linux/mm/vmscan.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>  /* for try_to_release_page(),
  27                                        buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
  45
  46#include <asm/tlbflush.h>
  47#include <asm/div64.h>
  48
  49#include <linux/swapops.h>
  50
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/vmscan.h>
  55
  56/*
  57 * reclaim_mode determines how the inactive list is shrunk
  58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  59 * RECLAIM_MODE_ASYNC:  Do not block
  60 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  62 *                      page from the LRU and reclaim all pages within a
  63 *                      naturally aligned range
  64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  65 *                      order-0 pages and then compact the zone
  66 */
  67typedef unsigned __bitwise__ reclaim_mode_t;
  68#define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
  69#define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
  70#define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
  71#define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
  72#define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
  73
  74struct scan_control {
  75        /* Incremented by the number of inactive pages that were scanned */
  76        unsigned long nr_scanned;
  77
  78        /* Number of pages freed so far during a call to shrink_zones() */
  79        unsigned long nr_reclaimed;
  80
  81        /* How many pages shrink_list() should reclaim */
  82        unsigned long nr_to_reclaim;
  83
  84        unsigned long hibernation_mode;
  85
  86        /* This context's GFP mask */
  87        gfp_t gfp_mask;
  88
  89        int may_writepage;
  90
  91        /* Can mapped pages be reclaimed? */
  92        int may_unmap;
  93
  94        /* Can pages be swapped as part of reclaim? */
  95        int may_swap;
  96
  97        int swappiness;
  98
  99        int order;
 100
 101        /*
 102         * Intend to reclaim enough continuous memory rather than reclaim
 103         * enough amount of memory. i.e, mode for high order allocation.
 104         */
 105        reclaim_mode_t reclaim_mode;
 106
 107        /* Which cgroup do we reclaim from */
 108        struct mem_cgroup *mem_cgroup;
 109
 110        /*
 111         * Nodemask of nodes allowed by the caller. If NULL, all nodes
 112         * are scanned.
 113         */
 114        nodemask_t      *nodemask;
 115};
 116
 117#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 118
 119#ifdef ARCH_HAS_PREFETCH
 120#define prefetch_prev_lru_page(_page, _base, _field)                    \
 121        do {                                                            \
 122                if ((_page)->lru.prev != _base) {                       \
 123                        struct page *prev;                              \
 124                                                                        \
 125                        prev = lru_to_page(&(_page->lru));              \
 126                        prefetch(&prev->_field);                        \
 127                }                                                       \
 128        } while (0)
 129#else
 130#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 131#endif
 132
 133#ifdef ARCH_HAS_PREFETCHW
 134#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 135        do {                                                            \
 136                if ((_page)->lru.prev != _base) {                       \
 137                        struct page *prev;                              \
 138                                                                        \
 139                        prev = lru_to_page(&(_page->lru));              \
 140                        prefetchw(&prev->_field);                       \
 141                }                                                       \
 142        } while (0)
 143#else
 144#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 145#endif
 146
 147/*
 148 * From 0 .. 100.  Higher means more swappy.
 149 */
 150int vm_swappiness = 60;
 151long vm_total_pages;    /* The total number of pages which the VM controls */
 152
 153static LIST_HEAD(shrinker_list);
 154static DECLARE_RWSEM(shrinker_rwsem);
 155
 156#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 157#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
 158#else
 159#define scanning_global_lru(sc) (1)
 160#endif
 161
 162static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 163                                                  struct scan_control *sc)
 164{
 165        if (!scanning_global_lru(sc))
 166                return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 167
 168        return &zone->reclaim_stat;
 169}
 170
 171static unsigned long zone_nr_lru_pages(struct zone *zone,
 172                                struct scan_control *sc, enum lru_list lru)
 173{
 174        if (!scanning_global_lru(sc))
 175                return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
 176
 177        return zone_page_state(zone, NR_LRU_BASE + lru);
 178}
 179
 180
 181/*
 182 * Add a shrinker callback to be called from the vm
 183 */
 184void register_shrinker(struct shrinker *shrinker)
 185{
 186        shrinker->nr = 0;
 187        down_write(&shrinker_rwsem);
 188        list_add_tail(&shrinker->list, &shrinker_list);
 189        up_write(&shrinker_rwsem);
 190}
 191EXPORT_SYMBOL(register_shrinker);
 192
 193/*
 194 * Remove one
 195 */
 196void unregister_shrinker(struct shrinker *shrinker)
 197{
 198        down_write(&shrinker_rwsem);
 199        list_del(&shrinker->list);
 200        up_write(&shrinker_rwsem);
 201}
 202EXPORT_SYMBOL(unregister_shrinker);
 203
 204#define SHRINK_BATCH 128
 205/*
 206 * Call the shrink functions to age shrinkable caches
 207 *
 208 * Here we assume it costs one seek to replace a lru page and that it also
 209 * takes a seek to recreate a cache object.  With this in mind we age equal
 210 * percentages of the lru and ageable caches.  This should balance the seeks
 211 * generated by these structures.
 212 *
 213 * If the vm encountered mapped pages on the LRU it increase the pressure on
 214 * slab to avoid swapping.
 215 *
 216 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 217 *
 218 * `lru_pages' represents the number of on-LRU pages in all the zones which
 219 * are eligible for the caller's allocation attempt.  It is used for balancing
 220 * slab reclaim versus page reclaim.
 221 *
 222 * Returns the number of slab objects which we shrunk.
 223 */
 224unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
 225                        unsigned long lru_pages)
 226{
 227        struct shrinker *shrinker;
 228        unsigned long ret = 0;
 229
 230        if (scanned == 0)
 231                scanned = SWAP_CLUSTER_MAX;
 232
 233        if (!down_read_trylock(&shrinker_rwsem))
 234                return 1;       /* Assume we'll be able to shrink next time */
 235
 236        list_for_each_entry(shrinker, &shrinker_list, list) {
 237                unsigned long long delta;
 238                unsigned long total_scan;
 239                unsigned long max_pass;
 240
 241                max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
 242                delta = (4 * scanned) / shrinker->seeks;
 243                delta *= max_pass;
 244                do_div(delta, lru_pages + 1);
 245                shrinker->nr += delta;
 246                if (shrinker->nr < 0) {
 247                        printk(KERN_ERR "shrink_slab: %pF negative objects to "
 248                               "delete nr=%ld\n",
 249                               shrinker->shrink, shrinker->nr);
 250                        shrinker->nr = max_pass;
 251                }
 252
 253                /*
 254                 * Avoid risking looping forever due to too large nr value:
 255                 * never try to free more than twice the estimate number of
 256                 * freeable entries.
 257                 */
 258                if (shrinker->nr > max_pass * 2)
 259                        shrinker->nr = max_pass * 2;
 260
 261                total_scan = shrinker->nr;
 262                shrinker->nr = 0;
 263
 264                while (total_scan >= SHRINK_BATCH) {
 265                        long this_scan = SHRINK_BATCH;
 266                        int shrink_ret;
 267                        int nr_before;
 268
 269                        nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
 270                        shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
 271                                                                gfp_mask);
 272                        if (shrink_ret == -1)
 273                                break;
 274                        if (shrink_ret < nr_before)
 275                                ret += nr_before - shrink_ret;
 276                        count_vm_events(SLABS_SCANNED, this_scan);
 277                        total_scan -= this_scan;
 278
 279                        cond_resched();
 280                }
 281
 282                shrinker->nr += total_scan;
 283        }
 284        up_read(&shrinker_rwsem);
 285        return ret;
 286}
 287
 288static void set_reclaim_mode(int priority, struct scan_control *sc,
 289                                   bool sync)
 290{
 291        reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 292
 293        /*
 294         * Initially assume we are entering either lumpy reclaim or
 295         * reclaim/compaction.Depending on the order, we will either set the
 296         * sync mode or just reclaim order-0 pages later.
 297         */
 298        if (COMPACTION_BUILD)
 299                sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 300        else
 301                sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 302
 303        /*
 304         * Avoid using lumpy reclaim or reclaim/compaction if possible by
 305         * restricting when its set to either costly allocations or when
 306         * under memory pressure
 307         */
 308        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 309                sc->reclaim_mode |= syncmode;
 310        else if (sc->order && priority < DEF_PRIORITY - 2)
 311                sc->reclaim_mode |= syncmode;
 312        else
 313                sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 314}
 315
 316static void reset_reclaim_mode(struct scan_control *sc)
 317{
 318        sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 319}
 320
 321static inline int is_page_cache_freeable(struct page *page)
 322{
 323        /*
 324         * A freeable page cache page is referenced only by the caller
 325         * that isolated the page, the page cache radix tree and
 326         * optional buffer heads at page->private.
 327         */
 328        return page_count(page) - page_has_private(page) == 2;
 329}
 330
 331static int may_write_to_queue(struct backing_dev_info *bdi,
 332                              struct scan_control *sc)
 333{
 334        if (current->flags & PF_SWAPWRITE)
 335                return 1;
 336        if (!bdi_write_congested(bdi))
 337                return 1;
 338        if (bdi == current->backing_dev_info)
 339                return 1;
 340
 341        /* lumpy reclaim for hugepage often need a lot of write */
 342        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 343                return 1;
 344        return 0;
 345}
 346
 347/*
 348 * We detected a synchronous write error writing a page out.  Probably
 349 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 350 * fsync(), msync() or close().
 351 *
 352 * The tricky part is that after writepage we cannot touch the mapping: nothing
 353 * prevents it from being freed up.  But we have a ref on the page and once
 354 * that page is locked, the mapping is pinned.
 355 *
 356 * We're allowed to run sleeping lock_page() here because we know the caller has
 357 * __GFP_FS.
 358 */
 359static void handle_write_error(struct address_space *mapping,
 360                                struct page *page, int error)
 361{
 362        lock_page(page);
 363        if (page_mapping(page) == mapping)
 364                mapping_set_error(mapping, error);
 365        unlock_page(page);
 366}
 367
 368/* possible outcome of pageout() */
 369typedef enum {
 370        /* failed to write page out, page is locked */
 371        PAGE_KEEP,
 372        /* move page to the active list, page is locked */
 373        PAGE_ACTIVATE,
 374        /* page has been sent to the disk successfully, page is unlocked */
 375        PAGE_SUCCESS,
 376        /* page is clean and locked */
 377        PAGE_CLEAN,
 378} pageout_t;
 379
 380/*
 381 * pageout is called by shrink_page_list() for each dirty page.
 382 * Calls ->writepage().
 383 */
 384static pageout_t pageout(struct page *page, struct address_space *mapping,
 385                         struct scan_control *sc)
 386{
 387        /*
 388         * If the page is dirty, only perform writeback if that write
 389         * will be non-blocking.  To prevent this allocation from being
 390         * stalled by pagecache activity.  But note that there may be
 391         * stalls if we need to run get_block().  We could test
 392         * PagePrivate for that.
 393         *
 394         * If this process is currently in __generic_file_aio_write() against
 395         * this page's queue, we can perform writeback even if that
 396         * will block.
 397         *
 398         * If the page is swapcache, write it back even if that would
 399         * block, for some throttling. This happens by accident, because
 400         * swap_backing_dev_info is bust: it doesn't reflect the
 401         * congestion state of the swapdevs.  Easy to fix, if needed.
 402         */
 403        if (!is_page_cache_freeable(page))
 404                return PAGE_KEEP;
 405        if (!mapping) {
 406                /*
 407                 * Some data journaling orphaned pages can have
 408                 * page->mapping == NULL while being dirty with clean buffers.
 409                 */
 410                if (page_has_private(page)) {
 411                        if (try_to_free_buffers(page)) {
 412                                ClearPageDirty(page);
 413                                printk("%s: orphaned page\n", __func__);
 414                                return PAGE_CLEAN;
 415                        }
 416                }
 417                return PAGE_KEEP;
 418        }
 419        if (mapping->a_ops->writepage == NULL)
 420                return PAGE_ACTIVATE;
 421        if (!may_write_to_queue(mapping->backing_dev_info, sc))
 422                return PAGE_KEEP;
 423
 424        if (clear_page_dirty_for_io(page)) {
 425                int res;
 426                struct writeback_control wbc = {
 427                        .sync_mode = WB_SYNC_NONE,
 428                        .nr_to_write = SWAP_CLUSTER_MAX,
 429                        .range_start = 0,
 430                        .range_end = LLONG_MAX,
 431                        .for_reclaim = 1,
 432                };
 433
 434                SetPageReclaim(page);
 435                res = mapping->a_ops->writepage(page, &wbc);
 436                if (res < 0)
 437                        handle_write_error(mapping, page, res);
 438                if (res == AOP_WRITEPAGE_ACTIVATE) {
 439                        ClearPageReclaim(page);
 440                        return PAGE_ACTIVATE;
 441                }
 442
 443                /*
 444                 * Wait on writeback if requested to. This happens when
 445                 * direct reclaiming a large contiguous area and the
 446                 * first attempt to free a range of pages fails.
