linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/gfp.h>
  13#include <linux/mm.h>
  14#include <linux/swap.h>
  15#include <linux/module.h>
  16#include <linux/pagemap.h>
  17#include <linux/highmem.h>
  18#include <linux/pagevec.h>
  19#include <linux/task_io_accounting_ops.h>
  20#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  21                                   do_invalidatepage */
  22#include "internal.h"
  23
  24
  25/**
  26 * do_invalidatepage - invalidate part or all of a page
  27 * @page: the page which is affected
  28 * @offset: the index of the truncation point
  29 *
  30 * do_invalidatepage() is called when all or part of the page has become
  31 * invalidated by a truncate operation.
  32 *
  33 * do_invalidatepage() does not have to release all buffers, but it must
  34 * ensure that no dirty buffer is left outside @offset and that no I/O
  35 * is underway against any of the blocks which are outside the truncation
  36 * point.  Because the caller is about to free (and possibly reuse) those
  37 * blocks on-disk.
  38 */
  39void do_invalidatepage(struct page *page, unsigned long offset)
  40{
  41        void (*invalidatepage)(struct page *, unsigned long);
  42        invalidatepage = page->mapping->a_ops->invalidatepage;
  43#ifdef CONFIG_BLOCK
  44        if (!invalidatepage)
  45                invalidatepage = block_invalidatepage;
  46#endif
  47        if (invalidatepage)
  48                (*invalidatepage)(page, offset);
  49}
  50
  51static inline void truncate_partial_page(struct page *page, unsigned partial)
  52{
  53        zero_user_segment(page, partial, PAGE_CACHE_SIZE);
  54        if (page_has_private(page))
  55                do_invalidatepage(page, partial);
  56}
  57
  58/*
  59 * This cancels just the dirty bit on the kernel page itself, it
  60 * does NOT actually remove dirty bits on any mmap's that may be
  61 * around. It also leaves the page tagged dirty, so any sync
  62 * activity will still find it on the dirty lists, and in particular,
  63 * clear_page_dirty_for_io() will still look at the dirty bits in
  64 * the VM.
  65 *
  66 * Doing this should *normally* only ever be done when a page
  67 * is truncated, and is not actually mapped anywhere at all. However,
  68 * fs/buffer.c does this when it notices that somebody has cleaned
  69 * out all the buffers on a page without actually doing it through
  70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
  71 */
  72void cancel_dirty_page(struct page *page, unsigned int account_size)
  73{
  74        if (TestClearPageDirty(page)) {
  75                struct address_space *mapping = page->mapping;
  76                if (mapping && mapping_cap_account_dirty(mapping)) {
  77                        dec_zone_page_state(page, NR_FILE_DIRTY);
  78                        dec_bdi_stat(mapping->backing_dev_info,
  79                                        BDI_RECLAIMABLE);
  80                        if (account_size)
  81                                task_io_account_cancelled_write(account_size);
  82                }
  83        }
  84}
  85EXPORT_SYMBOL(cancel_dirty_page);
  86
  87/*
  88 * If truncate cannot remove the fs-private metadata from the page, the page
  89 * becomes orphaned.  It will be left on the LRU and may even be mapped into
  90 * user pagetables if we're racing with filemap_fault().
  91 *
  92 * We need to bale out if page->mapping is no longer equal to the original
  93 * mapping.  This happens a) when the VM reclaimed the page while we waited on
  94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
  95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
  96 */
  97static int
  98truncate_complete_page(struct address_space *mapping, struct page *page)
  99{
 100        if (page->mapping != mapping)
 101                return -EIO;
 102
 103        if (page_has_private(page))
 104                do_invalidatepage(page, 0);
 105
 106        cancel_dirty_page(page, PAGE_CACHE_SIZE);
 107
 108        clear_page_mlock(page);
 109        ClearPageMappedToDisk(page);
 110        delete_from_page_cache(page);
 111        return 0;
 112}
 113
 114/*
 115 * This is for invalidate_mapping_pages().  That function can be called at
 116 * any time, and is not supposed to throw away dirty pages.  But pages can
 117 * be marked dirty at any time too, so use remove_mapping which safely
 118 * discards clean, unused pages.
