linux/mm/swapfile.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/hugetlb.h>
  10#include <linux/mman.h>
  11#include <linux/slab.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/vmalloc.h>
  15#include <linux/pagemap.h>
  16#include <linux/namei.h>
  17#include <linux/shm.h>
  18#include <linux/blkdev.h>
  19#include <linux/random.h>
  20#include <linux/writeback.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/security.h>
  28#include <linux/backing-dev.h>
  29#include <linux/mutex.h>
  30#include <linux/capability.h>
  31#include <linux/syscalls.h>
  32#include <linux/memcontrol.h>
  33#include <linux/poll.h>
  34
  35#include <asm/pgtable.h>
  36#include <asm/tlbflush.h>
  37#include <linux/swapops.h>
  38#include <linux/page_cgroup.h>
  39
  40static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  41                                 unsigned char);
  42static void free_swap_count_continuations(struct swap_info_struct *);
  43static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  44
  45static DEFINE_SPINLOCK(swap_lock);
  46static unsigned int nr_swapfiles;
  47long nr_swap_pages;
  48long total_swap_pages;
  49static int least_priority;
  50
  51static const char Bad_file[] = "Bad swap file entry ";
  52static const char Unused_file[] = "Unused swap file entry ";
  53static const char Bad_offset[] = "Bad swap offset entry ";
  54static const char Unused_offset[] = "Unused swap offset entry ";
  55
  56static struct swap_list_t swap_list = {-1, -1};
  57
  58static struct swap_info_struct *swap_info[MAX_SWAPFILES];
  59
  60static DEFINE_MUTEX(swapon_mutex);
  61
  62static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  63/* Activity counter to indicate that a swapon or swapoff has occurred */
  64static atomic_t proc_poll_event = ATOMIC_INIT(0);
  65
  66static inline unsigned char swap_count(unsigned char ent)
  67{
  68        return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
  69}
  70
  71/* returns 1 if swap entry is freed */
  72static int
  73__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  74{
  75        swp_entry_t entry = swp_entry(si->type, offset);
  76        struct page *page;
  77        int ret = 0;
  78
  79        page = find_get_page(&swapper_space, entry.val);
  80        if (!page)
  81                return 0;
  82        /*
  83         * This function is called from scan_swap_map() and it's called
  84         * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  85         * We have to use trylock for avoiding deadlock. This is a special
  86         * case and you should use try_to_free_swap() with explicit lock_page()
  87         * in usual operations.
  88         */
  89        if (trylock_page(page)) {
  90                ret = try_to_free_swap(page);
  91                unlock_page(page);
  92        }
  93        page_cache_release(page);
  94        return ret;
  95}
  96
  97/*
  98 * swapon tell device that all the old swap contents can be discarded,
  99 * to allow the swap device to optimize its wear-levelling.
 100 */
 101static int discard_swap(struct swap_info_struct *si)
 102{
 103        struct swap_extent *se;
 104        sector_t start_block;
 105        sector_t nr_blocks;
 106        int err = 0;
 107
 108        /* Do not discard the swap header page! */
 109        se = &si->first_swap_extent;
 110        start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 111        nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 112        if (nr_blocks) {
 113                err = blkdev_issue_discard(si->bdev, start_block,
 114                                nr_blocks, GFP_KERNEL, 0);
 115                if (err)
 116                        return err;
 117                cond_resched();
 118        }
 119
 120        list_for_each_entry(se, &si->first_swap_extent.list, list) {
 121                start_block = se->start_block << (PAGE_SHIFT - 9);
 122                nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 123
 124                err = blkdev_issue_discard(si->bdev, start_block,
 125                                nr_blocks, GFP_KERNEL, 0);
 126                if (err)
 127                        break;
 128
 129                cond_resched();
 130        }
 131        return err;             /* That will often be -EOPNOTSUPP */
 132}
 133
 134/*
 135 * swap allocation tell device that a cluster of swap can now be discarded,
 136 * to allow the swap device to optimize its wear-levelling.
 137 */
 138static void discard_swap_cluster(struct swap_info_struct *si,
 139                                 pgoff_t start_page, pgoff_t nr_pages)
 140{
 141        struct swap_extent *se = si->curr_swap_extent;
 142        int found_extent = 0;
 143
 144        while (nr_pages) {
 145                struct list_head *lh;
 146
 147                if (se->start_page <= start_page &&
 148                    start_page < se->start_page + se->nr_pages) {
 149                        pgoff_t offset = start_page - se->start_page;
 150                        sector_t start_block = se->start_block + offset;
 151                        sector_t nr_blocks = se->nr_pages - offset;
 152
 153                        if (nr_blocks > nr_pages)
 154                                nr_blocks = nr_pages;
 155                        start_page += nr_blocks;
 156                        nr_pages -= nr_blocks;
 157
 158                        if (!found_extent++)
 159                                si->curr_swap_extent = se;
 160
 161                        start_block <<= PAGE_SHIFT - 9;
 162                        nr_blocks <<= PAGE_SHIFT - 9;
 163                        if (blkdev_issue_discard(si->bdev, start_block,
 164                                    nr_blocks, GFP_NOIO, 0))
 165                                break;
 166                }
 167
 168                lh = se->list.next;
 169                se = list_entry(lh, struct swap_extent, list);
 170        }
 171}
 172
 173static int wait_for_discard(void *word)
 174{
 175        schedule();
 176        return 0;
 177}
 178
 179#define SWAPFILE_CLUSTER        256
 180#define LATENCY_LIMIT           256
 181
 182static unsigned long scan_swap_map(struct swap_info_struct *si,
 183                                   unsigned char usage)
 184{
 185        unsigned long offset;
 186        unsigned long scan_base;
 187        unsigned long last_in_cluster = 0;
 188        int latency_ration = LATENCY_LIMIT;
 189        int found_free_cluster = 0;
 190
 191        /*
 192         * We try to cluster swap pages by allocating them sequentially
 193         * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 194         * way, however, we resort to first-free allocation, starting
 195         * a new cluster.  This prevents us from scattering swap pages
 196         * all over the entire swap partition, so that we reduce
 197         * overall disk seek times between swap pages.  -- sct
 198         * But we do now try to find an empty cluster.  -Andrea
 199         * And we let swap pages go all over an SSD partition.  Hugh
 200         */
 201
 202        si->flags += SWP_SCANNING;
 203        scan_base = offset = si->cluster_next;
 204
 205        if (unlikely(!si->cluster_nr--)) {
 206                if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 207                        si->cluster_nr = SWAPFILE_CLUSTER - 1;
 208                        goto checks;
 209                }
 210                if (si->flags & SWP_DISCARDABLE) {
 211                        /*
 212                         * Start range check on racing allocations, in case
 213                         * they overlap the cluster we eventually decide on
 214                         * (we scan without swap_lock to allow preemption).
 215                         * It's hardly conceivable that cluster_nr could be
 216                         * wrapped during our scan, but don't depend on it.
 217                         */
 218                        if (si->lowest_alloc)
 219                                goto checks;
 220                        si->lowest_alloc = si->max;
 221                        si->highest_alloc = 0;
 222                }
 223                spin_unlock(&swap_lock);
 224
 225                /*
 226                 * If seek is expensive, start searching for new cluster from
 227                 * start of partition, to minimize the span of allocated swap.
 228                 * But if seek is cheap, search from our current position, so
 229                 * that swap is allocated from all over the partition: if the
 230                 * Flash Translation Layer only remaps within limited zones,
 231                 * we don't want to wear out the first zone too quickly.
 232                 */
 233                if (!(si->flags & SWP_SOLIDSTATE))
 234                        scan_base = offset = si->lowest_bit;
 235                last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 236
 237                /* Locate the first empty (unaligned) cluster */
 238                for (; last_in_cluster <= si->highest_bit; offset++) {
 239                        if (si->swap_map[offset])
 240                                last_in_cluster = offset + SWAPFILE_CLUSTER;
 241                        else if (offset == last_in_cluster) {
 242                                spin_lock(&swap_lock);
 243                                offset -= SWAPFILE_CLUSTER - 1;
 244                                si->cluster_next = offset;
 245                                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 246                                found_free_cluster = 1;
 247                                goto checks;
 248                        }
 249                        if (unlikely(--latency_ration < 0)) {
 250                                cond_resched();
 251                                latency_ration = LATENCY_LIMIT;
 252                        }
 253                }
 254
 255                offset = si->lowest_bit;
 256                last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 257
 258                /* Locate the first empty (unaligned) cluster */
 259                for (; last_in_cluster < scan_base; offset++) {
 260                        if (si->swap_map[offset])
 261                                last_in_cluster = offset + SWAPFILE_CLUSTER;
 262                        else if (offset == last_in_cluster) {
 263                                spin_lock(&swap_lock);
 264                                offset -= SWAPFILE_CLUSTER - 1;
 265                                si->cluster_next = offset;
 266                                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 267                                found_free_cluster = 1;
 268                                goto checks;
 269                        }
 270                        if (unlikely(--latency_ration < 0)) {
 271                                cond_resched();
 272                                latency_ration = LATENCY_LIMIT;
 273                        }
 274                }
 275
 276                offset = scan_base;
 277                spin_lock(&swap_lock);
 278                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 279                si->lowest_alloc = 0;
 280        }
 281
 282checks:
 283        if (!(si->flags & SWP_WRITEOK))
 284                goto no_page;
 285        if (!si->highest_bit)
 286                goto no_page;
 287        if (offset > si->highest_bit)
 288                scan_base = offset = si->lowest_bit;
 289
 290        /* reuse swap entry of cache-only swap if not busy. */
 291        if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 292                int swap_was_freed;
 293                spin_unlock(&swap_lock);
 294                swap_was_freed = __try_to_reclaim_swap(si, offset);
 295                spin_lock(&swap_lock);
 296                /* entry was freed successfully, try to use this again */
 297                if (swap_was_freed)
 298                        goto checks;
 299                goto scan; /* check next one */
 300        }
 301
 302        if (si->swap_map[offset])
 303                goto scan;
 304
 305        if (offset == si->lowest_bit)
 306                si->lowest_bit++;
 307        if (offset == si->highest_bit)
 308                si->highest_bit--;
 309        si->inuse_pages++;
 310        if (si->inuse_pages == si->pages) {
 311                si->lowest_bit = si->max;
 312                si->highest_bit = 0;
 313        }
 314        si->swap_map[offset] = usage;
 315        si->cluster_next = offset + 1;
 316        si->flags -= SWP_SCANNING;
 317
 318        if (si->lowest_alloc) {
 319                /*
 320                 * Only set when SWP_DISCARDABLE, and there's a scan
 321                 * for a free cluster in progress or just completed.
