linux/net/sunrpc/sched.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21
  22#include <linux/sunrpc/clnt.h>
  23
  24#include "sunrpc.h"
  25
  26#ifdef RPC_DEBUG
  27#define RPCDBG_FACILITY         RPCDBG_SCHED
  28#endif
  29
  30/*
  31 * RPC slabs and memory pools
  32 */
  33#define RPC_BUFFER_MAXSIZE      (2048)
  34#define RPC_BUFFER_POOLSIZE     (8)
  35#define RPC_TASK_POOLSIZE       (8)
  36static struct kmem_cache        *rpc_task_slabp __read_mostly;
  37static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  38static mempool_t        *rpc_task_mempool __read_mostly;
  39static mempool_t        *rpc_buffer_mempool __read_mostly;
  40
  41static void                     rpc_async_schedule(struct work_struct *);
  42static void                      rpc_release_task(struct rpc_task *task);
  43static void __rpc_queue_timer_fn(unsigned long ptr);
  44
  45/*
  46 * RPC tasks sit here while waiting for conditions to improve.
  47 */
  48static struct rpc_wait_queue delay_queue;
  49
  50/*
  51 * rpciod-related stuff
  52 */
  53struct workqueue_struct *rpciod_workqueue;
  54
  55/*
  56 * Disable the timer for a given RPC task. Should be called with
  57 * queue->lock and bh_disabled in order to avoid races within
  58 * rpc_run_timer().
  59 */
  60static void
  61__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  62{
  63        if (task->tk_timeout == 0)
  64                return;
  65        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  66        task->tk_timeout = 0;
  67        list_del(&task->u.tk_wait.timer_list);
  68        if (list_empty(&queue->timer_list.list))
  69                del_timer(&queue->timer_list.timer);
  70}
  71
  72static void
  73rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  74{
  75        queue->timer_list.expires = expires;
  76        mod_timer(&queue->timer_list.timer, expires);
  77}
  78
  79/*
  80 * Set up a timer for the current task.
  81 */
  82static void
  83__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  84{
  85        if (!task->tk_timeout)
  86                return;
  87
  88        dprintk("RPC: %5u setting alarm for %lu ms\n",
  89                        task->tk_pid, task->tk_timeout * 1000 / HZ);
  90
  91        task->u.tk_wait.expires = jiffies + task->tk_timeout;
  92        if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  93                rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  94        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  95}
  96
  97/*
  98 * Add new request to a priority queue.
  99 */
 100static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
 101{
 102        struct list_head *q;
 103        struct rpc_task *t;
 104
 105        INIT_LIST_HEAD(&task->u.tk_wait.links);
 106        q = &queue->tasks[task->tk_priority];
 107        if (unlikely(task->tk_priority > queue->maxpriority))
 108                q = &queue->tasks[queue->maxpriority];
 109        list_for_each_entry(t, q, u.tk_wait.list) {
 110                if (t->tk_owner == task->tk_owner) {
 111                        list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 112                        return;
 113                }
 114        }
 115        list_add_tail(&task->u.tk_wait.list, q);
 116}
 117
 118/*
 119 * Add new request to wait queue.
 120 *
 121 * Swapper tasks always get inserted at the head of the queue.
 122 * This should avoid many nasty memory deadlocks and hopefully
 123 * improve overall performance.
 124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 125 */
 126static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 127{
 128        BUG_ON (RPC_IS_QUEUED(task));
 129
 130        if (RPC_IS_PRIORITY(queue))
 131                __rpc_add_wait_queue_priority(queue, task);
 132        else if (RPC_IS_SWAPPER(task))
 133                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 134        else
 135                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 136        task->tk_waitqueue = queue;
 137        queue->qlen++;
 138        rpc_set_queued(task);
 139
 140        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 141                        task->tk_pid, queue, rpc_qname(queue));
 142}
 143
 144/*
 145 * Remove request from a priority queue.
 146 */
 147static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 148{
 149        struct rpc_task *t;
 150
 151        if (!list_empty(&task->u.tk_wait.links)) {
 152                t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 153                list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 154                list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 155        }
 156}
 157
 158/*
 159 * Remove request from queue.
 160 * Note: must be called with spin lock held.
