
1457        /*
1458         * Fragmentation resistance on low memory - only use bigger
1459         * page orders on machines with more than 32MB of memory.
1460         */
1461        if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1462                slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1463
1464        /* Bootstrap is tricky, because several objects are allocated
1465         * from caches that do not exist yet:
1466         * 1) initialize the cache_cache cache: it contains the struct
1467         *    kmem_cache structures of all caches, except cache_cache itself:
1468         *    cache_cache is statically allocated.
1469         *    Initially an __init data area is used for the head array and the
1470         *    kmem_list3 structures, it's replaced with a kmalloc allocated
1471         *    array at the end of the bootstrap.
1472         * 2) Create the first kmalloc cache.
1473         *    The struct kmem_cache for the new cache is allocated normally.
1474         *    An __init data area is used for the head array.
1475         * 3) Create the remaining kmalloc caches, with minimally sized
1476         *    head arrays.
1477         * 4) Replace the __init data head arrays for cache_cache and the first
1478         *    kmalloc cache with kmalloc allocated arrays.
1479         * 5) Replace the __init data for kmem_list3 for cache_cache and
1480         *    the other cache's with kmalloc allocated memory.
1481         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1482         */
1483
1484        node = numa_mem_id();
1485
1486        /* 1) create the cache_cache */
1487        INIT_LIST_HEAD(&cache_chain);
1488        list_add(&cache_cache.next, &cache_chain);
1489        cache_cache.colour_off = cache_line_size();
1490        cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1491        cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1492
1493        /*
1494         * struct kmem_cache size depends on nr_node_ids, which
1495         * can be less than MAX_NUMNODES.
1496         */
1497        cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1498                                 nr_node_ids * sizeof(struct kmem_list3 *);
1499#if DEBUG
1500        cache_cache.obj_size = cache_cache.buffer_size;
1501#endif
1502        cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1503                                        cache_line_size());
1504        cache_cache.reciprocal_buffer_size =
1505                reciprocal_value(cache_cache.buffer_size);
1506
1507        for (order = 0; order < MAX_ORDER; order++) {
1508                cache_estimate(order, cache_cache.buffer_size,
1509                        cache_line_size(), 0, &left_over, &cache_cache.num);
1510                if (cache_cache.num)
1511                        break;
1512        }
1513        BUG_ON(!cache_cache.num);
1514        cache_cache.gfporder = order;
1515        cache_cache.colour = left_over / cache_cache.colour_off;
1516        cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1517                                      sizeof(struct slab), cache_line_size());
1518
1519        /* 2+3) create the kmalloc caches */
1520        sizes = malloc_sizes;
1521        names = cache_names;
1522
1523        /*
1524         * Initialize the caches that provide memory for the array cache and the
1525         * kmem_list3 structures first.  Without this, further allocations will
1526         * bug.
1527         */
1528
1529        sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1530                                        sizes[INDEX_AC].cs_size,
1531                                        ARCH_KMALLOC_MINALIGN,
1532                                        ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533                                        NULL);
1534
1535        if (INDEX_AC != INDEX_L3) {
1536                sizes[INDEX_L3].cs_cachep =
1537                        kmem_cache_create(names[INDEX_L3].name,
1538                                sizes[INDEX_L3].cs_size,
1539                                ARCH_KMALLOC_MINALIGN,
1540                                ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1541                                NULL);
1542        }
1543
1544        slab_early_init = 0;
1545
1546        while (sizes->cs_size != ULONG_MAX) {
1547                /*
1548                 * For performance, all the general caches are L1 aligned.
1549                 * This should be particularly beneficial on SMP boxes, as it
1550                 * eliminates "false sharing".
1551                 * Note for systems short on memory removing the alignment will
1552                 * allow tighter packing of the smaller caches.
1553                 */
1554                if (!sizes->cs_cachep) {
1555                        sizes->cs_cachep = kmem_cache_create(names->name,
1556                                        sizes->cs_size,
1557                                        ARCH_KMALLOC_MINALIGN,
1558                                        ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1559                                        NULL);
1560                }
1561#ifdef CONFIG_ZONE_DMA
1562                sizes->cs_dmacachep = kmem_cache_create(
1563                                        names->name_dma,
1564                                        sizes->cs_size,
1565                                        ARCH_KMALLOC_MINALIGN,
1566                                        ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1567                                                SLAB_PANIC,
1568                                        NULL);
1569#endif
1570                sizes++;
1571                names++;
1572        }
1573        /* 4) Replace the bootstrap head arrays */
1574        {
1575                struct array_cache *ptr;
1576
1577                ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1578
1579                BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1580                memcpy(ptr, cpu_cache_get(&cache_cache),
1581                       sizeof(struct arraycache_init));
1582                /*
1583                 * Do not assume that spinlocks can be initialized via memcpy:
1584                 */
1585                spin_lock_init(&ptr->lock);
1586
1587                cache_cache.array[smp_processor_id()] = ptr;
1588
1589                ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1590
1591                BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1592                       != &initarray_generic.cache);
1593                memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1594                       sizeof(struct arraycache_init));
1595                /*
1596                 * Do not assume that spinlocks can be initialized via memcpy:
1597                 */
1598                spin_lock_init(&ptr->lock);
1599
1600                malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1601                    ptr;
1602        }
1603        /* 5) Replace the bootstrap kmem_list3's */
1604        {
1605                int nid;
1606
1607                for_each_online_node(nid) {
1608                        init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1609
1610                        init_list(malloc_sizes[INDEX_AC].cs_cachep,
1611                                  &initkmem_list3[SIZE_AC + nid], nid);
1612
1613                        if (INDEX_AC != INDEX_L3) {
1614                                init_list(malloc_sizes[INDEX_L3].cs_cachep,
1615                                          &initkmem_list3[SIZE_L3 + nid], nid);
1616                        }
1617                }
1618        }
1619
1620        g_cpucache_up = EARLY;
1621}
1622
1623void __init kmem_cache_init_late(void)
1624{
1625        struct kmem_cache *cachep;
1626
1627        /* 6) resize the head arrays to their final sizes */
1628        mutex_lock(&cache_chain_mutex);
1629        list_for_each_entry(cachep, &cache_chain, next)
1630                if (enable_cpucache(cachep, GFP_NOWAIT))
1631                        BUG();
1632        mutex_unlock(&cache_chain_mutex);
1633
1634        /* Done! */
1635        g_cpucache_up = FULL;
1636
1637        /* Annotate slab for lockdep -- annotate the malloc caches */
1638        init_lock_keys();
1639
1640        /*
1641         * Register a cpu startup notifier callback that initializes
1642         * cpu_cache_get for all new cpus
1643         */
1644        register_cpu_notifier(&cpucache_notifier);
1645
1646#ifdef CONFIG_NUMA
1647        /*
1648         * Register a memory hotplug callback that initializes and frees
1649         * nodelists.
1650         */
1651        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1652#endif
1653
1654        /*
1655         * The reap timers are started later, with a module init call: That part
1656         * of the kernel is not yet operational.
1657         */
1658}
1659
1660static int __init cpucache_init(void)
1661{
1662        int cpu;
1663
1664        /*
1665         * Register the timers that return unneeded pages to the page allocator
1666         */
1667        for_each_online_cpu(cpu)
1668                start_cpu_timer(cpu);
1669        return 0;
1670}
1671__initcall(cpucache_init);
1672
1673/*
1674 * Interface to system's page allocator. No need to hold the cache-lock.
1675 *
1676 * If we requested dmaable memory, we will get it. Even if we
1677 * did not request dmaable memory, we might get it, but that
1678 * would be relatively rare and ignorable.
1679 */
1680static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1681{
1682        struct page *page;
1683        int nr_pages;
1684        int i;
1685
1686#ifndef CONFIG_MMU
1687        /*
1688         * Nommu uses slab's for process anonymous memory allocations, and thus
1689         * requires __GFP_COMP to properly refcount higher order allocations
1690         */
1691        flags |= __GFP_COMP;
1692#endif
1693
1694        flags |= cachep->gfpflags;
1695        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1696                flags |= __GFP_RECLAIMABLE;
1697
1698        page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1699        if (!page)
1700                return NULL;
1701
1702        nr_pages = (1 << cachep->gfporder);
1703        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1704                add_zone_page_state(page_zone(page),
1705                        NR_SLAB_RECLAIMABLE, nr_pages);
1706        else
1707                add_zone_page_state(page_zone(page),
1708                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1709        for (i = 0; i < nr_pages; i++)
1710                __SetPageSlab(page + i);
1711
1712        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1713                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1714
1715                if (cachep->ctor)
1716                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1717                else
1718                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1719        }
1720
1721        return page_address(page);
1722}
1723
1724/*
1725 * Interface to system's page release.