 322                 */
 323                if (found_free_cluster) {
 324                        /*
 325                         * To optimize wear-levelling, discard the
 326                         * old data of the cluster, taking care not to
 327                         * discard any of its pages that have already
 328                         * been allocated by racing tasks (offset has
 329                         * already stepped over any at the beginning).
 330                         */
 331                        if (offset < si->highest_alloc &&
 332                            si->lowest_alloc <= last_in_cluster)
 333                                last_in_cluster = si->lowest_alloc - 1;
 334                        si->flags |= SWP_DISCARDING;
 335                        spin_unlock(&swap_lock);
 336
 337                        if (offset < last_in_cluster)
 338                                discard_swap_cluster(si, offset,
 339                                        last_in_cluster - offset + 1);
 340
 341                        spin_lock(&swap_lock);
 342                        si->lowest_alloc = 0;
 343                        si->flags &= ~SWP_DISCARDING;
 344
 345                        smp_mb();       /* wake_up_bit advises this */
 346                        wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
 347
 348                } else if (si->flags & SWP_DISCARDING) {
 349                        /*
 350                         * Delay using pages allocated by racing tasks
 351                         * until the whole discard has been issued. We
 352                         * could defer that delay until swap_writepage,
 353                         * but it's easier to keep this self-contained.
 354                         */
 355                        spin_unlock(&swap_lock);
 356                        wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
 357                                wait_for_discard, TASK_UNINTERRUPTIBLE);
 358                        spin_lock(&swap_lock);
 359                } else {
 360                        /*
 361                         * Note pages allocated by racing tasks while
 362                         * scan for a free cluster is in progress, so
 363                         * that its final discard can exclude them.
 364                         */
 365                        if (offset < si->lowest_alloc)
 366                                si->lowest_alloc = offset;
 367                        if (offset > si->highest_alloc)
 368                                si->highest_alloc = offset;
 369                }
 370        }
 371        return offset;
 372
 373scan:
 374        spin_unlock(&swap_lock);
 375        while (++offset <= si->highest_bit) {
 376                if (!si->swap_map[offset]) {
 377                        spin_lock(&swap_lock);
 378                        goto checks;
 379                }
 380                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 381                        spin_lock(&swap_lock);
 382                        goto checks;
 383                }
 384                if (unlikely(--latency_ration < 0)) {
 385                        cond_resched();
 386                        latency_ration = LATENCY_LIMIT;
 387                }
 388        }
 389        offset = si->lowest_bit;
 390        while (++offset < scan_base) {
 391                if (!si->swap_map[offset]) {
 392                        spin_lock(&swap_lock);
 393                        goto checks;
 394                }
 395                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 396                        spin_lock(&swap_lock);
 397                        goto checks;
 398                }
 399                if (unlikely(--latency_ration < 0)) {
 400                        cond_resched();
 401                        latency_ration = LATENCY_LIMIT;
 402                }
 403        }
 404        spin_lock(&swap_lock);
 405
 406no_page:
 407        si->flags -= SWP_SCANNING;
 408        return 0;
 409}
 410
 411swp_entry_t get_swap_page(void)
 412{
 413        struct swap_info_struct *si;
 414        pgoff_t offset;
 415        int type, next;
 416        int wrapped = 0;
 417
 418        spin_lock(&swap_lock);
 419        if (nr_swap_pages <= 0)
 420                goto noswap;
 421        nr_swap_pages--;
 422
 423        for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 424                si = swap_info[type];
 425                next = si->next;
 426                if (next < 0 ||
 427                    (!wrapped && si->prio != swap_info[next]->prio)) {
 428                        next = swap_list.head;
 429                        wrapped++;
 430                }
 431
 432                if (!si->highest_bit)
 433                        continue;
 434                if (!(si->flags & SWP_WRITEOK))
 435                        continue;
 436
 437                swap_list.next = next;
 438                /* This is called for allocating swap entry for cache */
 439                offset = scan_swap_map(si, SWAP_HAS_CACHE);
 440                if (offset) {
 441                        spin_unlock(&swap_lock);
 442                        return swp_entry(type, offset);
 443                }
 444                next = swap_list.next;
 445        }
 446
 447        nr_swap_pages++;
 448noswap:
 449        spin_unlock(&swap_lock);
 450        return (swp_entry_t) {0};
 451}
 452
 453/* The only caller of this function is now susupend routine */
 454swp_entry_t get_swap_page_of_type(int type)
 455{
 456        struct swap_info_struct *si;
 457        pgoff_t offset;
 458
 459        spin_lock(&swap_lock);
 460        si = swap_info[type];
 461        if (si && (si->flags & SWP_WRITEOK)) {
 462                nr_swap_pages--;
 463                /* This is called for allocating swap entry, not cache */
 464                offset = scan_swap_map(si, 1);
 465                if (offset) {
 466                        spin_unlock(&swap_lock);
 467                        return swp_entry(type, offset);
 468                }
 469                nr_swap_pages++;
 470        }
 471        spin_unlock(&swap_lock);
 472        return (swp_entry_t) {0};
 473}
 474
 475static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 476{
 477        struct swap_info_struct *p;
 478        unsigned long offset, type;
 479
 480        if (!entry.val)
 481                goto out;
 482        type = swp_type(entry);
 483        if (type >= nr_swapfiles)
 484                goto bad_nofile;
 485        p = swap_info[type];
 486        if (!(p->flags & SWP_USED))
 487                goto bad_device;
 488        offset = swp_offset(entry);
 489        if (offset >= p->max)
 490                goto bad_offset;
 491        if (!p->swap_map[offset])
 492                goto bad_free;
 493        spin_lock(&swap_lock);
 494        return p;
 495
 496bad_free:
 497        printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
 498        goto out;
 499bad_offset:
 500        printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
 501        goto out;
 502bad_device:
 503        printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
 504        goto out;
 505bad_nofile:
 506        printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
 507out:
 508        return NULL;
 509}
 510
 511static unsigned char swap_entry_free(struct swap_info_struct *p,
 512                                     swp_entry_t entry, unsigned char usage)
 513{
 514        unsigned long offset = swp_offset(entry);
 515        unsigned char count;
 516        unsigned char has_cache;
 517
 518        count = p->swap_map[offset];
 519        has_cache = count & SWAP_HAS_CACHE;
 520        count &= ~SWAP_HAS_CACHE;
 521
 522        if (usage == SWAP_HAS_CACHE) {
 523                VM_BUG_ON(!has_cache);
 524                has_cache = 0;
 525        } else if (count == SWAP_MAP_SHMEM) {
 526                /*
 527                 * Or we could insist on shmem.c using a special
 528                 * swap_shmem_free() and free_shmem_swap_and_cache()...
 529                 */
 530                count = 0;
 531        } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 532                if (count == COUNT_CONTINUED) {
 533                        if (swap_count_continued(p, offset, count))
 534                                count = SWAP_MAP_MAX | COUNT_CONTINUED;
 535                        else
 536                                count = SWAP_MAP_MAX;
 537                } else
 538                        count--;
 539        }
 540
 541        if (!count)
 542                mem_cgroup_uncharge_swap(entry);
 543
 544        usage = count | has_cache;
 545        p->swap_map[offset] = usage;
 546
 547        /* free if no reference */
 548        if (!usage) {
 549                struct gendisk *disk = p->bdev->bd_disk;
 550                if (offset < p->lowest_bit)
 551                        p->lowest_bit = offset;
 552                if (offset > p->highest_bit)
 553                        p->highest_bit = offset;
 554                if (swap_list.next >= 0 &&
 555                    p->prio > swap_info[swap_list.next]->prio)
 556                        swap_list.next = p->type;
 557                nr_swap_pages++;
 558                p->inuse_pages--;
 559                if ((p->flags & SWP_BLKDEV) &&
 560                                disk->fops->swap_slot_free_notify)
 561                        disk->fops->swap_slot_free_notify(p->bdev, offset);
 562        }
 563
 564        return usage;
 565}
 566
 567/*
 568 * Caller has made sure that the swapdevice corresponding to entry
 569 * is still around or has not been recycled.
 570 */
 571void swap_free(swp_entry_t entry)
 572{
 573        struct swap_info_struct *p;
 574
 575        p = swap_info_get(entry);
 576        if (p) {
 577                swap_entry_free(p, entry, 1);
 578                spin_unlock(&swap_lock);
 579        }
 580}
 581
 582/*
 583 * Called after dropping swapcache to decrease refcnt to swap entries.
 584 */
 585void swapcache_free(swp_entry_t entry, struct page *page)
 586{
 587        struct swap_info_struct *p;
 588        unsigned char count;
 589
 590        p = swap_info_get(entry);
 591        if (p) {
 592                count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 593                if (page)
 594                        mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 595                spin_unlock(&swap_lock);
 596        }
 597}
 598
 599/*
 600 * How many references to page are currently swapped out?
 601 * This does not give an exact answer when swap count is continued,
 602 * but does include the high COUNT_CONTINUED flag to allow for that.
 603 */
 604static inline int page_swapcount(struct page *page)
 605{
 606        int count = 0;
 607        struct swap_info_struct *p;
 608        swp_entry_t entry;
 609
 610        entry.val = page_private(page);
 611        p = swap_info_get(entry);
 612        if (p) {
 613                count = swap_count(p->swap_map[swp_offset(entry)]);
 614                spin_unlock(&swap_lock);
 615        }
 616        return count;
 617}
 618
 619/*
 620 * We can write to an anon page without COW if there are no other references
 621 * to it.  And as a side-effect, free up its swap: because the old content
 622 * on disk will never be read, and seeking back there to write new content
 623 * later would only waste time away from clustering.
 624 */
 625int reuse_swap_page(struct page *page)
 626{
 627        int count;
 628
 629        VM_BUG_ON(!PageLocked(page));
 630        if (unlikely(PageKsm(page)))
 631                return 0;
 632        count = page_mapcount(page);
 633        if (count <= 1 && PageSwapCache(page)) {
 634                count += page_swapcount(page);
 635                if (count == 1 && !PageWriteback(page)) {
 636                        delete_from_swap_cache(page);
 637                        SetPageDirty(page);
 638                }
 639        }
 640        return count <= 1;
 641}
 642
 643/*
 644 * If swap is getting full, or if there are no more mappings of this page,
 645 * then try_to_free_swap is called to free its swap space.
