linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <asm/atomic.h>
  30#include <asm/uaccess.h>
  31#include <asm/tlbflush.h>
  32#include <asm/shmparam.h>
  33
  34/*** Page table manipulation functions ***/
  35
  36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  37{
  38        pte_t *pte;
  39
  40        pte = pte_offset_kernel(pmd, addr);
  41        do {
  42                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  43                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  44        } while (pte++, addr += PAGE_SIZE, addr != end);
  45}
  46
  47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  48{
  49        pmd_t *pmd;
  50        unsigned long next;
  51
  52        pmd = pmd_offset(pud, addr);
  53        do {
  54                next = pmd_addr_end(addr, end);
  55                if (pmd_none_or_clear_bad(pmd))
  56                        continue;
  57                vunmap_pte_range(pmd, addr, next);
  58        } while (pmd++, addr = next, addr != end);
  59}
  60
  61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  62{
  63        pud_t *pud;
  64        unsigned long next;
  65
  66        pud = pud_offset(pgd, addr);
  67        do {
  68                next = pud_addr_end(addr, end);
  69                if (pud_none_or_clear_bad(pud))
  70                        continue;
  71                vunmap_pmd_range(pud, addr, next);
  72        } while (pud++, addr = next, addr != end);
  73}
  74
  75static void vunmap_page_range(unsigned long addr, unsigned long end)
  76{
  77        pgd_t *pgd;
  78        unsigned long next;
  79
  80        BUG_ON(addr >= end);
  81        pgd = pgd_offset_k(addr);
  82        do {
  83                next = pgd_addr_end(addr, end);
  84                if (pgd_none_or_clear_bad(pgd))
  85                        continue;
  86                vunmap_pud_range(pgd, addr, next);
  87        } while (pgd++, addr = next, addr != end);
  88}
  89
  90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  91                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  92{
  93        pte_t *pte;
  94
  95        /*
  96         * nr is a running index into the array which helps higher level
  97         * callers keep track of where we're up to.
  98         */
  99
 100        pte = pte_alloc_kernel(pmd, addr);
 101        if (!pte)
 102                return -ENOMEM;
 103        do {
 104                struct page *page = pages[*nr];
 105
 106                if (WARN_ON(!pte_none(*pte)))
 107                        return -EBUSY;
 108                if (WARN_ON(!page))
 109                        return -ENOMEM;
 110                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 111                (*nr)++;
 112        } while (pte++, addr += PAGE_SIZE, addr != end);
 113        return 0;
 114}
 115
 116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 117                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 118{
 119        pmd_t *pmd;
 120        unsigned long next;
 121
 122        pmd = pmd_alloc(&init_mm, pud, addr);
 123        if (!pmd)
 124                return -ENOMEM;
 125        do {
 126                next = pmd_addr_end(addr, end);
 127                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 128                        return -ENOMEM;
 129        } while (pmd++, addr = next, addr != end);
 130        return 0;
 131}
 132
 133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 134                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 135{
 136        pud_t *pud;
 137        unsigned long next;
 138
 139        pud = pud_alloc(&init_mm, pgd, addr);
 140        if (!pud)
 141                return -ENOMEM;
 142        do {
 143                next = pud_addr_end(addr, end);
 144                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 145                        return -ENOMEM;
 146        } while (pud++, addr = next, addr != end);
 147        return 0;
 148}
 149
 150/*
 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 152 * will have pfns corresponding to the "pages" array.
 153 *
 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 155 */
 156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 157                                   pgprot_t prot, struct page **pages)
 158{
 159        pgd_t *pgd;
 160        unsigned long next;
 161        unsigned long addr = start;
 162        int err = 0;
 163        int nr = 0;
 164
 165        BUG_ON(addr >= end);
 166        pgd = pgd_offset_k(addr);
 167        do {
 168                next = pgd_addr_end(addr, end);
 169                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 170                if (err)
 171                        return err;
 172        } while (pgd++, addr = next, addr != end);
 173
 174        return nr;
 175}
 176
 177static int vmap_page_range(unsigned long start, unsigned long end,
 178                           pgprot_t prot, struct page **pages)
 179{
 180        int ret;
 181
 182        ret = vmap_page_range_noflush(start, end, prot, pages);
 183        flush_cache_vmap(start, end);
 184        return ret;
 185}
 186
 187int is_vmalloc_or_module_addr(const void *x)
 188{
 189        /*
 190         * ARM, x86-64 and sparc64 put modules in a special place,
 191         * and fall back on vmalloc() if that fails. Others
 192         * just put it in the vmalloc space.
 193         */
 194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 195        unsigned long addr = (unsigned long)x;
 196        if (addr >= MODULES_VADDR && addr < MODULES_END)
 197                return 1;
 198#endif
 199        return is_vmalloc_addr(x);
 200}
 201
 202/*
 203 * Walk a vmap address to the struct page it maps.
 204 */
 205struct page *vmalloc_to_page(const void *vmalloc_addr)
 206{
 207        unsigned long addr = (unsigned long) vmalloc_addr;
 208        struct page *page = NULL;
 209        pgd_t *pgd = pgd_offset_k(addr);
 210
 211        /*
 212         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 213         * architectures that do not vmalloc module space
 214         */
 215        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 216
 217        if (!pgd_none(*pgd)) {
 218                pud_t *pud = pud_offset(pgd, addr);
 219                if (!pud_none(*pud)) {
 220                        pmd_t *pmd = pmd_offset(pud, addr);
 221                        if (!pmd_none(*pmd)) {
 222                                pte_t *ptep, pte;
 223
 224                                ptep = pte_offset_map(pmd, addr);
 225                                pte = *ptep;
 226                                if (pte_present(pte))
 227                                        page = pte_page(pte);
 228                                pte_unmap(ptep);
 229                        }
 230                }
 231        }
 232        return page;
 233}
 234EXPORT_SYMBOL(vmalloc_to_page);
 235
 236/*
 237 * Map a vmalloc()-space virtual address to the physical page frame number.
 238 */
 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 240{
 241        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 242}
 243EXPORT_SYMBOL(vmalloc_to_pfn);
 244
 245
 246/*** Global kva allocator ***/
 247
 248#define VM_LAZY_FREE    0x01
 249#define VM_LAZY_FREEING 0x02
 250#define VM_VM_AREA      0x04
 251
 252struct vmap_area {
 253        unsigned long va_start;
 254        unsigned long va_end;
 255        unsigned long flags;
 256        struct rb_node rb_node;         /* address sorted rbtree */
 257        struct list_head list;          /* address sorted list */
 258        struct list_head purge_list;    /* "lazy purge" list */
 259        void *private;
 260        struct rcu_head rcu_head;
 261};
 262
 263static DEFINE_SPINLOCK(vmap_area_lock);
 264static LIST_HEAD(vmap_area_list);
 265static struct rb_root vmap_area_root = RB_ROOT;
 266
 267/* The vmap cache globals are protected by vmap_area_lock */
 268static struct rb_node *free_vmap_cache;
 269static unsigned long cached_hole_size;
 270static unsigned long cached_vstart;
 271static unsigned long cached_align;
 272
 273static unsigned long vmap_area_pcpu_hole;
 274
 275static struct vmap_area *__find_vmap_area(unsigned long addr)
 276{
 277        struct rb_node *n = vmap_area_root.rb_node;
 278
 279        while (n) {
 280                struct vmap_area *va;
 281
 282                va = rb_entry(n, struct vmap_area, rb_node);
 283                if (addr < va->va_start)
 284                        n = n->rb_left;
 285                else if (addr > va->va_start)
 286                        n = n->rb_right;
 287                else
 288                        return va;
 289        }
 290
 291        return NULL;
 292}
 293
 294static void __insert_vmap_area(struct vmap_area *va)
 295{
 296        struct rb_node **p = &vmap_area_root.rb_node;
 297        struct rb_node *parent = NULL;
 298        struct rb_node *tmp;
 299
 300        while (*p) {
 301                struct vmap_area *tmp_va;
 302
 303                parent = *p;
 304                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 305                if (va->va_start < tmp_va->va_end)
 306                        p = &(*p)->rb_left;
 307                else if (va->va_end > tmp_va->va_start)
 308                        p = &(*p)->rb_right;
 309                else
 310                        BUG();
 311        }
 312
 313        rb_link_node(&va->rb_node, parent, p);
 314        rb_insert_color(&va->rb_node, &vmap_area_root);
 315
 316        /* address-sort this list so it is usable like the vmlist */
 317        tmp = rb_prev(&va->rb_node);
 318        if (tmp) {
 319                struct vmap_area *prev;
 320                prev = rb_entry(tmp, struct vmap_area, rb_node);
 321                list_add_rcu(&va->list, &prev->list);
 322        } else
 323                list_add_rcu(&va->list, &vmap_area_list);
 324}
 325
 326static void purge_vmap_area_lazy(void);
 327
 328/*
 329 * Allocate a region of KVA of the specified size and alignment, within the
 330 * vstart and vend.
 331 */
 332static struct vmap_area *alloc_vmap_area(unsigned long size,
 333                                unsigned long align,
 334                                unsigned long vstart, unsigned long vend,
 335                                int node, gfp_t gfp_mask)
 336{
 337        struct vmap_area *va;
 338        struct rb_node *n;
 339        unsigned long addr;
 340        int purged = 0;
 341        struct vmap_area *first;
 342
 343        BUG_ON(!size);
 344        BUG_ON(size & ~PAGE_MASK);
 345        BUG_ON(!is_power_of_2(align));
 346
 347        va = kmalloc_node(sizeof(struct vmap_area),
 348                        gfp_mask & GFP_RECLAIM_MASK, node);
 349        if (unlikely(!va))
 350                return ERR_PTR(-ENOMEM);
 351
 352retry:
 353        spin_lock(&vmap_area_lock);
 354        /*
 355         * Invalidate cache if we have more permissive parameters.