 447                 */
 448                if (PageWriteback(page) &&
 449                    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
 450                        wait_on_page_writeback(page);
 451
 452                if (!PageWriteback(page)) {
 453                        /* synchronous write or broken a_ops? */
 454                        ClearPageReclaim(page);
 455                }
 456                trace_mm_vmscan_writepage(page,
 457                        trace_reclaim_flags(page, sc->reclaim_mode));
 458                inc_zone_page_state(page, NR_VMSCAN_WRITE);
 459                return PAGE_SUCCESS;
 460        }
 461
 462        return PAGE_CLEAN;
 463}
 464
 465/*
 466 * Same as remove_mapping, but if the page is removed from the mapping, it
 467 * gets returned with a refcount of 0.
 468 */
 469static int __remove_mapping(struct address_space *mapping, struct page *page)
 470{
 471        BUG_ON(!PageLocked(page));
 472        BUG_ON(mapping != page_mapping(page));
 473
 474        spin_lock_irq(&mapping->tree_lock);
 475        /*
 476         * The non racy check for a busy page.
 477         *
 478         * Must be careful with the order of the tests. When someone has
 479         * a ref to the page, it may be possible that they dirty it then
 480         * drop the reference. So if PageDirty is tested before page_count
 481         * here, then the following race may occur:
 482         *
 483         * get_user_pages(&page);
 484         * [user mapping goes away]
 485         * write_to(page);
 486         *                              !PageDirty(page)    [good]
 487         * SetPageDirty(page);
 488         * put_page(page);
 489         *                              !page_count(page)   [good, discard it]
 490         *
 491         * [oops, our write_to data is lost]
 492         *
 493         * Reversing the order of the tests ensures such a situation cannot
 494         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 495         * load is not satisfied before that of page->_count.
 496         *
 497         * Note that if SetPageDirty is always performed via set_page_dirty,
 498         * and thus under tree_lock, then this ordering is not required.
 499         */
 500        if (!page_freeze_refs(page, 2))
 501                goto cannot_free;
 502        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 503        if (unlikely(PageDirty(page))) {
 504                page_unfreeze_refs(page, 2);
 505                goto cannot_free;
 506        }
 507
 508        if (PageSwapCache(page)) {
 509                swp_entry_t swap = { .val = page_private(page) };
 510                __delete_from_swap_cache(page);
 511                spin_unlock_irq(&mapping->tree_lock);
 512                swapcache_free(swap, page);
 513        } else {
 514                void (*freepage)(struct page *);
 515
 516                freepage = mapping->a_ops->freepage;
 517
 518                __delete_from_page_cache(page);
 519                spin_unlock_irq(&mapping->tree_lock);
 520                mem_cgroup_uncharge_cache_page(page);
 521
 522                if (freepage != NULL)
 523                        freepage(page);
 524        }
 525
 526        return 1;
 527
 528cannot_free:
 529        spin_unlock_irq(&mapping->tree_lock);
 530        return 0;
 531}
 532
 533/*
 534 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 535 * someone else has a ref on the page, abort and return 0.  If it was
 536 * successfully detached, return 1.  Assumes the caller has a single ref on
 537 * this page.
 538 */
 539int remove_mapping(struct address_space *mapping, struct page *page)
 540{
 541        if (__remove_mapping(mapping, page)) {
 542                /*
 543                 * Unfreezing the refcount with 1 rather than 2 effectively
 544                 * drops the pagecache ref for us without requiring another
 545                 * atomic operation.
 546                 */
 547                page_unfreeze_refs(page, 1);
 548                return 1;
 549        }
 550        return 0;
 551}
 552
 553/**
 554 * putback_lru_page - put previously isolated page onto appropriate LRU list
 555 * @page: page to be put back to appropriate lru list
 556 *
 557 * Add previously isolated @page to appropriate LRU list.
 558 * Page may still be unevictable for other reasons.
 559 *
 560 * lru_lock must not be held, interrupts must be enabled.
 561 */
 562void putback_lru_page(struct page *page)
 563{
 564        int lru;
 565        int active = !!TestClearPageActive(page);
 566        int was_unevictable = PageUnevictable(page);
 567
 568        VM_BUG_ON(PageLRU(page));
 569
 570redo:
 571        ClearPageUnevictable(page);
 572
 573        if (page_evictable(page, NULL)) {
 574                /*
 575                 * For evictable pages, we can use the cache.
 576                 * In event of a race, worst case is we end up with an
 577                 * unevictable page on [in]active list.
 578                 * We know how to handle that.
 579                 */
 580                lru = active + page_lru_base_type(page);
 581                lru_cache_add_lru(page, lru);
 582        } else {
 583                /*
 584                 * Put unevictable pages directly on zone's unevictable
 585                 * list.
 586                 */
 587                lru = LRU_UNEVICTABLE;
 588                add_page_to_unevictable_list(page);
 589                /*
 590                 * When racing with an mlock clearing (page is
 591                 * unlocked), make sure that if the other thread does
 592                 * not observe our setting of PG_lru and fails
 593                 * isolation, we see PG_mlocked cleared below and move
 594                 * the page back to the evictable list.
 595                 *
 596                 * The other side is TestClearPageMlocked().
 597                 */
 598                smp_mb();
 599        }
 600
 601        /*
 602         * page's status can change while we move it among lru. If an evictable
 603         * page is on unevictable list, it never be freed. To avoid that,
 604         * check after we added it to the list, again.
 605         */
 606        if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 607                if (!isolate_lru_page(page)) {
 608                        put_page(page);
 609                        goto redo;
 610                }
 611                /* This means someone else dropped this page from LRU
 612                 * So, it will be freed or putback to LRU again. There is
 613                 * nothing to do here.
 614                 */
 615        }
 616
 617        if (was_unevictable && lru != LRU_UNEVICTABLE)
 618                count_vm_event(UNEVICTABLE_PGRESCUED);
 619        else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 620                count_vm_event(UNEVICTABLE_PGCULLED);
 621
 622        put_page(page);         /* drop ref from isolate */
 623}
 624
 625enum page_references {
 626        PAGEREF_RECLAIM,
 627        PAGEREF_RECLAIM_CLEAN,
 628        PAGEREF_KEEP,
 629        PAGEREF_ACTIVATE,
 630};
 631
 632static enum page_references page_check_references(struct page *page,
 633                                                  struct scan_control *sc)
 634{
 635        int referenced_ptes, referenced_page;
 636        unsigned long vm_flags;
 637
 638        referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 639        referenced_page = TestClearPageReferenced(page);
 640
 641        /* Lumpy reclaim - ignore references */
 642        if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 643                return PAGEREF_RECLAIM;
 644
 645        /*
 646         * Mlock lost the isolation race with us.  Let try_to_unmap()
 647         * move the page to the unevictable list.
 648         */
 649        if (vm_flags & VM_LOCKED)
 650                return PAGEREF_RECLAIM;
 651
 652        if (referenced_ptes) {
 653                if (PageAnon(page))
 654                        return PAGEREF_ACTIVATE;
 655                /*
 656                 * All mapped pages start out with page table
 657                 * references from the instantiating fault, so we need
 658                 * to look twice if a mapped file page is used more
 659                 * than once.
 660                 *
 661                 * Mark it and spare it for another trip around the
 662                 * inactive list.  Another page table reference will
 663                 * lead to its activation.
 664                 *
 665                 * Note: the mark is set for activated pages as well
 666                 * so that recently deactivated but used pages are
 667                 * quickly recovered.
 668                 */
 669                SetPageReferenced(page);
 670
 671                if (referenced_page)
 672                        return PAGEREF_ACTIVATE;
 673
 674                return PAGEREF_KEEP;
 675        }
 676
 677        /* Reclaim if clean, defer dirty pages to writeback */
 678        if (referenced_page && !PageSwapBacked(page))
 679                return PAGEREF_RECLAIM_CLEAN;
 680
 681        return PAGEREF_RECLAIM;
 682}
 683
 684static noinline_for_stack void free_page_list(struct list_head *free_pages)
 685{
 686        struct pagevec freed_pvec;
 687        struct page *page, *tmp;
 688
 689        pagevec_init(&freed_pvec, 1);
 690
 691        list_for_each_entry_safe(page, tmp, free_pages, lru) {
 692                list_del(&page->lru);
 693                if (!pagevec_add(&freed_pvec, page)) {
 694                        __pagevec_free(&freed_pvec);
 695                        pagevec_reinit(&freed_pvec);
 696                }
 697        }
 698
 699        pagevec_free(&freed_pvec);
 700}
 701
 702/*
 703 * shrink_page_list() returns the number of reclaimed pages
 704 */
 705static unsigned long shrink_page_list(struct list_head *page_list,
 706                                      struct zone *zone,
 707                                      struct scan_control *sc)
 708{
 709        LIST_HEAD(ret_pages);
 710        LIST_HEAD(free_pages);
 711        int pgactivate = 0;
 712        unsigned long nr_dirty = 0;
 713        unsigned long nr_congested = 0;
 714        unsigned long nr_reclaimed = 0;
 715
 716        cond_resched();
 717
 718        while (!list_empty(page_list)) {
 719                enum page_references references;
 720                struct address_space *mapping;
 721                struct page *page;
 722                int may_enter_fs;
 723
 724                cond_resched();
 725
 726                page = lru_to_page(page_list);
 727                list_del(&page->lru);
 728
 729                if (!trylock_page(page))
 730                        goto keep;
 731
 732                VM_BUG_ON(PageActive(page));
 733                VM_BUG_ON(page_zone(page) != zone);
 734
 735                sc->nr_scanned++;
 736
 737                if (unlikely(!page_evictable(page, NULL)))
 738                        goto cull_mlocked;
 739
 740                if (!sc->may_unmap && page_mapped(page))
 741                        goto keep_locked;
 742
 743                /* Double the slab pressure for mapped and swapcache pages */
 744                if (page_mapped(page) || PageSwapCache(page))
 745                        sc->nr_scanned++;
 746
 747                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 748                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 749
 750                if (PageWriteback(page)) {
 751                        /*
 752                         * Synchronous reclaim is performed in two passes,
 753                         * first an asynchronous pass over the list to
 754                         * start parallel writeback, and a second synchronous
 755                         * pass to wait for the IO to complete.  Wait here
 756                         * for any page for which writeback has already
 757                         * started.
 758                         */
 759                        if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 760                            may_enter_fs)
 761                                wait_on_page_writeback(page);
 762                        else {
 763                                unlock_page(page);
 764                                goto keep_lumpy;
 765                        }
 766                }
 767
 768                references = page_check_references(page, sc);
 769                switch (references) {
 770                case PAGEREF_ACTIVATE:
 771                        goto activate_locked;
 772                case PAGEREF_KEEP:
 773                        goto keep_locked;
 774                case PAGEREF_RECLAIM:
 775                case PAGEREF_RECLAIM_CLEAN:
 776                        ; /* try to reclaim the page below */
 777                }
 778
 779                /*
 780                 * Anonymous process memory has backing store?
 781                 * Try to allocate it some swap space here.
 782                 */
 783                if (PageAnon(page) && !PageSwapCache(page)) {
 784                        if (!(sc->gfp_mask & __GFP_IO))
 785                                goto keep_locked;
 786                        if (!add_to_swap(page))
 787                                goto activate_locked;
 788                        may_enter_fs = 1;
 789                }
 790
 791                mapping = page_mapping(page);
 792
 793                /*
 794                 * The page is mapped into the page tables of one or more
 795                 * processes. Try to unmap it here.
 796                 */
 797                if (page_mapped(page) && mapping) {
 798                        switch (try_to_unmap(page, TTU_UNMAP)) {
 799                        case SWAP_FAIL:
 800                                goto activate_locked;
 801                        case SWAP_AGAIN:
 802                                goto keep_locked;
 803                        case SWAP_MLOCK:
 804                                goto cull_mlocked;
 805                        case SWAP_SUCCESS:
 806                                ; /* try to free the page below */
 807                        }
 808                }
 809
 810                if (PageDirty(page)) {
 811                        nr_dirty++;
 812
 813                        if (references == PAGEREF_RECLAIM_CLEAN)
 814                                goto keep_locked;
 815                        if (!may_enter_fs)
 816                                goto keep_locked;
 817                        if (!sc->may_writepage)
 818                                goto keep_locked;
 819
 820                        /* Page is dirty, try to write it out here */
 821                        switch (pageout(page, mapping, sc)) {
 822                        case PAGE_KEEP:
 823                                nr_congested++;
 824                                goto keep_locked;
 825                        case PAGE_ACTIVATE:
 826                                goto activate_locked;
 827                        case PAGE_SUCCESS:
 828                                if (PageWriteback(page))
 829                                        goto keep_lumpy;
 830                                if (PageDirty(page))
 831                                        goto keep;
 832
 833                                /*
 834                                 * A synchronous write - probably a ramdisk.  Go
 835                                 * ahead and try to reclaim the page.
 836                                 */
 837                                if (!trylock_page(page))
 838                                        goto keep;
 839                                if (PageDirty(page) || PageWriteback(page))
 840                                        goto keep_locked;
 841                                mapping = page_mapping(page);
 842                        case PAGE_CLEAN:
 843                                ; /* try to free the page below */
 844                        }
 845                }
 846
 847                /*
 848                 * If the page has buffers, try to free the buffer mappings
 849                 * associated with this page. If we succeed we try to free
 850                 * the page as well.