1726 */
1727static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1728{
1729        unsigned long i = (1 << cachep->gfporder);
1730        struct page *page = virt_to_page(addr);
1731        const unsigned long nr_freed = i;
1732
1733        kmemcheck_free_shadow(page, cachep->gfporder);
1734
1735        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1736                sub_zone_page_state(page_zone(page),
1737                                NR_SLAB_RECLAIMABLE, nr_freed);
1738        else
1739                sub_zone_page_state(page_zone(page),
1740                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1741        while (i--) {
1742                BUG_ON(!PageSlab(page));
1743                __ClearPageSlab(page);
1744                page++;
1745        }
1746        if (current->reclaim_state)
1747                current->reclaim_state->reclaimed_slab += nr_freed;
1748        free_pages((unsigned long)addr, cachep->gfporder);
1749}
1750
1751static void kmem_rcu_free(struct rcu_head *head)
1752{
1753        struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1754        struct kmem_cache *cachep = slab_rcu->cachep;
1755
1756        kmem_freepages(cachep, slab_rcu->addr);
1757        if (OFF_SLAB(cachep))
1758                kmem_cache_free(cachep->slabp_cache, slab_rcu);
1759}
1760
1761#if DEBUG
1762
1763#ifdef CONFIG_DEBUG_PAGEALLOC
1764static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1765                            unsigned long caller)
1766{
1767        int size = obj_size(cachep);
1768
1769        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1770
1771        if (size < 5 * sizeof(unsigned long))
1772                return;
1773
1774        *addr++ = 0x12345678;
1775        *addr++ = caller;
1776        *addr++ = smp_processor_id();
1777        size -= 3 * sizeof(unsigned long);
1778        {
1779                unsigned long *sptr = &caller;
1780                unsigned long svalue;
1781
1782                while (!kstack_end(sptr)) {
1783                        svalue = *sptr++;
1784                        if (kernel_text_address(svalue)) {
1785                                *addr++ = svalue;
1786                                size -= sizeof(unsigned long);
1787                                if (size <= sizeof(unsigned long))
1788                                        break;
1789                        }
1790                }
1791
1792        }
1793        *addr++ = 0x87654321;
1794}
1795#endif
1796
1797static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1798{
1799        int size = obj_size(cachep);
1800        addr = &((char *)addr)[obj_offset(cachep)];
1801
1802        memset(addr, val, size);
1803        *(unsigned char *)(addr + size - 1) = POISON_END;
1804}
1805
1806static void dump_line(char *data, int offset, int limit)
1807{
1808        int i;
1809        unsigned char error = 0;
1810        int bad_count = 0;
1811
1812        printk(KERN_ERR "%03x:", offset);
1813        for (i = 0; i < limit; i++) {
1814                if (data[offset + i] != POISON_FREE) {
1815                        error = data[offset + i];
1816                        bad_count++;
1817                }
1818                printk(" %02x", (unsigned char)data[offset + i]);
1819        }
1820        printk("\n");
1821
1822        if (bad_count == 1) {
1823                error ^= POISON_FREE;
1824                if (!(error & (error - 1))) {
1825                        printk(KERN_ERR "Single bit error detected. Probably "
1826                                        "bad RAM.\n");
1827#ifdef CONFIG_X86
1828                        printk(KERN_ERR "Run memtest86+ or a similar memory "
1829                                        "test tool.\n");
1830#else
1831                        printk(KERN_ERR "Run a memory test tool.\n");
1832#endif
1833                }
1834        }
1835}
1836#endif
1837
1838#if DEBUG
1839
1840static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1841{
1842        int i, size;
1843        char *realobj;
1844
1845        if (cachep->flags & SLAB_RED_ZONE) {
1846                printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1847                        *dbg_redzone1(cachep, objp),
1848                        *dbg_redzone2(cachep, objp));
1849        }
1850
1851        if (cachep->flags & SLAB_STORE_USER) {
1852                printk(KERN_ERR "Last user: [<%p>]",
1853                        *dbg_userword(cachep, objp));
1854                print_symbol("(%s)",
1855                                (unsigned long)*dbg_userword(cachep, objp));
1856                printk("\n");
1857        }
1858        realobj = (char *)objp + obj_offset(cachep);
1859        size = obj_size(cachep);
1860        for (i = 0; i < size && lines; i += 16, lines--) {
1861                int limit;
1862                limit = 16;
1863                if (i + limit > size)
1864                        limit = size - i;
1865                dump_line(realobj, i, limit);
1866        }
1867}
1868
1869static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1870{
1871        char *realobj;
1872        int size, i;
1873        int lines = 0;
1874
1875        realobj = (char *)objp + obj_offset(cachep);
1876        size = obj_size(cachep);
1877
1878        for (i = 0; i < size; i++) {
1879                char exp = POISON_FREE;
1880                if (i == size - 1)
1881                        exp = POISON_END;
1882                if (realobj[i] != exp) {
1883                        int limit;
1884                        /* Mismatch ! */
1885                        /* Print header */
1886                        if (lines == 0) {
1887                                printk(KERN_ERR
1888                                        "Slab corruption: %s start=%p, len=%d\n",
1889                                        cachep->name, realobj, size);
1890                                print_objinfo(cachep, objp, 0);
1891                        }
1892                        /* Hexdump the affected line */
1893                        i = (i / 16) * 16;
1894                        limit = 16;
1895                        if (i + limit > size)
1896                                limit = size - i;
1897                        dump_line(realobj, i, limit);
1898                        i += 16;
1899                        lines++;
1900                        /* Limit to 5 lines */
1901                        if (lines > 5)
1902                                break;
1903                }
1904        }
1905        if (lines != 0) {
1906                /* Print some data about the neighboring objects, if they
1907                 * exist:
1908                 */
1909                struct slab *slabp = virt_to_slab(objp);
1910                unsigned int objnr;
1911
1912                objnr = obj_to_index(cachep, slabp, objp);
1913                if (objnr) {
1914                        objp = index_to_obj(cachep, slabp, objnr - 1);
1915                        realobj = (char *)objp + obj_offset(cachep);
1916                        printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1917                               realobj, size);
1918                        print_objinfo(cachep, objp, 2);
1919                }
1920                if (objnr + 1 < cachep->num) {
1921                        objp = index_to_obj(cachep, slabp, objnr + 1);
1922                        realobj = (char *)objp + obj_offset(cachep);
1923                        printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1924                               realobj, size);
1925                        print_objinfo(cachep, objp, 2);
1926                }
1927        }
1928}
1929#endif
1930
1931#if DEBUG
1932static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1933{
1934        int i;
1935        for (i = 0; i < cachep->num; i++) {
1936                void *objp = index_to_obj(cachep, slabp, i);
1937
1938                if (cachep->flags & SLAB_POISON) {
1939#ifdef CONFIG_DEBUG_PAGEALLOC
1940                        if (cachep->buffer_size % PAGE_SIZE == 0 &&
1941                                        OFF_SLAB(cachep))
1942                                kernel_map_pages(virt_to_page(objp),
1943                                        cachep->buffer_size / PAGE_SIZE, 1);
1944                        else
1945                                check_poison_obj(cachep, objp);
1946#else
1947                        check_poison_obj(cachep, objp);
1948#endif
1949                }
1950                if (cachep->flags & SLAB_RED_ZONE) {
1951                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1952                                slab_error(cachep, "start of a freed object "
1953                                           "was overwritten");
1954                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1955                                slab_error(cachep, "end of a freed object "
1956                                           "was overwritten");
1957                }
1958        }
1959}
1960#else
1961static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1962{
1963}
1964#endif
1965
1966/**
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1970 *
1971 * Destroy all the objs in a slab, and release the mem back to the system.
1972 * Before calling the slab must have been unlinked from the cache.  The
1973 * cache-lock is not held/needed.
1974 */
1975static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1976{
1977        void *addr = slabp->s_mem - slabp->colouroff;
1978
1979        slab_destroy_debugcheck(cachep, slabp);
1980        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1981                struct slab_rcu *slab_rcu;
1982
1983                slab_rcu = (struct slab_rcu *)slabp;
1984                slab_rcu->cachep = cachep;
1985                slab_rcu->addr = addr;
1986                call_rcu(&slab_rcu->head, kmem_rcu_free);
1987        } else {
1988                kmem_freepages(cachep, addr);
1989                if (OFF_SLAB(cachep))
1990                        kmem_cache_free(cachep->slabp_cache, slabp);
1991        }
1992}
1993
1994static void __kmem_cache_destroy(struct kmem_cache *cachep)
1995{
1996        int i;
1997        struct kmem_list3 *l3;
1998
1999        for_each_online_cpu(i)
2000            kfree(cachep->array[i]);
2001
2002        /* NUMA: free the list3 structures */
2003        for_each_online_node(i) {
2004                l3 = cachep->nodelists[i];
2005                if (l3) {
2006                        kfree(l3->shared);
2007                        free_alien_cache(l3->alien);
2008                        kfree(l3);
2009                }
2010        }
2011        kmem_cache_free(&cache_cache, cachep);
2012}
2013
2014
2015/**
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2021 *
2022 * Also calculates the number of objects per slab.
2023 *
2024 * This could be made much more intelligent.  For now, try to avoid using
2025 * high order pages for slabs.  When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2027 */
2028static size_t calculate_slab_order(struct kmem_cache *cachep,
2029                        size_t size, size_t align, unsigned long flags)
2030{
2031        unsigned long offslab_limit;
2032        size_t left_over = 0;
2033        int gfporder;
2034
2035        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2036                unsigned int num;
2037                size_t remainder;
2038
2039                cache_estimate(gfporder, size, align, flags, &remainder, &num);
2040                if (!num)
2041                        continue;
2042
2043                if (flags & CFLGS_OFF_SLAB) {
2044                        /*
2045                         * Max number of objs-per-slab for caches which
2046                         * use off-slab slabs. Needed to avoid a possible
2047                         * looping condition in cache_grow().
2048                         */
2049                        offslab_limit = size - sizeof(struct slab);
2050                        offslab_limit /= sizeof(kmem_bufctl_t);
2051
2052                        if (num > offslab_limit)
2053                                break;
2054                }
2055
2056                /* Found something acceptable - save it away */
2057                cachep->num = num;
2058                cachep->gfporder = gfporder;
2059                left_over = remainder;
2060
2061                /*
2062                 * A VFS-reclaimable slab tends to have most allocations
2063                 * as GFP_NOFS and we really don't want to have to be allocating
2064                 * higher-order pages when we are unable to shrink dcache.
2065                 */
2066                if (flags & SLAB_RECLAIM_ACCOUNT)
2067                        break;
2068
2069                /*
2070                 * Large number of objects is good, but very large slabs are
2071                 * currently bad for the gfp()s.
2072                 */
2073                if (gfporder >= slab_break_gfp_order)
2074                        break;
2075
2076                /*
2077                 * Acceptable internal fragmentation?
2078                 */
2079                if (left_over * 8 <= (PAGE_SIZE << gfporder))
2080                        break;
2081        }
2082        return left_over;
2083}
2084
2085static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086{
2087        if (g_cpucache_up == FULL)
2088                return enable_cpucache(cachep, gfp);
2089
2090        if (g_cpucache_up == NONE) {
2091                /*
2092                 * Note: the first kmem_cache_create must create the cache
2093                 * that's used by kmalloc(24), otherwise the creation of
2094                 * further caches will BUG().
2095                 */
2096                cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097
2098                /*
2099                 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100                 * the first cache, then we need to set up all its list3s,
2101                 * otherwise the creation of further caches will BUG().
2102                 */
2103                set_up_list3s(cachep, SIZE_AC);
2104                if (INDEX_AC == INDEX_L3)
2105                        g_cpucache_up = PARTIAL_L3;
2106                else
2107                        g_cpucache_up = PARTIAL_AC;
2108        } else {
2109                cachep->array[smp_processor_id()] =
2110                        kmalloc(sizeof(struct arraycache_init), gfp);
2111
2112                if (g_cpucache_up == PARTIAL_AC) {
2113                        set_up_list3s(cachep, SIZE_L3);
2114                        g_cpucache_up = PARTIAL_L3;
2115                } else {
2116                        int node;
2117                        for_each_online_node(node) {
2118                                cachep->nodelists[node] =
2119                                    kmalloc_node(sizeof(struct kmem_list3),
2120                                                gfp, node);
2121                                BUG_ON(!cachep->nodelists[node]);
2122                                kmem_list3_init(cachep->nodelists[node]);
2123                        }
2124                }
2125        }
2126        cachep->nodelists[numa_mem_id()]->next_reap =
2127                        jiffies + REAPTIMEOUT_LIST3 +
2128                        ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2129
2130        cpu_cache_get(cachep)->avail = 0;
2131        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132        cpu_cache_get(cachep)->batchcount = 1;
2133        cpu_cache_get(cachep)->touched = 0;
2134        cachep->batchcount = 1;
2135        cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136        return 0;
2137}
2138
2139/**
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
2146 *
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
2149 * The @ctor is run when new pages are allocated by the cache.
2150 *
2151 * @name must be valid until the cache is destroyed. This implies that
2152 * the module calling this has to destroy the cache before getting unloaded.
2153 *
2154 * The flags are
2155 *
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2158 *
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2161 *
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline.  This can be beneficial if you're counting cycles as closely
2164 * as davem.
2165 */
2166struct kmem_cache *
2167kmem_cache_create (const char *name, size_t size, size_t align,
2168        unsigned long flags, void (*ctor)(void *))
2169{
2170        size_t left_over, slab_size, ralign;
2171        struct kmem_cache *cachep = NULL, *pc;
2172        gfp_t gfp;
2173
2174        /*
2175         * Sanity checks... these are all serious usage bugs.
2176         */
2177        if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2178            size > KMALLOC_MAX_SIZE) {
2179                printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2180                                name);
2181                BUG();
2182        }
2183
2184        /*
2185         * We use cache_chain_mutex to ensure a consistent view of
2186         * cpu_online_mask as well.  Please see cpuup_callback
2187         */
2188        if (slab_is_available()) {
2189                get_online_cpus();
2190                mutex_lock(&cache_chain_mutex);
2191        }
2192
2193        list_for_each_entry(pc, &cache_chain, next) {
2194                char tmp;
2195                int res;
2196
2197                /*
2198                 * This happens when the module gets unloaded and doesn't
2199                 * destroy its slab cache and no-one else reuses the vmalloc
2200                 * area of the module.  Print a warning.