 119 *
 120 * Returns non-zero if the page was successfully invalidated.
 121 */
 122static int
 123invalidate_complete_page(struct address_space *mapping, struct page *page)
 124{
 125        int ret;
 126
 127        if (page->mapping != mapping)
 128                return 0;
 129
 130        if (page_has_private(page) && !try_to_release_page(page, 0))
 131                return 0;
 132
 133        clear_page_mlock(page);
 134        ret = remove_mapping(mapping, page);
 135
 136        return ret;
 137}
 138
 139int truncate_inode_page(struct address_space *mapping, struct page *page)
 140{
 141        if (page_mapped(page)) {
 142                unmap_mapping_range(mapping,
 143                                   (loff_t)page->index << PAGE_CACHE_SHIFT,
 144                                   PAGE_CACHE_SIZE, 0);
 145        }
 146        return truncate_complete_page(mapping, page);
 147}
 148
 149/*
 150 * Used to get rid of pages on hardware memory corruption.
 151 */
 152int generic_error_remove_page(struct address_space *mapping, struct page *page)
 153{
 154        if (!mapping)
 155                return -EINVAL;
 156        /*
 157         * Only punch for normal data pages for now.
 158         * Handling other types like directories would need more auditing.
 159         */
 160        if (!S_ISREG(mapping->host->i_mode))
 161                return -EIO;
 162        return truncate_inode_page(mapping, page);
 163}
 164EXPORT_SYMBOL(generic_error_remove_page);
 165
 166/*
 167 * Safely invalidate one page from its pagecache mapping.
 168 * It only drops clean, unused pages. The page must be locked.
 169 *
 170 * Returns 1 if the page is successfully invalidated, otherwise 0.
 171 */
 172int invalidate_inode_page(struct page *page)
 173{
 174        struct address_space *mapping = page_mapping(page);
 175        if (!mapping)
 176                return 0;
 177        if (PageDirty(page) || PageWriteback(page))
 178                return 0;
 179        if (page_mapped(page))
 180                return 0;
 181        return invalidate_complete_page(mapping, page);
 182}
 183
 184/**
 185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
 186 * @mapping: mapping to truncate
 187 * @lstart: offset from which to truncate
 188 * @lend: offset to which to truncate
 189 *
 190 * Truncate the page cache, removing the pages that are between
 191 * specified offsets (and zeroing out partial page
 192 * (if lstart is not page aligned)).
 193 *
 194 * Truncate takes two passes - the first pass is nonblocking.  It will not
 195 * block on page locks and it will not block on writeback.  The second pass
 196 * will wait.  This is to prevent as much IO as possible in the affected region.
 197 * The first pass will remove most pages, so the search cost of the second pass
 198 * is low.
 199 *
 200 * When looking at page->index outside the page lock we need to be careful to
 201 * copy it into a local to avoid races (it could change at any time).
 202 *
 203 * We pass down the cache-hot hint to the page freeing code.  Even if the
 204 * mapping is large, it is probably the case that the final pages are the most
 205 * recently touched, and freeing happens in ascending file offset order.