 851                 *
 852                 * We do this even if the page is PageDirty().
 853                 * try_to_release_page() does not perform I/O, but it is
 854                 * possible for a page to have PageDirty set, but it is actually
 855                 * clean (all its buffers are clean).  This happens if the
 856                 * buffers were written out directly, with submit_bh(). ext3
 857                 * will do this, as well as the blockdev mapping.
 858                 * try_to_release_page() will discover that cleanness and will
 859                 * drop the buffers and mark the page clean - it can be freed.
 860                 *
 861                 * Rarely, pages can have buffers and no ->mapping.  These are
 862                 * the pages which were not successfully invalidated in
 863                 * truncate_complete_page().  We try to drop those buffers here
 864                 * and if that worked, and the page is no longer mapped into
 865                 * process address space (page_count == 1) it can be freed.
 866                 * Otherwise, leave the page on the LRU so it is swappable.
 867                 */
 868                if (page_has_private(page)) {
 869                        if (!try_to_release_page(page, sc->gfp_mask))
 870                                goto activate_locked;
 871                        if (!mapping && page_count(page) == 1) {
 872                                unlock_page(page);
 873                                if (put_page_testzero(page))
 874                                        goto free_it;
 875                                else {
 876                                        /*
 877                                         * rare race with speculative reference.
 878                                         * the speculative reference will free
 879                                         * this page shortly, so we may
 880                                         * increment nr_reclaimed here (and
 881                                         * leave it off the LRU).
 882                                         */
 883                                        nr_reclaimed++;
 884                                        continue;
 885                                }
 886                        }
 887                }
 888
 889                if (!mapping || !__remove_mapping(mapping, page))
 890                        goto keep_locked;
 891
 892                /*
 893                 * At this point, we have no other references and there is
 894                 * no way to pick any more up (removed from LRU, removed
 895                 * from pagecache). Can use non-atomic bitops now (and
 896                 * we obviously don't have to worry about waking up a process
 897                 * waiting on the page lock, because there are no references.
 898                 */
 899                __clear_page_locked(page);
 900free_it:
 901                nr_reclaimed++;
 902
 903                /*
 904                 * Is there need to periodically free_page_list? It would
 905                 * appear not as the counts should be low
 906                 */
 907                list_add(&page->lru, &free_pages);
 908                continue;
 909
 910cull_mlocked:
 911                if (PageSwapCache(page))
 912                        try_to_free_swap(page);
 913                unlock_page(page);
 914                putback_lru_page(page);
 915                reset_reclaim_mode(sc);
 916                continue;
 917
 918activate_locked:
 919                /* Not a candidate for swapping, so reclaim swap space. */
 920                if (PageSwapCache(page) && vm_swap_full())
 921                        try_to_free_swap(page);
 922                VM_BUG_ON(PageActive(page));
 923                SetPageActive(page);
 924                pgactivate++;
 925keep_locked:
 926                unlock_page(page);
 927keep:
 928                reset_reclaim_mode(sc);
 929keep_lumpy:
 930                list_add(&page->lru, &ret_pages);
 931                VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 932        }
 933
 934        /*
 935         * Tag a zone as congested if all the dirty pages encountered were
 936         * backed by a congested BDI. In this case, reclaimers should just
 937         * back off and wait for congestion to clear because further reclaim
 938         * will encounter the same problem
 939         */
 940        if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
 941                zone_set_flag(zone, ZONE_CONGESTED);
 942
 943        free_page_list(&free_pages);
 944
 945        list_splice(&ret_pages, page_list);
 946        count_vm_events(PGACTIVATE, pgactivate);
 947        return nr_reclaimed;
 948}
 949
 950/*
 951 * Attempt to remove the specified page from its LRU.  Only take this page
 952 * if it is of the appropriate PageActive status.  Pages which are being
 953 * freed elsewhere are also ignored.
 954 *
 955 * page:        page to consider
 956 * mode:        one of the LRU isolation modes defined above
 957 *
 958 * returns 0 on success, -ve errno on failure.
 959 */
 960int __isolate_lru_page(struct page *page, int mode, int file)
 961{
 962        int ret = -EINVAL;
 963
 964        /* Only take pages on the LRU. */
 965        if (!PageLRU(page))
 966                return ret;
 967
 968        /*
 969         * When checking the active state, we need to be sure we are
 970         * dealing with comparible boolean values.  Take the logical not
 971         * of each.
 972         */
 973        if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
 974                return ret;
 975
 976        if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
 977                return ret;
 978
 979        /*
 980         * When this function is being called for lumpy reclaim, we
 981         * initially look into all LRU pages, active, inactive and
 982         * unevictable; only give shrink_page_list evictable pages.
 983         */
 984        if (PageUnevictable(page))
 985                return ret;
 986
 987        ret = -EBUSY;
 988
 989        if (likely(get_page_unless_zero(page))) {
 990                /*
 991                 * Be careful not to clear PageLRU until after we're
 992                 * sure the page is not being freed elsewhere -- the
 993                 * page release code relies on it.
 994                 */
 995                ClearPageLRU(page);
 996                ret = 0;
 997        }
 998
 999        return ret;
1000}
1001
1002/*
1003 * zone->lru_lock is heavily contended.  Some of the functions that
1004 * shrink the lists perform better by taking out a batch of pages
1005 * and working on them outside the LRU lock.
1006 *
1007 * For pagecache intensive workloads, this function is the hottest
1008 * spot in the kernel (apart from copy_*_user functions).
1009 *
1010 * Appropriate locks must be held before calling this function.
1011 *
1012 * @nr_to_scan: The number of pages to look through on the list.
1013 * @src:        The LRU list to pull pages off.
1014 * @dst:        The temp list to put pages on to.
1015 * @scanned:    The number of pages that were scanned.
1016 * @order:      The caller's attempted allocation order
1017 * @mode:       One of the LRU isolation modes
1018 * @file:       True [1] if isolating file [!anon] pages
1019 *
1020 * returns how many pages were moved onto *@dst.
1021 */
1022static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1023                struct list_head *src, struct list_head *dst,
1024                unsigned long *scanned, int order, int mode, int file)
1025{
1026        unsigned long nr_taken = 0;
1027        unsigned long nr_lumpy_taken = 0;
1028        unsigned long nr_lumpy_dirty = 0;
1029        unsigned long nr_lumpy_failed = 0;
1030        unsigned long scan;
1031
1032        for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033                struct page *page;
1034                unsigned long pfn;
1035                unsigned long end_pfn;
1036                unsigned long page_pfn;
1037                int zone_id;
1038
1039                page = lru_to_page(src);
1040                prefetchw_prev_lru_page(page, src, flags);
1041
1042                VM_BUG_ON(!PageLRU(page));
1043
1044                switch (__isolate_lru_page(page, mode, file)) {
1045                case 0:
1046                        list_move(&page->lru, dst);
1047                        mem_cgroup_del_lru(page);
1048                        nr_taken += hpage_nr_pages(page);
1049                        break;
1050
1051                case -EBUSY:
1052                        /* else it is being freed elsewhere */
1053                        list_move(&page->lru, src);
1054                        mem_cgroup_rotate_lru_list(page, page_lru(page));
1055                        continue;
1056
1057                default:
1058                        BUG();
1059                }
1060
1061                if (!order)
1062                        continue;
1063
1064                /*
1065                 * Attempt to take all pages in the order aligned region
1066                 * surrounding the tag page.  Only take those pages of
1067                 * the same active state as that tag page.  We may safely
1068                 * round the target page pfn down to the requested order
1069                 * as the mem_map is guaranteed valid out to MAX_ORDER,
1070                 * where that page is in a different zone we will detect
1071                 * it from its zone id and abort this block scan.
1072                 */
1073                zone_id = page_zone_id(page);
1074                page_pfn = page_to_pfn(page);
1075                pfn = page_pfn & ~((1 << order) - 1);
1076                end_pfn = pfn + (1 << order);
1077                for (; pfn < end_pfn; pfn++) {
1078                        struct page *cursor_page;
1079
1080                        /* The target page is in the block, ignore it. */
1081                        if (unlikely(pfn == page_pfn))
1082                                continue;
1083
1084                        /* Avoid holes within the zone. */
1085                        if (unlikely(!pfn_valid_within(pfn)))
1086                                break;
1087
1088                        cursor_page = pfn_to_page(pfn);
1089
1090                        /* Check that we have not crossed a zone boundary. */
1091                        if (unlikely(page_zone_id(cursor_page) != zone_id))
1092                                break;
1093
1094                        /*
1095                         * If we don't have enough swap space, reclaiming of
1096                         * anon page which don't already have a swap slot is
1097                         * pointless.
1098                         */
1099                        if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100                            !PageSwapCache(cursor_page))
1101                                break;
1102
1103                        if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1104                                list_move(&cursor_page->lru, dst);
1105                                mem_cgroup_del_lru(cursor_page);
1106                                nr_taken += hpage_nr_pages(page);
1107                                nr_lumpy_taken++;
1108                                if (PageDirty(cursor_page))
1109                                        nr_lumpy_dirty++;
1110                                scan++;
1111                        } else {
1112                                /* the page is freed already. */
1113                                if (!page_count(cursor_page))
1114                                        continue;
1115                                break;
1116                        }
1117                }
1118
1119                /* If we break out of the loop above, lumpy reclaim failed */
1120                if (pfn < end_pfn)
1121                        nr_lumpy_failed++;
1122        }
1123
1124        *scanned = scan;
1125
1126        trace_mm_vmscan_lru_isolate(order,
1127                        nr_to_scan, scan,
1128                        nr_taken,
1129                        nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1130                        mode);
1131        return nr_taken;
1132}
1133
1134static unsigned long isolate_pages_global(unsigned long nr,
1135                                        struct list_head *dst,
1136                                        unsigned long *scanned, int order,
1137                                        int mode, struct zone *z,
1138                                        int active, int file)
1139{
1140        int lru = LRU_BASE;
1141        if (active)
1142                lru += LRU_ACTIVE;
1143        if (file)
1144                lru += LRU_FILE;
1145        return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146                                                                mode, file);
1147}
1148
1149/*
1150 * clear_active_flags() is a helper for shrink_active_list(), clearing
1151 * any active bits from the pages in the list.
1152 */
1153static unsigned long clear_active_flags(struct list_head *page_list,
1154                                        unsigned int *count)
1155{
1156        int nr_active = 0;
1157        int lru;
1158        struct page *page;
1159
1160        list_for_each_entry(page, page_list, lru) {
1161                int numpages = hpage_nr_pages(page);
1162                lru = page_lru_base_type(page);
1163                if (PageActive(page)) {
1164                        lru += LRU_ACTIVE;
1165                        ClearPageActive(page);
1166                        nr_active += numpages;
1167                }
1168                if (count)
1169                        count[lru] += numpages;
1170        }
1171
1172        return nr_active;
1173}
1174
1175/**
1176 * isolate_lru_page - tries to isolate a page from its LRU list
1177 * @page: page to isolate from its LRU list
1178 *
1179 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180 * vmstat statistic corresponding to whatever LRU list the page was on.
1181 *
1182 * Returns 0 if the page was removed from an LRU list.
1183 * Returns -EBUSY if the page was not on an LRU list.
1184 *
1185 * The returned page will have PageLRU() cleared.  If it was found on
1186 * the active list, it will have PageActive set.  If it was found on
1187 * the unevictable list, it will have the PageUnevictable bit set. That flag
1188 * may need to be cleared by the caller before letting the page go.
1189 *
1190 * The vmstat statistic corresponding to the list on which the page was
1191 * found will be decremented.
1192 *
1193 * Restrictions:
1194 * (1) Must be called with an elevated refcount on the page. This is a
1195 *     fundamentnal difference from isolate_lru_pages (which is called
1196 *     without a stable reference).
1197 * (2) the lru_lock must not be held.
1198 * (3) interrupts must be enabled.
1199 */
1200int isolate_lru_page(struct page *page)
1201{
1202        int ret = -EBUSY;
1203
1204        if (PageLRU(page)) {
1205                struct zone *zone = page_zone(page);
1206
1207                spin_lock_irq(&zone->lru_lock);
1208                if (PageLRU(page) && get_page_unless_zero(page)) {
1209                        int lru = page_lru(page);
1210                        ret = 0;
1211                        ClearPageLRU(page);
1212
1213                        del_page_from_lru_list(zone, page, lru);
1214                }
1215                spin_unlock_irq(&zone->lru_lock);
1216        }
1217        return ret;
1218}
1219
1220/*
1221 * Are there way too many processes in the direct reclaim path already?
1222 */
1223static int too_many_isolated(struct zone *zone, int file,
1224                struct scan_control *sc)
1225{
1226        unsigned long inactive, isolated;
1227
1228        if (current_is_kswapd())
1229                return 0;
1230
1231        if (!scanning_global_lru(sc))
1232                return 0;
1233
1234        if (file) {
1235                inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1236                isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1237        } else {
1238                inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1239                isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1240        }
1241
1242        return isolated > inactive;
1243}
1244
1245/*
1246 * TODO: Try merging with migrations version of putback_lru_pages
1247 */
1248static noinline_for_stack void
1249putback_lru_pages(struct zone *zone, struct scan_control *sc,
1250                                unsigned long nr_anon, unsigned long nr_file,
1251                                struct list_head *page_list)
1252{
1253        struct page *page;
1254        struct pagevec pvec;
1255        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1256
1257        pagevec_init(&pvec, 1);
1258
1259        /*
1260         * Put back any unfreeable pages.