 356         * cached_hole_size notes the largest hole noticed _below_
 357         * the vmap_area cached in free_vmap_cache: if size fits
 358         * into that hole, we want to scan from vstart to reuse
 359         * the hole instead of allocating above free_vmap_cache.
 360         * Note that __free_vmap_area may update free_vmap_cache
 361         * without updating cached_hole_size or cached_align.
 362         */
 363        if (!free_vmap_cache ||
 364                        size < cached_hole_size ||
 365                        vstart < cached_vstart ||
 366                        align < cached_align) {
 367nocache:
 368                cached_hole_size = 0;
 369                free_vmap_cache = NULL;
 370        }
 371        /* record if we encounter less permissive parameters */
 372        cached_vstart = vstart;
 373        cached_align = align;
 374
 375        /* find starting point for our search */
 376        if (free_vmap_cache) {
 377                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 378                addr = ALIGN(first->va_end + PAGE_SIZE, align);
 379                if (addr < vstart)
 380                        goto nocache;
 381                if (addr + size - 1 < addr)
 382                        goto overflow;
 383
 384        } else {
 385                addr = ALIGN(vstart, align);
 386                if (addr + size - 1 < addr)
 387                        goto overflow;
 388
 389                n = vmap_area_root.rb_node;
 390                first = NULL;
 391
 392                while (n) {
 393                        struct vmap_area *tmp;
 394                        tmp = rb_entry(n, struct vmap_area, rb_node);
 395                        if (tmp->va_end >= addr) {
 396                                first = tmp;
 397                                if (tmp->va_start <= addr)
 398                                        break;
 399                                n = n->rb_left;
 400                        } else
 401                                n = n->rb_right;
 402                }
 403
 404                if (!first)
 405                        goto found;
 406        }
 407
 408        /* from the starting point, walk areas until a suitable hole is found */
 409        while (addr + size >= first->va_start && addr + size <= vend) {
 410                if (addr + cached_hole_size < first->va_start)
 411                        cached_hole_size = first->va_start - addr;
 412                addr = ALIGN(first->va_end + PAGE_SIZE, align);
 413                if (addr + size - 1 < addr)
 414                        goto overflow;
 415
 416                n = rb_next(&first->rb_node);
 417                if (n)
 418                        first = rb_entry(n, struct vmap_area, rb_node);
 419                else
 420                        goto found;
 421        }
 422
 423found:
 424        if (addr + size > vend)
 425                goto overflow;
 426
 427        va->va_start = addr;
 428        va->va_end = addr + size;
 429        va->flags = 0;
 430        __insert_vmap_area(va);
 431        free_vmap_cache = &va->rb_node;
 432        spin_unlock(&vmap_area_lock);
 433
 434        BUG_ON(va->va_start & (align-1));
 435        BUG_ON(va->va_start < vstart);
 436        BUG_ON(va->va_end > vend);
 437
 438        return va;
 439
 440overflow:
 441        spin_unlock(&vmap_area_lock);
 442        if (!purged) {
 443                purge_vmap_area_lazy();
 444                purged = 1;
 445                goto retry;
 446        }
 447        if (printk_ratelimit())
 448                printk(KERN_WARNING
 449                        "vmap allocation for size %lu failed: "
 450                        "use vmalloc=<size> to increase size.\n", size);
 451        kfree(va);
 452        return ERR_PTR(-EBUSY);
 453}
 454
 455static void rcu_free_va(struct rcu_head *head)
 456{
 457        struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
 458
 459        kfree(va);
 460}
 461
 462static void __free_vmap_area(struct vmap_area *va)
 463{
 464        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 465
 466        if (free_vmap_cache) {
 467                if (va->va_end < cached_vstart) {
 468                        free_vmap_cache = NULL;
 469                } else {
 470                        struct vmap_area *cache;
 471                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 472                        if (va->va_start <= cache->va_start) {
 473                                free_vmap_cache = rb_prev(&va->rb_node);
 474                                /*
 475                                 * We don't try to update cached_hole_size or
 476                                 * cached_align, but it won't go very wrong.
 477                                 */
 478                        }
 479                }
 480        }
 481        rb_erase(&va->rb_node, &vmap_area_root);
 482        RB_CLEAR_NODE(&va->rb_node);
 483        list_del_rcu(&va->list);
 484
 485        /*
 486         * Track the highest possible candidate for pcpu area
 487         * allocation.  Areas outside of vmalloc area can be returned
 488         * here too, consider only end addresses which fall inside
 489         * vmalloc area proper.
 490         */
 491        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 492                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 493
 494        call_rcu(&va->rcu_head, rcu_free_va);
 495}
 496
 497/*
 498 * Free a region of KVA allocated by alloc_vmap_area
 499 */
 500static void free_vmap_area(struct vmap_area *va)
 501{
 502        spin_lock(&vmap_area_lock);
 503        __free_vmap_area(va);
 504        spin_unlock(&vmap_area_lock);
 505}
 506
 507/*
 508 * Clear the pagetable entries of a given vmap_area
 509 */
 510static void unmap_vmap_area(struct vmap_area *va)
 511{
 512        vunmap_page_range(va->va_start, va->va_end);
 513}
 514
 515static void vmap_debug_free_range(unsigned long start, unsigned long end)
 516{
 517        /*
 518         * Unmap page tables and force a TLB flush immediately if
 519         * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 520         * bugs similarly to those in linear kernel virtual address
 521         * space after a page has been freed.
 522         *
 523         * All the lazy freeing logic is still retained, in order to
 524         * minimise intrusiveness of this debugging feature.
 525         *
 526         * This is going to be *slow* (linear kernel virtual address
 527         * debugging doesn't do a broadcast TLB flush so it is a lot
 528         * faster).
 529         */
 530#ifdef CONFIG_DEBUG_PAGEALLOC
 531        vunmap_page_range(start, end);
 532        flush_tlb_kernel_range(start, end);
 533#endif
 534}
 535
 536/*
 537 * lazy_max_pages is the maximum amount of virtual address space we gather up
 538 * before attempting to purge with a TLB flush.
 539 *
 540 * There is a tradeoff here: a larger number will cover more kernel page tables
 541 * and take slightly longer to purge, but it will linearly reduce the number of
 542 * global TLB flushes that must be performed. It would seem natural to scale
 543 * this number up linearly with the number of CPUs (because vmapping activity
 544 * could also scale linearly with the number of CPUs), however it is likely
 545 * that in practice, workloads might be constrained in other ways that mean
 546 * vmap activity will not scale linearly with CPUs. Also, I want to be
 547 * conservative and not introduce a big latency on huge systems, so go with
 548 * a less aggressive log scale. It will still be an improvement over the old
 549 * code, and it will be simple to change the scale factor if we find that it
 550 * becomes a problem on bigger systems.
 551 */
 552static unsigned long lazy_max_pages(void)
 553{
 554        unsigned int log;
 555
 556        log = fls(num_online_cpus());
 557
 558        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 559}
 560
 561static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 562
 563/* for per-CPU blocks */
 564static void purge_fragmented_blocks_allcpus(void);
 565
 566/*
 567 * called before a call to iounmap() if the caller wants vm_area_struct's
 568 * immediately freed.
 569 */
 570void set_iounmap_nonlazy(void)
 571{
 572        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 573}
 574
 575/*
 576 * Purges all lazily-freed vmap areas.
 577 *
 578 * If sync is 0 then don't purge if there is already a purge in progress.
 579 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 580 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 581 * their own TLB flushing).
 582 * Returns with *start = min(*start, lowest purged address)
 583 *              *end = max(*end, highest purged address)
 584 */
 585static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 586                                        int sync, int force_flush)
 587{
 588        static DEFINE_SPINLOCK(purge_lock);
 589        LIST_HEAD(valist);
 590        struct vmap_area *va;
 591        struct vmap_area *n_va;
 592        int nr = 0;
 593
 594        /*
 595         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 596         * should not expect such behaviour. This just simplifies locking for
 597         * the case that isn't actually used at the moment anyway.
 598         */
 599        if (!sync && !force_flush) {
 600                if (!spin_trylock(&purge_lock))
 601                        return;
 602        } else
 603                spin_lock(&purge_lock);
 604
 605        if (sync)
 606                purge_fragmented_blocks_allcpus();
 607
 608        rcu_read_lock();
 609        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 610                if (va->flags & VM_LAZY_FREE) {
 611                        if (va->va_start < *start)
 612                                *start = va->va_start;
 613                        if (va->va_end > *end)
 614                                *end = va->va_end;
 615                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 616                        list_add_tail(&va->purge_list, &valist);
 617                        va->flags |= VM_LAZY_FREEING;
 618                        va->flags &= ~VM_LAZY_FREE;
 619                }
 620        }
 621        rcu_read_unlock();
 622
 623        if (nr)
 624                atomic_sub(nr, &vmap_lazy_nr);
 625
 626        if (nr || force_flush)
 627                flush_tlb_kernel_range(*start, *end);
 628
 629        if (nr) {
 630                spin_lock(&vmap_area_lock);
 631                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 632                        __free_vmap_area(va);
 633                spin_unlock(&vmap_area_lock);
 634        }
 635        spin_unlock(&purge_lock);
 636}
 637
 638/*
 639 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 640 * is already purging.