 206 */
 207void truncate_inode_pages_range(struct address_space *mapping,
 208                                loff_t lstart, loff_t lend)
 209{
 210        const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 211        pgoff_t end;
 212        const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 213        struct pagevec pvec;
 214        pgoff_t next;
 215        int i;
 216
 217        if (mapping->nrpages == 0)
 218                return;
 219
 220        BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 221        end = (lend >> PAGE_CACHE_SHIFT);
 222
 223        pagevec_init(&pvec, 0);
 224        next = start;
 225        while (next <= end &&
 226               pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 227                mem_cgroup_uncharge_start();
 228                for (i = 0; i < pagevec_count(&pvec); i++) {
 229                        struct page *page = pvec.pages[i];
 230                        pgoff_t page_index = page->index;
 231
 232                        if (page_index > end) {
 233                                next = page_index;
 234                                break;
 235                        }
 236
 237                        if (page_index > next)
 238                                next = page_index;
 239                        next++;
 240                        if (!trylock_page(page))
 241                                continue;
 242                        if (PageWriteback(page)) {
 243                                unlock_page(page);
 244                                continue;
 245                        }
 246                        truncate_inode_page(mapping, page);
 247                        unlock_page(page);
 248                }
 249                pagevec_release(&pvec);
 250                mem_cgroup_uncharge_end();
 251                cond_resched();
 252        }
 253
 254        if (partial) {
 255                struct page *page = find_lock_page(mapping, start - 1);
 256                if (page) {
 257                        wait_on_page_writeback(page);
 258                        truncate_partial_page(page, partial);
 259                        unlock_page(page);
 260                        page_cache_release(page);
 261                }
 262        }
 263
 264        next = start;
 265        for ( ; ; ) {
 266                cond_resched();
 267                if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 268                        if (next == start)
 269                                break;
 270                        next = start;
 271                        continue;
 272                }
 273                if (pvec.pages[0]->index > end) {
 274                        pagevec_release(&pvec);
 275                        break;
 276                }
 277                mem_cgroup_uncharge_start();
 278                for (i = 0; i < pagevec_count(&pvec); i++) {
 279                        struct page *page = pvec.pages[i];
 280
 281                        if (page->index > end)
 282                                break;
 283                        lock_page(page);
 284                        wait_on_page_writeback(page);
 285                        truncate_inode_page(mapping, page);
 286                        if (page->index > next)
 287                                next = page->index;
 288                        next++;
 289                        unlock_page(page);
 290                }
 291                pagevec_release(&pvec);
 292                mem_cgroup_uncharge_end();
 293        }
 294}
 295EXPORT_SYMBOL(truncate_inode_pages_range);
 296
 297/**
 298 * truncate_inode_pages - truncate *all* the pages from an offset
 299 * @mapping: mapping to truncate
 300 * @lstart: offset from which to truncate
 301 *
 302 * Called under (and serialised by) inode->i_mutex.
 303 */
 304void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 305{
 306        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 307}
 308EXPORT_SYMBOL(truncate_inode_pages);
 309
 310/**
 311 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 312 * @mapping: the address_space which holds the pages to invalidate
 313 * @start: the offset 'from' which to invalidate
 314 * @end: the offset 'to' which to invalidate (inclusive)
 315 *
 316 * This function only removes the unlocked pages, if you want to
 317 * remove all the pages of one inode, you must call truncate_inode_pages.
 318 *
 319 * invalidate_mapping_pages() will not block on IO activity. It will not
 320 * invalidate pages which are dirty, locked, under writeback or mapped into
 321 * pagetables.
 322 */
 323unsigned long invalidate_mapping_pages(struct address_space *mapping,
 324                pgoff_t start, pgoff_t end)
 325{
 326        struct pagevec pvec;
 327        pgoff_t next = start;
 328        unsigned long ret;
 329        unsigned long count = 0;
 330        int i;
 331
 332        pagevec_init(&pvec, 0);
 333        while (next <= end &&
 334                        pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 335                mem_cgroup_uncharge_start();
 336                for (i = 0; i < pagevec_count(&pvec); i++) {
 337                        struct page *page = pvec.pages[i];
 338                        pgoff_t index;
 339                        int lock_failed;
 340
 341                        lock_failed = !trylock_page(page);
 342
 343                        /*
 344                         * We really shouldn't be looking at the ->index of an
 345                         * unlocked page.  But we're not allowed to lock these
 346                         * pages.  So we rely upon nobody altering the ->index
 347                         * of this (pinned-by-us) page.
 348                         */
 349                        index = page->index;
 350                        if (index > next)
 351                                next = index;
 352                        next++;
 353                        if (lock_failed)
 354                                continue;
 355
 356                        ret = invalidate_inode_page(page);
 357                        unlock_page(page);
 358                        /*
 359                         * Invalidation is a hint that the page is no longer
 360                         * of interest and try to speed up its reclaim.