1261         */
1262        spin_lock(&zone->lru_lock);
1263        while (!list_empty(page_list)) {
1264                int lru;
1265                page = lru_to_page(page_list);
1266                VM_BUG_ON(PageLRU(page));
1267                list_del(&page->lru);
1268                if (unlikely(!page_evictable(page, NULL))) {
1269                        spin_unlock_irq(&zone->lru_lock);
1270                        putback_lru_page(page);
1271                        spin_lock_irq(&zone->lru_lock);
1272                        continue;
1273                }
1274                SetPageLRU(page);
1275                lru = page_lru(page);
1276                add_page_to_lru_list(zone, page, lru);
1277                if (is_active_lru(lru)) {
1278                        int file = is_file_lru(lru);
1279                        int numpages = hpage_nr_pages(page);
1280                        reclaim_stat->recent_rotated[file] += numpages;
1281                }
1282                if (!pagevec_add(&pvec, page)) {
1283                        spin_unlock_irq(&zone->lru_lock);
1284                        __pagevec_release(&pvec);
1285                        spin_lock_irq(&zone->lru_lock);
1286                }
1287        }
1288        __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1289        __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1290
1291        spin_unlock_irq(&zone->lru_lock);
1292        pagevec_release(&pvec);
1293}
1294
1295static noinline_for_stack void update_isolated_counts(struct zone *zone,
1296                                        struct scan_control *sc,
1297                                        unsigned long *nr_anon,
1298                                        unsigned long *nr_file,
1299                                        struct list_head *isolated_list)
1300{
1301        unsigned long nr_active;
1302        unsigned int count[NR_LRU_LISTS] = { 0, };
1303        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1304
1305        nr_active = clear_active_flags(isolated_list, count);
1306        __count_vm_events(PGDEACTIVATE, nr_active);
1307
1308        __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1309                              -count[LRU_ACTIVE_FILE]);
1310        __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1311                              -count[LRU_INACTIVE_FILE]);
1312        __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1313                              -count[LRU_ACTIVE_ANON]);
1314        __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1315                              -count[LRU_INACTIVE_ANON]);
1316
1317        *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1318        *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1319        __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1320        __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1321
1322        reclaim_stat->recent_scanned[0] += *nr_anon;
1323        reclaim_stat->recent_scanned[1] += *nr_file;
1324}
1325
1326/*
1327 * Returns true if the caller should wait to clean dirty/writeback pages.
1328 *
1329 * If we are direct reclaiming for contiguous pages and we do not reclaim
1330 * everything in the list, try again and wait for writeback IO to complete.
1331 * This will stall high-order allocations noticeably. Only do that when really
1332 * need to free the pages under high memory pressure.
1333 */
1334static inline bool should_reclaim_stall(unsigned long nr_taken,
1335                                        unsigned long nr_freed,
1336                                        int priority,
1337                                        struct scan_control *sc)
1338{
1339        int lumpy_stall_priority;
1340
1341        /* kswapd should not stall on sync IO */
1342        if (current_is_kswapd())
1343                return false;
1344
1345        /* Only stall on lumpy reclaim */
1346        if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1347                return false;
1348
1349        /* If we have relaimed everything on the isolated list, no stall */
1350        if (nr_freed == nr_taken)
1351                return false;
1352
1353        /*
1354         * For high-order allocations, there are two stall thresholds.
1355         * High-cost allocations stall immediately where as lower
1356         * order allocations such as stacks require the scanning
1357         * priority to be much higher before stalling.
1358         */
1359        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1360                lumpy_stall_priority = DEF_PRIORITY;
1361        else
1362                lumpy_stall_priority = DEF_PRIORITY / 3;
1363
1364        return priority <= lumpy_stall_priority;
1365}
1366
1367/*
1368 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1369 * of reclaimed pages
1370 */
1371static noinline_for_stack unsigned long
1372shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1373                        struct scan_control *sc, int priority, int file)
1374{
1375        LIST_HEAD(page_list);
1376        unsigned long nr_scanned;
1377        unsigned long nr_reclaimed = 0;
1378        unsigned long nr_taken;
1379        unsigned long nr_anon;
1380        unsigned long nr_file;
1381
1382        while (unlikely(too_many_isolated(zone, file, sc))) {
1383                congestion_wait(BLK_RW_ASYNC, HZ/10);
1384
1385                /* We are about to die and free our memory. Return now. */
1386                if (fatal_signal_pending(current))
1387                        return SWAP_CLUSTER_MAX;
1388        }
1389
1390        set_reclaim_mode(priority, sc, false);
1391        lru_add_drain();
1392        spin_lock_irq(&zone->lru_lock);
1393
1394        if (scanning_global_lru(sc)) {
1395                nr_taken = isolate_pages_global(nr_to_scan,
1396                        &page_list, &nr_scanned, sc->order,
1397                        sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1398                                        ISOLATE_BOTH : ISOLATE_INACTIVE,
1399                        zone, 0, file);
1400                zone->pages_scanned += nr_scanned;
1401                if (current_is_kswapd())
1402                        __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1403                                               nr_scanned);
1404                else
1405                        __count_zone_vm_events(PGSCAN_DIRECT, zone,
1406                                               nr_scanned);
1407        } else {
1408                nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1409                        &page_list, &nr_scanned, sc->order,
1410                        sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1411                                        ISOLATE_BOTH : ISOLATE_INACTIVE,
1412                        zone, sc->mem_cgroup,
1413                        0, file);
1414                /*
1415                 * mem_cgroup_isolate_pages() keeps track of
1416                 * scanned pages on its own.
1417                 */
1418        }
1419
1420        if (nr_taken == 0) {
1421                spin_unlock_irq(&zone->lru_lock);
1422                return 0;
1423        }
1424
1425        update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1426
1427        spin_unlock_irq(&zone->lru_lock);
1428
1429        nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1430
1431        /* Check if we should syncronously wait for writeback */
1432        if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1433                set_reclaim_mode(priority, sc, true);
1434                nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1435        }
1436
1437        local_irq_disable();
1438        if (current_is_kswapd())
1439                __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1440        __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1441
1442        putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1443
1444        trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1445                zone_idx(zone),
1446                nr_scanned, nr_reclaimed,
1447                priority,
1448                trace_shrink_flags(file, sc->reclaim_mode));
1449        return nr_reclaimed;
1450}
1451
1452/*
1453 * This moves pages from the active list to the inactive list.
1454 *
1455 * We move them the other way if the page is referenced by one or more
1456 * processes, from rmap.
1457 *
1458 * If the pages are mostly unmapped, the processing is fast and it is
1459 * appropriate to hold zone->lru_lock across the whole operation.  But if
1460 * the pages are mapped, the processing is slow (page_referenced()) so we
1461 * should drop zone->lru_lock around each page.  It's impossible to balance
1462 * this, so instead we remove the pages from the LRU while processing them.
1463 * It is safe to rely on PG_active against the non-LRU pages in here because
1464 * nobody will play with that bit on a non-LRU page.
1465 *
1466 * The downside is that we have to touch page->_count against each page.
1467 * But we had to alter page->flags anyway.
1468 */
1469
1470static void move_active_pages_to_lru(struct zone *zone,
1471                                     struct list_head *list,
1472                                     enum lru_list lru)
1473{
1474        unsigned long pgmoved = 0;
1475        struct pagevec pvec;
1476        struct page *page;
1477
1478        pagevec_init(&pvec, 1);
1479
1480        while (!list_empty(list)) {
1481                page = lru_to_page(list);
1482
1483                VM_BUG_ON(PageLRU(page));
1484                SetPageLRU(page);
1485
1486                list_move(&page->lru, &zone->lru[lru].list);
1487                mem_cgroup_add_lru_list(page, lru);
1488                pgmoved += hpage_nr_pages(page);
1489
1490                if (!pagevec_add(&pvec, page) || list_empty(list)) {
1491                        spin_unlock_irq(&zone->lru_lock);
1492                        if (buffer_heads_over_limit)
1493                                pagevec_strip(&pvec);
1494                        __pagevec_release(&pvec);
1495                        spin_lock_irq(&zone->lru_lock);
1496                }
1497        }
1498        __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1499        if (!is_active_lru(lru))
1500                __count_vm_events(PGDEACTIVATE, pgmoved);
1501}
1502
1503static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1504                        struct scan_control *sc, int priority, int file)
1505{
1506        unsigned long nr_taken;
1507        unsigned long pgscanned;
1508        unsigned long vm_flags;
1509        LIST_HEAD(l_hold);      /* The pages which were snipped off */
1510        LIST_HEAD(l_active);
1511        LIST_HEAD(l_inactive);
1512        struct page *page;
1513        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1514        unsigned long nr_rotated = 0;
1515
1516        lru_add_drain();
1517        spin_lock_irq(&zone->lru_lock);
1518        if (scanning_global_lru(sc)) {
1519                nr_taken = isolate_pages_global(nr_pages, &l_hold,
1520                                                &pgscanned, sc->order,
1521                                                ISOLATE_ACTIVE, zone,
1522                                                1, file);
1523                zone->pages_scanned += pgscanned;
1524        } else {
1525                nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1526                                                &pgscanned, sc->order,
1527                                                ISOLATE_ACTIVE, zone,
1528                                                sc->mem_cgroup, 1, file);
1529                /*
1530                 * mem_cgroup_isolate_pages() keeps track of
1531                 * scanned pages on its own.
1532                 */
1533        }
1534
1535        reclaim_stat->recent_scanned[file] += nr_taken;
1536
1537        __count_zone_vm_events(PGREFILL, zone, pgscanned);
1538        if (file)
1539                __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1540        else
1541                __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1542        __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1543        spin_unlock_irq(&zone->lru_lock);
1544
1545        while (!list_empty(&l_hold)) {
1546                cond_resched();
1547                page = lru_to_page(&l_hold);
1548                list_del(&page->lru);
1549
1550                if (unlikely(!page_evictable(page, NULL))) {
1551                        putback_lru_page(page);
1552                        continue;
1553                }
1554
1555                if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1556                        nr_rotated += hpage_nr_pages(page);
1557                        /*
1558                         * Identify referenced, file-backed active pages and
1559                         * give them one more trip around the active list. So
1560                         * that executable code get better chances to stay in
1561                         * memory under moderate memory pressure.  Anon pages
1562                         * are not likely to be evicted by use-once streaming
1563                         * IO, plus JVM can create lots of anon VM_EXEC pages,
1564                         * so we ignore them here.
1565                         */
1566                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1567                                list_add(&page->lru, &l_active);
1568                                continue;
1569                        }
1570                }
1571
1572                ClearPageActive(page);  /* we are de-activating */
1573                list_add(&page->lru, &l_inactive);
1574        }
1575
1576        /*
1577         * Move pages back to the lru list.
1578         */
1579        spin_lock_irq(&zone->lru_lock);
1580        /*
1581         * Count referenced pages from currently used mappings as rotated,
1582         * even though only some of them are actually re-activated.  This
1583         * helps balance scan pressure between file and anonymous pages in
1584         * get_scan_ratio.
1585         */
1586        reclaim_stat->recent_rotated[file] += nr_rotated;
1587
1588        move_active_pages_to_lru(zone, &l_active,
1589                                                LRU_ACTIVE + file * LRU_FILE);
1590        move_active_pages_to_lru(zone, &l_inactive,
1591                                                LRU_BASE   + file * LRU_FILE);
1592        __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1593        spin_unlock_irq(&zone->lru_lock);
1594}
1595
1596#ifdef CONFIG_SWAP
1597static int inactive_anon_is_low_global(struct zone *zone)
1598{
1599        unsigned long active, inactive;
1600
1601        active = zone_page_state(zone, NR_ACTIVE_ANON);
1602        inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1603
1604        if (inactive * zone->inactive_ratio < active)
1605                return 1;
1606
1607        return 0;
1608}
1609
1610/**
1611 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1612 * @zone: zone to check
1613 * @sc:   scan control of this context
1614 *
1615 * Returns true if the zone does not have enough inactive anon pages,
1616 * meaning some active anon pages need to be deactivated.
1617 */
1618static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1619{
1620        int low;
1621
1622        /*
1623         * If we don't have swap space, anonymous page deactivation
1624         * is pointless.
1625         */
1626        if (!total_swap_pages)
1627                return 0;
1628
1629        if (scanning_global_lru(sc))
1630                low = inactive_anon_is_low_global(zone);
1631        else
1632                low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1633        return low;
1634}
1635#else
1636static inline int inactive_anon_is_low(struct zone *zone,
1637                                        struct scan_control *sc)
1638{
1639        return 0;
1640}
1641#endif
1642
1643static int inactive_file_is_low_global(struct zone *zone)
1644{
1645        unsigned long active, inactive;
1646
1647        active = zone_page_state(zone, NR_ACTIVE_FILE);
1648        inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1649
1650        return (active > inactive);
1651}
1652
1653/**
1654 * inactive_file_is_low - check if file pages need to be deactivated
1655 * @zone: zone to check
1656 * @sc:   scan control of this context
1657 *
1658 * When the system is doing streaming IO, memory pressure here
1659 * ensures that active file pages get deactivated, until more
1660 * than half of the file pages are on the inactive list.
