linux/net/rds/iw_rdma.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35
  36#include "rds.h"
  37#include "iw.h"
  38
  39
  40/*
  41 * This is stored as mr->r_trans_private.
  42 */
  43struct rds_iw_mr {
  44        struct rds_iw_device    *device;
  45        struct rds_iw_mr_pool   *pool;
  46        struct rdma_cm_id       *cm_id;
  47
  48        struct ib_mr    *mr;
  49        struct ib_fast_reg_page_list *page_list;
  50
  51        struct rds_iw_mapping   mapping;
  52        unsigned char           remap_count;
  53};
  54
  55/*
  56 * Our own little MR pool
  57 */
  58struct rds_iw_mr_pool {
  59        struct rds_iw_device    *device;                /* back ptr to the device that owns us */
  60
  61        struct mutex            flush_lock;             /* serialize fmr invalidate */
  62        struct work_struct      flush_worker;           /* flush worker */
  63
  64        spinlock_t              list_lock;              /* protect variables below */
  65        atomic_t                item_count;             /* total # of MRs */
  66        atomic_t                dirty_count;            /* # dirty of MRs */
  67        struct list_head        dirty_list;             /* dirty mappings */
  68        struct list_head        clean_list;             /* unused & unamapped MRs */
  69        atomic_t                free_pinned;            /* memory pinned by free MRs */
  70        unsigned long           max_message_size;       /* in pages */
  71        unsigned long           max_items;
  72        unsigned long           max_items_soft;
  73        unsigned long           max_free_pinned;
  74        int                     max_pages;
  75};
  76
  77static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
  78static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
  79static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  80static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
  81                          struct rds_iw_mr *ibmr,
  82                          struct scatterlist *sg, unsigned int nents);
  83static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  84static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
  85                        struct list_head *unmap_list,
  86                        struct list_head *kill_list);
  87static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  88
  89static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
  90{
  91        struct rds_iw_device *iwdev;
  92        struct rds_iw_cm_id *i_cm_id;
  93
  94        *rds_iwdev = NULL;
  95        *cm_id = NULL;
  96
  97        list_for_each_entry(iwdev, &rds_iw_devices, list) {
  98                spin_lock_irq(&iwdev->spinlock);
  99                list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
 100                        struct sockaddr_in *src_addr, *dst_addr;
 101
 102                        src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
 103                        dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
 104
 105                        rdsdebug("local ipaddr = %x port %d, "
 106                                 "remote ipaddr = %x port %d"
 107                                 "..looking for %x port %d, "
 108                                 "remote ipaddr = %x port %d\n",
 109                                src_addr->sin_addr.s_addr,
 110                                src_addr->sin_port,
 111                                dst_addr->sin_addr.s_addr,
 112                                dst_addr->sin_port,
 113                                rs->rs_bound_addr,
 114                                rs->rs_bound_port,
 115                                rs->rs_conn_addr,
 116                                rs->rs_conn_port);
 117#ifdef WORKING_TUPLE_DETECTION
 118                        if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
 119                            src_addr->sin_port == rs->rs_bound_port &&
 120                            dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
 121                            dst_addr->sin_port == rs->rs_conn_port) {
 122#else
 123                        /* FIXME - needs to compare the local and remote
 124                         * ipaddr/port tuple, but the ipaddr is the only
 125                         * available information in the rds_sock (as the rest are
 126                         * zero'ed.  It doesn't appear to be properly populated
 127                         * during connection setup...