 161 */
 162static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 163{
 164        __rpc_disable_timer(queue, task);
 165        if (RPC_IS_PRIORITY(queue))
 166                __rpc_remove_wait_queue_priority(task);
 167        list_del(&task->u.tk_wait.list);
 168        queue->qlen--;
 169        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 170                        task->tk_pid, queue, rpc_qname(queue));
 171}
 172
 173static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 174{
 175        queue->priority = priority;
 176        queue->count = 1 << (priority * 2);
 177}
 178
 179static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 180{
 181        queue->owner = pid;
 182        queue->nr = RPC_BATCH_COUNT;
 183}
 184
 185static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 186{
 187        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 188        rpc_set_waitqueue_owner(queue, 0);
 189}
 190
 191static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 192{
 193        int i;
 194
 195        spin_lock_init(&queue->lock);
 196        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 197                INIT_LIST_HEAD(&queue->tasks[i]);
 198        queue->maxpriority = nr_queues - 1;
 199        rpc_reset_waitqueue_priority(queue);
 200        queue->qlen = 0;
 201        setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 202        INIT_LIST_HEAD(&queue->timer_list.list);
 203#ifdef RPC_DEBUG
 204        queue->name = qname;
 205#endif
 206}
 207
 208void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 209{
 210        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 211}
 212EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 213
 214void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 215{
 216        __rpc_init_priority_wait_queue(queue, qname, 1);
 217}
 218EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 219
 220void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 221{
 222        del_timer_sync(&queue->timer_list.timer);
 223}
 224EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 225
 226static int rpc_wait_bit_killable(void *word)
 227{
 228        if (fatal_signal_pending(current))
 229                return -ERESTARTSYS;
 230        schedule();
 231        return 0;
 232}
 233
 234#ifdef RPC_DEBUG
 235static void rpc_task_set_debuginfo(struct rpc_task *task)
 236{
 237        static atomic_t rpc_pid;
 238
 239        task->tk_pid = atomic_inc_return(&rpc_pid);
 240}
 241#else
 242static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 243{
 244}
 245#endif
 246
 247static void rpc_set_active(struct rpc_task *task)
 248{
 249        rpc_task_set_debuginfo(task);
 250        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 251}
 252
 253/*
 254 * Mark an RPC call as having completed by clearing the 'active' bit
 255 * and then waking up all tasks that were sleeping.
 256 */
 257static int rpc_complete_task(struct rpc_task *task)
 258{
 259        void *m = &task->tk_runstate;
 260        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 261        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 262        unsigned long flags;
 263        int ret;
 264
 265        spin_lock_irqsave(&wq->lock, flags);
 266        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 267        ret = atomic_dec_and_test(&task->tk_count);
 268        if (waitqueue_active(wq))
 269                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 270        spin_unlock_irqrestore(&wq->lock, flags);
 271        return ret;
 272}
 273
 274/*
 275 * Allow callers to wait for completion of an RPC call
 276 *
 277 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 278 * to enforce taking of the wq->lock and hence avoid races with
 279 * rpc_complete_task().
 280 */
 281int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
 282{
 283        if (action == NULL)
 284                action = rpc_wait_bit_killable;
 285        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 286                        action, TASK_KILLABLE);
 287}
 288EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 289
 290/*
 291 * Make an RPC task runnable.
 292 *
 293 * Note: If the task is ASYNC, this must be called with
 294 * the spinlock held to protect the wait queue operation.
 295 */
 296static void rpc_make_runnable(struct rpc_task *task)
 297{
 298        rpc_clear_queued(task);
 299        if (rpc_test_and_set_running(task))
 300                return;
 301        if (RPC_IS_ASYNC(task)) {
 302                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 303                queue_work(rpciod_workqueue, &task->u.tk_work);
 304        } else
 305                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 306}
 307
 308/*
 309 * Prepare for sleeping on a wait queue.
 310 * By always appending tasks to the list we ensure FIFO behavior.
 311 * NB: An RPC task will only receive interrupt-driven events as long
 312 * as it's on a wait queue.
 313 */
 314static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 315                        rpc_action action)
 316{
 317        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 318                        task->tk_pid, rpc_qname(q), jiffies);
 319
 320        __rpc_add_wait_queue(q, task);
 321
 322        BUG_ON(task->tk_callback != NULL);
 323        task->tk_callback = action;
 324        __rpc_add_timer(q, task);
 325}
 326
 327void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 328                                rpc_action action)
 329{
 330        /* We shouldn't ever put an inactive task to sleep */
 331        BUG_ON(!RPC_IS_ACTIVATED(task));
 332
 333        /*
 334         * Protect the queue operations.
 335         */
 336        spin_lock_bh(&q->lock);
 337        __rpc_sleep_on(q, task, action);
 338        spin_unlock_bh(&q->lock);
 339}
 340EXPORT_SYMBOL_GPL(rpc_sleep_on);
 341
 342/**
 343 * __rpc_do_wake_up_task - wake up a single rpc_task
 344 * @queue: wait queue
 345 * @task: task to be woken up
 346 *
 347 * Caller must hold queue->lock, and have cleared the task queued flag.