1661 *
1662 * Once we get to that situation, protect the system's working
1663 * set from being evicted by disabling active file page aging.
1664 *
1665 * This uses a different ratio than the anonymous pages, because
1666 * the page cache uses a use-once replacement algorithm.
1667 */
1668static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1669{
1670        int low;
1671
1672        if (scanning_global_lru(sc))
1673                low = inactive_file_is_low_global(zone);
1674        else
1675                low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1676        return low;
1677}
1678
1679static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1680                                int file)
1681{
1682        if (file)
1683                return inactive_file_is_low(zone, sc);
1684        else
1685                return inactive_anon_is_low(zone, sc);
1686}
1687
1688static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1689        struct zone *zone, struct scan_control *sc, int priority)
1690{
1691        int file = is_file_lru(lru);
1692
1693        if (is_active_lru(lru)) {
1694                if (inactive_list_is_low(zone, sc, file))
1695                    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1696                return 0;
1697        }
1698
1699        return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1700}
1701
1702/*
1703 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1704 * until we collected @swap_cluster_max pages to scan.
1705 */
1706static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1707                                       unsigned long *nr_saved_scan)
1708{
1709        unsigned long nr;
1710
1711        *nr_saved_scan += nr_to_scan;
1712        nr = *nr_saved_scan;
1713
1714        if (nr >= SWAP_CLUSTER_MAX)
1715                *nr_saved_scan = 0;
1716        else
1717                nr = 0;
1718
1719        return nr;
1720}
1721
1722/*
1723 * Determine how aggressively the anon and file LRU lists should be
1724 * scanned.  The relative value of each set of LRU lists is determined
1725 * by looking at the fraction of the pages scanned we did rotate back
1726 * onto the active list instead of evict.
1727 *
1728 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1729 */
1730static void get_scan_count(struct zone *zone, struct scan_control *sc,
1731                                        unsigned long *nr, int priority)
1732{
1733        unsigned long anon, file, free;
1734        unsigned long anon_prio, file_prio;
1735        unsigned long ap, fp;
1736        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1737        u64 fraction[2], denominator;
1738        enum lru_list l;
1739        int noswap = 0;
1740
1741        /* If we have no swap space, do not bother scanning anon pages. */
1742        if (!sc->may_swap || (nr_swap_pages <= 0)) {
1743                noswap = 1;
1744                fraction[0] = 0;
1745                fraction[1] = 1;
1746                denominator = 1;
1747                goto out;
1748        }
1749
1750        anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1751                zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1752        file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1753                zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1754
1755        if (scanning_global_lru(sc)) {
1756                free  = zone_page_state(zone, NR_FREE_PAGES);
1757                /* If we have very few page cache pages,
1758                   force-scan anon pages. */
1759                if (unlikely(file + free <= high_wmark_pages(zone))) {
1760                        fraction[0] = 1;
1761                        fraction[1] = 0;
1762                        denominator = 1;
1763                        goto out;
1764                }
1765        }
1766
1767        /*
1768         * With swappiness at 100, anonymous and file have the same priority.
1769         * This scanning priority is essentially the inverse of IO cost.
1770         */
1771        anon_prio = sc->swappiness;
1772        file_prio = 200 - sc->swappiness;
1773
1774        /*
1775         * OK, so we have swap space and a fair amount of page cache
1776         * pages.  We use the recently rotated / recently scanned
1777         * ratios to determine how valuable each cache is.
1778         *
1779         * Because workloads change over time (and to avoid overflow)
1780         * we keep these statistics as a floating average, which ends
1781         * up weighing recent references more than old ones.
1782         *
1783         * anon in [0], file in [1]
1784         */
1785        spin_lock_irq(&zone->lru_lock);
1786        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1787                reclaim_stat->recent_scanned[0] /= 2;
1788                reclaim_stat->recent_rotated[0] /= 2;
1789        }
1790
1791        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1792                reclaim_stat->recent_scanned[1] /= 2;
1793                reclaim_stat->recent_rotated[1] /= 2;
1794        }
1795
1796        /*
1797         * The amount of pressure on anon vs file pages is inversely
1798         * proportional to the fraction of recently scanned pages on
1799         * each list that were recently referenced and in active use.
1800         */
1801        ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1802        ap /= reclaim_stat->recent_rotated[0] + 1;
1803
1804        fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1805        fp /= reclaim_stat->recent_rotated[1] + 1;
1806        spin_unlock_irq(&zone->lru_lock);
1807
1808        fraction[0] = ap;
1809        fraction[1] = fp;
1810        denominator = ap + fp + 1;
1811out:
1812        for_each_evictable_lru(l) {
1813                int file = is_file_lru(l);
1814                unsigned long scan;
1815
1816                scan = zone_nr_lru_pages(zone, sc, l);
1817                if (priority || noswap) {
1818                        scan >>= priority;
1819                        scan = div64_u64(scan * fraction[file], denominator);
1820                }
1821                nr[l] = nr_scan_try_batch(scan,
1822                                          &reclaim_stat->nr_saved_scan[l]);
1823        }
1824}
1825
1826/*
1827 * Reclaim/compaction depends on a number of pages being freed. To avoid
1828 * disruption to the system, a small number of order-0 pages continue to be
1829 * rotated and reclaimed in the normal fashion. However, by the time we get
1830 * back to the allocator and call try_to_compact_zone(), we ensure that
1831 * there are enough free pages for it to be likely successful
1832 */
1833static inline bool should_continue_reclaim(struct zone *zone,
1834                                        unsigned long nr_reclaimed,
1835                                        unsigned long nr_scanned,
1836                                        struct scan_control *sc)
1837{
1838        unsigned long pages_for_compaction;
1839        unsigned long inactive_lru_pages;
1840
1841        /* If not in reclaim/compaction mode, stop */
1842        if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1843                return false;
1844
1845        /* Consider stopping depending on scan and reclaim activity */
1846        if (sc->gfp_mask & __GFP_REPEAT) {
1847                /*
1848                 * For __GFP_REPEAT allocations, stop reclaiming if the
1849                 * full LRU list has been scanned and we are still failing
1850                 * to reclaim pages. This full LRU scan is potentially
1851                 * expensive but a __GFP_REPEAT caller really wants to succeed
1852                 */
1853                if (!nr_reclaimed && !nr_scanned)
1854                        return false;
1855        } else {
1856                /*
1857                 * For non-__GFP_REPEAT allocations which can presumably
1858                 * fail without consequence, stop if we failed to reclaim
1859                 * any pages from the last SWAP_CLUSTER_MAX number of
1860                 * pages that were scanned. This will return to the
1861                 * caller faster at the risk reclaim/compaction and
1862                 * the resulting allocation attempt fails
1863                 */
1864                if (!nr_reclaimed)
1865                        return false;
1866        }
1867
1868        /*
1869         * If we have not reclaimed enough pages for compaction and the
1870         * inactive lists are large enough, continue reclaiming
1871         */
1872        pages_for_compaction = (2UL << sc->order);
1873        inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1874                                zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1875        if (sc->nr_reclaimed < pages_for_compaction &&
1876                        inactive_lru_pages > pages_for_compaction)
1877                return true;
1878
1879        /* If compaction would go ahead or the allocation would succeed, stop */
1880        switch (compaction_suitable(zone, sc->order)) {
1881        case COMPACT_PARTIAL:
1882        case COMPACT_CONTINUE:
1883                return false;
1884        default:
1885                return true;
1886        }
1887}
1888
1889/*
1890 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1891 */
1892static void shrink_zone(int priority, struct zone *zone,
1893                                struct scan_control *sc)
1894{
1895        unsigned long nr[NR_LRU_LISTS];
1896        unsigned long nr_to_scan;
1897        enum lru_list l;
1898        unsigned long nr_reclaimed, nr_scanned;
1899        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1900
1901restart:
1902        nr_reclaimed = 0;
1903        nr_scanned = sc->nr_scanned;
1904        get_scan_count(zone, sc, nr, priority);
1905
1906        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1907                                        nr[LRU_INACTIVE_FILE]) {
1908                for_each_evictable_lru(l) {
1909                        if (nr[l]) {
1910                                nr_to_scan = min_t(unsigned long,
1911                                                   nr[l], SWAP_CLUSTER_MAX);
1912                                nr[l] -= nr_to_scan;
1913
1914                                nr_reclaimed += shrink_list(l, nr_to_scan,
1915                                                            zone, sc, priority);
1916                        }
1917                }
1918                /*
1919                 * On large memory systems, scan >> priority can become
1920                 * really large. This is fine for the starting priority;
1921                 * we want to put equal scanning pressure on each zone.
1922                 * However, if the VM has a harder time of freeing pages,
1923                 * with multiple processes reclaiming pages, the total
1924                 * freeing target can get unreasonably large.
1925                 */
1926                if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1927                        break;
1928        }
1929        sc->nr_reclaimed += nr_reclaimed;
1930
1931        /*
1932         * Even if we did not try to evict anon pages at all, we want to
1933         * rebalance the anon lru active/inactive ratio.
1934         */
1935        if (inactive_anon_is_low(zone, sc))
1936                shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1937
1938        /* reclaim/compaction might need reclaim to continue */
1939        if (should_continue_reclaim(zone, nr_reclaimed,
1940                                        sc->nr_scanned - nr_scanned, sc))
1941                goto restart;
1942
1943        throttle_vm_writeout(sc->gfp_mask);
1944}
1945
1946/*
1947 * This is the direct reclaim path, for page-allocating processes.  We only
1948 * try to reclaim pages from zones which will satisfy the caller's allocation
1949 * request.
1950 *
1951 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1952 * Because:
1953 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1954 *    allocation or
1955 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1956 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1957 *    zone defense algorithm.
1958 *
1959 * If a zone is deemed to be full of pinned pages then just give it a light
1960 * scan then give up on it.
1961 */
1962static void shrink_zones(int priority, struct zonelist *zonelist,
1963                                        struct scan_control *sc)
1964{
1965        struct zoneref *z;
1966        struct zone *zone;
1967
1968        for_each_zone_zonelist_nodemask(zone, z, zonelist,
1969                                        gfp_zone(sc->gfp_mask), sc->nodemask) {
1970                if (!populated_zone(zone))
1971                        continue;
1972                /*
1973                 * Take care memory controller reclaiming has small influence
1974                 * to global LRU.
1975                 */
1976                if (scanning_global_lru(sc)) {
1977                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1978                                continue;
1979                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1980                                continue;       /* Let kswapd poll it */
1981                }
1982
1983                shrink_zone(priority, zone, sc);
1984        }
1985}
1986
1987static bool zone_reclaimable(struct zone *zone)
1988{
1989        return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1990}
1991
1992/* All zones in zonelist are unreclaimable? */
1993static bool all_unreclaimable(struct zonelist *zonelist,
1994                struct scan_control *sc)
1995{
1996        struct zoneref *z;
1997        struct zone *zone;
1998
1999        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2000                        gfp_zone(sc->gfp_mask), sc->nodemask) {
2001                if (!populated_zone(zone))
2002                        continue;
2003                if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004                        continue;
2005                if (!zone->all_unreclaimable)
2006                        return false;
2007        }
2008
2009        return true;
2010}
2011
2012/*
2013 * This is the main entry point to direct page reclaim.
2014 *
2015 * If a full scan of the inactive list fails to free enough memory then we
2016 * are "out of memory" and something needs to be killed.
2017 *
2018 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2019 * high - the zone may be full of dirty or under-writeback pages, which this
2020 * caller can't do much about.  We kick the writeback threads and take explicit
2021 * naps in the hope that some of these pages can be written.  But if the
2022 * allocating task holds filesystem locks which prevent writeout this might not
2023 * work, and the allocation attempt will fail.
2024 *
2025 * returns:     0, if no pages reclaimed
2026 *              else, the number of pages reclaimed
2027 */
2028static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2029                                        struct scan_control *sc)
2030{
2031        int priority;
2032        unsigned long total_scanned = 0;
2033        struct reclaim_state *reclaim_state = current->reclaim_state;
2034        struct zoneref *z;
2035        struct zone *zone;
2036        unsigned long writeback_threshold;
2037
2038        get_mems_allowed();
2039        delayacct_freepages_start();
2040
2041        if (scanning_global_lru(sc))
2042                count_vm_event(ALLOCSTALL);
2043
2044        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2045                sc->nr_scanned = 0;
2046                if (!priority)
2047                        disable_swap_token();
2048                shrink_zones(priority, zonelist, sc);
2049                /*
2050                 * Don't shrink slabs when reclaiming memory from
2051                 * over limit cgroups
2052                 */
2053                if (scanning_global_lru(sc)) {
2054                        unsigned long lru_pages = 0;
2055                        for_each_zone_zonelist(zone, z, zonelist,
2056                                        gfp_zone(sc->gfp_mask)) {
2057                                if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2058                                        continue;
2059
2060                                lru_pages += zone_reclaimable_pages(zone);
2061                        }
2062
2063                        shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2064                        if (reclaim_state) {
2065                                sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2066                                reclaim_state->reclaimed_slab = 0;
2067                        }
2068                }
2069                total_scanned += sc->nr_scanned;
2070                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2071                        goto out;
2072
2073                /*
2074                 * Try to write back as many pages as we just scanned.  This
2075                 * tends to cause slow streaming writers to write data to the
2076                 * disk smoothly, at the dirtying rate, which is nice.   But
2077                 * that's undesirable in laptop mode, where we *want* lumpy
2078                 * writeout.  So in laptop mode, write out the whole world.