 128                         */
 129                        if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
 130#endif
 131                                spin_unlock_irq(&iwdev->spinlock);
 132                                *rds_iwdev = iwdev;
 133                                *cm_id = i_cm_id->cm_id;
 134                                return 0;
 135                        }
 136                }
 137                spin_unlock_irq(&iwdev->spinlock);
 138        }
 139
 140        return 1;
 141}
 142
 143static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
 144{
 145        struct rds_iw_cm_id *i_cm_id;
 146
 147        i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
 148        if (!i_cm_id)
 149                return -ENOMEM;
 150
 151        i_cm_id->cm_id = cm_id;
 152
 153        spin_lock_irq(&rds_iwdev->spinlock);
 154        list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
 155        spin_unlock_irq(&rds_iwdev->spinlock);
 156
 157        return 0;
 158}
 159
 160static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
 161                                struct rdma_cm_id *cm_id)
 162{
 163        struct rds_iw_cm_id *i_cm_id;
 164
 165        spin_lock_irq(&rds_iwdev->spinlock);
 166        list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
 167                if (i_cm_id->cm_id == cm_id) {
 168                        list_del(&i_cm_id->list);
 169                        kfree(i_cm_id);
 170                        break;
 171                }
 172        }
 173        spin_unlock_irq(&rds_iwdev->spinlock);
 174}
 175
 176
 177int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
 178{
 179        struct sockaddr_in *src_addr, *dst_addr;
 180        struct rds_iw_device *rds_iwdev_old;
 181        struct rds_sock rs;
 182        struct rdma_cm_id *pcm_id;
 183        int rc;
 184
 185        src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
 186        dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
 187
 188        rs.rs_bound_addr = src_addr->sin_addr.s_addr;
 189        rs.rs_bound_port = src_addr->sin_port;
 190        rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
 191        rs.rs_conn_port = dst_addr->sin_port;
 192
 193        rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
 194        if (rc)
 195                rds_iw_remove_cm_id(rds_iwdev, cm_id);
 196
 197        return rds_iw_add_cm_id(rds_iwdev, cm_id);
 198}
 199
 200void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
 201{
 202        struct rds_iw_connection *ic = conn->c_transport_data;
 203
 204        /* conn was previously on the nodev_conns_list */
 205        spin_lock_irq(&iw_nodev_conns_lock);
 206        BUG_ON(list_empty(&iw_nodev_conns));
 207        BUG_ON(list_empty(&ic->iw_node));
 208        list_del(&ic->iw_node);
 209
 210        spin_lock(&rds_iwdev->spinlock);
 211        list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
 212        spin_unlock(&rds_iwdev->spinlock);
 213        spin_unlock_irq(&iw_nodev_conns_lock);
 214
 215        ic->rds_iwdev = rds_iwdev;
 216}
 217
 218void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
 219{
 220        struct rds_iw_connection *ic = conn->c_transport_data;
 221
 222        /* place conn on nodev_conns_list */
 223        spin_lock(&iw_nodev_conns_lock);
 224
 225        spin_lock_irq(&rds_iwdev->spinlock);
 226        BUG_ON(list_empty(&ic->iw_node));
 227        list_del(&ic->iw_node);
 228        spin_unlock_irq(&rds_iwdev->spinlock);
 229
 230        list_add_tail(&ic->iw_node, &iw_nodev_conns);
 231
 232        spin_unlock(&iw_nodev_conns_lock);
 233
 234        rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
 235        ic->rds_iwdev = NULL;
 236}
 237
 238void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
 239{
 240        struct rds_iw_connection *ic, *_ic;
 241        LIST_HEAD(tmp_list);
 242
 243        /* avoid calling conn_destroy with irqs off */
 244        spin_lock_irq(list_lock);
 245        list_splice(list, &tmp_list);
 246        INIT_LIST_HEAD(list);
 247        spin_unlock_irq(list_lock);
 248
 249        list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
 250                rds_conn_destroy(ic->conn);
 251}
 252
 253static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
 254                struct scatterlist *list, unsigned int sg_len)
 255{
 256        sg->list = list;
 257        sg->len = sg_len;
 258        sg->dma_len = 0;
 259        sg->dma_npages = 0;
 260        sg->bytes = 0;
 261}
 262
 263static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
 264                        struct rds_iw_scatterlist *sg)
 265{
 266        struct ib_device *dev = rds_iwdev->dev;
 267        u64 *dma_pages = NULL;
 268        int i, j, ret;
 269
 270        WARN_ON(sg->dma_len);
 271
 272        sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
 273        if (unlikely(!sg->dma_len)) {
 274                printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