 641 */
 642static void try_purge_vmap_area_lazy(void)
 643{
 644        unsigned long start = ULONG_MAX, end = 0;
 645
 646        __purge_vmap_area_lazy(&start, &end, 0, 0);
 647}
 648
 649/*
 650 * Kick off a purge of the outstanding lazy areas.
 651 */
 652static void purge_vmap_area_lazy(void)
 653{
 654        unsigned long start = ULONG_MAX, end = 0;
 655
 656        __purge_vmap_area_lazy(&start, &end, 1, 0);
 657}
 658
 659/*
 660 * Free a vmap area, caller ensuring that the area has been unmapped
 661 * and flush_cache_vunmap had been called for the correct range
 662 * previously.
 663 */
 664static void free_vmap_area_noflush(struct vmap_area *va)
 665{
 666        va->flags |= VM_LAZY_FREE;
 667        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 668        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 669                try_purge_vmap_area_lazy();
 670}
 671
 672/*
 673 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 674 * called for the correct range previously.
 675 */
 676static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 677{
 678        unmap_vmap_area(va);
 679        free_vmap_area_noflush(va);
 680}
 681
 682/*
 683 * Free and unmap a vmap area
 684 */
 685static void free_unmap_vmap_area(struct vmap_area *va)
 686{
 687        flush_cache_vunmap(va->va_start, va->va_end);
 688        free_unmap_vmap_area_noflush(va);
 689}
 690
 691static struct vmap_area *find_vmap_area(unsigned long addr)
 692{
 693        struct vmap_area *va;
 694
 695        spin_lock(&vmap_area_lock);
 696        va = __find_vmap_area(addr);
 697        spin_unlock(&vmap_area_lock);
 698
 699        return va;
 700}
 701
 702static void free_unmap_vmap_area_addr(unsigned long addr)
 703{
 704        struct vmap_area *va;
 705
 706        va = find_vmap_area(addr);
 707        BUG_ON(!va);
 708        free_unmap_vmap_area(va);
 709}
 710
 711
 712/*** Per cpu kva allocator ***/
 713
 714/*
 715 * vmap space is limited especially on 32 bit architectures. Ensure there is
 716 * room for at least 16 percpu vmap blocks per CPU.
 717 */
 718/*
 719 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 720 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 721 * instead (we just need a rough idea)
 722 */
 723#if BITS_PER_LONG == 32
 724#define VMALLOC_SPACE           (128UL*1024*1024)
 725#else
 726#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 727#endif
 728
 729#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 730#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 731#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 732#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 733#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 734#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 735#define VMAP_BBMAP_BITS         VMAP_MIN(VMAP_BBMAP_BITS_MAX,           \
 736                                        VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 737                                                VMALLOC_PAGES / NR_CPUS / 16))
 738
 739#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 740
 741static bool vmap_initialized __read_mostly = false;
 742
 743struct vmap_block_queue {
 744        spinlock_t lock;
 745        struct list_head free;
 746};
 747
 748struct vmap_block {
 749        spinlock_t lock;
 750        struct vmap_area *va;
 751        struct vmap_block_queue *vbq;
 752        unsigned long free, dirty;
 753        DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 754        DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 755        struct list_head free_list;
 756        struct rcu_head rcu_head;
 757        struct list_head purge;
 758};
 759
 760/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 761static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 762
 763/*
 764 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 765 * in the free path. Could get rid of this if we change the API to return a
 766 * "cookie" from alloc, to be passed to free. But no big deal yet.
 767 */
 768static DEFINE_SPINLOCK(vmap_block_tree_lock);
 769static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 770
 771/*
 772 * We should probably have a fallback mechanism to allocate virtual memory
 773 * out of partially filled vmap blocks. However vmap block sizing should be
 774 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 775 * big problem.
 776 */
 777
 778static unsigned long addr_to_vb_idx(unsigned long addr)
 779{
 780        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 781        addr /= VMAP_BLOCK_SIZE;
 782        return addr;
 783}
 784
 785static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 786{
 787        struct vmap_block_queue *vbq;
 788        struct vmap_block *vb;
 789        struct vmap_area *va;
 790        unsigned long vb_idx;
 791        int node, err;
 792
 793        node = numa_node_id();
 794
 795        vb = kmalloc_node(sizeof(struct vmap_block),
 796                        gfp_mask & GFP_RECLAIM_MASK, node);
 797        if (unlikely(!vb))
 798                return ERR_PTR(-ENOMEM);
 799
 800        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 801                                        VMALLOC_START, VMALLOC_END,
 802                                        node, gfp_mask);
 803        if (IS_ERR(va)) {
 804                kfree(vb);
 805                return ERR_CAST(va);
 806        }
 807
 808        err = radix_tree_preload(gfp_mask);
 809        if (unlikely(err)) {
 810                kfree(vb);
 811                free_vmap_area(va);
 812                return ERR_PTR(err);
 813        }
 814
 815        spin_lock_init(&vb->lock);
 816        vb->va = va;
 817        vb->free = VMAP_BBMAP_BITS;
 818        vb->dirty = 0;
 819        bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 820        bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 821        INIT_LIST_HEAD(&vb->free_list);
 822
 823        vb_idx = addr_to_vb_idx(va->va_start);
 824        spin_lock(&vmap_block_tree_lock);
 825        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 826        spin_unlock(&vmap_block_tree_lock);
 827        BUG_ON(err);
 828        radix_tree_preload_end();
 829
 830        vbq = &get_cpu_var(vmap_block_queue);
 831        vb->vbq = vbq;
 832        spin_lock(&vbq->lock);
 833        list_add_rcu(&vb->free_list, &vbq->free);
 834        spin_unlock(&vbq->lock);
 835        put_cpu_var(vmap_block_queue);
 836
 837        return vb;
 838}
 839
 840static void rcu_free_vb(struct rcu_head *head)
 841{
 842        struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
 843
 844        kfree(vb);
 845}
 846
 847static void free_vmap_block(struct vmap_block *vb)
 848{
 849        struct vmap_block *tmp;
 850        unsigned long vb_idx;
 851
 852        vb_idx = addr_to_vb_idx(vb->va->va_start);
 853        spin_lock(&vmap_block_tree_lock);
 854        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 855        spin_unlock(&vmap_block_tree_lock);
 856        BUG_ON(tmp != vb);
 857
 858        free_vmap_area_noflush(vb->va);
 859        call_rcu(&vb->rcu_head, rcu_free_vb);
 860}
 861
 862static void purge_fragmented_blocks(int cpu)
 863{
 864        LIST_HEAD(purge);
 865        struct vmap_block *vb;
 866        struct vmap_block *n_vb;
 867        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 868
 869        rcu_read_lock();
 870        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 871
 872                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 873                        continue;
 874
 875                spin_lock(&vb->lock);
 876                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 877                        vb->free = 0; /* prevent further allocs after releasing lock */
 878                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 879                        bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 880                        bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 881                        spin_lock(&vbq->lock);
 882                        list_del_rcu(&vb->free_list);
 883                        spin_unlock(&vbq->lock);
 884                        spin_unlock(&vb->lock);
 885                        list_add_tail(&vb->purge, &purge);
 886                } else
 887                        spin_unlock(&vb->lock);
 888        }
 889        rcu_read_unlock();
 890
 891        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 892                list_del(&vb->purge);
 893                free_vmap_block(vb);
 894        }
 895}
 896
 897static void purge_fragmented_blocks_thiscpu(void)
 898{
 899        purge_fragmented_blocks(smp_processor_id());
 900}
 901
 902static void purge_fragmented_blocks_allcpus(void)
 903{
 904        int cpu;
 905
 906        for_each_possible_cpu(cpu)
 907                purge_fragmented_blocks(cpu);
 908}
 909
 910static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 911{
 912        struct vmap_block_queue *vbq;
 913        struct vmap_block *vb;
 914        unsigned long addr = 0;
 915        unsigned int order;
 916        int purge = 0;
 917
 918        BUG_ON(size & ~PAGE_MASK);
 919        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 920        order = get_order(size);
 921
 922again:
 923        rcu_read_lock();
 924        vbq = &get_cpu_var(vmap_block_queue);
 925        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 926                int i;
 927
 928                spin_lock(&vb->lock);
 929                if (vb->free < 1UL << order)
 930                        goto next;
 931
 932                i = bitmap_find_free_region(vb->alloc_map,
 933                                                VMAP_BBMAP_BITS, order);
 934
 935                if (i < 0) {
 936                        if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 937                                /* fragmented and no outstanding allocations */
 938                                BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 939                                purge = 1;
 940                        }
 941                        goto next;
 942                }
 943                addr = vb->va->va_start + (i << PAGE_SHIFT);
 944                BUG_ON(addr_to_vb_idx(addr) !=
 945                                addr_to_vb_idx(vb->va->va_start));
 946                vb->free -= 1UL << order;
 947                if (vb->free == 0) {
 948                        spin_lock(&vbq->lock);
 949                        list_del_rcu(&vb->free_list);
 950                        spin_unlock(&vbq->lock);
 951                }
 952                spin_unlock(&vb->lock);
 953                break;
 954next:
 955                spin_unlock(&vb->lock);
 956        }
 957
 958        if (purge)
 959                purge_fragmented_blocks_thiscpu();
 960
 961        put_cpu_var(vmap_block_queue);
 962        rcu_read_unlock();
 963
 964        if (!addr) {
 965                vb = new_vmap_block(gfp_mask);
 966                if (IS_ERR(vb))
 967                        return vb;
 968                goto again;
 969        }
 970
 971        return (void *)addr;
 972}
 973
 974static void vb_free(const void *addr, unsigned long size)
 975{
 976        unsigned long offset;
 977        unsigned long vb_idx;
 978        unsigned int order;
 979        struct vmap_block *vb;
 980
 981        BUG_ON(size & ~PAGE_MASK);
 982        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 983
 984        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 985
 986        order = get_order(size);
 987
 988        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 989
 990        vb_idx = addr_to_vb_idx((unsigned long)addr);
 991        rcu_read_lock();
 992        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 993        rcu_read_unlock();
 994        BUG_ON(!vb);
 995
 996        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 997
 998        spin_lock(&vb->lock);
 999        BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
1000
1001        vb->dirty += 1UL << order;
1002        if (vb->dirty == VMAP_BBMAP_BITS) {
1003                BUG_ON(vb->free);
1004                spin_unlock(&vb->lock);
1005                free_vmap_block(vb);
1006        } else
1007                spin_unlock(&vb->lock);
1008}
1009
1010/**
1011 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1012 *
1013 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1014 * to amortize TLB flushing overheads. What this means is that any page you
1015 * have now, may, in a former life, have been mapped into kernel virtual
1016 * address by the vmap layer and so there might be some CPUs with TLB entries
1017 * still referencing that page (additional to the regular 1:1 kernel mapping).