2079                 */
2080                writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2081                if (total_scanned > writeback_threshold) {
2082                        wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2083                        sc->may_writepage = 1;
2084                }
2085
2086                /* Take a nap, wait for some writeback to complete */
2087                if (!sc->hibernation_mode && sc->nr_scanned &&
2088                    priority < DEF_PRIORITY - 2) {
2089                        struct zone *preferred_zone;
2090
2091                        first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2092                                                &cpuset_current_mems_allowed,
2093                                                &preferred_zone);
2094                        wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2095                }
2096        }
2097
2098out:
2099        delayacct_freepages_end();
2100        put_mems_allowed();
2101
2102        if (sc->nr_reclaimed)
2103                return sc->nr_reclaimed;
2104
2105        /*
2106         * As hibernation is going on, kswapd is freezed so that it can't mark
2107         * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2108         * check.
2109         */
2110        if (oom_killer_disabled)
2111                return 0;
2112
2113        /* top priority shrink_zones still had more to do? don't OOM, then */
2114        if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2115                return 1;
2116
2117        return 0;
2118}
2119
2120unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2121                                gfp_t gfp_mask, nodemask_t *nodemask)
2122{
2123        unsigned long nr_reclaimed;
2124        struct scan_control sc = {
2125                .gfp_mask = gfp_mask,
2126                .may_writepage = !laptop_mode,
2127                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2128                .may_unmap = 1,
2129                .may_swap = 1,
2130                .swappiness = vm_swappiness,
2131                .order = order,
2132                .mem_cgroup = NULL,
2133                .nodemask = nodemask,
2134        };
2135
2136        trace_mm_vmscan_direct_reclaim_begin(order,
2137                                sc.may_writepage,
2138                                gfp_mask);
2139
2140        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2141
2142        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2143
2144        return nr_reclaimed;
2145}
2146
2147#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2148
2149unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2150                                                gfp_t gfp_mask, bool noswap,
2151                                                unsigned int swappiness,
2152                                                struct zone *zone)
2153{
2154        struct scan_control sc = {
2155                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2156                .may_writepage = !laptop_mode,
2157                .may_unmap = 1,
2158                .may_swap = !noswap,
2159                .swappiness = swappiness,
2160                .order = 0,
2161                .mem_cgroup = mem,
2162        };
2163        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2164                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2165
2166        trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2167                                                      sc.may_writepage,
2168                                                      sc.gfp_mask);
2169
2170        /*
2171         * NOTE: Although we can get the priority field, using it
2172         * here is not a good idea, since it limits the pages we can scan.
2173         * if we don't reclaim here, the shrink_zone from balance_pgdat
2174         * will pick up pages from other mem cgroup's as well. We hack
2175         * the priority and make it zero.
2176         */
2177        shrink_zone(0, zone, &sc);
2178
2179        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2180
2181        return sc.nr_reclaimed;
2182}
2183
2184unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2185                                           gfp_t gfp_mask,
2186                                           bool noswap,
2187                                           unsigned int swappiness)
2188{
2189        struct zonelist *zonelist;
2190        unsigned long nr_reclaimed;
2191        struct scan_control sc = {
2192                .may_writepage = !laptop_mode,
2193                .may_unmap = 1,
2194                .may_swap = !noswap,
2195                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2196                .swappiness = swappiness,
2197                .order = 0,
2198                .mem_cgroup = mem_cont,
2199                .nodemask = NULL, /* we don't care the placement */
2200        };
2201
2202        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2203                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2204        zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2205
2206        trace_mm_vmscan_memcg_reclaim_begin(0,
2207                                            sc.may_writepage,
2208                                            sc.gfp_mask);
2209
2210        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2211
2212        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2213
2214        return nr_reclaimed;
2215}
2216#endif
2217
2218/*
2219 * pgdat_balanced is used when checking if a node is balanced for high-order
2220 * allocations. Only zones that meet watermarks and are in a zone allowed
2221 * by the callers classzone_idx are added to balanced_pages. The total of
2222 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2223 * for the node to be considered balanced. Forcing all zones to be balanced
2224 * for high orders can cause excessive reclaim when there are imbalanced zones.
2225 * The choice of 25% is due to
2226 *   o a 16M DMA zone that is balanced will not balance a zone on any
2227 *     reasonable sized machine
2228 *   o On all other machines, the top zone must be at least a reasonable
2229 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2230 *     would need to be at least 256M for it to be balance a whole node.
2231 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2232 *     to balance a node on its own. These seemed like reasonable ratios.
2233 */
2234static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2235                                                int classzone_idx)
2236{
2237        unsigned long present_pages = 0;
2238        int i;
2239
2240        for (i = 0; i <= classzone_idx; i++)
2241                present_pages += pgdat->node_zones[i].present_pages;
2242
2243        return balanced_pages > (present_pages >> 2);
2244}
2245
2246/* is kswapd sleeping prematurely? */
2247static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2248                                        int classzone_idx)
2249{
2250        int i;
2251        unsigned long balanced = 0;
2252        bool all_zones_ok = true;
2253
2254        /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2255        if (remaining)
2256                return true;
2257
2258        /* Check the watermark levels */
2259        for (i = 0; i < pgdat->nr_zones; i++) {
2260                struct zone *zone = pgdat->node_zones + i;
2261
2262                if (!populated_zone(zone))
2263                        continue;
2264
2265                /*
2266                 * balance_pgdat() skips over all_unreclaimable after
2267                 * DEF_PRIORITY. Effectively, it considers them balanced so
2268                 * they must be considered balanced here as well if kswapd
2269                 * is to sleep
2270                 */
2271                if (zone->all_unreclaimable) {
2272                        balanced += zone->present_pages;
2273                        continue;
2274                }
2275
2276                if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2277                                                        classzone_idx, 0))
2278                        all_zones_ok = false;
2279                else
2280                        balanced += zone->present_pages;
2281        }
2282
2283        /*
2284         * For high-order requests, the balanced zones must contain at least
2285         * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2286         * must be balanced
2287         */
2288        if (order)
2289                return pgdat_balanced(pgdat, balanced, classzone_idx);
2290        else
2291                return !all_zones_ok;
2292}
2293
2294/*
2295 * For kswapd, balance_pgdat() will work across all this node's zones until
2296 * they are all at high_wmark_pages(zone).
2297 *
2298 * Returns the final order kswapd was reclaiming at
2299 *
2300 * There is special handling here for zones which are full of pinned pages.
2301 * This can happen if the pages are all mlocked, or if they are all used by
2302 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2303 * What we do is to detect the case where all pages in the zone have been
2304 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2305 * dead and from now on, only perform a short scan.  Basically we're polling
2306 * the zone for when the problem goes away.
2307 *
2308 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2309 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2310 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2311 * lower zones regardless of the number of free pages in the lower zones. This
2312 * interoperates with the page allocator fallback scheme to ensure that aging
2313 * of pages is balanced across the zones.
2314 */
2315static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2316                                                        int *classzone_idx)
2317{
2318        int all_zones_ok;
2319        unsigned long balanced;
2320        int priority;
2321        int i;
2322        int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2323        unsigned long total_scanned;
2324        struct reclaim_state *reclaim_state = current->reclaim_state;
2325        struct scan_control sc = {
2326                .gfp_mask = GFP_KERNEL,
2327                .may_unmap = 1,
2328                .may_swap = 1,
2329                /*
2330                 * kswapd doesn't want to be bailed out while reclaim. because
2331                 * we want to put equal scanning pressure on each zone.
2332                 */
2333                .nr_to_reclaim = ULONG_MAX,
2334                .swappiness = vm_swappiness,
2335                .order = order,
2336                .mem_cgroup = NULL,
2337        };
2338loop_again:
2339        total_scanned = 0;
2340        sc.nr_reclaimed = 0;
2341        sc.may_writepage = !laptop_mode;
2342        count_vm_event(PAGEOUTRUN);
2343
2344        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2345                unsigned long lru_pages = 0;
2346                int has_under_min_watermark_zone = 0;
2347
2348                /* The swap token gets in the way of swapout... */
2349                if (!priority)
2350                        disable_swap_token();
2351
2352                all_zones_ok = 1;
2353                balanced = 0;
2354
2355                /*
2356                 * Scan in the highmem->dma direction for the highest
2357                 * zone which needs scanning
2358                 */
2359                for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2360                        struct zone *zone = pgdat->node_zones + i;
2361
2362                        if (!populated_zone(zone))
2363                                continue;
2364
2365                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2366                                continue;
2367
2368                        /*
2369                         * Do some background aging of the anon list, to give
2370                         * pages a chance to be referenced before reclaiming.
2371                         */
2372                        if (inactive_anon_is_low(zone, &sc))
2373                                shrink_active_list(SWAP_CLUSTER_MAX, zone,
2374                                                        &sc, priority, 0);
2375
2376                        if (!zone_watermark_ok_safe(zone, order,
2377                                        high_wmark_pages(zone), 0, 0)) {
2378                                end_zone = i;
2379                                *classzone_idx = i;
2380                                break;
2381                        }
2382                }
2383                if (i < 0)
2384                        goto out;
2385
2386                for (i = 0; i <= end_zone; i++) {
2387                        struct zone *zone = pgdat->node_zones + i;
2388
2389                        lru_pages += zone_reclaimable_pages(zone);
2390                }
2391
2392                /*
2393                 * Now scan the zone in the dma->highmem direction, stopping
2394                 * at the last zone which needs scanning.
2395                 *
2396                 * We do this because the page allocator works in the opposite
2397                 * direction.  This prevents the page allocator from allocating
2398                 * pages behind kswapd's direction of progress, which would
2399                 * cause too much scanning of the lower zones.
2400                 */
2401                for (i = 0; i <= end_zone; i++) {
2402                        struct zone *zone = pgdat->node_zones + i;
2403                        int nr_slab;
2404                        unsigned long balance_gap;
2405
2406                        if (!populated_zone(zone))
2407                                continue;
2408
2409                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2410                                continue;
2411
2412                        sc.nr_scanned = 0;
2413
2414                        /*
2415                         * Call soft limit reclaim before calling shrink_zone.
2416                         * For now we ignore the return value
2417                         */
2418                        mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2419
2420                        /*
2421                         * We put equal pressure on every zone, unless
2422                         * one zone has way too many pages free
2423                         * already. The "too many pages" is defined
2424                         * as the high wmark plus a "gap" where the
2425                         * gap is either the low watermark or 1%
2426                         * of the zone, whichever is smaller.
2427                         */
2428                        balance_gap = min(low_wmark_pages(zone),
2429                                (zone->present_pages +
2430                                        KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2431                                KSWAPD_ZONE_BALANCE_GAP_RATIO);
2432                        if (!zone_watermark_ok_safe(zone, order,
2433                                        high_wmark_pages(zone) + balance_gap,
2434                                        end_zone, 0))
2435                                shrink_zone(priority, zone, &sc);
2436                        reclaim_state->reclaimed_slab = 0;
2437                        nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2438                                                lru_pages);
2439                        sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2440                        total_scanned += sc.nr_scanned;
2441
2442                        if (zone->all_unreclaimable)
2443                                continue;
2444                        if (nr_slab == 0 &&
2445                            !zone_reclaimable(zone))
2446                                zone->all_unreclaimable = 1;
2447                        /*
2448                         * If we've done a decent amount of scanning and
2449                         * the reclaim ratio is low, start doing writepage
2450                         * even in laptop mode
2451                         */
2452                        if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2453                            total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2454                                sc.may_writepage = 1;
2455
2456                        if (!zone_watermark_ok_safe(zone, order,
2457                                        high_wmark_pages(zone), end_zone, 0)) {
2458                                all_zones_ok = 0;
2459                                /*
2460                                 * We are still under min water mark.  This
2461                                 * means that we have a GFP_ATOMIC allocation
2462                                 * failure risk. Hurry up!
2463                                 */
2464                                if (!zone_watermark_ok_safe(zone, order,
2465                                            min_wmark_pages(zone), end_zone, 0))
2466                                        has_under_min_watermark_zone = 1;
2467                        } else {
2468                                /*
2469                                 * If a zone reaches its high watermark,
2470                                 * consider it to be no longer congested. It's
2471                                 * possible there are dirty pages backed by
2472                                 * congested BDIs but as pressure is relieved,
2473                                 * spectulatively avoid congestion waits
2474                                 */
2475                                zone_clear_flag(zone, ZONE_CONGESTED);
2476                                if (i <= *classzone_idx)
2477                                        balanced += zone->present_pages;
2478                        }
2479
2480                }
2481                if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2482                        break;          /* kswapd: all done */
2483                /*
2484                 * OK, kswapd is getting into trouble.  Take a nap, then take
2485                 * another pass across the zones.