 275                return ERR_PTR(-EBUSY);
 276        }
 277
 278        sg->bytes = 0;
 279        sg->dma_npages = 0;
 280
 281        ret = -EINVAL;
 282        for (i = 0; i < sg->dma_len; ++i) {
 283                unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
 284                u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
 285                u64 end_addr;
 286
 287                sg->bytes += dma_len;
 288
 289                end_addr = dma_addr + dma_len;
 290                if (dma_addr & PAGE_MASK) {
 291                        if (i > 0)
 292                                goto out_unmap;
 293                        dma_addr &= ~PAGE_MASK;
 294                }
 295                if (end_addr & PAGE_MASK) {
 296                        if (i < sg->dma_len - 1)
 297                                goto out_unmap;
 298                        end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
 299                }
 300
 301                sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
 302        }
 303
 304        /* Now gather the dma addrs into one list */
 305        if (sg->dma_npages > fastreg_message_size)
 306                goto out_unmap;
 307
 308        dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
 309        if (!dma_pages) {
 310                ret = -ENOMEM;
 311                goto out_unmap;
 312        }
 313
 314        for (i = j = 0; i < sg->dma_len; ++i) {
 315                unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
 316                u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
 317                u64 end_addr;
 318
 319                end_addr = dma_addr + dma_len;
 320                dma_addr &= ~PAGE_MASK;
 321                for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
 322                        dma_pages[j++] = dma_addr;
 323                BUG_ON(j > sg->dma_npages);
 324        }
 325
 326        return dma_pages;
 327
 328out_unmap:
 329        ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
 330        sg->dma_len = 0;
 331        kfree(dma_pages);
 332        return ERR_PTR(ret);
 333}
 334
 335
 336struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
 337{
 338        struct rds_iw_mr_pool *pool;
 339
 340        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 341        if (!pool) {
 342                printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
 343                return ERR_PTR(-ENOMEM);
 344        }
 345
 346        pool->device = rds_iwdev;
 347        INIT_LIST_HEAD(&pool->dirty_list);
 348        INIT_LIST_HEAD(&pool->clean_list);
 349        mutex_init(&pool->flush_lock);
 350        spin_lock_init(&pool->list_lock);
 351        INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
 352
 353        pool->max_message_size = fastreg_message_size;
 354        pool->max_items = fastreg_pool_size;
 355        pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
 356        pool->max_pages = fastreg_message_size;
 357
 358        /* We never allow more than max_items MRs to be allocated.
 359         * When we exceed more than max_items_soft, we start freeing
 360         * items more aggressively.
 361         * Make sure that max_items > max_items_soft > max_items / 2
 362         */
 363        pool->max_items_soft = pool->max_items * 3 / 4;
 364
 365        return pool;
 366}
 367
 368void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
 369{
 370        struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 371
 372        iinfo->rdma_mr_max = pool->max_items;
 373        iinfo->rdma_mr_size = pool->max_pages;
 374}
 375
 376void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
 377{
 378        flush_workqueue(rds_wq);
 379        rds_iw_flush_mr_pool(pool, 1);
 380        BUG_ON(atomic_read(&pool->item_count));
 381        BUG_ON(atomic_read(&pool->free_pinned));
 382        kfree(pool);
 383}
 384
 385static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
 386{
 387        struct rds_iw_mr *ibmr = NULL;
 388        unsigned long flags;
 389
 390        spin_lock_irqsave(&pool->list_lock, flags);
 391        if (!list_empty(&pool->clean_list)) {
 392                ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
 393                list_del_init(&ibmr->mapping.m_list);
 394        }
 395        spin_unlock_irqrestore(&pool->list_lock, flags);
 396
 397        return ibmr;
 398}
 399
 400static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
 401{
 402        struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 403        struct rds_iw_mr *ibmr = NULL;
 404        int err = 0, iter = 0;
 405
 406        while (1) {
 407                ibmr = rds_iw_reuse_fmr(pool);
 408                if (ibmr)
 409                        return ibmr;
 410
 411                /* No clean MRs - now we have the choice of either
 412                 * allocating a fresh MR up to the limit imposed by the
 413                 * driver, or flush any dirty unused MRs.