1018 *
1019 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1020 * be sure that none of the pages we have control over will have any aliases
1021 * from the vmap layer.
1022 */
1023void vm_unmap_aliases(void)
1024{
1025        unsigned long start = ULONG_MAX, end = 0;
1026        int cpu;
1027        int flush = 0;
1028
1029        if (unlikely(!vmap_initialized))
1030                return;
1031
1032        for_each_possible_cpu(cpu) {
1033                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1034                struct vmap_block *vb;
1035
1036                rcu_read_lock();
1037                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1038                        int i;
1039
1040                        spin_lock(&vb->lock);
1041                        i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1042                        while (i < VMAP_BBMAP_BITS) {
1043                                unsigned long s, e;
1044                                int j;
1045                                j = find_next_zero_bit(vb->dirty_map,
1046                                        VMAP_BBMAP_BITS, i);
1047
1048                                s = vb->va->va_start + (i << PAGE_SHIFT);
1049                                e = vb->va->va_start + (j << PAGE_SHIFT);
1050                                flush = 1;
1051
1052                                if (s < start)
1053                                        start = s;
1054                                if (e > end)
1055                                        end = e;
1056
1057                                i = j;
1058                                i = find_next_bit(vb->dirty_map,
1059                                                        VMAP_BBMAP_BITS, i);
1060                        }
1061                        spin_unlock(&vb->lock);
1062                }
1063                rcu_read_unlock();
1064        }
1065
1066        __purge_vmap_area_lazy(&start, &end, 1, flush);
1067}
1068EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1069
1070/**
1071 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1072 * @mem: the pointer returned by vm_map_ram
1073 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1074 */
1075void vm_unmap_ram(const void *mem, unsigned int count)
1076{
1077        unsigned long size = count << PAGE_SHIFT;
1078        unsigned long addr = (unsigned long)mem;
1079
1080        BUG_ON(!addr);
1081        BUG_ON(addr < VMALLOC_START);
1082        BUG_ON(addr > VMALLOC_END);
1083        BUG_ON(addr & (PAGE_SIZE-1));
1084
1085        debug_check_no_locks_freed(mem, size);
1086        vmap_debug_free_range(addr, addr+size);
1087
1088        if (likely(count <= VMAP_MAX_ALLOC))
1089                vb_free(mem, size);
1090        else
1091                free_unmap_vmap_area_addr(addr);
1092}
1093EXPORT_SYMBOL(vm_unmap_ram);
1094
1095/**
1096 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1097 * @pages: an array of pointers to the pages to be mapped
1098 * @count: number of pages
1099 * @node: prefer to allocate data structures on this node
1100 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1101 *
1102 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1103 */
1104void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1105{
1106        unsigned long size = count << PAGE_SHIFT;
1107        unsigned long addr;
1108        void *mem;
1109
1110        if (likely(count <= VMAP_MAX_ALLOC)) {
1111                mem = vb_alloc(size, GFP_KERNEL);
1112                if (IS_ERR(mem))
1113                        return NULL;
1114                addr = (unsigned long)mem;
1115        } else {
1116                struct vmap_area *va;
1117                va = alloc_vmap_area(size, PAGE_SIZE,
1118                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1119                if (IS_ERR(va))
1120                        return NULL;
1121
1122                addr = va->va_start;
1123                mem = (void *)addr;
1124        }
1125        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1126                vm_unmap_ram(mem, count);
1127                return NULL;
1128        }
1129        return mem;
1130}
1131EXPORT_SYMBOL(vm_map_ram);
1132
1133/**
1134 * vm_area_register_early - register vmap area early during boot
1135 * @vm: vm_struct to register
1136 * @align: requested alignment
1137 *
1138 * This function is used to register kernel vm area before
1139 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1140 * proper values on entry and other fields should be zero.  On return,
1141 * vm->addr contains the allocated address.
1142 *
1143 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1144 */
1145void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1146{
1147        static size_t vm_init_off __initdata;
1148        unsigned long addr;
1149
1150        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1151        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1152
1153        vm->addr = (void *)addr;
1154
1155        vm->next = vmlist;
1156        vmlist = vm;
1157}
1158
1159void __init vmalloc_init(void)
1160{
1161        struct vmap_area *va;
1162        struct vm_struct *tmp;
1163        int i;
1164
1165        for_each_possible_cpu(i) {
1166                struct vmap_block_queue *vbq;
1167
1168                vbq = &per_cpu(vmap_block_queue, i);
1169                spin_lock_init(&vbq->lock);
1170                INIT_LIST_HEAD(&vbq->free);
1171        }
1172
1173        /* Import existing vmlist entries. */
1174        for (tmp = vmlist; tmp; tmp = tmp->next) {
1175                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1176                va->flags = tmp->flags | VM_VM_AREA;
1177                va->va_start = (unsigned long)tmp->addr;
1178                va->va_end = va->va_start + tmp->size;
1179                __insert_vmap_area(va);
1180        }
1181
1182        vmap_area_pcpu_hole = VMALLOC_END;
1183
1184        vmap_initialized = true;
1185}
1186
1187/**
1188 * map_kernel_range_noflush - map kernel VM area with the specified pages
1189 * @addr: start of the VM area to map
1190 * @size: size of the VM area to map
1191 * @prot: page protection flags to use
1192 * @pages: pages to map
1193 *
1194 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1195 * specify should have been allocated using get_vm_area() and its
1196 * friends.
1197 *
1198 * NOTE:
1199 * This function does NOT do any cache flushing.  The caller is
1200 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1201 * before calling this function.
1202 *
1203 * RETURNS:
1204 * The number of pages mapped on success, -errno on failure.
1205 */
1206int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1207                             pgprot_t prot, struct page **pages)
1208{
1209        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1210}
1211
1212/**
1213 * unmap_kernel_range_noflush - unmap kernel VM area
1214 * @addr: start of the VM area to unmap
1215 * @size: size of the VM area to unmap
1216 *
1217 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1219 * friends.
1220 *
1221 * NOTE:
1222 * This function does NOT do any cache flushing.  The caller is
1223 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1224 * before calling this function and flush_tlb_kernel_range() after.
1225 */
1226void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1227{
1228        vunmap_page_range(addr, addr + size);
1229}
1230EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1231
1232/**
1233 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1234 * @addr: start of the VM area to unmap
1235 * @size: size of the VM area to unmap
1236 *
1237 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1238 * the unmapping and tlb after.
1239 */
1240void unmap_kernel_range(unsigned long addr, unsigned long size)
1241{
1242        unsigned long end = addr + size;
1243
1244        flush_cache_vunmap(addr, end);
1245        vunmap_page_range(addr, end);
1246        flush_tlb_kernel_range(addr, end);
1247}
1248
1249int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1250{
1251        unsigned long addr = (unsigned long)area->addr;
1252        unsigned long end = addr + area->size - PAGE_SIZE;
1253        int err;
1254
1255        err = vmap_page_range(addr, end, prot, *pages);
1256        if (err > 0) {
1257                *pages += err;
1258                err = 0;
1259        }
1260
1261        return err;
1262}
1263EXPORT_SYMBOL_GPL(map_vm_area);
1264
1265/*** Old vmalloc interfaces ***/
1266DEFINE_RWLOCK(vmlist_lock);
1267struct vm_struct *vmlist;
1268
1269static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1270                              unsigned long flags, void *caller)
1271{
1272        struct vm_struct *tmp, **p;
1273
1274        vm->flags = flags;
1275        vm->addr = (void *)va->va_start;
1276        vm->size = va->va_end - va->va_start;
1277        vm->caller = caller;
1278        va->private = vm;
1279        va->flags |= VM_VM_AREA;
1280
1281        write_lock(&vmlist_lock);
1282        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1283                if (tmp->addr >= vm->addr)
1284                        break;
1285        }
1286        vm->next = *p;
1287        *p = vm;
1288        write_unlock(&vmlist_lock);
1289}
1290
1291static struct vm_struct *__get_vm_area_node(unsigned long size,
1292                unsigned long align, unsigned long flags, unsigned long start,
1293                unsigned long end, int node, gfp_t gfp_mask, void *caller)
1294{
1295        static struct vmap_area *va;
1296        struct vm_struct *area;
1297
1298        BUG_ON(in_interrupt());
1299        if (flags & VM_IOREMAP) {
1300                int bit = fls(size);
1301
1302                if (bit > IOREMAP_MAX_ORDER)
1303                        bit = IOREMAP_MAX_ORDER;
1304                else if (bit < PAGE_SHIFT)
1305                        bit = PAGE_SHIFT;
1306
1307                align = 1ul << bit;
1308        }
1309
1310        size = PAGE_ALIGN(size);
1311        if (unlikely(!size))
1312                return NULL;
1313
1314        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1315        if (unlikely(!area))
1316                return NULL;
1317
1318        /*
1319         * We always allocate a guard page.