2486                 */
2487                if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2488                        if (has_under_min_watermark_zone)
2489                                count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2490                        else
2491                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2492                }
2493
2494                /*
2495                 * We do this so kswapd doesn't build up large priorities for
2496                 * example when it is freeing in parallel with allocators. It
2497                 * matches the direct reclaim path behaviour in terms of impact
2498                 * on zone->*_priority.
2499                 */
2500                if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2501                        break;
2502        }
2503out:
2504
2505        /*
2506         * order-0: All zones must meet high watermark for a balanced node
2507         * high-order: Balanced zones must make up at least 25% of the node
2508         *             for the node to be balanced
2509         */
2510        if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2511                cond_resched();
2512
2513                try_to_freeze();
2514
2515                /*
2516                 * Fragmentation may mean that the system cannot be
2517                 * rebalanced for high-order allocations in all zones.
2518                 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2519                 * it means the zones have been fully scanned and are still
2520                 * not balanced. For high-order allocations, there is
2521                 * little point trying all over again as kswapd may
2522                 * infinite loop.
2523                 *
2524                 * Instead, recheck all watermarks at order-0 as they
2525                 * are the most important. If watermarks are ok, kswapd will go
2526                 * back to sleep. High-order users can still perform direct
2527                 * reclaim if they wish.
2528                 */
2529                if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2530                        order = sc.order = 0;
2531
2532                goto loop_again;
2533        }
2534
2535        /*
2536         * If kswapd was reclaiming at a higher order, it has the option of
2537         * sleeping without all zones being balanced. Before it does, it must
2538         * ensure that the watermarks for order-0 on *all* zones are met and
2539         * that the congestion flags are cleared. The congestion flag must
2540         * be cleared as kswapd is the only mechanism that clears the flag
2541         * and it is potentially going to sleep here.
2542         */
2543        if (order) {
2544                for (i = 0; i <= end_zone; i++) {
2545                        struct zone *zone = pgdat->node_zones + i;
2546
2547                        if (!populated_zone(zone))
2548                                continue;
2549
2550                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2551                                continue;
2552
2553                        /* Confirm the zone is balanced for order-0 */
2554                        if (!zone_watermark_ok(zone, 0,
2555                                        high_wmark_pages(zone), 0, 0)) {
2556                                order = sc.order = 0;
2557                                goto loop_again;
2558                        }
2559
2560                        /* If balanced, clear the congested flag */
2561                        zone_clear_flag(zone, ZONE_CONGESTED);
2562                }
2563        }
2564
2565        /*
2566         * Return the order we were reclaiming at so sleeping_prematurely()
2567         * makes a decision on the order we were last reclaiming at. However,
2568         * if another caller entered the allocator slow path while kswapd
2569         * was awake, order will remain at the higher level
2570         */
2571        *classzone_idx = end_zone;
2572        return order;
2573}
2574
2575static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2576{
2577        long remaining = 0;
2578        DEFINE_WAIT(wait);
2579
2580        if (freezing(current) || kthread_should_stop())
2581                return;
2582
2583        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2584
2585        /* Try to sleep for a short interval */
2586        if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2587                remaining = schedule_timeout(HZ/10);
2588                finish_wait(&pgdat->kswapd_wait, &wait);
2589                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2590        }
2591
2592        /*
2593         * After a short sleep, check if it was a premature sleep. If not, then
2594         * go fully to sleep until explicitly woken up.
2595         */
2596        if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2597                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2598
2599                /*
2600                 * vmstat counters are not perfectly accurate and the estimated
2601                 * value for counters such as NR_FREE_PAGES can deviate from the
2602                 * true value by nr_online_cpus * threshold. To avoid the zone
2603                 * watermarks being breached while under pressure, we reduce the
2604                 * per-cpu vmstat threshold while kswapd is awake and restore
2605                 * them before going back to sleep.
2606                 */
2607                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2608                schedule();
2609                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2610        } else {
2611                if (remaining)
2612                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2613                else
2614                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2615        }
2616        finish_wait(&pgdat->kswapd_wait, &wait);
2617}
2618
2619/*
2620 * The background pageout daemon, started as a kernel thread
2621 * from the init process.
2622 *
2623 * This basically trickles out pages so that we have _some_
2624 * free memory available even if there is no other activity
2625 * that frees anything up. This is needed for things like routing
2626 * etc, where we otherwise might have all activity going on in
2627 * asynchronous contexts that cannot page things out.
2628 *
2629 * If there are applications that are active memory-allocators
2630 * (most normal use), this basically shouldn't matter.
2631 */
2632static int kswapd(void *p)
2633{
2634        unsigned long order;
2635        int classzone_idx;
2636        pg_data_t *pgdat = (pg_data_t*)p;
2637        struct task_struct *tsk = current;
2638
2639        struct reclaim_state reclaim_state = {
2640                .reclaimed_slab = 0,
2641        };
2642        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2643
2644        lockdep_set_current_reclaim_state(GFP_KERNEL);
2645
2646        if (!cpumask_empty(cpumask))
2647                set_cpus_allowed_ptr(tsk, cpumask);
2648        current->reclaim_state = &reclaim_state;
2649
2650        /*
2651         * Tell the memory management that we're a "memory allocator",
2652         * and that if we need more memory we should get access to it
2653         * regardless (see "__alloc_pages()"). "kswapd" should
2654         * never get caught in the normal page freeing logic.
2655         *
2656         * (Kswapd normally doesn't need memory anyway, but sometimes
2657         * you need a small amount of memory in order to be able to
2658         * page out something else, and this flag essentially protects
2659         * us from recursively trying to free more memory as we're
2660         * trying to free the first piece of memory in the first place).
2661         */
2662        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2663        set_freezable();
2664
2665        order = 0;
2666        classzone_idx = MAX_NR_ZONES - 1;
2667        for ( ; ; ) {
2668                unsigned long new_order;
2669                int new_classzone_idx;
2670                int ret;
2671
2672                new_order = pgdat->kswapd_max_order;
2673                new_classzone_idx = pgdat->classzone_idx;
2674                pgdat->kswapd_max_order = 0;
2675                pgdat->classzone_idx = MAX_NR_ZONES - 1;
2676                if (order < new_order || classzone_idx > new_classzone_idx) {
2677                        /*
2678                         * Don't sleep if someone wants a larger 'order'
2679                         * allocation or has tigher zone constraints
2680                         */
2681                        order = new_order;
2682                        classzone_idx = new_classzone_idx;
2683                } else {
2684                        kswapd_try_to_sleep(pgdat, order, classzone_idx);
2685                        order = pgdat->kswapd_max_order;
2686                        classzone_idx = pgdat->classzone_idx;
2687                        pgdat->kswapd_max_order = 0;
2688                        pgdat->classzone_idx = MAX_NR_ZONES - 1;
2689                }
2690
2691                ret = try_to_freeze();
2692                if (kthread_should_stop())
2693                        break;
2694
2695                /*
2696                 * We can speed up thawing tasks if we don't call balance_pgdat
2697                 * after returning from the refrigerator
2698                 */
2699                if (!ret) {
2700                        trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2701                        order = balance_pgdat(pgdat, order, &classzone_idx);
2702                }
2703        }
2704        return 0;
2705}
2706
2707/*
2708 * A zone is low on free memory, so wake its kswapd task to service it.
2709 */
2710void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2711{
2712        pg_data_t *pgdat;
2713
2714        if (!populated_zone(zone))
2715                return;
2716
2717        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2718                return;
2719        pgdat = zone->zone_pgdat;
2720        if (pgdat->kswapd_max_order < order) {
2721                pgdat->kswapd_max_order = order;
2722                pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2723        }
2724        if (!waitqueue_active(&pgdat->kswapd_wait))
2725                return;
2726        if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2727                return;
2728
2729        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2730        wake_up_interruptible(&pgdat->kswapd_wait);
2731}
2732
2733/*
2734 * The reclaimable count would be mostly accurate.
2735 * The less reclaimable pages may be
2736 * - mlocked pages, which will be moved to unevictable list when encountered
2737 * - mapped pages, which may require several travels to be reclaimed
2738 * - dirty pages, which is not "instantly" reclaimable
2739 */
2740unsigned long global_reclaimable_pages(void)
2741{
2742        int nr;
2743
2744        nr = global_page_state(NR_ACTIVE_FILE) +
2745             global_page_state(NR_INACTIVE_FILE);
2746
2747        if (nr_swap_pages > 0)
2748                nr += global_page_state(NR_ACTIVE_ANON) +
2749                      global_page_state(NR_INACTIVE_ANON);
2750
2751        return nr;
2752}
2753
2754unsigned long zone_reclaimable_pages(struct zone *zone)
2755{
2756        int nr;
2757
2758        nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2759             zone_page_state(zone, NR_INACTIVE_FILE);
2760
2761        if (nr_swap_pages > 0)
2762                nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2763                      zone_page_state(zone, NR_INACTIVE_ANON);
2764
2765        return nr;
2766}
2767
2768#ifdef CONFIG_HIBERNATION
2769/*
2770 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2771 * freed pages.
2772 *
2773 * Rather than trying to age LRUs the aim is to preserve the overall
2774 * LRU order by reclaiming preferentially
2775 * inactive > active > active referenced > active mapped
2776 */
2777unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2778{
2779        struct reclaim_state reclaim_state;
2780        struct scan_control sc = {
2781                .gfp_mask = GFP_HIGHUSER_MOVABLE,
2782                .may_swap = 1,
2783                .may_unmap = 1,
2784                .may_writepage = 1,
2785                .nr_to_reclaim = nr_to_reclaim,
2786                .hibernation_mode = 1,
2787                .swappiness = vm_swappiness,
2788                .order = 0,
2789        };
2790        struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2791        struct task_struct *p = current;
2792        unsigned long nr_reclaimed;
2793
2794        p->flags |= PF_MEMALLOC;
2795        lockdep_set_current_reclaim_state(sc.gfp_mask);
2796        reclaim_state.reclaimed_slab = 0;
2797        p->reclaim_state = &reclaim_state;
2798
2799        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2800
2801        p->reclaim_state = NULL;
2802        lockdep_clear_current_reclaim_state();
2803        p->flags &= ~PF_MEMALLOC;
2804
2805        return nr_reclaimed;
2806}
2807#endif /* CONFIG_HIBERNATION */
2808
2809/* It's optimal to keep kswapds on the same CPUs as their memory, but
2810   not required for correctness.  So if the last cpu in a node goes
2811   away, we get changed to run anywhere: as the first one comes back,
2812   restore their cpu bindings. */
2813static int __devinit cpu_callback(struct notifier_block *nfb,
2814                                  unsigned long action, void *hcpu)
2815{
2816        int nid;
2817
2818        if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2819                for_each_node_state(nid, N_HIGH_MEMORY) {
2820                        pg_data_t *pgdat = NODE_DATA(nid);
2821                        const struct cpumask *mask;
2822
2823                        mask = cpumask_of_node(pgdat->node_id);
2824
2825                        if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2826                                /* One of our CPUs online: restore mask */
2827                                set_cpus_allowed_ptr(pgdat->kswapd, mask);
2828                }
2829        }
2830        return NOTIFY_OK;
2831}
2832
2833/*
2834 * This kswapd start function will be called by init and node-hot-add.
2835 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2836 */
2837int kswapd_run(int nid)
2838{
2839        pg_data_t *pgdat = NODE_DATA(nid);
2840        int ret = 0;
2841
2842        if (pgdat->kswapd)
2843                return 0;
2844
2845        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2846        if (IS_ERR(pgdat->kswapd)) {
2847                /* failure at boot is fatal */
2848                BUG_ON(system_state == SYSTEM_BOOTING);
2849                printk("Failed to start kswapd on node %d\n",nid);
2850                ret = -1;
2851        }
2852        return ret;
2853}
2854
2855/*
2856 * Called by memory hotplug when all memory in a node is offlined.
2857 */
2858void kswapd_stop(int nid)
2859{
2860        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2861
2862        if (kswapd)
2863                kthread_stop(kswapd);
2864}
2865
2866static int __init kswapd_init(void)
2867{
2868        int nid;
2869
2870        swap_setup();
2871        for_each_node_state(nid, N_HIGH_MEMORY)
2872                kswapd_run(nid);
2873        hotcpu_notifier(cpu_callback, 0);
2874        return 0;
2875}
2876
2877module_init(kswapd_init)
2878
2879#ifdef CONFIG_NUMA
2880/*
2881 * Zone reclaim mode
2882 *
2883 * If non-zero call zone_reclaim when the number of free pages falls below
2884 * the watermarks.
2885 */
2886int zone_reclaim_mode __read_mostly;
2887
2888#define RECLAIM_OFF 0
2889#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2890#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2891#define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2892
2893/*
2894 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2895 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2896 * a zone.