 646 */
 647int try_to_free_swap(struct page *page)
 648{
 649        VM_BUG_ON(!PageLocked(page));
 650
 651        if (!PageSwapCache(page))
 652                return 0;
 653        if (PageWriteback(page))
 654                return 0;
 655        if (page_swapcount(page))
 656                return 0;
 657
 658        /*
 659         * Once hibernation has begun to create its image of memory,
 660         * there's a danger that one of the calls to try_to_free_swap()
 661         * - most probably a call from __try_to_reclaim_swap() while
 662         * hibernation is allocating its own swap pages for the image,
 663         * but conceivably even a call from memory reclaim - will free
 664         * the swap from a page which has already been recorded in the
 665         * image as a clean swapcache page, and then reuse its swap for
 666         * another page of the image.  On waking from hibernation, the
 667         * original page might be freed under memory pressure, then
 668         * later read back in from swap, now with the wrong data.
 669         *
 670         * Hibernation clears bits from gfp_allowed_mask to prevent
 671         * memory reclaim from writing to disk, so check that here.
 672         */
 673        if (!(gfp_allowed_mask & __GFP_IO))
 674                return 0;
 675
 676        delete_from_swap_cache(page);
 677        SetPageDirty(page);
 678        return 1;
 679}
 680
 681/*
 682 * Free the swap entry like above, but also try to
 683 * free the page cache entry if it is the last user.
 684 */
 685int free_swap_and_cache(swp_entry_t entry)
 686{
 687        struct swap_info_struct *p;
 688        struct page *page = NULL;
 689
 690        if (non_swap_entry(entry))
 691                return 1;
 692
 693        p = swap_info_get(entry);
 694        if (p) {
 695                if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 696                        page = find_get_page(&swapper_space, entry.val);
 697                        if (page && !trylock_page(page)) {
 698                                page_cache_release(page);
 699                                page = NULL;
 700                        }
 701                }
 702                spin_unlock(&swap_lock);
 703        }
 704        if (page) {
 705                /*
 706                 * Not mapped elsewhere, or swap space full? Free it!
 707                 * Also recheck PageSwapCache now page is locked (above).
 708                 */
 709                if (PageSwapCache(page) && !PageWriteback(page) &&
 710                                (!page_mapped(page) || vm_swap_full())) {
 711                        delete_from_swap_cache(page);
 712                        SetPageDirty(page);
 713                }
 714                unlock_page(page);
 715                page_cache_release(page);
 716        }
 717        return p != NULL;
 718}
 719
 720#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 721/**
 722 * mem_cgroup_count_swap_user - count the user of a swap entry
 723 * @ent: the swap entry to be checked
 724 * @pagep: the pointer for the swap cache page of the entry to be stored
 725 *
 726 * Returns the number of the user of the swap entry. The number is valid only
 727 * for swaps of anonymous pages.
 728 * If the entry is found on swap cache, the page is stored to pagep with
 729 * refcount of it being incremented.
 730 */
 731int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
 732{
 733        struct page *page;
 734        struct swap_info_struct *p;
 735        int count = 0;
 736
 737        page = find_get_page(&swapper_space, ent.val);
 738        if (page)
 739                count += page_mapcount(page);
 740        p = swap_info_get(ent);
 741        if (p) {
 742                count += swap_count(p->swap_map[swp_offset(ent)]);
 743                spin_unlock(&swap_lock);
 744        }
 745
 746        *pagep = page;
 747        return count;
 748}
 749#endif
 750
 751#ifdef CONFIG_HIBERNATION
 752/*
 753 * Find the swap type that corresponds to given device (if any).
 754 *
 755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 756 * from 0, in which the swap header is expected to be located.
 757 *
 758 * This is needed for the suspend to disk (aka swsusp).
 759 */
 760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 761{
 762        struct block_device *bdev = NULL;
 763        int type;
 764
 765        if (device)
 766                bdev = bdget(device);
 767
 768        spin_lock(&swap_lock);
 769        for (type = 0; type < nr_swapfiles; type++) {
 770                struct swap_info_struct *sis = swap_info[type];
 771
 772                if (!(sis->flags & SWP_WRITEOK))
 773                        continue;
 774
 775                if (!bdev) {
 776                        if (bdev_p)
 777                                *bdev_p = bdgrab(sis->bdev);
 778
 779                        spin_unlock(&swap_lock);
 780                        return type;
 781                }
 782                if (bdev == sis->bdev) {
 783                        struct swap_extent *se = &sis->first_swap_extent;
 784
 785                        if (se->start_block == offset) {
 786                                if (bdev_p)
 787                                        *bdev_p = bdgrab(sis->bdev);
 788
 789                                spin_unlock(&swap_lock);
 790                                bdput(bdev);
 791                                return type;
 792                        }
 793                }
 794        }
 795        spin_unlock(&swap_lock);
 796        if (bdev)
 797                bdput(bdev);
 798
 799        return -ENODEV;
 800}
 801
 802/*
 803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 804 * corresponding to given index in swap_info (swap type).
 805 */
 806sector_t swapdev_block(int type, pgoff_t offset)
 807{
 808        struct block_device *bdev;
 809
 810        if ((unsigned int)type >= nr_swapfiles)
 811                return 0;
 812        if (!(swap_info[type]->flags & SWP_WRITEOK))
 813                return 0;
 814        return map_swap_entry(swp_entry(type, offset), &bdev);
 815}
 816
 817/*
 818 * Return either the total number of swap pages of given type, or the number
 819 * of free pages of that type (depending on @free)
 820 *
 821 * This is needed for software suspend
 822 */
 823unsigned int count_swap_pages(int type, int free)
 824{
 825        unsigned int n = 0;
 826
 827        spin_lock(&swap_lock);
 828        if ((unsigned int)type < nr_swapfiles) {
 829                struct swap_info_struct *sis = swap_info[type];
 830
 831                if (sis->flags & SWP_WRITEOK) {
 832                        n = sis->pages;
 833                        if (free)
 834                                n -= sis->inuse_pages;
 835                }
 836        }
 837        spin_unlock(&swap_lock);
 838        return n;
 839}
 840#endif /* CONFIG_HIBERNATION */
 841
 842/*
 843 * No need to decide whether this PTE shares the swap entry with others,
 844 * just let do_wp_page work it out if a write is requested later - to
 845 * force COW, vm_page_prot omits write permission from any private vma.
 846 */
 847static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 848                unsigned long addr, swp_entry_t entry, struct page *page)
 849{
 850        struct mem_cgroup *ptr;
 851        spinlock_t *ptl;
 852        pte_t *pte;
 853        int ret = 1;
 854
 855        if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
 856                ret = -ENOMEM;
 857                goto out_nolock;
 858        }
 859
 860        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 861        if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
 862                if (ret > 0)
 863                        mem_cgroup_cancel_charge_swapin(ptr);
 864                ret = 0;
 865                goto out;
 866        }
 867
 868        dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 869        inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 870        get_page(page);
 871        set_pte_at(vma->vm_mm, addr, pte,
 872                   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 873        page_add_anon_rmap(page, vma, addr);
 874        mem_cgroup_commit_charge_swapin(page, ptr);
 875        swap_free(entry);
 876        /*
 877         * Move the page to the active list so it is not
 878         * immediately swapped out again after swapon.
 879         */
 880        activate_page(page);
 881out:
 882        pte_unmap_unlock(pte, ptl);
 883out_nolock:
 884        return ret;
 885}
 886
 887static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 888                                unsigned long addr, unsigned long end,
 889                                swp_entry_t entry, struct page *page)
 890{
 891        pte_t swp_pte = swp_entry_to_pte(entry);
 892        pte_t *pte;
 893        int ret = 0;
 894
 895        /*
 896         * We don't actually need pte lock while scanning for swp_pte: since
 897         * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 898         * page table while we're scanning; though it could get zapped, and on
 899         * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 900         * of unmatched parts which look like swp_pte, so unuse_pte must
 901         * recheck under pte lock.  Scanning without pte lock lets it be
 902         * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 903         */
 904        pte = pte_offset_map(pmd, addr);
 905        do {
 906                /*
 907                 * swapoff spends a _lot_ of time in this loop!
 908                 * Test inline before going to call unuse_pte.
 909                 */
 910                if (unlikely(pte_same(*pte, swp_pte))) {
 911                        pte_unmap(pte);
 912                        ret = unuse_pte(vma, pmd, addr, entry, page);
 913                        if (ret)
 914                                goto out;
 915                        pte = pte_offset_map(pmd, addr);
 916                }
 917        } while (pte++, addr += PAGE_SIZE, addr != end);
 918        pte_unmap(pte - 1);
 919out:
 920        return ret;
 921}
 922
 923static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 924                                unsigned long addr, unsigned long end,
 925                                swp_entry_t entry, struct page *page)
 926{
 927        pmd_t *pmd;
 928        unsigned long next;
 929        int ret;
 930
 931        pmd = pmd_offset(pud, addr);
 932        do {
 933                next = pmd_addr_end(addr, end);
 934                if (unlikely(pmd_trans_huge(*pmd)))
 935                        continue;
 936                if (pmd_none_or_clear_bad(pmd))
 937                        continue;
 938                ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 939                if (ret)
 940                        return ret;
 941        } while (pmd++, addr = next, addr != end);
 942        return 0;
 943}
 944
 945static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 946                                unsigned long addr, unsigned long end,
 947                                swp_entry_t entry, struct page *page)
 948{
 949        pud_t *pud;
 950        unsigned long next;
 951        int ret;
 952
 953        pud = pud_offset(pgd, addr);
 954        do {
 955                next = pud_addr_end(addr, end);
 956                if (pud_none_or_clear_bad(pud))
 957                        continue;
 958                ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 959                if (ret)
 960                        return ret;
 961        } while (pud++, addr = next, addr != end);
 962        return 0;
 963}
 964
 965static int unuse_vma(struct vm_area_struct *vma,
 966                                swp_entry_t entry, struct page *page)
 967{
 968        pgd_t *pgd;
 969        unsigned long addr, end, next;
 970        int ret;
 971
 972        if (page_anon_vma(page)) {
 973                addr = page_address_in_vma(page, vma);
 974                if (addr == -EFAULT)
 975                        return 0;
 976                else
 977                        end = addr + PAGE_SIZE;
 978        } else {
 979                addr = vma->vm_start;
 980                end = vma->vm_end;
 981        }
 982
 983        pgd = pgd_offset(vma->vm_mm, addr);
 984        do {
 985                next = pgd_addr_end(addr, end);
 986                if (pgd_none_or_clear_bad(pgd))
 987                        continue;
 988                ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 989                if (ret)
 990                        return ret;
 991        } while (pgd++, addr = next, addr != end);
 992        return 0;
 993}
 994
 995static int unuse_mm(struct mm_struct *mm,
 996                                swp_entry_t entry, struct page *page)
 997{
 998        struct vm_area_struct *vma;
 999        int ret = 0;
1000
1001        if (!down_read_trylock(&mm->mmap_sem)) {
1002                /*
1003                 * Activate page so shrink_inactive_list is unlikely to unmap
1004                 * its ptes while lock is dropped, so swapoff can make progress.