1320         */
1321        size += PAGE_SIZE;
1322
1323        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1324        if (IS_ERR(va)) {
1325                kfree(area);
1326                return NULL;
1327        }
1328
1329        insert_vmalloc_vm(area, va, flags, caller);
1330        return area;
1331}
1332
1333struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1334                                unsigned long start, unsigned long end)
1335{
1336        return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1337                                                __builtin_return_address(0));
1338}
1339EXPORT_SYMBOL_GPL(__get_vm_area);
1340
1341struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1342                                       unsigned long start, unsigned long end,
1343                                       void *caller)
1344{
1345        return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1346                                  caller);
1347}
1348
1349/**
1350 *      get_vm_area  -  reserve a contiguous kernel virtual area
1351 *      @size:          size of the area
1352 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1353 *
1354 *      Search an area of @size in the kernel virtual mapping area,
1355 *      and reserved it for out purposes.  Returns the area descriptor
1356 *      on success or %NULL on failure.
1357 */
1358struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1359{
1360        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1361                                -1, GFP_KERNEL, __builtin_return_address(0));
1362}
1363
1364struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1365                                void *caller)
1366{
1367        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1368                                                -1, GFP_KERNEL, caller);
1369}
1370
1371static struct vm_struct *find_vm_area(const void *addr)
1372{
1373        struct vmap_area *va;
1374
1375        va = find_vmap_area((unsigned long)addr);
1376        if (va && va->flags & VM_VM_AREA)
1377                return va->private;
1378
1379        return NULL;
1380}
1381
1382/**
1383 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1384 *      @addr:          base address
1385 *
1386 *      Search for the kernel VM area starting at @addr, and remove it.
1387 *      This function returns the found VM area, but using it is NOT safe
1388 *      on SMP machines, except for its size or flags.
1389 */
1390struct vm_struct *remove_vm_area(const void *addr)
1391{
1392        struct vmap_area *va;
1393
1394        va = find_vmap_area((unsigned long)addr);
1395        if (va && va->flags & VM_VM_AREA) {
1396                struct vm_struct *vm = va->private;
1397                struct vm_struct *tmp, **p;
1398                /*
1399                 * remove from list and disallow access to this vm_struct
1400                 * before unmap. (address range confliction is maintained by
1401                 * vmap.)
1402                 */
1403                write_lock(&vmlist_lock);
1404                for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1405                        ;
1406                *p = tmp->next;
1407                write_unlock(&vmlist_lock);
1408
1409                vmap_debug_free_range(va->va_start, va->va_end);
1410                free_unmap_vmap_area(va);
1411                vm->size -= PAGE_SIZE;
1412
1413                return vm;
1414        }
1415        return NULL;
1416}
1417
1418static void __vunmap(const void *addr, int deallocate_pages)
1419{
1420        struct vm_struct *area;
1421
1422        if (!addr)
1423                return;
1424
1425        if ((PAGE_SIZE-1) & (unsigned long)addr) {
1426                WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1427                return;
1428        }
1429
1430        area = remove_vm_area(addr);
1431        if (unlikely(!area)) {
1432                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1433                                addr);
1434                return;
1435        }
1436
1437        debug_check_no_locks_freed(addr, area->size);
1438        debug_check_no_obj_freed(addr, area->size);
1439
1440        if (deallocate_pages) {
1441                int i;
1442
1443                for (i = 0; i < area->nr_pages; i++) {
1444                        struct page *page = area->pages[i];
1445
1446                        BUG_ON(!page);
1447                        __free_page(page);
1448                }
1449
1450                if (area->flags & VM_VPAGES)
1451                        vfree(area->pages);
1452                else
1453                        kfree(area->pages);
1454        }
1455
1456        kfree(area);
1457        return;
1458}
1459
1460/**
1461 *      vfree  -  release memory allocated by vmalloc()
1462 *      @addr:          memory base address
1463 *
1464 *      Free the virtually continuous memory area starting at @addr, as
1465 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1466 *      NULL, no operation is performed.
1467 *
1468 *      Must not be called in interrupt context.
1469 */
1470void vfree(const void *addr)
1471{
1472        BUG_ON(in_interrupt());
1473
1474        kmemleak_free(addr);
1475
1476        __vunmap(addr, 1);
1477}
1478EXPORT_SYMBOL(vfree);
1479
1480/**
1481 *      vunmap  -  release virtual mapping obtained by vmap()
1482 *      @addr:          memory base address
1483 *
1484 *      Free the virtually contiguous memory area starting at @addr,
1485 *      which was created from the page array passed to vmap().
1486 *
1487 *      Must not be called in interrupt context.
1488 */
1489void vunmap(const void *addr)
1490{
1491        BUG_ON(in_interrupt());
1492        might_sleep();
1493        __vunmap(addr, 0);
1494}
1495EXPORT_SYMBOL(vunmap);
1496
1497/**
1498 *      vmap  -  map an array of pages into virtually contiguous space
1499 *      @pages:         array of page pointers
1500 *      @count:         number of pages to map
1501 *      @flags:         vm_area->flags
1502 *      @prot:          page protection for the mapping
1503 *
1504 *      Maps @count pages from @pages into contiguous kernel virtual
1505 *      space.
1506 */
1507void *vmap(struct page **pages, unsigned int count,
1508                unsigned long flags, pgprot_t prot)
1509{
1510        struct vm_struct *area;
1511
1512        might_sleep();
1513
1514        if (count > totalram_pages)
1515                return NULL;
1516
1517        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1518                                        __builtin_return_address(0));
1519        if (!area)
1520                return NULL;
1521
1522        if (map_vm_area(area, prot, &pages)) {
1523                vunmap(area->addr);
1524                return NULL;
1525        }
1526
1527        return area->addr;
1528}
1529EXPORT_SYMBOL(vmap);
1530
1531static void *__vmalloc_node(unsigned long size, unsigned long align,
1532                            gfp_t gfp_mask, pgprot_t prot,
1533                            int node, void *caller);
1534static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1535                                 pgprot_t prot, int node, void *caller)
1536{
1537        struct page **pages;
1538        unsigned int nr_pages, array_size, i;
1539        gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1540
1541        nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1542        array_size = (nr_pages * sizeof(struct page *));
1543
1544        area->nr_pages = nr_pages;
1545        /* Please note that the recursion is strictly bounded. */
1546        if (array_size > PAGE_SIZE) {
1547                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1548                                PAGE_KERNEL, node, caller);
1549                area->flags |= VM_VPAGES;
1550        } else {
1551                pages = kmalloc_node(array_size, nested_gfp, node);
1552        }
1553        area->pages = pages;
1554        area->caller = caller;
1555        if (!area->pages) {
1556                remove_vm_area(area->addr);
1557                kfree(area);
1558                return NULL;
1559        }
1560
1561        for (i = 0; i < area->nr_pages; i++) {
1562                struct page *page;
1563
1564                if (node < 0)
1565                        page = alloc_page(gfp_mask);
1566                else
1567                        page = alloc_pages_node(node, gfp_mask, 0);
1568
1569                if (unlikely(!page)) {
1570                        /* Successfully allocated i pages, free them in __vunmap() */
1571                        area->nr_pages = i;
1572                        goto fail;
1573                }
1574                area->pages[i] = page;
1575        }
1576
1577        if (map_vm_area(area, prot, &pages))
1578                goto fail;
1579        return area->addr;
1580
1581fail:
1582        vfree(area->addr);
1583        return NULL;
1584}
1585
1586/**
1587 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1588 *      @size:          allocation size
1589 *      @align:         desired alignment
1590 *      @start:         vm area range start
1591 *      @end:           vm area range end
1592 *      @gfp_mask:      flags for the page level allocator
1593 *      @prot:          protection mask for the allocated pages
1594 *      @node:          node to use for allocation or -1
1595 *      @caller:        caller's return address
1596 *
1597 *      Allocate enough pages to cover @size from the page level
1598 *      allocator with @gfp_mask flags.  Map them into contiguous
1599 *      kernel virtual space, using a pagetable protection of @prot.
1600 */
1601void *__vmalloc_node_range(unsigned long size, unsigned long align,
1602                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1603                        pgprot_t prot, int node, void *caller)
1604{
1605        struct vm_struct *area;
1606        void *addr;
1607        unsigned long real_size = size;
1608
1609        size = PAGE_ALIGN(size);
1610        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1611                return NULL;
1612
1613        area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1614                                  gfp_mask, caller);
1615
1616        if (!area)
1617                return NULL;
1618
1619        addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1620
1621        /*
1622         * A ref_count = 3 is needed because the vm_struct and vmap_area
1623         * structures allocated in the __get_vm_area_node() function contain
1624         * references to the virtual address of the vmalloc'ed block.
1625         */
1626        kmemleak_alloc(addr, real_size, 3, gfp_mask);
1627
1628        return addr;
1629}
1630
1631/**
1632 *      __vmalloc_node  -  allocate virtually contiguous memory
1633 *      @size:          allocation size
1634 *      @align:         desired alignment
1635 *      @gfp_mask:      flags for the page level allocator
1636 *      @prot:          protection mask for the allocated pages
1637 *      @node:          node to use for allocation or -1
1638 *      @caller:        caller's return address
1639 *
1640 *      Allocate enough pages to cover @size from the page level
1641 *      allocator with @gfp_mask flags.  Map them into contiguous
1642 *      kernel virtual space, using a pagetable protection of @prot.