 414                 * We try to avoid stalling in the send path if possible,
 415                 * so we allocate as long as we're allowed to.
 416                 *
 417                 * We're fussy with enforcing the FMR limit, though. If the driver
 418                 * tells us we can't use more than N fmrs, we shouldn't start
 419                 * arguing with it */
 420                if (atomic_inc_return(&pool->item_count) <= pool->max_items)
 421                        break;
 422
 423                atomic_dec(&pool->item_count);
 424
 425                if (++iter > 2) {
 426                        rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
 427                        return ERR_PTR(-EAGAIN);
 428                }
 429
 430                /* We do have some empty MRs. Flush them out. */
 431                rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
 432                rds_iw_flush_mr_pool(pool, 0);
 433        }
 434
 435        ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
 436        if (!ibmr) {
 437                err = -ENOMEM;
 438                goto out_no_cigar;
 439        }
 440
 441        spin_lock_init(&ibmr->mapping.m_lock);
 442        INIT_LIST_HEAD(&ibmr->mapping.m_list);
 443        ibmr->mapping.m_mr = ibmr;
 444
 445        err = rds_iw_init_fastreg(pool, ibmr);
 446        if (err)
 447                goto out_no_cigar;
 448
 449        rds_iw_stats_inc(s_iw_rdma_mr_alloc);
 450        return ibmr;
 451
 452out_no_cigar:
 453        if (ibmr) {
 454                rds_iw_destroy_fastreg(pool, ibmr);
 455                kfree(ibmr);
 456        }
 457        atomic_dec(&pool->item_count);
 458        return ERR_PTR(err);
 459}
 460
 461void rds_iw_sync_mr(void *trans_private, int direction)
 462{
 463        struct rds_iw_mr *ibmr = trans_private;
 464        struct rds_iw_device *rds_iwdev = ibmr->device;
 465
 466        switch (direction) {
 467        case DMA_FROM_DEVICE:
 468                ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
 469                        ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
 470                break;
 471        case DMA_TO_DEVICE:
 472                ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
 473                        ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
 474                break;
 475        }
 476}
 477
 478static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
 479{
 480        unsigned int item_count;
 481
 482        item_count = atomic_read(&pool->item_count);
 483        if (free_all)
 484                return item_count;
 485
 486        return 0;
 487}
 488
 489/*
 490 * Flush our pool of MRs.
 491 * At a minimum, all currently unused MRs are unmapped.
 492 * If the number of MRs allocated exceeds the limit, we also try
 493 * to free as many MRs as needed to get back to this limit.
 494 */
 495static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
 496{
 497        struct rds_iw_mr *ibmr, *next;
 498        LIST_HEAD(unmap_list);
 499        LIST_HEAD(kill_list);
 500        unsigned long flags;
 501        unsigned int nfreed = 0, ncleaned = 0, free_goal;
 502        int ret = 0;
 503
 504        rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
 505
 506        mutex_lock(&pool->flush_lock);
 507
 508        spin_lock_irqsave(&pool->list_lock, flags);
 509        /* Get the list of all mappings to be destroyed */
 510        list_splice_init(&pool->dirty_list, &unmap_list);
 511        if (free_all)
 512                list_splice_init(&pool->clean_list, &kill_list);
 513        spin_unlock_irqrestore(&pool->list_lock, flags);
 514
 515        free_goal = rds_iw_flush_goal(pool, free_all);
 516
 517        /* Batched invalidate of dirty MRs.