2201                 */
2202                res = probe_kernel_address(pc->name, tmp);
2203                if (res) {
2204                        printk(KERN_ERR
2205                               "SLAB: cache with size %d has lost its name\n",
2206                               pc->buffer_size);
2207                        continue;
2208                }
2209
2210                if (!strcmp(pc->name, name)) {
2211                        printk(KERN_ERR
2212                               "kmem_cache_create: duplicate cache %s\n", name);
2213                        dump_stack();
2214                        goto oops;
2215                }
2216        }
2217
2218#if DEBUG
2219        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
2220#if FORCED_DEBUG
2221        /*
2222         * Enable redzoning and last user accounting, except for caches with
2223         * large objects, if the increased size would increase the object size
2224         * above the next power of two: caches with object sizes just above a
2225         * power of two have a significant amount of internal fragmentation.
2226         */
2227        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2228                                                2 * sizeof(unsigned long long)))
2229                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2230        if (!(flags & SLAB_DESTROY_BY_RCU))
2231                flags |= SLAB_POISON;
2232#endif
2233        if (flags & SLAB_DESTROY_BY_RCU)
2234                BUG_ON(flags & SLAB_POISON);
2235#endif
2236        /*
2237         * Always checks flags, a caller might be expecting debug support which
2238         * isn't available.
2239         */
2240        BUG_ON(flags & ~CREATE_MASK);
2241
2242        /*
2243         * Check that size is in terms of words.  This is needed to avoid
2244         * unaligned accesses for some archs when redzoning is used, and makes
2245         * sure any on-slab bufctl's are also correctly aligned.
2246         */
2247        if (size & (BYTES_PER_WORD - 1)) {
2248                size += (BYTES_PER_WORD - 1);
2249                size &= ~(BYTES_PER_WORD - 1);
2250        }
2251
2252        /* calculate the final buffer alignment: */
2253
2254        /* 1) arch recommendation: can be overridden for debug */
2255        if (flags & SLAB_HWCACHE_ALIGN) {
2256                /*
2257                 * Default alignment: as specified by the arch code.  Except if
2258                 * an object is really small, then squeeze multiple objects into
2259                 * one cacheline.
2260                 */
2261                ralign = cache_line_size();
2262                while (size <= ralign / 2)
2263                        ralign /= 2;
2264        } else {
2265                ralign = BYTES_PER_WORD;
2266        }
2267
2268        /*
2269         * Redzoning and user store require word alignment or possibly larger.
2270         * Note this will be overridden by architecture or caller mandated
2271         * alignment if either is greater than BYTES_PER_WORD.
2272         */
2273        if (flags & SLAB_STORE_USER)
2274                ralign = BYTES_PER_WORD;
2275
2276        if (flags & SLAB_RED_ZONE) {
2277                ralign = REDZONE_ALIGN;
2278                /* If redzoning, ensure that the second redzone is suitably
2279                 * aligned, by adjusting the object size accordingly. */
2280                size += REDZONE_ALIGN - 1;
2281                size &= ~(REDZONE_ALIGN - 1);
2282        }
2283
2284        /* 2) arch mandated alignment */
2285        if (ralign < ARCH_SLAB_MINALIGN) {
2286                ralign = ARCH_SLAB_MINALIGN;
2287        }
2288        /* 3) caller mandated alignment */
2289        if (ralign < align) {
2290                ralign = align;
2291        }
2292        /* disable debug if necessary */
2293        if (ralign > __alignof__(unsigned long long))
2294                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2295        /*
2296         * 4) Store it.
2297         */
2298        align = ralign;
2299
2300        if (slab_is_available())
2301                gfp = GFP_KERNEL;
2302        else
2303                gfp = GFP_NOWAIT;
2304
2305        /* Get cache's description obj. */
2306        cachep = kmem_cache_zalloc(&cache_cache, gfp);
2307        if (!cachep)
2308                goto oops;
2309
2310#if DEBUG
2311        cachep->obj_size = size;
2312
2313        /*
2314         * Both debugging options require word-alignment which is calculated
2315         * into align above.
2316         */
2317        if (flags & SLAB_RED_ZONE) {
2318                /* add space for red zone words */
2319                cachep->obj_offset += sizeof(unsigned long long);
2320                size += 2 * sizeof(unsigned long long);
2321        }
2322        if (flags & SLAB_STORE_USER) {
2323                /* user store requires one word storage behind the end of
2324                 * the real object. But if the second red zone needs to be
2325                 * aligned to 64 bits, we must allow that much space.
2326                 */
2327                if (flags & SLAB_RED_ZONE)
2328                        size += REDZONE_ALIGN;
2329                else
2330                        size += BYTES_PER_WORD;
2331        }
2332#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2333        if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2334            && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2335                cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2336                size = PAGE_SIZE;
2337        }
2338#endif
2339#endif
2340
2341        /*
2342         * Determine if the slab management is 'on' or 'off' slab.
2343         * (bootstrapping cannot cope with offslab caches so don't do
2344         * it too early on. Always use on-slab management when
2345         * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2346         */
2347        if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2348            !(flags & SLAB_NOLEAKTRACE))
2349                /*
2350                 * Size is large, assume best to place the slab management obj
2351                 * off-slab (should allow better packing of objs).
2352                 */
2353                flags |= CFLGS_OFF_SLAB;
2354
2355        size = ALIGN(size, align);
2356
2357        left_over = calculate_slab_order(cachep, size, align, flags);
2358
2359        if (!cachep->num) {
2360                printk(KERN_ERR
2361                       "kmem_cache_create: couldn't create cache %s.\n", name);
2362                kmem_cache_free(&cache_cache, cachep);
2363                cachep = NULL;
2364                goto oops;
2365        }
2366        slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367                          + sizeof(struct slab), align);
2368
2369        /*
2370         * If the slab has been placed off-slab, and we have enough space then
2371         * move it on-slab. This is at the expense of any extra colouring.
2372         */
2373        if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374                flags &= ~CFLGS_OFF_SLAB;
2375                left_over -= slab_size;
2376        }
2377
2378        if (flags & CFLGS_OFF_SLAB) {
2379                /* really off slab. No need for manual alignment */
2380                slab_size =
2381                    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2382
2383#ifdef CONFIG_PAGE_POISONING
2384                /* If we're going to use the generic kernel_map_pages()
2385                 * poisoning, then it's going to smash the contents of
2386                 * the redzone and userword anyhow, so switch them off.
2387                 */
2388                if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2389                        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2390#endif
2391        }
2392
2393        cachep->colour_off = cache_line_size();
2394        /* Offset must be a multiple of the alignment. */
2395        if (cachep->colour_off < align)
2396                cachep->colour_off = align;
2397        cachep->colour = left_over / cachep->colour_off;
2398        cachep->slab_size = slab_size;
2399        cachep->flags = flags;
2400        cachep->gfpflags = 0;
2401        if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2402                cachep->gfpflags |= GFP_DMA;
2403        cachep->buffer_size = size;
2404        cachep->reciprocal_buffer_size = reciprocal_value(size);
2405
2406        if (flags & CFLGS_OFF_SLAB) {
2407                cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2408                /*
2409                 * This is a possibility for one of the malloc_sizes caches.
2410                 * But since we go off slab only for object size greater than
2411                 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412                 * this should not happen at all.
2413                 * But leave a BUG_ON for some lucky dude.
2414                 */
2415                BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2416        }
2417        cachep->ctor = ctor;
2418        cachep->name = name;
2419
2420        if (setup_cpu_cache(cachep, gfp)) {
2421                __kmem_cache_destroy(cachep);
2422                cachep = NULL;
2423                goto oops;
2424        }
2425
2426        /* cache setup completed, link it into the list */
2427        list_add(&cachep->next, &cache_chain);
2428oops:
2429        if (!cachep && (flags & SLAB_PANIC))
2430                panic("kmem_cache_create(): failed to create slab `%s'\n",
2431                      name);
2432        if (slab_is_available()) {
2433                mutex_unlock(&cache_chain_mutex);
2434                put_online_cpus();
2435        }
2436        return cachep;
2437}
2438EXPORT_SYMBOL(kmem_cache_create);
2439
2440#if DEBUG
2441static void check_irq_off(void)
2442{
2443        BUG_ON(!irqs_disabled());
2444}
2445
2446static void check_irq_on(void)
2447{
2448        BUG_ON(irqs_disabled());
2449}
2450
2451static void check_spinlock_acquired(struct kmem_cache *cachep)
2452{
2453#ifdef CONFIG_SMP
2454        check_irq_off();
2455        assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2456#endif
2457}
2458
2459static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2460{
2461#ifdef CONFIG_SMP
2462        check_irq_off();
2463        assert_spin_locked(&cachep->nodelists[node]->list_lock);
2464#endif
2465}
2466
2467#else
2468#define check_irq_off() do { } while(0)
2469#define check_irq_on()  do { } while(0)
2470#define check_spinlock_acquired(x) do { } while(0)
2471#define check_spinlock_acquired_node(x, y) do { } while(0)
2472#endif
2473
2474static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2475                        struct array_cache *ac,
2476                        int force, int node);
2477
2478static void do_drain(void *arg)
2479{
2480        struct kmem_cache *cachep = arg;
2481        struct array_cache *ac;
2482        int node = numa_mem_id();
2483
2484        check_irq_off();
2485        ac = cpu_cache_get(cachep);
2486        spin_lock(&cachep->nodelists[node]->list_lock);
2487        free_block(cachep, ac->entry, ac->avail, node);
2488        spin_unlock(&cachep->nodelists[node]->list_lock);
2489        ac->avail = 0;
2490}
2491
2492static void drain_cpu_caches(struct kmem_cache *cachep)
2493{
2494        struct kmem_list3 *l3;
2495        int node;
2496
2497        on_each_cpu(do_drain, cachep, 1);
2498        check_irq_on();
2499        for_each_online_node(node) {
2500                l3 = cachep->nodelists[node];
2501                if (l3 && l3->alien)
2502                        drain_alien_cache(cachep, l3->alien);
2503        }
2504
2505        for_each_online_node(node) {
2506                l3 = cachep->nodelists[node];
2507                if (l3)
2508                        drain_array(cachep, l3, l3->shared, 1, node);
2509        }
2510}
2511
2512/*
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2515 *
2516 * Returns the actual number of slabs released.
2517 */
2518static int drain_freelist(struct kmem_cache *cache,
2519                        struct kmem_list3 *l3, int tofree)
2520{
2521        struct list_head *p;
2522        int nr_freed;
2523        struct slab *slabp;
2524
2525        nr_freed = 0;
2526        while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2527
2528                spin_lock_irq(&l3->list_lock);
2529                p = l3->slabs_free.prev;
2530                if (p == &l3->slabs_free) {
2531                        spin_unlock_irq(&l3->list_lock);
2532                        goto out;
2533                }
2534
2535                slabp = list_entry(p, struct slab, list);
2536#if DEBUG
2537                BUG_ON(slabp->inuse);
2538#endif
2539                list_del(&slabp->list);
2540                /*
2541                 * Safe to drop the lock. The slab is no longer linked
2542                 * to the cache.