1643 */
1644static void *__vmalloc_node(unsigned long size, unsigned long align,
1645                            gfp_t gfp_mask, pgprot_t prot,
1646                            int node, void *caller)
1647{
1648        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1649                                gfp_mask, prot, node, caller);
1650}
1651
1652void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1653{
1654        return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1655                                __builtin_return_address(0));
1656}
1657EXPORT_SYMBOL(__vmalloc);
1658
1659static inline void *__vmalloc_node_flags(unsigned long size,
1660                                        int node, gfp_t flags)
1661{
1662        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1663                                        node, __builtin_return_address(0));
1664}
1665
1666/**
1667 *      vmalloc  -  allocate virtually contiguous memory
1668 *      @size:          allocation size
1669 *      Allocate enough pages to cover @size from the page level
1670 *      allocator and map them into contiguous kernel virtual space.
1671 *
1672 *      For tight control over page level allocator and protection flags
1673 *      use __vmalloc() instead.
1674 */
1675void *vmalloc(unsigned long size)
1676{
1677        return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1678}
1679EXPORT_SYMBOL(vmalloc);
1680
1681/**
1682 *      vzalloc - allocate virtually contiguous memory with zero fill
1683 *      @size:  allocation size
1684 *      Allocate enough pages to cover @size from the page level
1685 *      allocator and map them into contiguous kernel virtual space.
1686 *      The memory allocated is set to zero.
1687 *
1688 *      For tight control over page level allocator and protection flags
1689 *      use __vmalloc() instead.
1690 */
1691void *vzalloc(unsigned long size)
1692{
1693        return __vmalloc_node_flags(size, -1,
1694                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1695}
1696EXPORT_SYMBOL(vzalloc);
1697
1698/**
1699 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1700 * @size: allocation size
1701 *
1702 * The resulting memory area is zeroed so it can be mapped to userspace
1703 * without leaking data.
1704 */
1705void *vmalloc_user(unsigned long size)
1706{
1707        struct vm_struct *area;
1708        void *ret;
1709
1710        ret = __vmalloc_node(size, SHMLBA,
1711                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1712                             PAGE_KERNEL, -1, __builtin_return_address(0));
1713        if (ret) {
1714                area = find_vm_area(ret);
1715                area->flags |= VM_USERMAP;
1716        }
1717        return ret;
1718}
1719EXPORT_SYMBOL(vmalloc_user);
1720
1721/**
1722 *      vmalloc_node  -  allocate memory on a specific node
1723 *      @size:          allocation size
1724 *      @node:          numa node
1725 *
1726 *      Allocate enough pages to cover @size from the page level
1727 *      allocator and map them into contiguous kernel virtual space.
1728 *
1729 *      For tight control over page level allocator and protection flags
1730 *      use __vmalloc() instead.
1731 */
1732void *vmalloc_node(unsigned long size, int node)
1733{
1734        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1735                                        node, __builtin_return_address(0));
1736}
1737EXPORT_SYMBOL(vmalloc_node);
1738
1739/**
1740 * vzalloc_node - allocate memory on a specific node with zero fill
1741 * @size:       allocation size
1742 * @node:       numa node
1743 *
1744 * Allocate enough pages to cover @size from the page level
1745 * allocator and map them into contiguous kernel virtual space.
1746 * The memory allocated is set to zero.
1747 *
1748 * For tight control over page level allocator and protection flags
1749 * use __vmalloc_node() instead.
1750 */
1751void *vzalloc_node(unsigned long size, int node)
1752{
1753        return __vmalloc_node_flags(size, node,
1754                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1755}
1756EXPORT_SYMBOL(vzalloc_node);
1757
1758#ifndef PAGE_KERNEL_EXEC
1759# define PAGE_KERNEL_EXEC PAGE_KERNEL
1760#endif
1761
1762/**
1763 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1764 *      @size:          allocation size
1765 *
1766 *      Kernel-internal function to allocate enough pages to cover @size
1767 *      the page level allocator and map them into contiguous and
1768 *      executable kernel virtual space.
1769 *
1770 *      For tight control over page level allocator and protection flags
1771 *      use __vmalloc() instead.
1772 */
1773
1774void *vmalloc_exec(unsigned long size)
1775{
1776        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1777                              -1, __builtin_return_address(0));
1778}
1779
1780#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1781#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1782#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1783#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1784#else
1785#define GFP_VMALLOC32 GFP_KERNEL
1786#endif
1787
1788/**
1789 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1790 *      @size:          allocation size
1791 *
1792 *      Allocate enough 32bit PA addressable pages to cover @size from the
1793 *      page level allocator and map them into contiguous kernel virtual space.
1794 */
1795void *vmalloc_32(unsigned long size)
1796{
1797        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1798                              -1, __builtin_return_address(0));
1799}
1800EXPORT_SYMBOL(vmalloc_32);
1801
1802/**
1803 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1804 *      @size:          allocation size
1805 *
1806 * The resulting memory area is 32bit addressable and zeroed so it can be
1807 * mapped to userspace without leaking data.
1808 */
1809void *vmalloc_32_user(unsigned long size)
1810{
1811        struct vm_struct *area;
1812        void *ret;
1813
1814        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1815                             -1, __builtin_return_address(0));
1816        if (ret) {
1817                area = find_vm_area(ret);
1818                area->flags |= VM_USERMAP;
1819        }
1820        return ret;
1821}
1822EXPORT_SYMBOL(vmalloc_32_user);
1823
1824/*
1825 * small helper routine , copy contents to buf from addr.
1826 * If the page is not present, fill zero.
1827 */
1828
1829static int aligned_vread(char *buf, char *addr, unsigned long count)
1830{
1831        struct page *p;
1832        int copied = 0;
1833
1834        while (count) {
1835                unsigned long offset, length;
1836
1837                offset = (unsigned long)addr & ~PAGE_MASK;
1838                length = PAGE_SIZE - offset;
1839                if (length > count)
1840                        length = count;
1841                p = vmalloc_to_page(addr);
1842                /*
1843                 * To do safe access to this _mapped_ area, we need
1844                 * lock. But adding lock here means that we need to add
1845                 * overhead of vmalloc()/vfree() calles for this _debug_
1846                 * interface, rarely used. Instead of that, we'll use
1847                 * kmap() and get small overhead in this access function.
1848                 */
1849                if (p) {
1850                        /*
1851                         * we can expect USER0 is not used (see vread/vwrite's
1852                         * function description)
1853                         */
1854                        void *map = kmap_atomic(p, KM_USER0);
1855                        memcpy(buf, map + offset, length);
1856                        kunmap_atomic(map, KM_USER0);
1857                } else
1858                        memset(buf, 0, length);
1859
1860                addr += length;
1861                buf += length;
1862                copied += length;
1863                count -= length;
1864        }
1865        return copied;
1866}
1867
1868static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1869{
1870        struct page *p;
1871        int copied = 0;
1872
1873        while (count) {
1874                unsigned long offset, length;
1875
1876                offset = (unsigned long)addr & ~PAGE_MASK;
1877                length = PAGE_SIZE - offset;
1878                if (length > count)
1879                        length = count;
1880                p = vmalloc_to_page(addr);
1881                /*
1882                 * To do safe access to this _mapped_ area, we need
1883                 * lock. But adding lock here means that we need to add
1884                 * overhead of vmalloc()/vfree() calles for this _debug_
1885                 * interface, rarely used. Instead of that, we'll use
1886                 * kmap() and get small overhead in this access function.
1887                 */
1888                if (p) {
1889                        /*
1890                         * we can expect USER0 is not used (see vread/vwrite's
1891                         * function description)
1892                         */
1893                        void *map = kmap_atomic(p, KM_USER0);
1894                        memcpy(map + offset, buf, length);
1895                        kunmap_atomic(map, KM_USER0);
1896                }
1897                addr += length;
1898                buf += length;
1899                copied += length;
1900                count -= length;
1901        }
1902        return copied;
1903}
1904
1905/**
1906 *      vread() -  read vmalloc area in a safe way.
1907 *      @buf:           buffer for reading data
1908 *      @addr:          vm address.
1909 *      @count:         number of bytes to be read.
1910 *
1911 *      Returns # of bytes which addr and buf should be increased.
1912 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
1913 *      includes any intersect with alive vmalloc area.
1914 *
1915 *      This function checks that addr is a valid vmalloc'ed area, and
1916 *      copy data from that area to a given buffer. If the given memory range
1917 *      of [addr...addr+count) includes some valid address, data is copied to
1918 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
1919 *      IOREMAP area is treated as memory hole and no copy is done.
1920 *
1921 *      If [addr...addr+count) doesn't includes any intersects with alive
1922 *      vm_struct area, returns 0.
1923 *      @buf should be kernel's buffer. Because this function uses KM_USER0,
1924 *      the caller should guarantee KM_USER0 is not used.
1925 *
1926 *      Note: In usual ops, vread() is never necessary because the caller
1927 *      should know vmalloc() area is valid and can use memcpy().
1928 *      This is for routines which have to access vmalloc area without
1929 *      any informaion, as /dev/kmem.