 518         * For FMR based MRs, the mappings on the unmap list are
 519         * actually members of an ibmr (ibmr->mapping). They either
 520         * migrate to the kill_list, or have been cleaned and should be
 521         * moved to the clean_list.
 522         * For fastregs, they will be dynamically allocated, and
 523         * will be destroyed by the unmap function.
 524         */
 525        if (!list_empty(&unmap_list)) {
 526                ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
 527                /* If we've been asked to destroy all MRs, move those
 528                 * that were simply cleaned to the kill list */
 529                if (free_all)
 530                        list_splice_init(&unmap_list, &kill_list);
 531        }
 532
 533        /* Destroy any MRs that are past their best before date */
 534        list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
 535                rds_iw_stats_inc(s_iw_rdma_mr_free);
 536                list_del(&ibmr->mapping.m_list);
 537                rds_iw_destroy_fastreg(pool, ibmr);
 538                kfree(ibmr);
 539                nfreed++;
 540        }
 541
 542        /* Anything that remains are laundered ibmrs, which we can add
 543         * back to the clean list. */
 544        if (!list_empty(&unmap_list)) {
 545                spin_lock_irqsave(&pool->list_lock, flags);
 546                list_splice(&unmap_list, &pool->clean_list);
 547                spin_unlock_irqrestore(&pool->list_lock, flags);
 548        }
 549
 550        atomic_sub(ncleaned, &pool->dirty_count);
 551        atomic_sub(nfreed, &pool->item_count);
 552
 553        mutex_unlock(&pool->flush_lock);
 554        return ret;
 555}
 556
 557static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
 558{
 559        struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
 560
 561        rds_iw_flush_mr_pool(pool, 0);
 562}
 563
 564void rds_iw_free_mr(void *trans_private, int invalidate)
 565{
 566        struct rds_iw_mr *ibmr = trans_private;
 567        struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
 568
 569        rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
 570        if (!pool)
 571                return;
 572
 573        /* Return it to the pool's free list */
 574        rds_iw_free_fastreg(pool, ibmr);
 575
 576        /* If we've pinned too many pages, request a flush */
 577        if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
 578            atomic_read(&pool->dirty_count) >= pool->max_items / 10)
 579                queue_work(rds_wq, &pool->flush_worker);
 580
 581        if (invalidate) {
 582                if (likely(!in_interrupt())) {
 583                        rds_iw_flush_mr_pool(pool, 0);
 584                } else {
 585                        /* We get here if the user created a MR marked
 586                         * as use_once and invalidate at the same time. */
 587                        queue_work(rds_wq, &pool->flush_worker);
 588                }
 589        }
 590}
 591
 592void rds_iw_flush_mrs(void)
 593{
 594        struct rds_iw_device *rds_iwdev;
 595
 596        list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
 597                struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
 598
 599                if (pool)
 600                        rds_iw_flush_mr_pool(pool, 0);
 601        }
 602}
 603
 604void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
 605                    struct rds_sock *rs, u32 *key_ret)
 606{
 607        struct rds_iw_device *rds_iwdev;
 608        struct rds_iw_mr *ibmr = NULL;
 609        struct rdma_cm_id *cm_id;
 610        int ret;
 611
 612        ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
 613        if (ret || !cm_id) {
 614                ret = -ENODEV;
 615                goto out;
 616        }
 617
 618        if (!rds_iwdev->mr_pool) {
 619                ret = -ENODEV;
 620                goto out;
 621        }
 622
 623        ibmr = rds_iw_alloc_mr(rds_iwdev);
 624        if (IS_ERR(ibmr))
 625                return ibmr;
 626
 627        ibmr->cm_id = cm_id;
 628        ibmr->device = rds_iwdev;
 629
 630        ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
 631        if (ret == 0)
 632                *key_ret = ibmr->mr->rkey;
 633        else
 634                printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
 635
 636out:
 637        if (ret) {
 638                if (ibmr)
 639                        rds_iw_free_mr(ibmr, 0);
 640                ibmr = ERR_PTR(ret);
 641        }
 642        return ibmr;
 643}
 644
 645/*
 646 * iWARP fastreg handling
 647 *
 648 * The life cycle of a fastreg registration is a bit different from
 649 * FMRs.