2543                 */
2544                l3->free_objects -= cache->num;
2545                spin_unlock_irq(&l3->list_lock);
2546                slab_destroy(cache, slabp);
2547                nr_freed++;
2548        }
2549out:
2550        return nr_freed;
2551}
2552
2553/* Called with cache_chain_mutex held to protect against cpu hotplug */
2554static int __cache_shrink(struct kmem_cache *cachep)
2555{
2556        int ret = 0, i = 0;
2557        struct kmem_list3 *l3;
2558
2559        drain_cpu_caches(cachep);
2560
2561        check_irq_on();
2562        for_each_online_node(i) {
2563                l3 = cachep->nodelists[i];
2564                if (!l3)
2565                        continue;
2566
2567                drain_freelist(cachep, l3, l3->free_objects);
2568
2569                ret += !list_empty(&l3->slabs_full) ||
2570                        !list_empty(&l3->slabs_partial);
2571        }
2572        return (ret ? 1 : 0);
2573}
2574
2575/**
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2578 *
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2581 */
2582int kmem_cache_shrink(struct kmem_cache *cachep)
2583{
2584        int ret;
2585        BUG_ON(!cachep || in_interrupt());
2586
2587        get_online_cpus();
2588        mutex_lock(&cache_chain_mutex);
2589        ret = __cache_shrink(cachep);
2590        mutex_unlock(&cache_chain_mutex);
2591        put_online_cpus();
2592        return ret;
2593}
2594EXPORT_SYMBOL(kmem_cache_shrink);
2595
2596/**
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2599 *
2600 * Remove a &struct kmem_cache object from the slab cache.
2601 *
2602 * It is expected this function will be called by a module when it is
2603 * unloaded.  This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2606 *
2607 * The cache must be empty before calling this function.
2608 *
2609 * The caller must guarantee that no one will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2611 */
2612void kmem_cache_destroy(struct kmem_cache *cachep)
2613{
2614        BUG_ON(!cachep || in_interrupt());
2615
2616        /* Find the cache in the chain of caches. */
2617        get_online_cpus();
2618        mutex_lock(&cache_chain_mutex);
2619        /*
2620         * the chain is never empty, cache_cache is never destroyed
2621         */
2622        list_del(&cachep->next);
2623        if (__cache_shrink(cachep)) {
2624                slab_error(cachep, "Can't free all objects");
2625                list_add(&cachep->next, &cache_chain);
2626                mutex_unlock(&cache_chain_mutex);
2627                put_online_cpus();
2628                return;
2629        }
2630
2631        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2632                rcu_barrier();
2633
2634        __kmem_cache_destroy(cachep);
2635        mutex_unlock(&cache_chain_mutex);
2636        put_online_cpus();
2637}
2638EXPORT_SYMBOL(kmem_cache_destroy);
2639
2640/*
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches.  The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2650 */
2651static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2652                                   int colour_off, gfp_t local_flags,
2653                                   int nodeid)
2654{
2655        struct slab *slabp;
2656
2657        if (OFF_SLAB(cachep)) {
2658                /* Slab management obj is off-slab. */
2659                slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2660                                              local_flags, nodeid);
2661                /*
2662                 * If the first object in the slab is leaked (it's allocated
2663                 * but no one has a reference to it), we want to make sure
2664                 * kmemleak does not treat the ->s_mem pointer as a reference
2665                 * to the object. Otherwise we will not report the leak.
2666                 */
2667                kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668                                   local_flags);
2669                if (!slabp)
2670                        return NULL;
2671        } else {
2672                slabp = objp + colour_off;
2673                colour_off += cachep->slab_size;
2674        }
2675        slabp->inuse = 0;
2676        slabp->colouroff = colour_off;
2677        slabp->s_mem = objp + colour_off;
2678        slabp->nodeid = nodeid;
2679        slabp->free = 0;
2680        return slabp;
2681}
2682
2683static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2684{
2685        return (kmem_bufctl_t *) (slabp + 1);
2686}
2687
2688static void cache_init_objs(struct kmem_cache *cachep,
2689                            struct slab *slabp)
2690{
2691        int i;
2692
2693        for (i = 0; i < cachep->num; i++) {
2694                void *objp = index_to_obj(cachep, slabp, i);
2695#if DEBUG
2696                /* need to poison the objs? */
2697                if (cachep->flags & SLAB_POISON)
2698                        poison_obj(cachep, objp, POISON_FREE);
2699                if (cachep->flags & SLAB_STORE_USER)
2700                        *dbg_userword(cachep, objp) = NULL;
2701
2702                if (cachep->flags & SLAB_RED_ZONE) {
2703                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2705                }
2706                /*
2707                 * Constructors are not allowed to allocate memory from the same
2708                 * cache which they are a constructor for.  Otherwise, deadlock.
2709                 * They must also be threaded.
2710                 */
2711                if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2712                        cachep->ctor(objp + obj_offset(cachep));
2713
2714                if (cachep->flags & SLAB_RED_ZONE) {
2715                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716                                slab_error(cachep, "constructor overwrote the"
2717                                           " end of an object");
2718                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719                                slab_error(cachep, "constructor overwrote the"
2720                                           " start of an object");
2721                }
2722                if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2723                            OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2724                        kernel_map_pages(virt_to_page(objp),
2725                                         cachep->buffer_size / PAGE_SIZE, 0);
2726#else
2727                if (cachep->ctor)
2728                        cachep->ctor(objp);
2729#endif
2730                slab_bufctl(slabp)[i] = i + 1;
2731        }
2732        slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2733}
2734
2735static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2736{
2737        if (CONFIG_ZONE_DMA_FLAG) {
2738                if (flags & GFP_DMA)
2739                        BUG_ON(!(cachep->gfpflags & GFP_DMA));
2740                else
2741                        BUG_ON(cachep->gfpflags & GFP_DMA);
2742        }
2743}
2744
2745static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746                                int nodeid)
2747{
2748        void *objp = index_to_obj(cachep, slabp, slabp->free);
2749        kmem_bufctl_t next;
2750
2751        slabp->inuse++;
2752        next = slab_bufctl(slabp)[slabp->free];
2753#if DEBUG
2754        slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755        WARN_ON(slabp->nodeid != nodeid);
2756#endif
2757        slabp->free = next;
2758
2759        return objp;
2760}
2761
2762static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763                                void *objp, int nodeid)
2764{
2765        unsigned int objnr = obj_to_index(cachep, slabp, objp);
2766
2767#if DEBUG
2768        /* Verify that the slab belongs to the intended node */
2769        WARN_ON(slabp->nodeid != nodeid);
2770
2771        if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2772                printk(KERN_ERR "slab: double free detected in cache "
2773                                "'%s', objp %p\n", cachep->name, objp);
2774                BUG();
2775        }
2776#endif
2777        slab_bufctl(slabp)[objnr] = slabp->free;
2778        slabp->free = objnr;
2779        slabp->inuse--;
2780}
2781
2782/*
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, and slab debugging.
2786 */
2787static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788                           void *addr)
2789{
2790        int nr_pages;
2791        struct page *page;
2792
2793        page = virt_to_page(addr);
2794
2795        nr_pages = 1;
2796        if (likely(!PageCompound(page)))
2797                nr_pages <<= cache->gfporder;
2798
2799        do {
2800                page_set_cache(page, cache);
2801                page_set_slab(page, slab);
2802                page++;
2803        } while (--nr_pages);
2804}
2805
2806/*
2807 * Grow (by 1) the number of slabs within a cache.  This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 */
2810static int cache_grow(struct kmem_cache *cachep,
2811                gfp_t flags, int nodeid, void *objp)
2812{
2813        struct slab *slabp;
2814        size_t offset;
2815        gfp_t local_flags;
2816        struct kmem_list3 *l3;
2817
2818        /*
2819         * Be lazy and only check for valid flags here,  keeping it out of the
2820         * critical path in kmem_cache_alloc().
2821         */
2822        BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2824
2825        /* Take the l3 list lock to change the colour_next on this node */
2826        check_irq_off();
2827        l3 = cachep->nodelists[nodeid];
2828        spin_lock(&l3->list_lock);
2829
2830        /* Get colour for the slab, and cal the next value. */
2831        offset = l3->colour_next;
2832        l3->colour_next++;
2833        if (l3->colour_next >= cachep->colour)
2834                l3->colour_next = 0;
2835        spin_unlock(&l3->list_lock);
2836
2837        offset *= cachep->colour_off;
2838
2839        if (local_flags & __GFP_WAIT)
2840                local_irq_enable();
2841
2842        /*
2843         * The test for missing atomic flag is performed here, rather than
2844         * the more obvious place, simply to reduce the critical path length
2845         * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846         * will eventually be caught here (where it matters).
2847         */
2848        kmem_flagcheck(cachep, flags);
2849
2850        /*
2851         * Get mem for the objs.  Attempt to allocate a physical page from
2852         * 'nodeid'.
2853         */
2854        if (!objp)
2855                objp = kmem_getpages(cachep, local_flags, nodeid);
2856        if (!objp)
2857                goto failed;
2858
2859        /* Get slab management. */
2860        slabp = alloc_slabmgmt(cachep, objp, offset,
2861                        local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2862        if (!slabp)
2863                goto opps1;
2864
2865        slab_map_pages(cachep, slabp, objp);
2866
2867        cache_init_objs(cachep, slabp);
2868
2869        if (local_flags & __GFP_WAIT)
2870                local_irq_disable();
2871        check_irq_off();
2872        spin_lock(&l3->list_lock);
2873
2874        /* Make slab active. */
2875        list_add_tail(&slabp->list, &(l3->slabs_free));
2876        STATS_INC_GROWN(cachep);
2877        l3->free_objects += cachep->num;
2878        spin_unlock(&l3->list_lock);
2879        return 1;
2880opps1:
2881        kmem_freepages(cachep, objp);
2882failed:
2883        if (local_flags & __GFP_WAIT)
2884                local_irq_disable();
2885        return 0;
2886}
2887
2888#if DEBUG
2889
2890/*
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
2894 */
2895static void kfree_debugcheck(const void *objp)
2896{
2897        if (!virt_addr_valid(objp)) {
2898                printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2899                       (unsigned long)objp);
2900                BUG();
2901        }
2902}
2903
2904static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2905{
2906        unsigned long long redzone1, redzone2;
2907
2908        redzone1 = *dbg_redzone1(cache, obj);
2909        redzone2 = *dbg_redzone2(cache, obj);
2910
2911        /*
2912         * Redzone is ok.
2913         */
2914        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915                return;
2916
2917        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918                slab_error(cache, "double free detected");
2919        else
2920                slab_error(cache, "memory outside object was overwritten");
2921
2922        printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923                        obj, redzone1, redzone2);
2924}
2925
2926static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2927                                   void *caller)
2928{
2929        struct page *page;
2930        unsigned int objnr;
2931        struct slab *slabp;
2932
2933        BUG_ON(virt_to_cache(objp) != cachep);
2934
2935        objp -= obj_offset(cachep);
2936        kfree_debugcheck(objp);
2937        page = virt_to_head_page(objp);
2938
2939        slabp = page_get_slab(page);
2940
2941        if (cachep->flags & SLAB_RED_ZONE) {
2942                verify_redzone_free(cachep, objp);
2943                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2945        }
2946        if (cachep->flags & SLAB_STORE_USER)
2947                *dbg_userword(cachep, objp) = caller;
2948
2949        objnr = obj_to_index(cachep, slabp, objp);
2950
2951        BUG_ON(objnr >= cachep->num);
2952        BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2953
2954#ifdef CONFIG_DEBUG_SLAB_LEAK
2955        slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956#endif
2957        if (cachep->flags & SLAB_POISON) {
2958#ifdef CONFIG_DEBUG_PAGEALLOC
2959                if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2960                        store_stackinfo(cachep, objp, (unsigned long)caller);
2961                        kernel_map_pages(virt_to_page(objp),
2962                                         cachep->buffer_size / PAGE_SIZE, 0);
2963                } else {
2964                        poison_obj(cachep, objp, POISON_FREE);
2965                }
2966#else
2967                poison_obj(cachep, objp, POISON_FREE);
2968#endif
2969        }
2970        return objp;
2971}
2972
2973static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2974{
2975        kmem_bufctl_t i;
2976        int entries = 0;
2977
2978        /* Check slab's freelist to see if this obj is there. */
2979        for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980                entries++;
2981                if (entries > cachep->num || i >= cachep->num)
2982                        goto bad;
2983        }
2984        if (entries != cachep->num - slabp->inuse) {
2985bad:
2986                printk(KERN_ERR "slab: Internal list corruption detected in "
2987                                "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988                        cachep->name, cachep->num, slabp, slabp->inuse);
2989                for (i = 0;
2990                     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2991                     i++) {
2992                        if (i % 16 == 0)
2993                                printk("\n%03x:", i);
2994                        printk(" %02x", ((unsigned char *)slabp)[i]);
2995                }
2996                printk("\n");
2997                BUG();
2998        }
2999}
3000#else
3001#define kfree_debugcheck(x) do { } while(0)
3002#define cache_free_debugcheck(x,objp,z) (objp)
3003#define check_slabp(x,y) do { } while(0)
3004#endif
3005
3006static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3007{
3008        int batchcount;
3009        struct kmem_list3 *l3;
3010        struct array_cache *ac;
3011        int node;
3012
3013retry:
3014        check_irq_off();
3015        node = numa_mem_id();
3016        ac = cpu_cache_get(cachep);
3017        batchcount = ac->batchcount;
3018        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3019                /*
3020                 * If there was little recent activity on this cache, then
3021                 * perform only a partial refill.  Otherwise we could generate
3022                 * refill bouncing.