1005                 */
1006                activate_page(page);
1007                unlock_page(page);
1008                down_read(&mm->mmap_sem);
1009                lock_page(page);
1010        }
1011        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1012                if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1013                        break;
1014        }
1015        up_read(&mm->mmap_sem);
1016        return (ret < 0)? ret: 0;
1017}
1018
1019/*
1020 * Scan swap_map from current position to next entry still in use.
1021 * Recycle to start on reaching the end, returning 0 when empty.
1022 */
1023static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1024                                        unsigned int prev)
1025{
1026        unsigned int max = si->max;
1027        unsigned int i = prev;
1028        unsigned char count;
1029
1030        /*
1031         * No need for swap_lock here: we're just looking
1032         * for whether an entry is in use, not modifying it; false
1033         * hits are okay, and sys_swapoff() has already prevented new
1034         * allocations from this area (while holding swap_lock).
1035         */
1036        for (;;) {
1037                if (++i >= max) {
1038                        if (!prev) {
1039                                i = 0;
1040                                break;
1041                        }
1042                        /*
1043                         * No entries in use at top of swap_map,
1044                         * loop back to start and recheck there.
1045                         */
1046                        max = prev + 1;
1047                        prev = 0;
1048                        i = 1;
1049                }
1050                count = si->swap_map[i];
1051                if (count && swap_count(count) != SWAP_MAP_BAD)
1052                        break;
1053        }
1054        return i;
1055}
1056
1057/*
1058 * We completely avoid races by reading each swap page in advance,
1059 * and then search for the process using it.  All the necessary
1060 * page table adjustments can then be made atomically.
1061 */
1062static int try_to_unuse(unsigned int type)
1063{
1064        struct swap_info_struct *si = swap_info[type];
1065        struct mm_struct *start_mm;
1066        unsigned char *swap_map;
1067        unsigned char swcount;
1068        struct page *page;
1069        swp_entry_t entry;
1070        unsigned int i = 0;
1071        int retval = 0;
1072
1073        /*
1074         * When searching mms for an entry, a good strategy is to
1075         * start at the first mm we freed the previous entry from
1076         * (though actually we don't notice whether we or coincidence
1077         * freed the entry).  Initialize this start_mm with a hold.
1078         *
1079         * A simpler strategy would be to start at the last mm we
1080         * freed the previous entry from; but that would take less
1081         * advantage of mmlist ordering, which clusters forked mms
1082         * together, child after parent.  If we race with dup_mmap(), we
1083         * prefer to resolve parent before child, lest we miss entries
1084         * duplicated after we scanned child: using last mm would invert
1085         * that.
1086         */
1087        start_mm = &init_mm;
1088        atomic_inc(&init_mm.mm_users);
1089
1090        /*
1091         * Keep on scanning until all entries have gone.  Usually,
1092         * one pass through swap_map is enough, but not necessarily:
1093         * there are races when an instance of an entry might be missed.
1094         */
1095        while ((i = find_next_to_unuse(si, i)) != 0) {
1096                if (signal_pending(current)) {
1097                        retval = -EINTR;
1098                        break;
1099                }
1100
1101                /*
1102                 * Get a page for the entry, using the existing swap
1103                 * cache page if there is one.  Otherwise, get a clean
1104                 * page and read the swap into it.
1105                 */
1106                swap_map = &si->swap_map[i];
1107                entry = swp_entry(type, i);
1108                page = read_swap_cache_async(entry,
1109                                        GFP_HIGHUSER_MOVABLE, NULL, 0);
1110                if (!page) {
1111                        /*
1112                         * Either swap_duplicate() failed because entry
1113                         * has been freed independently, and will not be
1114                         * reused since sys_swapoff() already disabled
1115                         * allocation from here, or alloc_page() failed.
1116                         */
1117                        if (!*swap_map)
1118                                continue;
1119                        retval = -ENOMEM;
1120                        break;
1121                }
1122
1123                /*
1124                 * Don't hold on to start_mm if it looks like exiting.
1125                 */
1126                if (atomic_read(&start_mm->mm_users) == 1) {
1127                        mmput(start_mm);
1128                        start_mm = &init_mm;
1129                        atomic_inc(&init_mm.mm_users);
1130                }
1131
1132                /*
1133                 * Wait for and lock page.  When do_swap_page races with
1134                 * try_to_unuse, do_swap_page can handle the fault much
1135                 * faster than try_to_unuse can locate the entry.  This
1136                 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1137                 * defer to do_swap_page in such a case - in some tests,
1138                 * do_swap_page and try_to_unuse repeatedly compete.
1139                 */
1140                wait_on_page_locked(page);
1141                wait_on_page_writeback(page);
1142                lock_page(page);
1143                wait_on_page_writeback(page);
1144
1145                /*
1146                 * Remove all references to entry.
1147                 */
1148                swcount = *swap_map;
1149                if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1150                        retval = shmem_unuse(entry, page);
1151                        /* page has already been unlocked and released */
1152                        if (retval < 0)
1153                                break;
1154                        continue;
1155                }
1156                if (swap_count(swcount) && start_mm != &init_mm)
1157                        retval = unuse_mm(start_mm, entry, page);
1158
1159                if (swap_count(*swap_map)) {
1160                        int set_start_mm = (*swap_map >= swcount);
1161                        struct list_head *p = &start_mm->mmlist;
1162                        struct mm_struct *new_start_mm = start_mm;
1163                        struct mm_struct *prev_mm = start_mm;
1164                        struct mm_struct *mm;
1165
1166                        atomic_inc(&new_start_mm->mm_users);
1167                        atomic_inc(&prev_mm->mm_users);
1168                        spin_lock(&mmlist_lock);
1169                        while (swap_count(*swap_map) && !retval &&
1170                                        (p = p->next) != &start_mm->mmlist) {
1171                                mm = list_entry(p, struct mm_struct, mmlist);
1172                                if (!atomic_inc_not_zero(&mm->mm_users))
1173                                        continue;
1174                                spin_unlock(&mmlist_lock);
1175                                mmput(prev_mm);
1176                                prev_mm = mm;
1177
1178                                cond_resched();
1179
1180                                swcount = *swap_map;
1181                                if (!swap_count(swcount)) /* any usage ? */
1182                                        ;
1183                                else if (mm == &init_mm)
1184                                        set_start_mm = 1;
1185                                else
1186                                        retval = unuse_mm(mm, entry, page);
1187
1188                                if (set_start_mm && *swap_map < swcount) {
1189                                        mmput(new_start_mm);
1190                                        atomic_inc(&mm->mm_users);
1191                                        new_start_mm = mm;
1192                                        set_start_mm = 0;
1193                                }
1194                                spin_lock(&mmlist_lock);
1195                        }
1196                        spin_unlock(&mmlist_lock);
1197                        mmput(prev_mm);
1198                        mmput(start_mm);
1199                        start_mm = new_start_mm;
1200                }
1201                if (retval) {
1202                        unlock_page(page);
1203                        page_cache_release(page);
1204                        break;
1205                }
1206
1207                /*
1208                 * If a reference remains (rare), we would like to leave
1209                 * the page in the swap cache; but try_to_unmap could
1210                 * then re-duplicate the entry once we drop page lock,
1211                 * so we might loop indefinitely; also, that page could
1212                 * not be swapped out to other storage meanwhile.  So:
1213                 * delete from cache even if there's another reference,
1214                 * after ensuring that the data has been saved to disk -
1215                 * since if the reference remains (rarer), it will be
1216                 * read from disk into another page.  Splitting into two
1217                 * pages would be incorrect if swap supported "shared
1218                 * private" pages, but they are handled by tmpfs files.
1219                 *
1220                 * Given how unuse_vma() targets one particular offset
1221                 * in an anon_vma, once the anon_vma has been determined,
1222                 * this splitting happens to be just what is needed to
1223                 * handle where KSM pages have been swapped out: re-reading
1224                 * is unnecessarily slow, but we can fix that later on.
1225                 */
1226                if (swap_count(*swap_map) &&
1227                     PageDirty(page) && PageSwapCache(page)) {
1228                        struct writeback_control wbc = {
1229                                .sync_mode = WB_SYNC_NONE,
1230                        };
1231
1232                        swap_writepage(page, &wbc);
1233                        lock_page(page);
1234                        wait_on_page_writeback(page);
1235                }
1236
1237                /*
1238                 * It is conceivable that a racing task removed this page from
1239                 * swap cache just before we acquired the page lock at the top,
1240                 * or while we dropped it in unuse_mm().  The page might even
1241                 * be back in swap cache on another swap area: that we must not
1242                 * delete, since it may not have been written out to swap yet.
1243                 */
1244                if (PageSwapCache(page) &&
1245                    likely(page_private(page) == entry.val))
1246                        delete_from_swap_cache(page);
1247
1248                /*
1249                 * So we could skip searching mms once swap count went
1250                 * to 1, we did not mark any present ptes as dirty: must
1251                 * mark page dirty so shrink_page_list will preserve it.
1252                 */
1253                SetPageDirty(page);
1254                unlock_page(page);
1255                page_cache_release(page);
1256
1257                /*
1258                 * Make sure that we aren't completely killing
1259                 * interactive performance.