 650 * The idea behind fastreg is to have one MR, to which we bind different
 651 * mappings over time. To avoid stalling on the expensive map and invalidate
 652 * operations, these operations are pipelined on the same send queue on
 653 * which we want to send the message containing the r_key.
 654 *
 655 * This creates a bit of a problem for us, as we do not have the destination
 656 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
 657 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
 658 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
 659 * before queuing the SEND. When completions for these arrive, they are
 660 * dispatched to the MR has a bit set showing that RDMa can be performed.
 661 *
 662 * There is another interesting aspect that's related to invalidation.
 663 * The application can request that a mapping is invalidated in FREE_MR.
 664 * The expectation there is that this invalidation step includes ALL
 665 * PREVIOUSLY FREED MRs.
 666 */
 667static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
 668                                struct rds_iw_mr *ibmr)
 669{
 670        struct rds_iw_device *rds_iwdev = pool->device;
 671        struct ib_fast_reg_page_list *page_list = NULL;
 672        struct ib_mr *mr;
 673        int err;
 674
 675        mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
 676        if (IS_ERR(mr)) {
 677                err = PTR_ERR(mr);
 678
 679                printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
 680                return err;
 681        }
 682
 683        /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
 684         * is not filled in.
 685         */
 686        page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
 687        if (IS_ERR(page_list)) {
 688                err = PTR_ERR(page_list);
 689
 690                printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
 691                ib_dereg_mr(mr);
 692                return err;
 693        }
 694
 695        ibmr->page_list = page_list;
 696        ibmr->mr = mr;
 697        return 0;
 698}
 699
 700static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
 701{
 702        struct rds_iw_mr *ibmr = mapping->m_mr;
 703        struct ib_send_wr f_wr, *failed_wr;
 704        int ret;
 705
 706        /*
 707         * Perform a WR for the fast_reg_mr. Each individual page
 708         * in the sg list is added to the fast reg page list and placed
 709         * inside the fast_reg_mr WR.  The key used is a rolling 8bit
 710         * counter, which should guarantee uniqueness.
 711         */
 712        ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
 713        mapping->m_rkey = ibmr->mr->rkey;
 714
 715        memset(&f_wr, 0, sizeof(f_wr));
 716        f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
 717        f_wr.opcode = IB_WR_FAST_REG_MR;
 718        f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
 719        f_wr.wr.fast_reg.rkey = mapping->m_rkey;
 720        f_wr.wr.fast_reg.page_list = ibmr->page_list;
 721        f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
 722        f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
 723        f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
 724                                IB_ACCESS_REMOTE_READ |
 725                                IB_ACCESS_REMOTE_WRITE;
 726        f_wr.wr.fast_reg.iova_start = 0;
 727        f_wr.send_flags = IB_SEND_SIGNALED;
 728
 729        failed_wr = &f_wr;
 730        ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
 731        BUG_ON(failed_wr != &f_wr);
 732        if (ret && printk_ratelimit())
 733                printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
 734                        __func__, __LINE__, ret);
 735        return ret;
 736}
 737
 738static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
 739{
 740        struct ib_send_wr s_wr, *failed_wr;
 741        int ret = 0;
 742
 743        if (!ibmr->cm_id->qp || !ibmr->mr)
 744                goto out;
 745
 746        memset(&s_wr, 0, sizeof(s_wr));
 747        s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
 748        s_wr.opcode = IB_WR_LOCAL_INV;
 749        s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
 750        s_wr.send_flags = IB_SEND_SIGNALED;
 751
 752        failed_wr = &s_wr;
 753        ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
 754        if (ret && printk_ratelimit()) {
 755                printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