3023                 */
3024                batchcount = BATCHREFILL_LIMIT;
3025        }
3026        l3 = cachep->nodelists[node];
3027
3028        BUG_ON(ac->avail > 0 || !l3);
3029        spin_lock(&l3->list_lock);
3030
3031        /* See if we can refill from the shared array */
3032        if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3033                l3->shared->touched = 1;
3034                goto alloc_done;
3035        }
3036
3037        while (batchcount > 0) {
3038                struct list_head *entry;
3039                struct slab *slabp;
3040                /* Get slab alloc is to come from. */
3041                entry = l3->slabs_partial.next;
3042                if (entry == &l3->slabs_partial) {
3043                        l3->free_touched = 1;
3044                        entry = l3->slabs_free.next;
3045                        if (entry == &l3->slabs_free)
3046                                goto must_grow;
3047                }
3048
3049                slabp = list_entry(entry, struct slab, list);
3050                check_slabp(cachep, slabp);
3051                check_spinlock_acquired(cachep);
3052
3053                /*
3054                 * The slab was either on partial or free list so
3055                 * there must be at least one object available for
3056                 * allocation.
3057                 */
3058                BUG_ON(slabp->inuse >= cachep->num);
3059
3060                while (slabp->inuse < cachep->num && batchcount--) {
3061                        STATS_INC_ALLOCED(cachep);
3062                        STATS_INC_ACTIVE(cachep);
3063                        STATS_SET_HIGH(cachep);
3064
3065                        ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3066                                                            node);
3067                }
3068                check_slabp(cachep, slabp);
3069
3070                /* move slabp to correct slabp list: */
3071                list_del(&slabp->list);
3072                if (slabp->free == BUFCTL_END)
3073                        list_add(&slabp->list, &l3->slabs_full);
3074                else
3075                        list_add(&slabp->list, &l3->slabs_partial);
3076        }
3077
3078must_grow:
3079        l3->free_objects -= ac->avail;
3080alloc_done:
3081        spin_unlock(&l3->list_lock);
3082
3083        if (unlikely(!ac->avail)) {
3084                int x;
3085                x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3086
3087                /* cache_grow can reenable interrupts, then ac could change. */
3088                ac = cpu_cache_get(cachep);
3089                if (!x && ac->avail == 0)       /* no objects in sight? abort */
3090                        return NULL;
3091
3092                if (!ac->avail)         /* objects refilled by interrupt? */
3093                        goto retry;
3094        }
3095        ac->touched = 1;
3096        return ac->entry[--ac->avail];
3097}
3098
3099static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3100                                                gfp_t flags)
3101{
3102        might_sleep_if(flags & __GFP_WAIT);
3103#if DEBUG
3104        kmem_flagcheck(cachep, flags);
3105#endif
3106}
3107
3108#if DEBUG
3109static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3110                                gfp_t flags, void *objp, void *caller)
3111{
3112        if (!objp)
3113                return objp;
3114        if (cachep->flags & SLAB_POISON) {
3115#ifdef CONFIG_DEBUG_PAGEALLOC
3116                if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3117                        kernel_map_pages(virt_to_page(objp),
3118                                         cachep->buffer_size / PAGE_SIZE, 1);
3119                else
3120                        check_poison_obj(cachep, objp);
3121#else
3122                check_poison_obj(cachep, objp);
3123#endif
3124                poison_obj(cachep, objp, POISON_INUSE);
3125        }
3126        if (cachep->flags & SLAB_STORE_USER)
3127                *dbg_userword(cachep, objp) = caller;
3128
3129        if (cachep->flags & SLAB_RED_ZONE) {
3130                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3131                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3132                        slab_error(cachep, "double free, or memory outside"
3133                                                " object was overwritten");
3134                        printk(KERN_ERR
3135                                "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3136                                objp, *dbg_redzone1(cachep, objp),
3137                                *dbg_redzone2(cachep, objp));
3138                }
3139                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3140                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3141        }
3142#ifdef CONFIG_DEBUG_SLAB_LEAK
3143        {
3144                struct slab *slabp;
3145                unsigned objnr;
3146
3147                slabp = page_get_slab(virt_to_head_page(objp));
3148                objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3149                slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3150        }
3151#endif
3152        objp += obj_offset(cachep);
3153        if (cachep->ctor && cachep->flags & SLAB_POISON)
3154                cachep->ctor(objp);
3155#if ARCH_SLAB_MINALIGN
3156        if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3157                printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158                       objp, ARCH_SLAB_MINALIGN);
3159        }
3160#endif
3161        return objp;
3162}
3163#else
3164#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3165#endif
3166
3167static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3168{
3169        if (cachep == &cache_cache)
3170                return false;
3171
3172        return should_failslab(obj_size(cachep), flags, cachep->flags);
3173}
3174
3175static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3176{
3177        void *objp;
3178        struct array_cache *ac;
3179
3180        check_irq_off();
3181
3182        ac = cpu_cache_get(cachep);
3183        if (likely(ac->avail)) {
3184                STATS_INC_ALLOCHIT(cachep);
3185                ac->touched = 1;
3186                objp = ac->entry[--ac->avail];
3187        } else {
3188                STATS_INC_ALLOCMISS(cachep);
3189                objp = cache_alloc_refill(cachep, flags);
3190                /*
3191                 * the 'ac' may be updated by cache_alloc_refill(),
3192                 * and kmemleak_erase() requires its correct value.
3193                 */
3194                ac = cpu_cache_get(cachep);
3195        }
3196        /*
3197         * To avoid a false negative, if an object that is in one of the
3198         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199         * treat the array pointers as a reference to the object.
3200         */
3201        if (objp)
3202                kmemleak_erase(&ac->entry[ac->avail]);
3203        return objp;
3204}
3205
3206#ifdef CONFIG_NUMA
3207/*
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 *
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3212 */
3213static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3214{
3215        int nid_alloc, nid_here;
3216
3217        if (in_interrupt() || (flags & __GFP_THISNODE))
3218                return NULL;
3219        nid_alloc = nid_here = numa_mem_id();
3220        get_mems_allowed();
3221        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222                nid_alloc = cpuset_slab_spread_node();
3223        else if (current->mempolicy)
3224                nid_alloc = slab_node(current->mempolicy);
3225        put_mems_allowed();
3226        if (nid_alloc != nid_here)
3227                return ____cache_alloc_node(cachep, flags, nid_alloc);
3228        return NULL;
3229}
3230
3231/*
3232 * Fallback function if there was no memory available and no objects on a
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
3238 */
3239static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3240{
3241        struct zonelist *zonelist;
3242        gfp_t local_flags;
3243        struct zoneref *z;
3244        struct zone *zone;
3245        enum zone_type high_zoneidx = gfp_zone(flags);
3246        void *obj = NULL;
3247        int nid;
3248
3249        if (flags & __GFP_THISNODE)
3250                return NULL;
3251
3252        get_mems_allowed();
3253        zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3254        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3255
3256retry:
3257        /*
3258         * Look through allowed nodes for objects available
3259         * from existing per node queues.
3260         */
3261        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3262                nid = zone_to_nid(zone);
3263
3264                if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265                        cache->nodelists[nid] &&
3266                        cache->nodelists[nid]->free_objects) {
3267                                obj = ____cache_alloc_node(cache,
3268                                        flags | GFP_THISNODE, nid);
3269                                if (obj)
3270                                        break;
3271                }
3272        }
3273
3274        if (!obj) {
3275                /*
3276                 * This allocation will be performed within the constraints
3277                 * of the current cpuset / memory policy requirements.
3278                 * We may trigger various forms of reclaim on the allowed
3279                 * set and go into memory reserves if necessary.
3280                 */
3281                if (local_flags & __GFP_WAIT)
3282                        local_irq_enable();
3283                kmem_flagcheck(cache, flags);
3284                obj = kmem_getpages(cache, local_flags, numa_mem_id());
3285                if (local_flags & __GFP_WAIT)
3286                        local_irq_disable();
3287                if (obj) {
3288                        /*
3289                         * Insert into the appropriate per node queues
3290                         */
3291                        nid = page_to_nid(virt_to_page(obj));
3292                        if (cache_grow(cache, flags, nid, obj)) {
3293                                obj = ____cache_alloc_node(cache,
3294                                        flags | GFP_THISNODE, nid);
3295                                if (!obj)
3296                                        /*
3297                                         * Another processor may allocate the
3298                                         * objects in the slab since we are
3299                                         * not holding any locks.
3300                                         */
3301                                        goto retry;
3302                        } else {
3303                                /* cache_grow already freed obj */
3304                                obj = NULL;
3305                        }
3306                }
3307        }
3308        put_mems_allowed();
3309        return obj;
3310}
3311
3312/*
3313 * A interface to enable slab creation on nodeid
3314 */
3315static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3316                                int nodeid)
3317{
3318        struct list_head *entry;
3319        struct slab *slabp;
3320        struct kmem_list3 *l3;
3321        void *obj;
3322        int x;
3323
3324        l3 = cachep->nodelists[nodeid];
3325        BUG_ON(!l3);
3326
3327retry:
3328        check_irq_off();
3329        spin_lock(&l3->list_lock);
3330        entry = l3->slabs_partial.next;
3331        if (entry == &l3->slabs_partial) {
3332                l3->free_touched = 1;
3333                entry = l3->slabs_free.next;
3334                if (entry == &l3->slabs_free)
3335                        goto must_grow;
3336        }
3337
3338        slabp = list_entry(entry, struct slab, list);
3339        check_spinlock_acquired_node(cachep, nodeid);
3340        check_slabp(cachep, slabp);
3341
3342        STATS_INC_NODEALLOCS(cachep);
3343        STATS_INC_ACTIVE(cachep);
3344        STATS_SET_HIGH(cachep);
3345
3346        BUG_ON(slabp->inuse == cachep->num);
3347
3348        obj = slab_get_obj(cachep, slabp, nodeid);
3349        check_slabp(cachep, slabp);
3350        l3->free_objects--;
3351        /* move slabp to correct slabp list: */
3352        list_del(&slabp->list);
3353
3354        if (slabp->free == BUFCTL_END)
3355                list_add(&slabp->list, &l3->slabs_full);
3356        else
3357                list_add(&slabp->list, &l3->slabs_partial);
3358
3359        spin_unlock(&l3->list_lock);
3360        goto done;
3361
3362must_grow:
3363        spin_unlock(&l3->list_lock);
3364        x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365        if (x)
3366                goto retry;
3367
3368        return fallback_alloc(cachep, flags);
3369
3370done:
3371        return obj;
3372}
3373
3374/**
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3380 *
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3383 *
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3385 */
3386static __always_inline void *
3387__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3388                   void *caller)
3389{
3390        unsigned long save_flags;
3391        void *ptr;
3392        int slab_node = numa_mem_id();
3393
3394        flags &= gfp_allowed_mask;
3395
3396        lockdep_trace_alloc(flags);
3397
3398        if (slab_should_failslab(cachep, flags))
3399                return NULL;
3400
3401        cache_alloc_debugcheck_before(cachep, flags);
3402        local_irq_save(save_flags);
3403
3404        if (nodeid == -1)
3405                nodeid = slab_node;
3406
3407        if (unlikely(!cachep->nodelists[nodeid])) {
3408                /* Node not bootstrapped yet */
3409                ptr = fallback_alloc(cachep, flags);
3410                goto out;
3411        }
3412
3413        if (nodeid == slab_node) {
3414                /*
3415                 * Use the locally cached objects if possible.