1260                 */
1261                cond_resched();
1262        }
1263
1264        mmput(start_mm);
1265        return retval;
1266}
1267
1268/*
1269 * After a successful try_to_unuse, if no swap is now in use, we know
1270 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1271 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1272 * added to the mmlist just after page_duplicate - before would be racy.
1273 */
1274static void drain_mmlist(void)
1275{
1276        struct list_head *p, *next;
1277        unsigned int type;
1278
1279        for (type = 0; type < nr_swapfiles; type++)
1280                if (swap_info[type]->inuse_pages)
1281                        return;
1282        spin_lock(&mmlist_lock);
1283        list_for_each_safe(p, next, &init_mm.mmlist)
1284                list_del_init(p);
1285        spin_unlock(&mmlist_lock);
1286}
1287
1288/*
1289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1290 * corresponds to page offset for the specified swap entry.
1291 * Note that the type of this function is sector_t, but it returns page offset
1292 * into the bdev, not sector offset.
1293 */
1294static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1295{
1296        struct swap_info_struct *sis;
1297        struct swap_extent *start_se;
1298        struct swap_extent *se;
1299        pgoff_t offset;
1300
1301        sis = swap_info[swp_type(entry)];
1302        *bdev = sis->bdev;
1303
1304        offset = swp_offset(entry);
1305        start_se = sis->curr_swap_extent;
1306        se = start_se;
1307
1308        for ( ; ; ) {
1309                struct list_head *lh;
1310
1311                if (se->start_page <= offset &&
1312                                offset < (se->start_page + se->nr_pages)) {
1313                        return se->start_block + (offset - se->start_page);
1314                }
1315                lh = se->list.next;
1316                se = list_entry(lh, struct swap_extent, list);
1317                sis->curr_swap_extent = se;
1318                BUG_ON(se == start_se);         /* It *must* be present */
1319        }
1320}
1321
1322/*
1323 * Returns the page offset into bdev for the specified page's swap entry.
1324 */
1325sector_t map_swap_page(struct page *page, struct block_device **bdev)
1326{
1327        swp_entry_t entry;
1328        entry.val = page_private(page);
1329        return map_swap_entry(entry, bdev);
1330}
1331
1332/*
1333 * Free all of a swapdev's extent information
1334 */
1335static void destroy_swap_extents(struct swap_info_struct *sis)
1336{
1337        while (!list_empty(&sis->first_swap_extent.list)) {
1338                struct swap_extent *se;
1339
1340                se = list_entry(sis->first_swap_extent.list.next,
1341                                struct swap_extent, list);
1342                list_del(&se->list);
1343                kfree(se);
1344        }
1345}
1346
1347/*
1348 * Add a block range (and the corresponding page range) into this swapdev's
1349 * extent list.  The extent list is kept sorted in page order.
1350 *
1351 * This function rather assumes that it is called in ascending page order.
1352 */
1353static int
1354add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1355                unsigned long nr_pages, sector_t start_block)
1356{
1357        struct swap_extent *se;
1358        struct swap_extent *new_se;
1359        struct list_head *lh;
1360
1361        if (start_page == 0) {
1362                se = &sis->first_swap_extent;
1363                sis->curr_swap_extent = se;
1364                se->start_page = 0;
1365                se->nr_pages = nr_pages;
1366                se->start_block = start_block;
1367                return 1;
1368        } else {
1369                lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1370                se = list_entry(lh, struct swap_extent, list);
1371                BUG_ON(se->start_page + se->nr_pages != start_page);
1372                if (se->start_block + se->nr_pages == start_block) {
1373                        /* Merge it */
1374                        se->nr_pages += nr_pages;
1375                        return 0;
1376                }
1377        }
1378
1379        /*
1380         * No merge.  Insert a new extent, preserving ordering.
1381         */
1382        new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1383        if (new_se == NULL)
1384                return -ENOMEM;
1385        new_se->start_page = start_page;
1386        new_se->nr_pages = nr_pages;
1387        new_se->start_block = start_block;
1388
1389        list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1390        return 1;
1391}
1392
1393/*
1394 * A `swap extent' is a simple thing which maps a contiguous range of pages
1395 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1396 * is built at swapon time and is then used at swap_writepage/swap_readpage
1397 * time for locating where on disk a page belongs.
1398 *
1399 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1400 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1401 * swap files identically.
1402 *
1403 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1404 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1405 * swapfiles are handled *identically* after swapon time.
1406 *
1407 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1408 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1409 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1410 * requirements, they are simply tossed out - we will never use those blocks
1411 * for swapping.
1412 *
1413 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1414 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1415 * which will scribble on the fs.
1416 *
1417 * The amount of disk space which a single swap extent represents varies.
1418 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1419 * extents in the list.  To avoid much list walking, we cache the previous
1420 * search location in `curr_swap_extent', and start new searches from there.
1421 * This is extremely effective.  The average number of iterations in
1422 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1423 */
1424static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1425{
1426        struct inode *inode;
1427        unsigned blocks_per_page;
1428        unsigned long page_no;
1429        unsigned blkbits;
1430        sector_t probe_block;
1431        sector_t last_block;
1432        sector_t lowest_block = -1;
1433        sector_t highest_block = 0;
1434        int nr_extents = 0;
1435        int ret;
1436
1437        inode = sis->swap_file->f_mapping->host;
1438        if (S_ISBLK(inode->i_mode)) {
1439                ret = add_swap_extent(sis, 0, sis->max, 0);
1440                *span = sis->pages;
1441                goto out;
1442        }
1443
1444        blkbits = inode->i_blkbits;
1445        blocks_per_page = PAGE_SIZE >> blkbits;
1446
1447        /*
1448         * Map all the blocks into the extent list.  This code doesn't try
1449         * to be very smart.
1450         */
1451        probe_block = 0;
1452        page_no = 0;
1453        last_block = i_size_read(inode) >> blkbits;
1454        while ((probe_block + blocks_per_page) <= last_block &&
1455                        page_no < sis->max) {
1456                unsigned block_in_page;
1457                sector_t first_block;
1458
1459                first_block = bmap(inode, probe_block);
1460                if (first_block == 0)
1461                        goto bad_bmap;
1462
1463                /*
1464                 * It must be PAGE_SIZE aligned on-disk
1465                 */
1466                if (first_block & (blocks_per_page - 1)) {
1467                        probe_block++;
1468                        goto reprobe;
1469                }
1470
1471                for (block_in_page = 1; block_in_page < blocks_per_page;
1472                                        block_in_page++) {
1473                        sector_t block;
1474
1475                        block = bmap(inode, probe_block + block_in_page);
1476                        if (block == 0)
1477                                goto bad_bmap;
1478                        if (block != first_block + block_in_page) {
1479                                /* Discontiguity */
1480                                probe_block++;
1481                                goto reprobe;
1482                        }
1483                }
1484
1485                first_block >>= (PAGE_SHIFT - blkbits);
1486                if (page_no) {  /* exclude the header page */
1487                        if (first_block < lowest_block)
1488                                lowest_block = first_block;
1489                        if (first_block > highest_block)
1490                                highest_block = first_block;
1491                }
1492
1493                /*
1494                 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1495                 */
1496                ret = add_swap_extent(sis, page_no, 1, first_block);
1497                if (ret < 0)
1498                        goto out;
1499                nr_extents += ret;
1500                page_no++;
1501                probe_block += blocks_per_page;
1502reprobe:
1503                continue;
1504        }
1505        ret = nr_extents;
1506        *span = 1 + highest_block - lowest_block;
1507        if (page_no == 0)
1508                page_no = 1;    /* force Empty message */
1509        sis->max = page_no;
1510        sis->pages = page_no - 1;
1511        sis->highest_bit = page_no - 1;
1512out:
1513        return ret;
1514bad_bmap:
1515        printk(KERN_ERR "swapon: swapfile has holes\n");
1516        ret = -EINVAL;
1517        goto out;
1518}
1519
1520static void enable_swap_info(struct swap_info_struct *p, int prio,
1521                                unsigned char *swap_map)
1522{
1523        int i, prev;
1524
1525        spin_lock(&swap_lock);
1526        if (prio >= 0)
1527                p->prio = prio;
1528        else
1529                p->prio = --least_priority;
1530        p->swap_map = swap_map;
1531        p->flags |= SWP_WRITEOK;
1532        nr_swap_pages += p->pages;
1533        total_swap_pages += p->pages;
1534
1535        /* insert swap space into swap_list: */
1536        prev = -1;
1537        for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1538                if (p->prio >= swap_info[i]->prio)
1539                        break;
1540                prev = i;
1541        }
1542        p->next = i;
1543        if (prev < 0)
1544                swap_list.head = swap_list.next = p->type;
1545        else
1546                swap_info[prev]->next = p->type;
1547        spin_unlock(&swap_lock);
1548}
1549
1550SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1551{
1552        struct swap_info_struct *p = NULL;
1553        unsigned char *swap_map;
1554        struct file *swap_file, *victim;
1555        struct address_space *mapping;
1556        struct inode *inode;
1557        char *pathname;
1558        int i, type, prev;
1559        int err;
1560
1561        if (!capable(CAP_SYS_ADMIN))
1562                return -EPERM;
1563
1564        pathname = getname(specialfile);
1565        err = PTR_ERR(pathname);
1566        if (IS_ERR(pathname))
1567                goto out;
1568
1569        victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1570        putname(pathname);
1571        err = PTR_ERR(victim);
1572        if (IS_ERR(victim))
1573                goto out;
1574
1575        mapping = victim->f_mapping;
1576        prev = -1;
1577        spin_lock(&swap_lock);
1578        for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1579                p = swap_info[type];
1580                if (p->flags & SWP_WRITEOK) {
1581                        if (p->swap_file->f_mapping == mapping)
1582                                break;
1583                }
1584                prev = type;
1585        }
1586        if (type < 0) {
1587                err = -EINVAL;
1588                spin_unlock(&swap_lock);
1589                goto out_dput;
1590        }
1591        if (!security_vm_enough_memory(p->pages))
1592                vm_unacct_memory(p->pages);
1593        else {
1594                err = -ENOMEM;
1595                spin_unlock(&swap_lock);
1596                goto out_dput;
1597        }
1598        if (prev < 0)
1599                swap_list.head = p->next;
1600        else
1601                swap_info[prev]->next = p->next;
1602        if (type == swap_list.next) {
1603                /* just pick something that's safe... */
1604                swap_list.next = swap_list.head;
1605        }
1606        if (p->prio < 0) {
1607                for (i = p->next; i >= 0; i = swap_info[i]->next)
1608                        swap_info[i]->prio = p->prio--;
1609                least_priority++;
1610        }
1611        nr_swap_pages -= p->pages;
1612        total_swap_pages -= p->pages;
1613        p->flags &= ~SWP_WRITEOK;
1614        spin_unlock(&swap_lock);
1615
1616        current->flags |= PF_OOM_ORIGIN;
1617        err = try_to_unuse(type);
1618        current->flags &= ~PF_OOM_ORIGIN;
1619
1620        if (err) {
1621                /*
1622                 * reading p->prio and p->swap_map outside the lock is
1623                 * safe here because only sys_swapon and sys_swapoff
1624                 * change them, and there can be no other sys_swapon or
1625                 * sys_swapoff for this swap_info_struct at this point.