 756                        __func__, __LINE__, ret);
 757                goto out;
 758        }
 759out:
 760        return ret;
 761}
 762
 763static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
 764                        struct rds_iw_mr *ibmr,
 765                        struct scatterlist *sg,
 766                        unsigned int sg_len)
 767{
 768        struct rds_iw_device *rds_iwdev = pool->device;
 769        struct rds_iw_mapping *mapping = &ibmr->mapping;
 770        u64 *dma_pages;
 771        int i, ret = 0;
 772
 773        rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
 774
 775        dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
 776        if (IS_ERR(dma_pages)) {
 777                ret = PTR_ERR(dma_pages);
 778                dma_pages = NULL;
 779                goto out;
 780        }
 781
 782        if (mapping->m_sg.dma_len > pool->max_message_size) {
 783                ret = -EMSGSIZE;
 784                goto out;
 785        }
 786
 787        for (i = 0; i < mapping->m_sg.dma_npages; ++i)
 788                ibmr->page_list->page_list[i] = dma_pages[i];
 789
 790        ret = rds_iw_rdma_build_fastreg(mapping);
 791        if (ret)
 792                goto out;
 793
 794        rds_iw_stats_inc(s_iw_rdma_mr_used);
 795
 796out:
 797        kfree(dma_pages);
 798
 799        return ret;
 800}
 801
 802/*
 803 * "Free" a fastreg MR.
 804 */
 805static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
 806                struct rds_iw_mr *ibmr)
 807{
 808        unsigned long flags;
 809        int ret;
 810
 811        if (!ibmr->mapping.m_sg.dma_len)
 812                return;
 813
 814        ret = rds_iw_rdma_fastreg_inv(ibmr);
 815        if (ret)
 816                return;
 817
 818        /* Try to post the LOCAL_INV WR to the queue. */
 819        spin_lock_irqsave(&pool->list_lock, flags);
 820
 821        list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
 822        atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
 823        atomic_inc(&pool->dirty_count);
 824
 825        spin_unlock_irqrestore(&pool->list_lock, flags);
 826}
 827
 828static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
 829                                struct list_head *unmap_list,
 830                                struct list_head *kill_list)
 831{
 832        struct rds_iw_mapping *mapping, *next;
 833        unsigned int ncleaned = 0;
 834        LIST_HEAD(laundered);
 835
 836        /* Batched invalidation of fastreg MRs.
 837         * Why do we do it this way, even though we could pipeline unmap
 838         * and remap? The reason is the application semantics - when the
 839         * application requests an invalidation of MRs, it expects all
 840         * previously released R_Keys to become invalid.
 841         *
 842         * If we implement MR reuse naively, we risk memory corruption
 843         * (this has actually been observed). So the default behavior
 844         * requires that a MR goes through an explicit unmap operation before
 845         * we can reuse it again.
 846         *
 847         * We could probably improve on this a little, by allowing immediate
 848         * reuse of a MR on the same socket (eg you could add small
 849         * cache of unused MRs to strct rds_socket - GET_MR could grab one
 850         * of these without requiring an explicit invalidate).
 851         */
 852        while (!list_empty(unmap_list)) {
 853                unsigned long flags;
 854
 855                spin_lock_irqsave(&pool->list_lock, flags);
 856                list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
 857                        list_move(&mapping->m_list, &laundered);
 858                        ncleaned++;
 859                }
 860                spin_unlock_irqrestore(&pool->list_lock, flags);
 861        }
 862
 863        /* Move all laundered mappings back to the unmap list.
 864         * We do not kill any WRs right now - it doesn't seem the
 865         * fastreg API has a max_remap limit. */
 866        list_splice_init(&laundered, unmap_list);
 867
 868        return ncleaned;
 869}
 870
 871static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
 872                struct rds_iw_mr *ibmr)
 873{
 874        if (ibmr->page_list)
 875                ib_free_fast_reg_page_list(ibmr->page_list);
 876        if (ibmr->mr)
 877                ib_dereg_mr(ibmr->mr);
 878}
 879