3416                 * However ____cache_alloc does not allow fallback
3417                 * to other nodes. It may fail while we still have
3418                 * objects on other nodes available.
3419                 */
3420                ptr = ____cache_alloc(cachep, flags);
3421                if (ptr)
3422                        goto out;
3423        }
3424        /* ___cache_alloc_node can fall back to other nodes */
3425        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3426  out:
3427        local_irq_restore(save_flags);
3428        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3429        kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3430                                 flags);
3431
3432        if (likely(ptr))
3433                kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3434
3435        if (unlikely((flags & __GFP_ZERO) && ptr))
3436                memset(ptr, 0, obj_size(cachep));
3437
3438        return ptr;
3439}
3440
3441static __always_inline void *
3442__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3443{
3444        void *objp;
3445
3446        if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3447                objp = alternate_node_alloc(cache, flags);
3448                if (objp)
3449                        goto out;
3450        }
3451        objp = ____cache_alloc(cache, flags);
3452
3453        /*
3454         * We may just have run out of memory on the local node.
3455         * ____cache_alloc_node() knows how to locate memory on other nodes
3456         */
3457        if (!objp)
3458                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3459
3460  out:
3461        return objp;
3462}
3463#else
3464
3465static __always_inline void *
3466__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3467{
3468        return ____cache_alloc(cachep, flags);
3469}
3470
3471#endif /* CONFIG_NUMA */
3472
3473static __always_inline void *
3474__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3475{
3476        unsigned long save_flags;
3477        void *objp;
3478
3479        flags &= gfp_allowed_mask;
3480
3481        lockdep_trace_alloc(flags);
3482
3483        if (slab_should_failslab(cachep, flags))
3484                return NULL;
3485
3486        cache_alloc_debugcheck_before(cachep, flags);
3487        local_irq_save(save_flags);
3488        objp = __do_cache_alloc(cachep, flags);
3489        local_irq_restore(save_flags);
3490        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3491        kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3492                                 flags);
3493        prefetchw(objp);
3494
3495        if (likely(objp))
3496                kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3497
3498        if (unlikely((flags & __GFP_ZERO) && objp))
3499                memset(objp, 0, obj_size(cachep));
3500
3501        return objp;
3502}
3503
3504/*
3505 * Caller needs to acquire correct kmem_list's list_lock
3506 */
3507static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3508                       int node)
3509{
3510        int i;
3511        struct kmem_list3 *l3;
3512
3513        for (i = 0; i < nr_objects; i++) {
3514                void *objp = objpp[i];
3515                struct slab *slabp;
3516
3517                slabp = virt_to_slab(objp);
3518                l3 = cachep->nodelists[node];
3519                list_del(&slabp->list);
3520                check_spinlock_acquired_node(cachep, node);
3521                check_slabp(cachep, slabp);
3522                slab_put_obj(cachep, slabp, objp, node);
3523                STATS_DEC_ACTIVE(cachep);
3524                l3->free_objects++;
3525                check_slabp(cachep, slabp);
3526
3527                /* fixup slab chains */
3528                if (slabp->inuse == 0) {
3529                        if (l3->free_objects > l3->free_limit) {
3530                                l3->free_objects -= cachep->num;
3531                                /* No need to drop any previously held
3532                                 * lock here, even if we have a off-slab slab
3533                                 * descriptor it is guaranteed to come from
3534                                 * a different cache, refer to comments before
3535                                 * alloc_slabmgmt.
3536                                 */
3537                                slab_destroy(cachep, slabp);
3538                        } else {
3539                                list_add(&slabp->list, &l3->slabs_free);
3540                        }
3541                } else {
3542                        /* Unconditionally move a slab to the end of the
3543                         * partial list on free - maximum time for the
3544                         * other objects to be freed, too.
3545                         */
3546                        list_add_tail(&slabp->list, &l3->slabs_partial);
3547                }
3548        }
3549}
3550
3551static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3552{
3553        int batchcount;
3554        struct kmem_list3 *l3;
3555        int node = numa_mem_id();
3556
3557        batchcount = ac->batchcount;
3558#if DEBUG
3559        BUG_ON(!batchcount || batchcount > ac->avail);
3560#endif
3561        check_irq_off();
3562        l3 = cachep->nodelists[node];
3563        spin_lock(&l3->list_lock);
3564        if (l3->shared) {
3565                struct array_cache *shared_array = l3->shared;
3566                int max = shared_array->limit - shared_array->avail;
3567                if (max) {
3568                        if (batchcount > max)
3569                                batchcount = max;
3570                        memcpy(&(shared_array->entry[shared_array->avail]),
3571                               ac->entry, sizeof(void *) * batchcount);
3572                        shared_array->avail += batchcount;
3573                        goto free_done;
3574                }
3575        }
3576
3577        free_block(cachep, ac->entry, batchcount, node);
3578free_done:
3579#if STATS
3580        {
3581                int i = 0;
3582                struct list_head *p;
3583
3584                p = l3->slabs_free.next;
3585                while (p != &(l3->slabs_free)) {
3586                        struct slab *slabp;
3587
3588                        slabp = list_entry(p, struct slab, list);
3589                        BUG_ON(slabp->inuse);
3590
3591                        i++;
3592                        p = p->next;
3593                }
3594                STATS_SET_FREEABLE(cachep, i);
3595        }
3596#endif
3597        spin_unlock(&l3->list_lock);
3598        ac->avail -= batchcount;
3599        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3600}
3601
3602/*
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released.  Called with disabled ints.
3605 */
3606static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3607{
3608        struct array_cache *ac = cpu_cache_get(cachep);
3609
3610        check_irq_off();
3611        kmemleak_free_recursive(objp, cachep->flags);
3612        objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3613
3614        kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3615
3616        /*
3617         * Skip calling cache_free_alien() when the platform is not numa.
3618         * This will avoid cache misses that happen while accessing slabp (which
3619         * is per page memory  reference) to get nodeid. Instead use a global
3620         * variable to skip the call, which is mostly likely to be present in
3621         * the cache.
3622         */
3623        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3624                return;
3625
3626        if (likely(ac->avail < ac->limit)) {
3627                STATS_INC_FREEHIT(cachep);
3628                ac->entry[ac->avail++] = objp;
3629                return;
3630        } else {
3631                STATS_INC_FREEMISS(cachep);
3632                cache_flusharray(cachep, ac);
3633                ac->entry[ac->avail++] = objp;
3634        }
3635}
3636
3637/**
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 *
3642 * Allocate an object from this cache.  The flags are only relevant
3643 * if the cache has no available objects.
3644 */
3645void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3646{
3647        void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3648
3649        trace_kmem_cache_alloc(_RET_IP_, ret,
3650                               obj_size(cachep), cachep->buffer_size, flags);
3651
3652        return ret;
3653}
3654EXPORT_SYMBOL(kmem_cache_alloc);
3655
3656#ifdef CONFIG_TRACING
3657void *
3658kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3659{
3660        void *ret;
3661
3662        ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3663
3664        trace_kmalloc(_RET_IP_, ret,
3665                      size, slab_buffer_size(cachep), flags);
3666        return ret;
3667}
3668EXPORT_SYMBOL(kmem_cache_alloc_trace);
3669#endif
3670
3671#ifdef CONFIG_NUMA
3672void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3673{
3674        void *ret = __cache_alloc_node(cachep, flags, nodeid,
3675                                       __builtin_return_address(0));
3676
3677        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3678                                    obj_size(cachep), cachep->buffer_size,
3679                                    flags, nodeid);
3680
3681        return ret;
3682}
3683EXPORT_SYMBOL(kmem_cache_alloc_node);
3684
3685#ifdef CONFIG_TRACING
3686void *kmem_cache_alloc_node_trace(size_t size,
3687                                  struct kmem_cache *cachep,
3688                                  gfp_t flags,
3689                                  int nodeid)
3690{
3691        void *ret;
3692
3693        ret = __cache_alloc_node(cachep, flags, nodeid,
3694                                  __builtin_return_address(0));
3695        trace_kmalloc_node(_RET_IP_, ret,
3696                           size, slab_buffer_size(cachep),
3697                           flags, nodeid);
3698        return ret;
3699}
3700EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3701#endif
3702
3703static __always_inline void *
3704__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3705{
3706        struct kmem_cache *cachep;
3707
3708        cachep = kmem_find_general_cachep(size, flags);
3709        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3710                return cachep;
3711        return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3712}
3713
3714#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3715void *__kmalloc_node(size_t size, gfp_t flags, int node)
3716{
3717        return __do_kmalloc_node(size, flags, node,
3718                        __builtin_return_address(0));
3719}
3720EXPORT_SYMBOL(__kmalloc_node);
3721
3722void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3723                int node, unsigned long caller)
3724{
3725        return __do_kmalloc_node(size, flags, node, (void *)caller);
3726}
3727EXPORT_SYMBOL(__kmalloc_node_track_caller);
3728#else
3729void *__kmalloc_node(size_t size, gfp_t flags, int node)
3730{
3731        return __do_kmalloc_node(size, flags, node, NULL);
3732}
3733EXPORT_SYMBOL(__kmalloc_node);
3734#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3735#endif /* CONFIG_NUMA */
3736
3737/**
3738 * __do_kmalloc - allocate memory
3739 * @size: how many bytes of memory are required.
3740 * @flags: the type of memory to allocate (see kmalloc).
3741 * @caller: function caller for debug tracking of the caller
3742 */
3743static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3744                                          void *caller)
3745{
3746        struct kmem_cache *cachep;
3747        void *ret;
3748
3749        /* If you want to save a few bytes .text space: replace
3750         * __ with kmem_.
3751         * Then kmalloc uses the uninlined functions instead of the inline
3752         * functions.
3753         */
3754        cachep = __find_general_cachep(size, flags);
3755        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3756                return cachep;
3757        ret = __cache_alloc(cachep, flags, caller);
3758
3759        trace_kmalloc((unsigned long) caller, ret,
3760                      size, cachep->buffer_size, flags);
3761
3762        return ret;
3763}
3764
3765
3766#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3767void *__kmalloc(size_t size, gfp_t flags)
3768{
3769        return __do_kmalloc(size, flags, __builtin_return_address(0));
3770}
3771EXPORT_SYMBOL(__kmalloc);
3772
3773void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3774{
3775        return __do_kmalloc(size, flags, (void *)caller);
3776}
3777EXPORT_SYMBOL(__kmalloc_track_caller);
3778
3779#else
3780void *__kmalloc(size_t size, gfp_t flags)
3781{
3782        return __do_kmalloc(size, flags, NULL);
3783}
3784EXPORT_SYMBOL(__kmalloc);
3785#endif
3786
3787/**
3788 * kmem_cache_free - Deallocate an object
3789 * @cachep: The cache the allocation was from.