1626                 */
1627                /* re-insert swap space back into swap_list */
1628                enable_swap_info(p, p->prio, p->swap_map);
1629                goto out_dput;
1630        }
1631
1632        destroy_swap_extents(p);
1633        if (p->flags & SWP_CONTINUED)
1634                free_swap_count_continuations(p);
1635
1636        mutex_lock(&swapon_mutex);
1637        spin_lock(&swap_lock);
1638        drain_mmlist();
1639
1640        /* wait for anyone still in scan_swap_map */
1641        p->highest_bit = 0;             /* cuts scans short */
1642        while (p->flags >= SWP_SCANNING) {
1643                spin_unlock(&swap_lock);
1644                schedule_timeout_uninterruptible(1);
1645                spin_lock(&swap_lock);
1646        }
1647
1648        swap_file = p->swap_file;
1649        p->swap_file = NULL;
1650        p->max = 0;
1651        swap_map = p->swap_map;
1652        p->swap_map = NULL;
1653        p->flags = 0;
1654        spin_unlock(&swap_lock);
1655        mutex_unlock(&swapon_mutex);
1656        vfree(swap_map);
1657        /* Destroy swap account informatin */
1658        swap_cgroup_swapoff(type);
1659
1660        inode = mapping->host;
1661        if (S_ISBLK(inode->i_mode)) {
1662                struct block_device *bdev = I_BDEV(inode);
1663                set_blocksize(bdev, p->old_block_size);
1664                blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1665        } else {
1666                mutex_lock(&inode->i_mutex);
1667                inode->i_flags &= ~S_SWAPFILE;
1668                mutex_unlock(&inode->i_mutex);
1669        }
1670        filp_close(swap_file, NULL);
1671        err = 0;
1672        atomic_inc(&proc_poll_event);
1673        wake_up_interruptible(&proc_poll_wait);
1674
1675out_dput:
1676        filp_close(victim, NULL);
1677out:
1678        return err;
1679}
1680
1681#ifdef CONFIG_PROC_FS
1682struct proc_swaps {
1683        struct seq_file seq;
1684        int event;
1685};
1686
1687static unsigned swaps_poll(struct file *file, poll_table *wait)
1688{
1689        struct proc_swaps *s = file->private_data;
1690
1691        poll_wait(file, &proc_poll_wait, wait);
1692
1693        if (s->event != atomic_read(&proc_poll_event)) {
1694                s->event = atomic_read(&proc_poll_event);
1695                return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1696        }
1697
1698        return POLLIN | POLLRDNORM;
1699}
1700
1701/* iterator */
1702static void *swap_start(struct seq_file *swap, loff_t *pos)
1703{
1704        struct swap_info_struct *si;
1705        int type;
1706        loff_t l = *pos;
1707
1708        mutex_lock(&swapon_mutex);
1709
1710        if (!l)
1711                return SEQ_START_TOKEN;
1712
1713        for (type = 0; type < nr_swapfiles; type++) {
1714                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1715                si = swap_info[type];
1716                if (!(si->flags & SWP_USED) || !si->swap_map)
1717                        continue;
1718                if (!--l)
1719                        return si;
1720        }
1721
1722        return NULL;
1723}
1724
1725static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1726{
1727        struct swap_info_struct *si = v;
1728        int type;
1729
1730        if (v == SEQ_START_TOKEN)
1731                type = 0;
1732        else
1733                type = si->type + 1;
1734
1735        for (; type < nr_swapfiles; type++) {
1736                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1737                si = swap_info[type];
1738                if (!(si->flags & SWP_USED) || !si->swap_map)
1739                        continue;
1740                ++*pos;
1741                return si;
1742        }
1743
1744        return NULL;
1745}
1746
1747static void swap_stop(struct seq_file *swap, void *v)
1748{
1749        mutex_unlock(&swapon_mutex);
1750}
1751
1752static int swap_show(struct seq_file *swap, void *v)
1753{
1754        struct swap_info_struct *si = v;
1755        struct file *file;
1756        int len;
1757
1758        if (si == SEQ_START_TOKEN) {
1759                seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1760                return 0;
1761        }
1762
1763        file = si->swap_file;
1764        len = seq_path(swap, &file->f_path, " \t\n\\");
1765        seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1766                        len < 40 ? 40 - len : 1, " ",
1767                        S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1768                                "partition" : "file\t",
1769                        si->pages << (PAGE_SHIFT - 10),
1770                        si->inuse_pages << (PAGE_SHIFT - 10),
1771                        si->prio);
1772        return 0;
1773}
1774
1775static const struct seq_operations swaps_op = {
1776        .start =        swap_start,
1777        .next =         swap_next,
1778        .stop =         swap_stop,
1779        .show =         swap_show
1780};
1781
1782static int swaps_open(struct inode *inode, struct file *file)
1783{
1784        struct proc_swaps *s;
1785        int ret;
1786
1787        s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1788        if (!s)
1789                return -ENOMEM;
1790
1791        file->private_data = s;
1792
1793        ret = seq_open(file, &swaps_op);
1794        if (ret) {
1795                kfree(s);
1796                return ret;
1797        }
1798
1799        s->seq.private = s;
1800        s->event = atomic_read(&proc_poll_event);
1801        return ret;
1802}
1803
1804static const struct file_operations proc_swaps_operations = {
1805        .open           = swaps_open,
1806        .read           = seq_read,
1807        .llseek         = seq_lseek,
1808        .release        = seq_release,
1809        .poll           = swaps_poll,
1810};
1811
1812static int __init procswaps_init(void)
1813{
1814        proc_create("swaps", 0, NULL, &proc_swaps_operations);
1815        return 0;
1816}
1817__initcall(procswaps_init);
1818#endif /* CONFIG_PROC_FS */
1819
1820#ifdef MAX_SWAPFILES_CHECK
1821static int __init max_swapfiles_check(void)
1822{
1823        MAX_SWAPFILES_CHECK();
1824        return 0;
1825}
1826late_initcall(max_swapfiles_check);
1827#endif
1828
1829static struct swap_info_struct *alloc_swap_info(void)
1830{
1831        struct swap_info_struct *p;
1832        unsigned int type;
1833
1834        p = kzalloc(sizeof(*p), GFP_KERNEL);
1835        if (!p)
1836                return ERR_PTR(-ENOMEM);
1837
1838        spin_lock(&swap_lock);
1839        for (type = 0; type < nr_swapfiles; type++) {
1840                if (!(swap_info[type]->flags & SWP_USED))
1841                        break;
1842        }
1843        if (type >= MAX_SWAPFILES) {
1844                spin_unlock(&swap_lock);
1845                kfree(p);
1846                return ERR_PTR(-EPERM);
1847        }
1848        if (type >= nr_swapfiles) {
1849                p->type = type;
1850                swap_info[type] = p;
1851                /*
1852                 * Write swap_info[type] before nr_swapfiles, in case a
1853                 * racing procfs swap_start() or swap_next() is reading them.
1854                 * (We never shrink nr_swapfiles, we never free this entry.)
1855                 */
1856                smp_wmb();
1857                nr_swapfiles++;
1858        } else {
1859                kfree(p);
1860                p = swap_info[type];
1861                /*
1862                 * Do not memset this entry: a racing procfs swap_next()
1863                 * would be relying on p->type to remain valid.
1864                 */
1865        }
1866        INIT_LIST_HEAD(&p->first_swap_extent.list);
1867        p->flags = SWP_USED;
1868        p->next = -1;
1869        spin_unlock(&swap_lock);
1870
1871        return p;
1872}
1873
1874static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1875{
1876        int error;
1877
1878        if (S_ISBLK(inode->i_mode)) {
1879                p->bdev = bdgrab(I_BDEV(inode));
1880                error = blkdev_get(p->bdev,
1881                                   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1882                                   sys_swapon);
1883                if (error < 0) {
1884                        p->bdev = NULL;
1885                        return -EINVAL;
1886                }
1887                p->old_block_size = block_size(p->bdev);
1888                error = set_blocksize(p->bdev, PAGE_SIZE);
1889                if (error < 0)
1890                        return error;
1891                p->flags |= SWP_BLKDEV;
1892        } else if (S_ISREG(inode->i_mode)) {
1893                p->bdev = inode->i_sb->s_bdev;
1894                mutex_lock(&inode->i_mutex);
1895                if (IS_SWAPFILE(inode))
1896                        return -EBUSY;
1897        } else
1898                return -EINVAL;
1899
1900        return 0;
1901}
1902
1903static unsigned long read_swap_header(struct swap_info_struct *p,
1904                                        union swap_header *swap_header,
1905                                        struct inode *inode)
1906{
1907        int i;
1908        unsigned long maxpages;
1909        unsigned long swapfilepages;
1910
1911        if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1912                printk(KERN_ERR "Unable to find swap-space signature\n");
1913                return 0;
1914        }
1915
1916        /* swap partition endianess hack... */
1917        if (swab32(swap_header->info.version) == 1) {
1918                swab32s(&swap_header->info.version);
1919                swab32s(&swap_header->info.last_page);
1920                swab32s(&swap_header->info.nr_badpages);
1921                for (i = 0; i < swap_header->info.nr_badpages; i++)
1922                        swab32s(&swap_header->info.badpages[i]);
1923        }
1924        /* Check the swap header's sub-version */
1925        if (swap_header->info.version != 1) {
1926                printk(KERN_WARNING
1927                       "Unable to handle swap header version %d\n",
1928                       swap_header->info.version);
1929                return 0;
1930        }
1931
1932        p->lowest_bit  = 1;
1933        p->cluster_next = 1;
1934        p->cluster_nr = 0;
1935
1936        /*
1937         * Find out how many pages are allowed for a single swap
1938         * device. There are two limiting factors: 1) the number of
1939         * bits for the swap offset in the swp_entry_t type and
1940         * 2) the number of bits in the a swap pte as defined by
1941         * the different architectures. In order to find the
1942         * largest possible bit mask a swap entry with swap type 0
1943         * and swap offset ~0UL is created, encoded to a swap pte,
1944         * decoded to a swp_entry_t again and finally the swap
1945         * offset is extracted. This will mask all the bits from
1946         * the initial ~0UL mask that can't be encoded in either
1947         * the swp_entry_t or the architecture definition of a
1948         * swap pte.