 361                         */
 362                        if (!ret)
 363                                deactivate_page(page);
 364                        count += ret;
 365                        if (next > end)
 366                                break;
 367                }
 368                pagevec_release(&pvec);
 369                mem_cgroup_uncharge_end();
 370                cond_resched();
 371        }
 372        return count;
 373}
 374EXPORT_SYMBOL(invalidate_mapping_pages);
 375
 376/*
 377 * This is like invalidate_complete_page(), except it ignores the page's
 378 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 379 * invalidation guarantees, and cannot afford to leave pages behind because
 380 * shrink_page_list() has a temp ref on them, or because they're transiently
 381 * sitting in the lru_cache_add() pagevecs.
 382 */
 383static int
 384invalidate_complete_page2(struct address_space *mapping, struct page *page)
 385{
 386        if (page->mapping != mapping)
 387                return 0;
 388
 389        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 390                return 0;
 391
 392        spin_lock_irq(&mapping->tree_lock);
 393        if (PageDirty(page))
 394                goto failed;
 395
 396        clear_page_mlock(page);
 397        BUG_ON(page_has_private(page));
 398        __delete_from_page_cache(page);
 399        spin_unlock_irq(&mapping->tree_lock);
 400        mem_cgroup_uncharge_cache_page(page);
 401
 402        if (mapping->a_ops->freepage)
 403                mapping->a_ops->freepage(page);
 404
 405        page_cache_release(page);       /* pagecache ref */
 406        return 1;
 407failed:
 408        spin_unlock_irq(&mapping->tree_lock);
 409        return 0;
 410}
 411
 412static int do_launder_page(struct address_space *mapping, struct page *page)
 413{
 414        if (!PageDirty(page))
 415                return 0;
 416        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 417                return 0;
 418        return mapping->a_ops->launder_page(page);
 419}
 420
 421/**
 422 * invalidate_inode_pages2_range - remove range of pages from an address_space
 423 * @mapping: the address_space
 424 * @start: the page offset 'from' which to invalidate
 425 * @end: the page offset 'to' which to invalidate (inclusive)
 426 *
 427 * Any pages which are found to be mapped into pagetables are unmapped prior to
 428 * invalidation.
 429 *
 430 * Returns -EBUSY if any pages could not be invalidated.
 431 */
 432int invalidate_inode_pages2_range(struct address_space *mapping,
 433                                  pgoff_t start, pgoff_t end)
 434{
 435        struct pagevec pvec;
 436        pgoff_t next;
 437        int i;
 438        int ret = 0;
 439        int ret2 = 0;
 440        int did_range_unmap = 0;
 441        int wrapped = 0;
 442
 443        pagevec_init(&pvec, 0);
 444        next = start;
 445        while (next <= end && !wrapped &&
 446                pagevec_lookup(&pvec, mapping, next,
 447                        min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 448                mem_cgroup_uncharge_start();
 449                for (i = 0; i < pagevec_count(&pvec); i++) {
 450                        struct page *page = pvec.pages[i];
 451                        pgoff_t page_index;
 452
 453                        lock_page(page);
 454                        if (page->mapping != mapping) {
 455                                unlock_page(page);
 456                                continue;
 457                        }
 458                        page_index = page->index;
 459                        next = page_index + 1;
 460                        if (next == 0)
 461                                wrapped = 1;
 462                        if (page_index > end) {
 463                                unlock_page(page);
 464                                break;
 465                        }
 466                        wait_on_page_writeback(page);
 467                        if (page_mapped(page)) {
 468                                if (!did_range_unmap) {
 469                                        /*
 470                                         * Zap the rest of the file in one hit.