3790 * @objp: The previously allocated object.
3791 *
3792 * Free an object which was previously allocated from this
3793 * cache.
3794 */
3795void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3796{
3797        unsigned long flags;
3798
3799        local_irq_save(flags);
3800        debug_check_no_locks_freed(objp, obj_size(cachep));
3801        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3802                debug_check_no_obj_freed(objp, obj_size(cachep));
3803        __cache_free(cachep, objp);
3804        local_irq_restore(flags);
3805
3806        trace_kmem_cache_free(_RET_IP_, objp);
3807}
3808EXPORT_SYMBOL(kmem_cache_free);
3809
3810/**
3811 * kfree - free previously allocated memory
3812 * @objp: pointer returned by kmalloc.
3813 *
3814 * If @objp is NULL, no operation is performed.
3815 *
3816 * Don't free memory not originally allocated by kmalloc()
3817 * or you will run into trouble.
3818 */
3819void kfree(const void *objp)
3820{
3821        struct kmem_cache *c;
3822        unsigned long flags;
3823
3824        trace_kfree(_RET_IP_, objp);
3825
3826        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3827                return;
3828        local_irq_save(flags);
3829        kfree_debugcheck(objp);
3830        c = virt_to_cache(objp);
3831        debug_check_no_locks_freed(objp, obj_size(c));
3832        debug_check_no_obj_freed(objp, obj_size(c));
3833        __cache_free(c, (void *)objp);
3834        local_irq_restore(flags);
3835}
3836EXPORT_SYMBOL(kfree);
3837
3838unsigned int kmem_cache_size(struct kmem_cache *cachep)
3839{
3840        return obj_size(cachep);
3841}
3842EXPORT_SYMBOL(kmem_cache_size);
3843
3844/*
3845 * This initializes kmem_list3 or resizes various caches for all nodes.
3846 */
3847static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3848{
3849        int node;
3850        struct kmem_list3 *l3;
3851        struct array_cache *new_shared;
3852        struct array_cache **new_alien = NULL;
3853
3854        for_each_online_node(node) {
3855
3856                if (use_alien_caches) {
3857                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3858                        if (!new_alien)
3859                                goto fail;
3860                }
3861
3862                new_shared = NULL;
3863                if (cachep->shared) {
3864                        new_shared = alloc_arraycache(node,
3865                                cachep->shared*cachep->batchcount,
3866                                        0xbaadf00d, gfp);
3867                        if (!new_shared) {
3868                                free_alien_cache(new_alien);
3869                                goto fail;
3870                        }
3871                }
3872
3873                l3 = cachep->nodelists[node];
3874                if (l3) {
3875                        struct array_cache *shared = l3->shared;
3876
3877                        spin_lock_irq(&l3->list_lock);
3878
3879                        if (shared)
3880                                free_block(cachep, shared->entry,
3881                                                shared->avail, node);
3882
3883                        l3->shared = new_shared;
3884                        if (!l3->alien) {
3885                                l3->alien = new_alien;
3886                                new_alien = NULL;
3887                        }
3888                        l3->free_limit = (1 + nr_cpus_node(node)) *
3889                                        cachep->batchcount + cachep->num;
3890                        spin_unlock_irq(&l3->list_lock);
3891                        kfree(shared);
3892                        free_alien_cache(new_alien);
3893                        continue;
3894                }
3895                l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3896                if (!l3) {
3897                        free_alien_cache(new_alien);
3898                        kfree(new_shared);
3899                        goto fail;
3900                }
3901
3902                kmem_list3_init(l3);
3903                l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3904                                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3905                l3->shared = new_shared;
3906                l3->alien = new_alien;
3907                l3->free_limit = (1 + nr_cpus_node(node)) *
3908                                        cachep->batchcount + cachep->num;
3909                cachep->nodelists[node] = l3;
3910        }
3911        return 0;
3912
3913fail:
3914        if (!cachep->next.next) {
3915                /* Cache is not active yet. Roll back what we did */
3916                node--;
3917                while (node >= 0) {
3918                        if (cachep->nodelists[node]) {
3919                                l3 = cachep->nodelists[node];
3920
3921                                kfree(l3->shared);
3922                                free_alien_cache(l3->alien);
3923                                kfree(l3);
3924                                cachep->nodelists[node] = NULL;
3925                        }
3926                        node--;
3927                }
3928        }
3929        return -ENOMEM;
3930}
3931
3932struct ccupdate_struct {
3933        struct kmem_cache *cachep;
3934        struct array_cache *new[NR_CPUS];
3935};
3936
3937static void do_ccupdate_local(void *info)
3938{
3939        struct ccupdate_struct *new = info;
3940        struct array_cache *old;
3941
3942        check_irq_off();
3943        old = cpu_cache_get(new->cachep);
3944
3945        new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3946        new->new[smp_processor_id()] = old;
3947}
3948
3949/* Always called with the cache_chain_mutex held */
3950static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951                                int batchcount, int shared, gfp_t gfp)
3952{
3953        struct ccupdate_struct *new;
3954        int i;
3955
3956        new = kzalloc(sizeof(*new), gfp);
3957        if (!new)
3958                return -ENOMEM;
3959
3960        for_each_online_cpu(i) {
3961                new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3962                                                batchcount, gfp);
3963                if (!new->new[i]) {
3964                        for (i--; i >= 0; i--)
3965                                kfree(new->new[i]);
3966                        kfree(new);
3967                        return -ENOMEM;
3968                }
3969        }
3970        new->cachep = cachep;
3971
3972        on_each_cpu(do_ccupdate_local, (void *)new, 1);
3973
3974        check_irq_on();
3975        cachep->batchcount = batchcount;
3976        cachep->limit = limit;
3977        cachep->shared = shared;
3978
3979        for_each_online_cpu(i) {
3980                struct array_cache *ccold = new->new[i];
3981                if (!ccold)
3982                        continue;
3983                spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3984                free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3985                spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3986                kfree(ccold);
3987        }
3988        kfree(new);
3989        return alloc_kmemlist(cachep, gfp);
3990}
3991
3992/* Called with cache_chain_mutex held always */
3993static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3994{
3995        int err;
3996        int limit, shared;
3997
3998        /*
3999         * The head array serves three purposes:
4000         * - create a LIFO ordering, i.e. return objects that are cache-warm
4001         * - reduce the number of spinlock operations.
4002         * - reduce the number of linked list operations on the slab and
4003         *   bufctl chains: array operations are cheaper.
4004         * The numbers are guessed, we should auto-tune as described by
4005         * Bonwick.
4006         */
4007        if (cachep->buffer_size > 131072)
4008                limit = 1;
4009        else if (cachep->buffer_size > PAGE_SIZE)
4010                limit = 8;
4011        else if (cachep->buffer_size > 1024)
4012                limit = 24;
4013        else if (cachep->buffer_size > 256)
4014                limit = 54;
4015        else
4016                limit = 120;
4017
4018        /*
4019         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020         * allocation behaviour: Most allocs on one cpu, most free operations
4021         * on another cpu. For these cases, an efficient object passing between
4022         * cpus is necessary. This is provided by a shared array. The array
4023         * replaces Bonwick's magazine layer.
4024         * On uniprocessor, it's functionally equivalent (but less efficient)
4025         * to a larger limit. Thus disabled by default.
4026         */
4027        shared = 0;
4028        if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4029                shared = 8;
4030
4031#if DEBUG
4032        /*
4033         * With debugging enabled, large batchcount lead to excessively long
4034         * periods with disabled local interrupts. Limit the batchcount
4035         */
4036        if (limit > 32)
4037                limit = 32;
4038#endif
4039        err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4040        if (err)
4041                printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4042                       cachep->name, -err);
4043        return err;
4044}
4045
4046/*
4047 * Drain an array if it contains any elements taking the l3 lock only if
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
4050 */
4051static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4052                         struct array_cache *ac, int force, int node)
4053{
4054        int tofree;
4055
4056        if (!ac || !ac->avail)
4057                return;
4058        if (ac->touched && !force) {
4059                ac->touched = 0;
4060        } else {
4061                spin_lock_irq(&l3->list_lock);
4062                if (ac->avail) {
4063                        tofree = force ? ac->avail : (ac->limit + 4) / 5;
4064                        if (tofree > ac->avail)
4065                                tofree = (ac->avail + 1) / 2;
4066                        free_block(cachep, ac->entry, tofree, node);
4067                        ac->avail -= tofree;
4068                        memmove(ac->entry, &(ac->entry[tofree]),
4069                                sizeof(void *) * ac->avail);
4070                }
4071                spin_unlock_irq(&l3->list_lock);
4072        }
4073}
4074
4075/**
4076 * cache_reap - Reclaim memory from caches.
4077 * @w: work descriptor
4078 *
4079 * Called from workqueue/eventd every few seconds.
4080 * Purpose:
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4083 *
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
4086 */
4087static void cache_reap(struct work_struct *w)
4088{
4089        struct kmem_cache *searchp;
4090        struct kmem_list3 *l3;
4091        int node = numa_mem_id();
4092        struct delayed_work *work = to_delayed_work(w);
4093
4094        if (!mutex_trylock(&cache_chain_mutex))
4095                /* Give up. Setup the next iteration. */
4096                goto out;
4097
4098        list_for_each_entry(searchp, &cache_chain, next) {
4099                check_irq_on();
4100
4101                /*
4102                 * We only take the l3 lock if absolutely necessary and we
4103                 * have established with reasonable certainty that
4104                 * we can do some work if the lock was obtained.
4105                 */
4106                l3 = searchp->nodelists[node];
4107
4108                reap_alien(searchp, l3);
4109
4110                drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4111
4112                /*
4113                 * These are racy checks but it does not matter
4114                 * if we skip one check or scan twice.
4115                 */
4116                if (time_after(l3->next_reap, jiffies))
4117                        goto next;
4118
4119                l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4120
4121                drain_array(searchp, l3, l3->shared, 0, node);
4122
4123                if (l3->free_touched)
4124                        l3->free_touched = 0;
4125                else {
4126                        int freed;
4127
4128                        freed = drain_freelist(searchp, l3, (l3->free_limit +
4129                                5 * searchp->num - 1) / (5 * searchp->num));
4130                        STATS_ADD_REAPED(searchp, freed);
4131                }
4132next:
4133                cond_resched();
4134        }
4135        check_irq_on();
4136        mutex_unlock(&cache_chain_mutex);
4137        next_reap_node();
4138out:
4139        /* Set up the next iteration */
4140        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4141}
4142
4143#ifdef CONFIG_SLABINFO
4144
4145static void print_slabinfo_header(struct seq_file *m)
4146{
4147        /*
4148         * Output format version, so at least we can change it
4149         * without _too_ many complaints.