1949         */
1950        maxpages = swp_offset(pte_to_swp_entry(
1951                        swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1952        if (maxpages > swap_header->info.last_page) {
1953                maxpages = swap_header->info.last_page + 1;
1954                /* p->max is an unsigned int: don't overflow it */
1955                if ((unsigned int)maxpages == 0)
1956                        maxpages = UINT_MAX;
1957        }
1958        p->highest_bit = maxpages - 1;
1959
1960        if (!maxpages)
1961                return 0;
1962        swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1963        if (swapfilepages && maxpages > swapfilepages) {
1964                printk(KERN_WARNING
1965                       "Swap area shorter than signature indicates\n");
1966                return 0;
1967        }
1968        if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1969                return 0;
1970        if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1971                return 0;
1972
1973        return maxpages;
1974}
1975
1976static int setup_swap_map_and_extents(struct swap_info_struct *p,
1977                                        union swap_header *swap_header,
1978                                        unsigned char *swap_map,
1979                                        unsigned long maxpages,
1980                                        sector_t *span)
1981{
1982        int i;
1983        unsigned int nr_good_pages;
1984        int nr_extents;
1985
1986        nr_good_pages = maxpages - 1;   /* omit header page */
1987
1988        for (i = 0; i < swap_header->info.nr_badpages; i++) {
1989                unsigned int page_nr = swap_header->info.badpages[i];
1990                if (page_nr == 0 || page_nr > swap_header->info.last_page)
1991                        return -EINVAL;
1992                if (page_nr < maxpages) {
1993                        swap_map[page_nr] = SWAP_MAP_BAD;
1994                        nr_good_pages--;
1995                }
1996        }
1997
1998        if (nr_good_pages) {
1999                swap_map[0] = SWAP_MAP_BAD;
2000                p->max = maxpages;
2001                p->pages = nr_good_pages;
2002                nr_extents = setup_swap_extents(p, span);
2003                if (nr_extents < 0)
2004                        return nr_extents;
2005                nr_good_pages = p->pages;
2006        }
2007        if (!nr_good_pages) {
2008                printk(KERN_WARNING "Empty swap-file\n");
2009                return -EINVAL;
2010        }
2011
2012        return nr_extents;
2013}
2014
2015SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2016{
2017        struct swap_info_struct *p;
2018        char *name;
2019        struct file *swap_file = NULL;
2020        struct address_space *mapping;
2021        int i;
2022        int prio;
2023        int error;
2024        union swap_header *swap_header;
2025        int nr_extents;
2026        sector_t span;
2027        unsigned long maxpages;
2028        unsigned char *swap_map = NULL;
2029        struct page *page = NULL;
2030        struct inode *inode = NULL;
2031
2032        if (!capable(CAP_SYS_ADMIN))
2033                return -EPERM;
2034
2035        p = alloc_swap_info();
2036        if (IS_ERR(p))
2037                return PTR_ERR(p);
2038
2039        name = getname(specialfile);
2040        if (IS_ERR(name)) {
2041                error = PTR_ERR(name);
2042                name = NULL;
2043                goto bad_swap;
2044        }
2045        swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2046        if (IS_ERR(swap_file)) {
2047                error = PTR_ERR(swap_file);
2048                swap_file = NULL;
2049                goto bad_swap;
2050        }
2051
2052        p->swap_file = swap_file;
2053        mapping = swap_file->f_mapping;
2054
2055        for (i = 0; i < nr_swapfiles; i++) {
2056                struct swap_info_struct *q = swap_info[i];
2057
2058                if (q == p || !q->swap_file)
2059                        continue;
2060                if (mapping == q->swap_file->f_mapping) {
2061                        error = -EBUSY;
2062                        goto bad_swap;
2063                }
2064        }
2065
2066        inode = mapping->host;
2067        /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2068        error = claim_swapfile(p, inode);
2069        if (unlikely(error))
2070                goto bad_swap;
2071
2072        /*
2073         * Read the swap header.
2074         */
2075        if (!mapping->a_ops->readpage) {
2076                error = -EINVAL;
2077                goto bad_swap;
2078        }
2079        page = read_mapping_page(mapping, 0, swap_file);
2080        if (IS_ERR(page)) {
2081                error = PTR_ERR(page);
2082                goto bad_swap;
2083        }
2084        swap_header = kmap(page);
2085
2086        maxpages = read_swap_header(p, swap_header, inode);
2087        if (unlikely(!maxpages)) {
2088                error = -EINVAL;
2089                goto bad_swap;
2090        }
2091
2092        /* OK, set up the swap map and apply the bad block list */
2093        swap_map = vzalloc(maxpages);
2094        if (!swap_map) {
2095                error = -ENOMEM;
2096                goto bad_swap;
2097        }
2098
2099        error = swap_cgroup_swapon(p->type, maxpages);
2100        if (error)
2101                goto bad_swap;
2102
2103        nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2104                maxpages, &span);
2105        if (unlikely(nr_extents < 0)) {
2106                error = nr_extents;
2107                goto bad_swap;
2108        }
2109
2110        if (p->bdev) {
2111                if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2112                        p->flags |= SWP_SOLIDSTATE;
2113                        p->cluster_next = 1 + (random32() % p->highest_bit);
2114                }
2115                if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2116                        p->flags |= SWP_DISCARDABLE;
2117        }
2118
2119        mutex_lock(&swapon_mutex);
2120        prio = -1;
2121        if (swap_flags & SWAP_FLAG_PREFER)
2122                prio =
2123                  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2124        enable_swap_info(p, prio, swap_map);
2125
2126        printk(KERN_INFO "Adding %uk swap on %s.  "
2127                        "Priority:%d extents:%d across:%lluk %s%s\n",
2128                p->pages<<(PAGE_SHIFT-10), name, p->prio,
2129                nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2130                (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2131                (p->flags & SWP_DISCARDABLE) ? "D" : "");
2132
2133        mutex_unlock(&swapon_mutex);
2134        atomic_inc(&proc_poll_event);
2135        wake_up_interruptible(&proc_poll_wait);
2136
2137        if (S_ISREG(inode->i_mode))
2138                inode->i_flags |= S_SWAPFILE;
2139        error = 0;
2140        goto out;
2141bad_swap:
2142        if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2143                set_blocksize(p->bdev, p->old_block_size);
2144                blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2145        }
2146        destroy_swap_extents(p);
2147        swap_cgroup_swapoff(p->type);
2148        spin_lock(&swap_lock);
2149        p->swap_file = NULL;
2150        p->flags = 0;
2151        spin_unlock(&swap_lock);
2152        vfree(swap_map);
2153        if (swap_file) {
2154                if (inode && S_ISREG(inode->i_mode)) {
2155                        mutex_unlock(&inode->i_mutex);
2156                        inode = NULL;
2157                }
2158                filp_close(swap_file, NULL);
2159        }
2160out:
2161        if (page && !IS_ERR(page)) {
2162                kunmap(page);
2163                page_cache_release(page);
2164        }
2165        if (name)
2166                putname(name);
2167        if (inode && S_ISREG(inode->i_mode))
2168                mutex_unlock(&inode->i_mutex);
2169        return error;
2170}
2171
2172void si_swapinfo(struct sysinfo *val)
2173{
2174        unsigned int type;
2175        unsigned long nr_to_be_unused = 0;
2176
2177        spin_lock(&swap_lock);
2178        for (type = 0; type < nr_swapfiles; type++) {
2179                struct swap_info_struct *si = swap_info[type];
2180
2181                if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2182                        nr_to_be_unused += si->inuse_pages;
2183        }
2184        val->freeswap = nr_swap_pages + nr_to_be_unused;
2185        val->totalswap = total_swap_pages + nr_to_be_unused;
2186        spin_unlock(&swap_lock);
2187}
2188
2189/*
2190 * Verify that a swap entry is valid and increment its swap map count.
2191 *
2192 * Returns error code in following case.
2193 * - success -> 0
2194 * - swp_entry is invalid -> EINVAL
2195 * - swp_entry is migration entry -> EINVAL
2196 * - swap-cache reference is requested but there is already one. -> EEXIST
2197 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2198 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2199 */
2200static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2201{
2202        struct swap_info_struct *p;
2203        unsigned long offset, type;
2204        unsigned char count;
2205        unsigned char has_cache;
2206        int err = -EINVAL;
2207
2208        if (non_swap_entry(entry))
2209                goto out;
2210
2211        type = swp_type(entry);
2212        if (type >= nr_swapfiles)
2213                goto bad_file;
2214        p = swap_info[type];
2215        offset = swp_offset(entry);
2216
2217        spin_lock(&swap_lock);
2218        if (unlikely(offset >= p->max))
2219                goto unlock_out;
2220
2221        count = p->swap_map[offset];
2222        has_cache = count & SWAP_HAS_CACHE;
2223        count &= ~SWAP_HAS_CACHE;
2224        err = 0;
2225
2226        if (usage == SWAP_HAS_CACHE) {
2227
2228                /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2229                if (!has_cache && count)
2230                        has_cache = SWAP_HAS_CACHE;
2231                else if (has_cache)             /* someone else added cache */
2232                        err = -EEXIST;
2233                else                            /* no users remaining */
2234                        err = -ENOENT;
2235
2236        } else if (count || has_cache) {
2237
2238                if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2239                        count += usage;
2240                else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2241                        err = -EINVAL;
2242                else if (swap_count_continued(p, offset, count))
2243                        count = COUNT_CONTINUED;
2244                else
2245                        err = -ENOMEM;
2246        } else
2247                err = -ENOENT;                  /* unused swap entry */
2248
2249        p->swap_map[offset] = count | has_cache;
2250
2251unlock_out:
2252        spin_unlock(&swap_lock);
2253out:
2254        return err;
2255
2256bad_file:
2257        printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2258        goto out;
2259}
2260
2261/*
2262 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2263 * (in which case its reference count is never incremented).