1930 *
1931 */
1932
1933long vread(char *buf, char *addr, unsigned long count)
1934{
1935        struct vm_struct *tmp;
1936        char *vaddr, *buf_start = buf;
1937        unsigned long buflen = count;
1938        unsigned long n;
1939
1940        /* Don't allow overflow */
1941        if ((unsigned long) addr + count < count)
1942                count = -(unsigned long) addr;
1943
1944        read_lock(&vmlist_lock);
1945        for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1946                vaddr = (char *) tmp->addr;
1947                if (addr >= vaddr + tmp->size - PAGE_SIZE)
1948                        continue;
1949                while (addr < vaddr) {
1950                        if (count == 0)
1951                                goto finished;
1952                        *buf = '\0';
1953                        buf++;
1954                        addr++;
1955                        count--;
1956                }
1957                n = vaddr + tmp->size - PAGE_SIZE - addr;
1958                if (n > count)
1959                        n = count;
1960                if (!(tmp->flags & VM_IOREMAP))
1961                        aligned_vread(buf, addr, n);
1962                else /* IOREMAP area is treated as memory hole */
1963                        memset(buf, 0, n);
1964                buf += n;
1965                addr += n;
1966                count -= n;
1967        }
1968finished:
1969        read_unlock(&vmlist_lock);
1970
1971        if (buf == buf_start)
1972                return 0;
1973        /* zero-fill memory holes */
1974        if (buf != buf_start + buflen)
1975                memset(buf, 0, buflen - (buf - buf_start));
1976
1977        return buflen;
1978}
1979
1980/**
1981 *      vwrite() -  write vmalloc area in a safe way.
1982 *      @buf:           buffer for source data
1983 *      @addr:          vm address.
1984 *      @count:         number of bytes to be read.
1985 *
1986 *      Returns # of bytes which addr and buf should be incresed.
1987 *      (same number to @count).
1988 *      If [addr...addr+count) doesn't includes any intersect with valid
1989 *      vmalloc area, returns 0.
1990 *
1991 *      This function checks that addr is a valid vmalloc'ed area, and
1992 *      copy data from a buffer to the given addr. If specified range of
1993 *      [addr...addr+count) includes some valid address, data is copied from
1994 *      proper area of @buf. If there are memory holes, no copy to hole.
1995 *      IOREMAP area is treated as memory hole and no copy is done.
1996 *
1997 *      If [addr...addr+count) doesn't includes any intersects with alive
1998 *      vm_struct area, returns 0.
1999 *      @buf should be kernel's buffer. Because this function uses KM_USER0,
2000 *      the caller should guarantee KM_USER0 is not used.
2001 *
2002 *      Note: In usual ops, vwrite() is never necessary because the caller
2003 *      should know vmalloc() area is valid and can use memcpy().
2004 *      This is for routines which have to access vmalloc area without
2005 *      any informaion, as /dev/kmem.
2006 */
2007
2008long vwrite(char *buf, char *addr, unsigned long count)
2009{
2010        struct vm_struct *tmp;
2011        char *vaddr;
2012        unsigned long n, buflen;
2013        int copied = 0;
2014
2015        /* Don't allow overflow */
2016        if ((unsigned long) addr + count < count)
2017                count = -(unsigned long) addr;
2018        buflen = count;
2019
2020        read_lock(&vmlist_lock);
2021        for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2022                vaddr = (char *) tmp->addr;
2023                if (addr >= vaddr + tmp->size - PAGE_SIZE)
2024                        continue;
2025                while (addr < vaddr) {
2026                        if (count == 0)
2027                                goto finished;
2028                        buf++;
2029                        addr++;
2030                        count--;
2031                }
2032                n = vaddr + tmp->size - PAGE_SIZE - addr;
2033                if (n > count)
2034                        n = count;
2035                if (!(tmp->flags & VM_IOREMAP)) {
2036                        aligned_vwrite(buf, addr, n);
2037                        copied++;
2038                }
2039                buf += n;
2040                addr += n;
2041                count -= n;
2042        }
2043finished:
2044        read_unlock(&vmlist_lock);
2045        if (!copied)
2046                return 0;
2047        return buflen;
2048}
2049
2050/**
2051 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2052 *      @vma:           vma to cover (map full range of vma)
2053 *      @addr:          vmalloc memory
2054 *      @pgoff:         number of pages into addr before first page to map
2055 *
2056 *      Returns:        0 for success, -Exxx on failure
2057 *
2058 *      This function checks that addr is a valid vmalloc'ed area, and
2059 *      that it is big enough to cover the vma. Will return failure if
2060 *      that criteria isn't met.
2061 *
2062 *      Similar to remap_pfn_range() (see mm/memory.c)
2063 */
2064int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2065                                                unsigned long pgoff)
2066{
2067        struct vm_struct *area;
2068        unsigned long uaddr = vma->vm_start;
2069        unsigned long usize = vma->vm_end - vma->vm_start;
2070
2071        if ((PAGE_SIZE-1) & (unsigned long)addr)
2072                return -EINVAL;
2073
2074        area = find_vm_area(addr);
2075        if (!area)
2076                return -EINVAL;
2077
2078        if (!(area->flags & VM_USERMAP))
2079                return -EINVAL;
2080
2081        if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2082                return -EINVAL;
2083
2084        addr += pgoff << PAGE_SHIFT;
2085        do {
2086                struct page *page = vmalloc_to_page(addr);
2087                int ret;
2088
2089                ret = vm_insert_page(vma, uaddr, page);
2090                if (ret)
2091                        return ret;
2092
2093                uaddr += PAGE_SIZE;
2094                addr += PAGE_SIZE;
2095                usize -= PAGE_SIZE;
2096        } while (usize > 0);
2097
2098        /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2099        vma->vm_flags |= VM_RESERVED;
2100
2101        return 0;
2102}
2103EXPORT_SYMBOL(remap_vmalloc_range);
2104
2105/*
2106 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2107 * have one.
2108 */
2109void  __attribute__((weak)) vmalloc_sync_all(void)
2110{
2111}
2112
2113
2114static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2115{
2116        /* apply_to_page_range() does all the hard work. */
2117        return 0;
2118}
2119
2120/**
2121 *      alloc_vm_area - allocate a range of kernel address space
2122 *      @size:          size of the area
2123 *
2124 *      Returns:        NULL on failure, vm_struct on success
2125 *
2126 *      This function reserves a range of kernel address space, and
2127 *      allocates pagetables to map that range.  No actual mappings
2128 *      are created.  If the kernel address space is not shared
2129 *      between processes, it syncs the pagetable across all
2130 *      processes.
2131 */
2132struct vm_struct *alloc_vm_area(size_t size)
2133{
2134        struct vm_struct *area;
2135
2136        area = get_vm_area_caller(size, VM_IOREMAP,
2137                                __builtin_return_address(0));
2138        if (area == NULL)
2139                return NULL;
2140
2141        /*
2142         * This ensures that page tables are constructed for this region
2143         * of kernel virtual address space and mapped into init_mm.
2144         */
2145        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2146                                area->size, f, NULL)) {
2147                free_vm_area(area);
2148                return NULL;
2149        }
2150
2151        /* Make sure the pagetables are constructed in process kernel
2152           mappings */
2153        vmalloc_sync_all();
2154
2155        return area;
2156}
2157EXPORT_SYMBOL_GPL(alloc_vm_area);
2158
2159void free_vm_area(struct vm_struct *area)
2160{
2161        struct vm_struct *ret;
2162        ret = remove_vm_area(area->addr);
2163        BUG_ON(ret != area);
2164        kfree(area);
2165}
2166EXPORT_SYMBOL_GPL(free_vm_area);
2167
2168#ifdef CONFIG_SMP
2169static struct vmap_area *node_to_va(struct rb_node *n)
2170{
2171        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2172}
2173
2174/**
2175 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2176 * @end: target address
2177 * @pnext: out arg for the next vmap_area
2178 * @pprev: out arg for the previous vmap_area
2179 *
2180 * Returns: %true if either or both of next and prev are found,
2181 *          %false if no vmap_area exists
2182 *
2183 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2184 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2185 */
2186static bool pvm_find_next_prev(unsigned long end,
2187                               struct vmap_area **pnext,
2188                               struct vmap_area **pprev)
2189{
2190        struct rb_node *n = vmap_area_root.rb_node;
2191        struct vmap_area *va = NULL;
2192
2193        while (n) {
2194                va = rb_entry(n, struct vmap_area, rb_node);
2195                if (end < va->va_end)
2196                        n = n->rb_left;
2197                else if (end > va->va_end)
2198                        n = n->rb_right;
2199                else
2200                        break;
2201        }
2202
2203        if (!va)
2204                return false;
2205
2206        if (va->va_end > end) {
2207                *pnext = va;
2208                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2209        } else {
2210                *pprev = va;
2211                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2212        }
2213        return true;
2214}
2215
2216/**
2217 * pvm_determine_end - find the highest aligned address between two vmap_areas
2218 * @pnext: in/out arg for the next vmap_area
2219 * @pprev: in/out arg for the previous vmap_area
2220 * @align: alignment
2221 *
2222 * Returns: determined end address
2223 *
2224 * Find the highest aligned address between *@pnext and *@pprev below
2225 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2226 * down address is between the end addresses of the two vmap_areas.
2227 *
2228 * Please note that the address returned by this function may fall
2229 * inside *@pnext vmap_area.  The caller is responsible for checking
2230 * that.