4150         */
4151#if STATS
4152        seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4153#else
4154        seq_puts(m, "slabinfo - version: 2.1\n");
4155#endif
4156        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4157                 "<objperslab> <pagesperslab>");
4158        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4159        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4160#if STATS
4161        seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4162                 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4163        seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4164#endif
4165        seq_putc(m, '\n');
4166}
4167
4168static void *s_start(struct seq_file *m, loff_t *pos)
4169{
4170        loff_t n = *pos;
4171
4172        mutex_lock(&cache_chain_mutex);
4173        if (!n)
4174                print_slabinfo_header(m);
4175
4176        return seq_list_start(&cache_chain, *pos);
4177}
4178
4179static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4180{
4181        return seq_list_next(p, &cache_chain, pos);
4182}
4183
4184static void s_stop(struct seq_file *m, void *p)
4185{
4186        mutex_unlock(&cache_chain_mutex);
4187}
4188
4189static int s_show(struct seq_file *m, void *p)
4190{
4191        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4192        struct slab *slabp;
4193        unsigned long active_objs;
4194        unsigned long num_objs;
4195        unsigned long active_slabs = 0;
4196        unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4197        const char *name;
4198        char *error = NULL;
4199        int node;
4200        struct kmem_list3 *l3;
4201
4202        active_objs = 0;
4203        num_slabs = 0;
4204        for_each_online_node(node) {
4205                l3 = cachep->nodelists[node];
4206                if (!l3)
4207                        continue;
4208
4209                check_irq_on();
4210                spin_lock_irq(&l3->list_lock);
4211
4212                list_for_each_entry(slabp, &l3->slabs_full, list) {
4213                        if (slabp->inuse != cachep->num && !error)
4214                                error = "slabs_full accounting error";
4215                        active_objs += cachep->num;
4216                        active_slabs++;
4217                }
4218                list_for_each_entry(slabp, &l3->slabs_partial, list) {
4219                        if (slabp->inuse == cachep->num && !error)
4220                                error = "slabs_partial inuse accounting error";
4221                        if (!slabp->inuse && !error)
4222                                error = "slabs_partial/inuse accounting error";
4223                        active_objs += slabp->inuse;
4224                        active_slabs++;
4225                }
4226                list_for_each_entry(slabp, &l3->slabs_free, list) {
4227                        if (slabp->inuse && !error)
4228                                error = "slabs_free/inuse accounting error";
4229                        num_slabs++;
4230                }
4231                free_objects += l3->free_objects;
4232                if (l3->shared)
4233                        shared_avail += l3->shared->avail;
4234
4235                spin_unlock_irq(&l3->list_lock);
4236        }
4237        num_slabs += active_slabs;
4238        num_objs = num_slabs * cachep->num;
4239        if (num_objs - active_objs != free_objects && !error)
4240                error = "free_objects accounting error";
4241
4242        name = cachep->name;
4243        if (error)
4244                printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4245
4246        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4247                   name, active_objs, num_objs, cachep->buffer_size,
4248                   cachep->num, (1 << cachep->gfporder));
4249        seq_printf(m, " : tunables %4u %4u %4u",
4250                   cachep->limit, cachep->batchcount, cachep->shared);
4251        seq_printf(m, " : slabdata %6lu %6lu %6lu",
4252                   active_slabs, num_slabs, shared_avail);
4253#if STATS
4254        {                       /* list3 stats */
4255                unsigned long high = cachep->high_mark;
4256                unsigned long allocs = cachep->num_allocations;
4257                unsigned long grown = cachep->grown;
4258                unsigned long reaped = cachep->reaped;
4259                unsigned long errors = cachep->errors;
4260                unsigned long max_freeable = cachep->max_freeable;
4261                unsigned long node_allocs = cachep->node_allocs;
4262                unsigned long node_frees = cachep->node_frees;
4263                unsigned long overflows = cachep->node_overflow;
4264
4265                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4266                           "%4lu %4lu %4lu %4lu %4lu",
4267                           allocs, high, grown,
4268                           reaped, errors, max_freeable, node_allocs,
4269                           node_frees, overflows);
4270        }
4271        /* cpu stats */
4272        {
4273                unsigned long allochit = atomic_read(&cachep->allochit);
4274                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4275                unsigned long freehit = atomic_read(&cachep->freehit);
4276                unsigned long freemiss = atomic_read(&cachep->freemiss);
4277
4278                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4279                           allochit, allocmiss, freehit, freemiss);
4280        }
4281#endif
4282        seq_putc(m, '\n');
4283        return 0;
4284}
4285
4286/*
4287 * slabinfo_op - iterator that generates /proc/slabinfo
4288 *
4289 * Output layout:
4290 * cache-name
4291 * num-active-objs
4292 * total-objs
4293 * object size
4294 * num-active-slabs
4295 * total-slabs
4296 * num-pages-per-slab
4297 * + further values on SMP and with statistics enabled
4298 */
4299
4300static const struct seq_operations slabinfo_op = {
4301        .start = s_start,
4302        .next = s_next,
4303        .stop = s_stop,
4304        .show = s_show,
4305};
4306
4307#define MAX_SLABINFO_WRITE 128
4308/**
4309 * slabinfo_write - Tuning for the slab allocator
4310 * @file: unused
4311 * @buffer: user buffer
4312 * @count: data length
4313 * @ppos: unused
4314 */
4315static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4316                       size_t count, loff_t *ppos)
4317{
4318        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4319        int limit, batchcount, shared, res;
4320        struct kmem_cache *cachep;
4321
4322        if (count > MAX_SLABINFO_WRITE)
4323                return -EINVAL;
4324        if (copy_from_user(&kbuf, buffer, count))
4325                return -EFAULT;
4326        kbuf[MAX_SLABINFO_WRITE] = '\0';
4327
4328        tmp = strchr(kbuf, ' ');
4329        if (!tmp)
4330                return -EINVAL;
4331        *tmp = '\0';
4332        tmp++;
4333        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4334                return -EINVAL;
4335
4336        /* Find the cache in the chain of caches. */
4337        mutex_lock(&cache_chain_mutex);
4338        res = -EINVAL;
4339        list_for_each_entry(cachep, &cache_chain, next) {
4340                if (!strcmp(cachep->name, kbuf)) {
4341                        if (limit < 1 || batchcount < 1 ||
4342                                        batchcount > limit || shared < 0) {
4343                                res = 0;
4344                        } else {
4345                                res = do_tune_cpucache(cachep, limit,
4346                                                       batchcount, shared,
4347                                                       GFP_KERNEL);
4348                        }
4349                        break;
4350                }
4351        }
4352        mutex_unlock(&cache_chain_mutex);
4353        if (res >= 0)
4354                res = count;
4355        return res;
4356}
4357
4358static int slabinfo_open(struct inode *inode, struct file *file)
4359{
4360        return seq_open(file, &slabinfo_op);
4361}
4362
4363static const struct file_operations proc_slabinfo_operations = {
4364        .open           = slabinfo_open,
4365        .read           = seq_read,
4366        .write          = slabinfo_write,
4367        .llseek         = seq_lseek,
4368        .release        = seq_release,
4369};
4370
4371#ifdef CONFIG_DEBUG_SLAB_LEAK
4372
4373static void *leaks_start(struct seq_file *m, loff_t *pos)
4374{
4375        mutex_lock(&cache_chain_mutex);
4376        return seq_list_start(&cache_chain, *pos);
4377}
4378
4379static inline int add_caller(unsigned long *n, unsigned long v)
4380{
4381        unsigned long *p;
4382        int l;
4383        if (!v)
4384                return 1;
4385        l = n[1];
4386        p = n + 2;
4387        while (l) {
4388                int i = l/2;
4389                unsigned long *q = p + 2 * i;
4390                if (*q == v) {
4391                        q[1]++;
4392                        return 1;
4393                }
4394                if (*q > v) {
4395                        l = i;
4396                } else {
4397                        p = q + 2;
4398                        l -= i + 1;
4399                }
4400        }
4401        if (++n[1] == n[0])
4402                return 0;
4403        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4404        p[0] = v;
4405        p[1] = 1;
4406        return 1;
4407}
4408
4409static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4410{
4411        void *p;
4412        int i;
4413        if (n[0] == n[1])
4414                return;
4415        for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4416                if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4417                        continue;
4418                if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4419                        return;
4420        }
4421}
4422
4423static void show_symbol(struct seq_file *m, unsigned long address)
4424{
4425#ifdef CONFIG_KALLSYMS
4426        unsigned long offset, size;
4427        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4428
4429        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4430                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4431                if (modname[0])
4432                        seq_printf(m, " [%s]", modname);
4433                return;
4434        }
4435#endif
4436        seq_printf(m, "%p", (void *)address);
4437}
4438
4439static int leaks_show(struct seq_file *m, void *p)
4440{
4441        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4442        struct slab *slabp;
4443        struct kmem_list3 *l3;
4444        const char *name;
4445        unsigned long *n = m->private;
4446        int node;
4447        int i;
4448
4449        if (!(cachep->flags & SLAB_STORE_USER))
4450                return 0;
4451        if (!(cachep->flags & SLAB_RED_ZONE))
4452                return 0;
4453
4454        /* OK, we can do it */
4455
4456        n[1] = 0;
4457
4458        for_each_online_node(node) {
4459                l3 = cachep->nodelists[node];
4460                if (!l3)
4461                        continue;
4462
4463                check_irq_on();
4464                spin_lock_irq(&l3->list_lock);
4465
4466                list_for_each_entry(slabp, &l3->slabs_full, list)
4467                        handle_slab(n, cachep, slabp);
4468                list_for_each_entry(slabp, &l3->slabs_partial, list)
4469                        handle_slab(n, cachep, slabp);
4470                spin_unlock_irq(&l3->list_lock);
4471        }
4472        name = cachep->name;
4473        if (n[0] == n[1]) {
4474                /* Increase the buffer size */
4475                mutex_unlock(&cache_chain_mutex);
4476                m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4477                if (!m->private) {
4478                        /* Too bad, we are really out */
4479                        m->private = n;
4480                        mutex_lock(&cache_chain_mutex);
4481                        return -ENOMEM;
4482                }
4483                *(unsigned long *)m->private = n[0] * 2;
4484                kfree(n);
4485                mutex_lock(&cache_chain_mutex);
4486                /* Now make sure this entry will be retried */
4487                m->count = m->size;
4488                return 0;
4489        }
4490        for (i = 0; i < n[1]; i++) {
4491                seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4492                show_symbol(m, n[2*i+2]);
4493                seq_putc(m, '\n');
4494        }
4495
4496        return 0;
4497}
4498
4499static const struct seq_operations slabstats_op = {
4500        .start = leaks_start,
4501        .next = s_next,
4502        .stop = s_stop,
4503        .show = leaks_show,
4504};
4505
4506static int slabstats_open(struct inode *inode, struct file *file)
4507{
4508        unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4509        int ret = -ENOMEM;
4510        if (n) {
4511                ret = seq_open(file, &slabstats_op);
4512                if (!ret) {
4513                        struct seq_file *m = file->private_data;
4514                        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4515                        m->private = n;
4516                        n = NULL;
4517                }
4518                kfree(n);
4519        }
4520        return ret;
4521}
4522
4523static const struct file_operations proc_slabstats_operations = {
4524        .open           = slabstats_open,
4525        .read           = seq_read,
4526        .llseek         = seq_lseek,
4527        .release        = seq_release_private,
4528};
4529#endif
4530
4531static int __init slab_proc_init(void)
4532{
4533        proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4534#ifdef CONFIG_DEBUG_SLAB_LEAK
4535        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4536#endif
4537        return 0;
4538}
4539module_init(slab_proc_init);
4540#endif
4541
4542/**
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4545 *
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4553 */
4554size_t ksize(const void *objp)
4555{
4556        BUG_ON(!objp);
4557        if (unlikely(objp == ZERO_SIZE_PTR))
4558                return 0;
4559
4560        return obj_size(virt_to_cache(objp));
4561}
4562EXPORT_SYMBOL(ksize);
4563