2264 */
2265void swap_shmem_alloc(swp_entry_t entry)
2266{
2267        __swap_duplicate(entry, SWAP_MAP_SHMEM);
2268}
2269
2270/*
2271 * Increase reference count of swap entry by 1.
2272 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2273 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2274 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2275 * might occur if a page table entry has got corrupted.
2276 */
2277int swap_duplicate(swp_entry_t entry)
2278{
2279        int err = 0;
2280
2281        while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2282                err = add_swap_count_continuation(entry, GFP_ATOMIC);
2283        return err;
2284}
2285
2286/*
2287 * @entry: swap entry for which we allocate swap cache.
2288 *
2289 * Called when allocating swap cache for existing swap entry,
2290 * This can return error codes. Returns 0 at success.
2291 * -EBUSY means there is a swap cache.
2292 * Note: return code is different from swap_duplicate().
2293 */
2294int swapcache_prepare(swp_entry_t entry)
2295{
2296        return __swap_duplicate(entry, SWAP_HAS_CACHE);
2297}
2298
2299/*
2300 * swap_lock prevents swap_map being freed. Don't grab an extra
2301 * reference on the swaphandle, it doesn't matter if it becomes unused.
2302 */
2303int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2304{
2305        struct swap_info_struct *si;
2306        int our_page_cluster = page_cluster;
2307        pgoff_t target, toff;
2308        pgoff_t base, end;
2309        int nr_pages = 0;
2310
2311        if (!our_page_cluster)  /* no readahead */
2312                return 0;
2313
2314        si = swap_info[swp_type(entry)];
2315        target = swp_offset(entry);
2316        base = (target >> our_page_cluster) << our_page_cluster;
2317        end = base + (1 << our_page_cluster);
2318        if (!base)              /* first page is swap header */
2319                base++;
2320
2321        spin_lock(&swap_lock);
2322        if (end > si->max)      /* don't go beyond end of map */
2323                end = si->max;
2324
2325        /* Count contiguous allocated slots above our target */
2326        for (toff = target; ++toff < end; nr_pages++) {
2327                /* Don't read in free or bad pages */
2328                if (!si->swap_map[toff])
2329                        break;
2330                if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2331                        break;
2332        }
2333        /* Count contiguous allocated slots below our target */
2334        for (toff = target; --toff >= base; nr_pages++) {
2335                /* Don't read in free or bad pages */
2336                if (!si->swap_map[toff])
2337                        break;
2338                if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2339                        break;
2340        }
2341        spin_unlock(&swap_lock);
2342
2343        /*
2344         * Indicate starting offset, and return number of pages to get:
2345         * if only 1, say 0, since there's then no readahead to be done.
2346         */
2347        *offset = ++toff;
2348        return nr_pages? ++nr_pages: 0;
2349}
2350
2351/*
2352 * add_swap_count_continuation - called when a swap count is duplicated
2353 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2354 * page of the original vmalloc'ed swap_map, to hold the continuation count
2355 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2356 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2357 *
2358 * These continuation pages are seldom referenced: the common paths all work
2359 * on the original swap_map, only referring to a continuation page when the
2360 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2361 *
2362 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2363 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2364 * can be called after dropping locks.
2365 */
2366int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2367{
2368        struct swap_info_struct *si;
2369        struct page *head;
2370        struct page *page;
2371        struct page *list_page;
2372        pgoff_t offset;
2373        unsigned char count;
2374
2375        /*
2376         * When debugging, it's easier to use __GFP_ZERO here; but it's better
2377         * for latency not to zero a page while GFP_ATOMIC and holding locks.
2378         */
2379        page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2380
2381        si = swap_info_get(entry);
2382        if (!si) {
2383                /*
2384                 * An acceptable race has occurred since the failing
2385                 * __swap_duplicate(): the swap entry has been freed,
2386                 * perhaps even the whole swap_map cleared for swapoff.
2387                 */
2388                goto outer;
2389        }
2390
2391        offset = swp_offset(entry);
2392        count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2393
2394        if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2395                /*
2396                 * The higher the swap count, the more likely it is that tasks
2397                 * will race to add swap count continuation: we need to avoid
2398                 * over-provisioning.
2399                 */
2400                goto out;
2401        }
2402
2403        if (!page) {
2404                spin_unlock(&swap_lock);
2405                return -ENOMEM;
2406        }
2407
2408        /*
2409         * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2410         * no architecture is using highmem pages for kernel pagetables: so it
2411         * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2412         */
2413        head = vmalloc_to_page(si->swap_map + offset);
2414        offset &= ~PAGE_MASK;
2415
2416        /*
2417         * Page allocation does not initialize the page's lru field,
2418         * but it does always reset its private field.
2419         */
2420        if (!page_private(head)) {
2421                BUG_ON(count & COUNT_CONTINUED);
2422                INIT_LIST_HEAD(&head->lru);
2423                set_page_private(head, SWP_CONTINUED);
2424                si->flags |= SWP_CONTINUED;
2425        }
2426
2427        list_for_each_entry(list_page, &head->lru, lru) {
2428                unsigned char *map;
2429
2430                /*
2431                 * If the previous map said no continuation, but we've found
2432                 * a continuation page, free our allocation and use this one.
2433                 */
2434                if (!(count & COUNT_CONTINUED))
2435                        goto out;
2436
2437                map = kmap_atomic(list_page, KM_USER0) + offset;
2438                count = *map;
2439                kunmap_atomic(map, KM_USER0);
2440
2441                /*
2442                 * If this continuation count now has some space in it,
2443                 * free our allocation and use this one.
2444                 */
2445                if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2446                        goto out;
2447        }
2448
2449        list_add_tail(&page->lru, &head->lru);
2450        page = NULL;                    /* now it's attached, don't free it */
2451out:
2452        spin_unlock(&swap_lock);
2453outer:
2454        if (page)
2455                __free_page(page);
2456        return 0;
2457}
2458
2459/*
2460 * swap_count_continued - when the original swap_map count is incremented
2461 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2462 * into, carry if so, or else fail until a new continuation page is allocated;
2463 * when the original swap_map count is decremented from 0 with continuation,
2464 * borrow from the continuation and report whether it still holds more.
2465 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2466 */
2467static bool swap_count_continued(struct swap_info_struct *si,
2468                                 pgoff_t offset, unsigned char count)
2469{
2470        struct page *head;
2471        struct page *page;
2472        unsigned char *map;
2473
2474        head = vmalloc_to_page(si->swap_map + offset);
2475        if (page_private(head) != SWP_CONTINUED) {
2476                BUG_ON(count & COUNT_CONTINUED);
2477                return false;           /* need to add count continuation */
2478        }
2479
2480        offset &= ~PAGE_MASK;
2481        page = list_entry(head->lru.next, struct page, lru);
2482        map = kmap_atomic(page, KM_USER0) + offset;
2483
2484        if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2485                goto init_map;          /* jump over SWAP_CONT_MAX checks */
2486
2487        if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2488                /*
2489                 * Think of how you add 1 to 999
2490                 */
2491                while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2492                        kunmap_atomic(map, KM_USER0);
2493                        page = list_entry(page->lru.next, struct page, lru);
2494                        BUG_ON(page == head);
2495                        map = kmap_atomic(page, KM_USER0) + offset;
2496                }
2497                if (*map == SWAP_CONT_MAX) {
2498                        kunmap_atomic(map, KM_USER0);
2499                        page = list_entry(page->lru.next, struct page, lru);
2500                        if (page == head)
2501                                return false;   /* add count continuation */
2502                        map = kmap_atomic(page, KM_USER0) + offset;
2503init_map:               *map = 0;               /* we didn't zero the page */
2504                }
2505                *map += 1;
2506                kunmap_atomic(map, KM_USER0);
2507                page = list_entry(page->lru.prev, struct page, lru);
2508                while (page != head) {
2509                        map = kmap_atomic(page, KM_USER0) + offset;
2510                        *map = COUNT_CONTINUED;
2511                        kunmap_atomic(map, KM_USER0);
2512                        page = list_entry(page->lru.prev, struct page, lru);
2513                }
2514                return true;                    /* incremented */
2515
2516        } else {                                /* decrementing */
2517                /*
2518                 * Think of how you subtract 1 from 1000
2519                 */
2520                BUG_ON(count != COUNT_CONTINUED);
2521                while (*map == COUNT_CONTINUED) {
2522                        kunmap_atomic(map, KM_USER0);
2523                        page = list_entry(page->lru.next, struct page, lru);
2524                        BUG_ON(page == head);
2525                        map = kmap_atomic(page, KM_USER0) + offset;
2526                }
2527                BUG_ON(*map == 0);
2528                *map -= 1;
2529                if (*map == 0)
2530                        count = 0;
2531                kunmap_atomic(map, KM_USER0);
2532                page = list_entry(page->lru.prev, struct page, lru);
2533                while (page != head) {
2534                        map = kmap_atomic(page, KM_USER0) + offset;
2535                        *map = SWAP_CONT_MAX | count;
2536                        count = COUNT_CONTINUED;
2537                        kunmap_atomic(map, KM_USER0);
2538                        page = list_entry(page->lru.prev, struct page, lru);
2539                }
2540                return count == COUNT_CONTINUED;
2541        }
2542}
2543
2544/*
2545 * free_swap_count_continuations - swapoff free all the continuation pages
2546 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2547 */
2548static void free_swap_count_continuations(struct swap_info_struct *si)
2549{
2550        pgoff_t offset;
2551
2552        for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2553                struct page *head;
2554                head = vmalloc_to_page(si->swap_map + offset);
2555                if (page_private(head)) {
2556                        struct list_head *this, *next;
2557                        list_for_each_safe(this, next, &head->lru) {
2558                                struct page *page;
2559                                page = list_entry(this, struct page, lru);
2560                                list_del(this);
2561                                __free_page(page);
2562                        }
2563                }
2564        }
2565}
2566