2897 */
2898#define ZONE_RECLAIM_PRIORITY 4
2899
2900/*
2901 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2902 * occur.
2903 */
2904int sysctl_min_unmapped_ratio = 1;
2905
2906/*
2907 * If the number of slab pages in a zone grows beyond this percentage then
2908 * slab reclaim needs to occur.
2909 */
2910int sysctl_min_slab_ratio = 5;
2911
2912static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2913{
2914        unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2915        unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2916                zone_page_state(zone, NR_ACTIVE_FILE);
2917
2918        /*
2919         * It's possible for there to be more file mapped pages than
2920         * accounted for by the pages on the file LRU lists because
2921         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2922         */
2923        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2924}
2925
2926/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2927static long zone_pagecache_reclaimable(struct zone *zone)
2928{
2929        long nr_pagecache_reclaimable;
2930        long delta = 0;
2931
2932        /*
2933         * If RECLAIM_SWAP is set, then all file pages are considered
2934         * potentially reclaimable. Otherwise, we have to worry about
2935         * pages like swapcache and zone_unmapped_file_pages() provides
2936         * a better estimate
2937         */
2938        if (zone_reclaim_mode & RECLAIM_SWAP)
2939                nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2940        else
2941                nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2942
2943        /* If we can't clean pages, remove dirty pages from consideration */
2944        if (!(zone_reclaim_mode & RECLAIM_WRITE))
2945                delta += zone_page_state(zone, NR_FILE_DIRTY);
2946
2947        /* Watch for any possible underflows due to delta */
2948        if (unlikely(delta > nr_pagecache_reclaimable))
2949                delta = nr_pagecache_reclaimable;
2950
2951        return nr_pagecache_reclaimable - delta;
2952}
2953
2954/*
2955 * Try to free up some pages from this zone through reclaim.
2956 */
2957static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2958{
2959        /* Minimum pages needed in order to stay on node */
2960        const unsigned long nr_pages = 1 << order;
2961        struct task_struct *p = current;
2962        struct reclaim_state reclaim_state;
2963        int priority;
2964        struct scan_control sc = {
2965                .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2966                .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2967                .may_swap = 1,
2968                .nr_to_reclaim = max_t(unsigned long, nr_pages,
2969                                       SWAP_CLUSTER_MAX),
2970                .gfp_mask = gfp_mask,
2971                .swappiness = vm_swappiness,
2972                .order = order,
2973        };
2974        unsigned long nr_slab_pages0, nr_slab_pages1;
2975
2976        cond_resched();
2977        /*
2978         * We need to be able to allocate from the reserves for RECLAIM_SWAP
2979         * and we also need to be able to write out pages for RECLAIM_WRITE
2980         * and RECLAIM_SWAP.
2981         */
2982        p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2983        lockdep_set_current_reclaim_state(gfp_mask);
2984        reclaim_state.reclaimed_slab = 0;
2985        p->reclaim_state = &reclaim_state;
2986
2987        if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2988                /*
2989                 * Free memory by calling shrink zone with increasing
2990                 * priorities until we have enough memory freed.
2991                 */
2992                priority = ZONE_RECLAIM_PRIORITY;
2993                do {
2994                        shrink_zone(priority, zone, &sc);
2995                        priority--;
2996                } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2997        }
2998
2999        nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3000        if (nr_slab_pages0 > zone->min_slab_pages) {
3001                /*
3002                 * shrink_slab() does not currently allow us to determine how
3003                 * many pages were freed in this zone. So we take the current
3004                 * number of slab pages and shake the slab until it is reduced
3005                 * by the same nr_pages that we used for reclaiming unmapped
3006                 * pages.
3007                 *
3008                 * Note that shrink_slab will free memory on all zones and may
3009                 * take a long time.
3010                 */
3011                for (;;) {
3012                        unsigned long lru_pages = zone_reclaimable_pages(zone);
3013
3014                        /* No reclaimable slab or very low memory pressure */
3015                        if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3016                                break;
3017
3018                        /* Freed enough memory */
3019                        nr_slab_pages1 = zone_page_state(zone,
3020                                                        NR_SLAB_RECLAIMABLE);
3021                        if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3022                                break;
3023                }
3024
3025                /*
3026                 * Update nr_reclaimed by the number of slab pages we
3027                 * reclaimed from this zone.
3028                 */
3029                nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3030                if (nr_slab_pages1 < nr_slab_pages0)
3031                        sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3032        }
3033
3034        p->reclaim_state = NULL;
3035        current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3036        lockdep_clear_current_reclaim_state();
3037        return sc.nr_reclaimed >= nr_pages;
3038}
3039
3040int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3041{
3042        int node_id;
3043        int ret;
3044
3045        /*
3046         * Zone reclaim reclaims unmapped file backed pages and
3047         * slab pages if we are over the defined limits.
3048         *
3049         * A small portion of unmapped file backed pages is needed for
3050         * file I/O otherwise pages read by file I/O will be immediately
3051         * thrown out if the zone is overallocated. So we do not reclaim
3052         * if less than a specified percentage of the zone is used by
3053         * unmapped file backed pages.
3054         */
3055        if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3056            zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3057                return ZONE_RECLAIM_FULL;
3058
3059        if (zone->all_unreclaimable)
3060                return ZONE_RECLAIM_FULL;
3061
3062        /*
3063         * Do not scan if the allocation should not be delayed.
3064         */
3065        if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3066                return ZONE_RECLAIM_NOSCAN;
3067
3068        /*
3069         * Only run zone reclaim on the local zone or on zones that do not
3070         * have associated processors. This will favor the local processor
3071         * over remote processors and spread off node memory allocations
3072         * as wide as possible.
3073         */
3074        node_id = zone_to_nid(zone);
3075        if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3076                return ZONE_RECLAIM_NOSCAN;
3077
3078        if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3079                return ZONE_RECLAIM_NOSCAN;
3080
3081        ret = __zone_reclaim(zone, gfp_mask, order);
3082        zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3083
3084        if (!ret)
3085                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3086
3087        return ret;
3088}
3089#endif
3090
3091/*
3092 * page_evictable - test whether a page is evictable
3093 * @page: the page to test
3094 * @vma: the VMA in which the page is or will be mapped, may be NULL
3095 *
3096 * Test whether page is evictable--i.e., should be placed on active/inactive
3097 * lists vs unevictable list.  The vma argument is !NULL when called from the
3098 * fault path to determine how to instantate a new page.
3099 *
3100 * Reasons page might not be evictable:
3101 * (1) page's mapping marked unevictable
3102 * (2) page is part of an mlocked VMA
3103 *
3104 */
3105int page_evictable(struct page *page, struct vm_area_struct *vma)
3106{
3107
3108        if (mapping_unevictable(page_mapping(page)))
3109                return 0;
3110
3111        if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3112                return 0;
3113
3114        return 1;
3115}
3116
3117/**
3118 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3119 * @page: page to check evictability and move to appropriate lru list
3120 * @zone: zone page is in
3121 *
3122 * Checks a page for evictability and moves the page to the appropriate
3123 * zone lru list.
3124 *
3125 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3126 * have PageUnevictable set.
3127 */
3128static void check_move_unevictable_page(struct page *page, struct zone *zone)
3129{
3130        VM_BUG_ON(PageActive(page));
3131
3132retry:
3133        ClearPageUnevictable(page);
3134        if (page_evictable(page, NULL)) {
3135                enum lru_list l = page_lru_base_type(page);
3136
3137                __dec_zone_state(zone, NR_UNEVICTABLE);
3138                list_move(&page->lru, &zone->lru[l].list);
3139                mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3140                __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3141                __count_vm_event(UNEVICTABLE_PGRESCUED);
3142        } else {
3143                /*
3144                 * rotate unevictable list
3145                 */
3146                SetPageUnevictable(page);
3147                list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3148                mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3149                if (page_evictable(page, NULL))
3150                        goto retry;
3151        }
3152}
3153
3154/**
3155 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3156 * @mapping: struct address_space to scan for evictable pages
3157 *
3158 * Scan all pages in mapping.  Check unevictable pages for
3159 * evictability and move them to the appropriate zone lru list.
3160 */
3161void scan_mapping_unevictable_pages(struct address_space *mapping)
3162{
3163        pgoff_t next = 0;
3164        pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3165                         PAGE_CACHE_SHIFT;
3166        struct zone *zone;
3167        struct pagevec pvec;
3168
3169        if (mapping->nrpages == 0)
3170                return;
3171
3172        pagevec_init(&pvec, 0);
3173        while (next < end &&
3174                pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3175                int i;
3176                int pg_scanned = 0;
3177
3178                zone = NULL;
3179
3180                for (i = 0; i < pagevec_count(&pvec); i++) {
3181                        struct page *page = pvec.pages[i];
3182                        pgoff_t page_index = page->index;
3183                        struct zone *pagezone = page_zone(page);
3184
3185                        pg_scanned++;
3186                        if (page_index > next)
3187                                next = page_index;
3188                        next++;
3189
3190                        if (pagezone != zone) {
3191                                if (zone)
3192                                        spin_unlock_irq(&zone->lru_lock);
3193                                zone = pagezone;
3194                                spin_lock_irq(&zone->lru_lock);
3195                        }
3196
3197                        if (PageLRU(page) && PageUnevictable(page))
3198                                check_move_unevictable_page(page, zone);
3199                }
3200                if (zone)
3201                        spin_unlock_irq(&zone->lru_lock);
3202                pagevec_release(&pvec);
3203
3204                count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3205        }
3206
3207}
3208
3209/**
3210 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3211 * @zone - zone of which to scan the unevictable list
3212 *
3213 * Scan @zone's unevictable LRU lists to check for pages that have become
3214 * evictable.  Move those that have to @zone's inactive list where they
3215 * become candidates for reclaim, unless shrink_inactive_zone() decides
3216 * to reactivate them.  Pages that are still unevictable are rotated
3217 * back onto @zone's unevictable list.
3218 */
3219#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3220static void scan_zone_unevictable_pages(struct zone *zone)
3221{
3222        struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3223        unsigned long scan;
3224        unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3225
3226        while (nr_to_scan > 0) {
3227                unsigned long batch_size = min(nr_to_scan,
3228                                                SCAN_UNEVICTABLE_BATCH_SIZE);
3229
3230                spin_lock_irq(&zone->lru_lock);
3231                for (scan = 0;  scan < batch_size; scan++) {
3232                        struct page *page = lru_to_page(l_unevictable);
3233
3234                        if (!trylock_page(page))
3235                                continue;
3236
3237                        prefetchw_prev_lru_page(page, l_unevictable, flags);
3238
3239                        if (likely(PageLRU(page) && PageUnevictable(page)))
3240                                check_move_unevictable_page(page, zone);
3241
3242                        unlock_page(page);
3243                }
3244                spin_unlock_irq(&zone->lru_lock);
3245
3246                nr_to_scan -= batch_size;
3247        }
3248}
3249
3250
3251/**
3252 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3253 *
3254 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3255 * pages that have become evictable.  Move those back to the zones'
3256 * inactive list where they become candidates for reclaim.
3257 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3258 * and we add swap to the system.  As such, it runs in the context of a task
3259 * that has possibly/probably made some previously unevictable pages
3260 * evictable.
3261 */
3262static void scan_all_zones_unevictable_pages(void)
3263{
3264        struct zone *zone;
3265
3266        for_each_zone(zone) {
3267                scan_zone_unevictable_pages(zone);
3268        }
3269}
3270
3271/*
3272 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3273 * all nodes' unevictable lists for evictable pages
3274 */
3275unsigned long scan_unevictable_pages;
3276
3277int scan_unevictable_handler(struct ctl_table *table, int write,
3278                           void __user *buffer,
3279                           size_t *length, loff_t *ppos)
3280{
3281        proc_doulongvec_minmax(table, write, buffer, length, ppos);
3282
3283        if (write && *(unsigned long *)table->data)
3284                scan_all_zones_unevictable_pages();
3285
3286        scan_unevictable_pages = 0;
3287        return 0;
3288}
3289
3290#ifdef CONFIG_NUMA
3291/*
3292 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3293 * a specified node's per zone unevictable lists for evictable pages.
3294 */
3295
3296static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3297                                          struct sysdev_attribute *attr,
3298                                          char *buf)
3299{
3300        return sprintf(buf, "0\n");     /* always zero; should fit... */
3301}
3302
3303static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3304                                           struct sysdev_attribute *attr,
3305                                        const char *buf, size_t count)
3306{
3307        struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3308        struct zone *zone;
3309        unsigned long res;
3310        unsigned long req = strict_strtoul(buf, 10, &res);
3311
3312        if (!req)
3313                return 1;       /* zero is no-op */
3314
3315        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3316                if (!populated_zone(zone))
3317                        continue;
3318                scan_zone_unevictable_pages(zone);
3319        }
3320        return 1;
3321}
3322
3323
3324static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3325                        read_scan_unevictable_node,
3326                        write_scan_unevictable_node);
3327
3328int scan_unevictable_register_node(struct node *node)
3329{
3330        return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3331}
3332
3333void scan_unevictable_unregister_node(struct node *node)
3334{
3335        sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3336}
3337#endif
3338