2231 */
2232static unsigned long pvm_determine_end(struct vmap_area **pnext,
2233                                       struct vmap_area **pprev,
2234                                       unsigned long align)
2235{
2236        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2237        unsigned long addr;
2238
2239        if (*pnext)
2240                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2241        else
2242                addr = vmalloc_end;
2243
2244        while (*pprev && (*pprev)->va_end > addr) {
2245                *pnext = *pprev;
2246                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2247        }
2248
2249        return addr;
2250}
2251
2252/**
2253 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2254 * @offsets: array containing offset of each area
2255 * @sizes: array containing size of each area
2256 * @nr_vms: the number of areas to allocate
2257 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2258 *
2259 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2260 *          vm_structs on success, %NULL on failure
2261 *
2262 * Percpu allocator wants to use congruent vm areas so that it can
2263 * maintain the offsets among percpu areas.  This function allocates
2264 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2265 * be scattered pretty far, distance between two areas easily going up
2266 * to gigabytes.  To avoid interacting with regular vmallocs, these
2267 * areas are allocated from top.
2268 *
2269 * Despite its complicated look, this allocator is rather simple.  It
2270 * does everything top-down and scans areas from the end looking for
2271 * matching slot.  While scanning, if any of the areas overlaps with
2272 * existing vmap_area, the base address is pulled down to fit the
2273 * area.  Scanning is repeated till all the areas fit and then all
2274 * necessary data structres are inserted and the result is returned.
2275 */
2276struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2277                                     const size_t *sizes, int nr_vms,
2278                                     size_t align)
2279{
2280        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2281        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2282        struct vmap_area **vas, *prev, *next;
2283        struct vm_struct **vms;
2284        int area, area2, last_area, term_area;
2285        unsigned long base, start, end, last_end;
2286        bool purged = false;
2287
2288        /* verify parameters and allocate data structures */
2289        BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2290        for (last_area = 0, area = 0; area < nr_vms; area++) {
2291                start = offsets[area];
2292                end = start + sizes[area];
2293
2294                /* is everything aligned properly? */
2295                BUG_ON(!IS_ALIGNED(offsets[area], align));
2296                BUG_ON(!IS_ALIGNED(sizes[area], align));
2297
2298                /* detect the area with the highest address */
2299                if (start > offsets[last_area])
2300                        last_area = area;
2301
2302                for (area2 = 0; area2 < nr_vms; area2++) {
2303                        unsigned long start2 = offsets[area2];
2304                        unsigned long end2 = start2 + sizes[area2];
2305
2306                        if (area2 == area)
2307                                continue;
2308
2309                        BUG_ON(start2 >= start && start2 < end);
2310                        BUG_ON(end2 <= end && end2 > start);
2311                }
2312        }
2313        last_end = offsets[last_area] + sizes[last_area];
2314
2315        if (vmalloc_end - vmalloc_start < last_end) {
2316                WARN_ON(true);
2317                return NULL;
2318        }
2319
2320        vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2321        vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2322        if (!vas || !vms)
2323                goto err_free;
2324
2325        for (area = 0; area < nr_vms; area++) {
2326                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2327                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2328                if (!vas[area] || !vms[area])
2329                        goto err_free;
2330        }
2331retry:
2332        spin_lock(&vmap_area_lock);
2333
2334        /* start scanning - we scan from the top, begin with the last area */
2335        area = term_area = last_area;
2336        start = offsets[area];
2337        end = start + sizes[area];
2338
2339        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2340                base = vmalloc_end - last_end;
2341                goto found;
2342        }
2343        base = pvm_determine_end(&next, &prev, align) - end;
2344
2345        while (true) {
2346                BUG_ON(next && next->va_end <= base + end);
2347                BUG_ON(prev && prev->va_end > base + end);
2348
2349                /*
2350                 * base might have underflowed, add last_end before
2351                 * comparing.
2352                 */
2353                if (base + last_end < vmalloc_start + last_end) {
2354                        spin_unlock(&vmap_area_lock);
2355                        if (!purged) {
2356                                purge_vmap_area_lazy();
2357                                purged = true;
2358                                goto retry;
2359                        }
2360                        goto err_free;
2361                }
2362
2363                /*
2364                 * If next overlaps, move base downwards so that it's
2365                 * right below next and then recheck.
2366                 */
2367                if (next && next->va_start < base + end) {
2368                        base = pvm_determine_end(&next, &prev, align) - end;
2369                        term_area = area;
2370                        continue;
2371                }
2372
2373                /*
2374                 * If prev overlaps, shift down next and prev and move
2375                 * base so that it's right below new next and then
2376                 * recheck.
2377                 */
2378                if (prev && prev->va_end > base + start)  {
2379                        next = prev;
2380                        prev = node_to_va(rb_prev(&next->rb_node));
2381                        base = pvm_determine_end(&next, &prev, align) - end;
2382                        term_area = area;
2383                        continue;
2384                }
2385
2386                /*
2387                 * This area fits, move on to the previous one.  If
2388                 * the previous one is the terminal one, we're done.
2389                 */
2390                area = (area + nr_vms - 1) % nr_vms;
2391                if (area == term_area)
2392                        break;
2393                start = offsets[area];
2394                end = start + sizes[area];
2395                pvm_find_next_prev(base + end, &next, &prev);
2396        }
2397found:
2398        /* we've found a fitting base, insert all va's */
2399        for (area = 0; area < nr_vms; area++) {
2400                struct vmap_area *va = vas[area];
2401
2402                va->va_start = base + offsets[area];
2403                va->va_end = va->va_start + sizes[area];
2404                __insert_vmap_area(va);
2405        }
2406
2407        vmap_area_pcpu_hole = base + offsets[last_area];
2408
2409        spin_unlock(&vmap_area_lock);
2410
2411        /* insert all vm's */
2412        for (area = 0; area < nr_vms; area++)
2413                insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2414                                  pcpu_get_vm_areas);
2415
2416        kfree(vas);
2417        return vms;
2418
2419err_free:
2420        for (area = 0; area < nr_vms; area++) {
2421                if (vas)
2422                        kfree(vas[area]);
2423                if (vms)
2424                        kfree(vms[area]);
2425        }
2426        kfree(vas);
2427        kfree(vms);
2428        return NULL;
2429}
2430
2431/**
2432 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2433 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2434 * @nr_vms: the number of allocated areas
2435 *
2436 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2437 */
2438void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2439{
2440        int i;
2441
2442        for (i = 0; i < nr_vms; i++)
2443                free_vm_area(vms[i]);
2444        kfree(vms);
2445}
2446#endif  /* CONFIG_SMP */
2447
2448#ifdef CONFIG_PROC_FS
2449static void *s_start(struct seq_file *m, loff_t *pos)
2450        __acquires(&vmlist_lock)
2451{
2452        loff_t n = *pos;
2453        struct vm_struct *v;
2454
2455        read_lock(&vmlist_lock);
2456        v = vmlist;
2457        while (n > 0 && v) {
2458                n--;
2459                v = v->next;
2460        }
2461        if (!n)
2462                return v;
2463
2464        return NULL;
2465
2466}
2467
2468static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2469{
2470        struct vm_struct *v = p;
2471
2472        ++*pos;
2473        return v->next;
2474}
2475
2476static void s_stop(struct seq_file *m, void *p)
2477        __releases(&vmlist_lock)
2478{
2479        read_unlock(&vmlist_lock);
2480}
2481
2482static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2483{
2484        if (NUMA_BUILD) {
2485                unsigned int nr, *counters = m->private;
2486
2487                if (!counters)
2488                        return;
2489
2490                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2491
2492                for (nr = 0; nr < v->nr_pages; nr++)
2493                        counters[page_to_nid(v->pages[nr])]++;
2494
2495                for_each_node_state(nr, N_HIGH_MEMORY)
2496                        if (counters[nr])
2497                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2498        }
2499}
2500
2501static int s_show(struct seq_file *m, void *p)
2502{
2503        struct vm_struct *v = p;
2504
2505        seq_printf(m, "0x%p-0x%p %7ld",
2506                v->addr, v->addr + v->size, v->size);
2507
2508        if (v->caller)
2509                seq_printf(m, " %pS", v->caller);
2510
2511        if (v->nr_pages)
2512                seq_printf(m, " pages=%d", v->nr_pages);
2513
2514        if (v->phys_addr)
2515                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2516
2517        if (v->flags & VM_IOREMAP)
2518                seq_printf(m, " ioremap");
2519
2520        if (v->flags & VM_ALLOC)
2521                seq_printf(m, " vmalloc");
2522
2523        if (v->flags & VM_MAP)
2524                seq_printf(m, " vmap");
2525
2526        if (v->flags & VM_USERMAP)
2527                seq_printf(m, " user");
2528
2529        if (v->flags & VM_VPAGES)
2530                seq_printf(m, " vpages");
2531
2532        show_numa_info(m, v);
2533        seq_putc(m, '\n');
2534        return 0;
2535}
2536
2537static const struct seq_operations vmalloc_op = {
2538        .start = s_start,
2539        .next = s_next,
2540        .stop = s_stop,
2541        .show = s_show,
2542};
2543
2544static int vmalloc_open(struct inode *inode, struct file *file)
2545{
2546        unsigned int *ptr = NULL;
2547        int ret;
2548
2549        if (NUMA_BUILD) {
2550                ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2551                if (ptr == NULL)
2552                        return -ENOMEM;
2553        }
2554        ret = seq_open(file, &vmalloc_op);
2555        if (!ret) {
2556                struct seq_file *m = file->private_data;
2557                m->private = ptr;
2558        } else
2559                kfree(ptr);
2560        return ret;
2561}
2562
2563static const struct file_operations proc_vmalloc_operations = {
2564        .open           = vmalloc_open,
2565        .read           = seq_read,
2566        .llseek         = seq_lseek,
2567        .release        = seq_release_private,
2568};
2569
2570static int __init proc_vmalloc_init(void)
2571{
2572        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2573        return 0;
2574}
2575module_init(proc_vmalloc_init);
2576#endif
2577
2578