 471                                         */
 472                                        unmap_mapping_range(mapping,
 473                                           (loff_t)page_index<<PAGE_CACHE_SHIFT,
 474                                           (loff_t)(end - page_index + 1)
 475                                                        << PAGE_CACHE_SHIFT,
 476                                            0);
 477                                        did_range_unmap = 1;
 478                                } else {
 479                                        /*
 480                                         * Just zap this page
 481                                         */
 482                                        unmap_mapping_range(mapping,
 483                                          (loff_t)page_index<<PAGE_CACHE_SHIFT,
 484                                          PAGE_CACHE_SIZE, 0);
 485                                }
 486                        }
 487                        BUG_ON(page_mapped(page));
 488                        ret2 = do_launder_page(mapping, page);
 489                        if (ret2 == 0) {
 490                                if (!invalidate_complete_page2(mapping, page))
 491                                        ret2 = -EBUSY;
 492                        }
 493                        if (ret2 < 0)
 494                                ret = ret2;
 495                        unlock_page(page);
 496                }
 497                pagevec_release(&pvec);
 498                mem_cgroup_uncharge_end();
 499                cond_resched();
 500        }
 501        return ret;
 502}
 503EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 504
 505/**
 506 * invalidate_inode_pages2 - remove all pages from an address_space
 507 * @mapping: the address_space
 508 *
 509 * Any pages which are found to be mapped into pagetables are unmapped prior to
 510 * invalidation.
 511 *
 512 * Returns -EBUSY if any pages could not be invalidated.
 513 */
 514int invalidate_inode_pages2(struct address_space *mapping)
 515{
 516        return invalidate_inode_pages2_range(mapping, 0, -1);
 517}
 518EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 519
 520/**
 521 * truncate_pagecache - unmap and remove pagecache that has been truncated
 522 * @inode: inode
 523 * @old: old file offset
 524 * @new: new file offset
 525 *
 526 * inode's new i_size must already be written before truncate_pagecache
 527 * is called.
 528 *
 529 * This function should typically be called before the filesystem
 530 * releases resources associated with the freed range (eg. deallocates
 531 * blocks). This way, pagecache will always stay logically coherent
 532 * with on-disk format, and the filesystem would not have to deal with
 533 * situations such as writepage being called for a page that has already
 534 * had its underlying blocks deallocated.
 535 */
 536void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
 537{
 538        struct address_space *mapping = inode->i_mapping;
 539
 540        /*
 541         * unmap_mapping_range is called twice, first simply for
 542         * efficiency so that truncate_inode_pages does fewer
 543         * single-page unmaps.  However after this first call, and
 544         * before truncate_inode_pages finishes, it is possible for
 545         * private pages to be COWed, which remain after
 546         * truncate_inode_pages finishes, hence the second
 547         * unmap_mapping_range call must be made for correctness.
 548         */
 549        unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 550        truncate_inode_pages(mapping, new);
 551        unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 552}
 553EXPORT_SYMBOL(truncate_pagecache);
 554
 555/**
 556 * truncate_setsize - update inode and pagecache for a new file size
 557 * @inode: inode
 558 * @newsize: new file size
 559 *
 560 * truncate_setsize updates i_size and performs pagecache truncation (if
 561 * necessary) to @newsize. It will be typically be called from the filesystem's
 562 * setattr function when ATTR_SIZE is passed in.
 563 *
 564 * Must be called with inode_mutex held and before all filesystem specific
 565 * block truncation has been performed.
 566 */
 567void truncate_setsize(struct inode *inode, loff_t newsize)
 568{
 569        loff_t oldsize;
 570
 571        oldsize = inode->i_size;
 572        i_size_write(inode, newsize);
 573
 574        truncate_pagecache(inode, oldsize, newsize);
 575}
 576EXPORT_SYMBOL(truncate_setsize);
 577
 578/**
 579 * vmtruncate - unmap mappings "freed" by truncate() syscall
 580 * @inode: inode of the file used
 581 * @offset: file offset to start truncating
 582 *
 583 * This function is deprecated and truncate_setsize or truncate_pagecache
 584 * should be used instead, together with filesystem specific block truncation.
 585 */
 586int vmtruncate(struct inode *inode, loff_t offset)
 587{
 588        int error;
 589
 590        error = inode_newsize_ok(inode, offset);
 591        if (error)
 592                return error;
 593
 594        truncate_setsize(inode, offset);
 595        if (inode->i_op->truncate)
 596                inode->i_op->truncate(inode);
 597        return 0;
 598}
 599EXPORT_SYMBOL(vmtruncate);
 600