 348 */
 349static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 350{
 351        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 352                        task->tk_pid, jiffies);
 353
 354        /* Has the task been executed yet? If not, we cannot wake it up! */
 355        if (!RPC_IS_ACTIVATED(task)) {
 356                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 357                return;
 358        }
 359
 360        __rpc_remove_wait_queue(queue, task);
 361
 362        rpc_make_runnable(task);
 363
 364        dprintk("RPC:       __rpc_wake_up_task done\n");
 365}
 366
 367/*
 368 * Wake up a queued task while the queue lock is being held
 369 */
 370static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 371{
 372        if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
 373                __rpc_do_wake_up_task(queue, task);
 374}
 375
 376/*
 377 * Tests whether rpc queue is empty
 378 */
 379int rpc_queue_empty(struct rpc_wait_queue *queue)
 380{
 381        int res;
 382
 383        spin_lock_bh(&queue->lock);
 384        res = queue->qlen;
 385        spin_unlock_bh(&queue->lock);
 386        return res == 0;
 387}
 388EXPORT_SYMBOL_GPL(rpc_queue_empty);
 389
 390/*
 391 * Wake up a task on a specific queue
 392 */
 393void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 394{
 395        spin_lock_bh(&queue->lock);
 396        rpc_wake_up_task_queue_locked(queue, task);
 397        spin_unlock_bh(&queue->lock);
 398}
 399EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 400
 401/*
 402 * Wake up the next task on a priority queue.
 403 */
 404static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
 405{
 406        struct list_head *q;
 407        struct rpc_task *task;
 408
 409        /*
 410         * Service a batch of tasks from a single owner.
 411         */
 412        q = &queue->tasks[queue->priority];
 413        if (!list_empty(q)) {
 414                task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 415                if (queue->owner == task->tk_owner) {
 416                        if (--queue->nr)
 417                                goto out;
 418                        list_move_tail(&task->u.tk_wait.list, q);
 419                }
 420                /*
 421                 * Check if we need to switch queues.
 422                 */
 423                if (--queue->count)
 424                        goto new_owner;
 425        }
 426
 427        /*
 428         * Service the next queue.
 429         */
 430        do {
 431                if (q == &queue->tasks[0])
 432                        q = &queue->tasks[queue->maxpriority];
 433                else
 434                        q = q - 1;
 435                if (!list_empty(q)) {
 436                        task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 437                        goto new_queue;
 438                }
 439        } while (q != &queue->tasks[queue->priority]);
 440
 441        rpc_reset_waitqueue_priority(queue);
 442        return NULL;
 443
 444new_queue:
 445        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 446new_owner:
 447        rpc_set_waitqueue_owner(queue, task->tk_owner);
 448out:
 449        rpc_wake_up_task_queue_locked(queue, task);
 450        return task;
 451}
 452
 453/*
 454 * Wake up the next task on the wait queue.
 455 */
 456struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
 457{
 458        struct rpc_task *task = NULL;
 459
 460        dprintk("RPC:       wake_up_next(%p \"%s\")\n",
 461                        queue, rpc_qname(queue));
 462        spin_lock_bh(&queue->lock);
 463        if (RPC_IS_PRIORITY(queue))
 464                task = __rpc_wake_up_next_priority(queue);
 465        else {
 466                task_for_first(task, &queue->tasks[0])
 467                        rpc_wake_up_task_queue_locked(queue, task);
 468        }
 469        spin_unlock_bh(&queue->lock);
 470
 471        return task;
 472}
 473EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 474
 475/**
 476 * rpc_wake_up - wake up all rpc_tasks
 477 * @queue: rpc_wait_queue on which the tasks are sleeping
 478 *
 479 * Grabs queue->lock
 480 */
 481void rpc_wake_up(struct rpc_wait_queue *queue)
 482{
 483        struct rpc_task *task, *next;
 484        struct list_head *head;
 485
 486        spin_lock_bh(&queue->lock);
 487        head = &queue->tasks[queue->maxpriority];
 488        for (;;) {
 489                list_for_each_entry_safe(task, next, head, u.tk_wait.list)
 490                        rpc_wake_up_task_queue_locked(queue, task);
 491                if (head == &queue->tasks[0])
 492                        break;
 493                head--;
 494        }
 495        spin_unlock_bh(&queue->lock);
 496}
 497EXPORT_SYMBOL_GPL(rpc_wake_up);
 498
 499/**
 500 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 501 * @queue: rpc_wait_queue on which the tasks are sleeping
 502 * @status: status value to set
 503 *
 504 * Grabs queue->lock
 505 */
 506void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 507{
 508        struct rpc_task *task, *next;
 509        struct list_head *head;
 510
 511        spin_lock_bh(&queue->lock);
 512        head = &queue->tasks[queue->maxpriority];
 513        for (;;) {
 514                list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
 515                        task->tk_status = status;
 516                        rpc_wake_up_task_queue_locked(queue, task);
 517                }
 518                if (head == &queue->tasks[0])
 519                        break;
 520                head--;
 521        }
 522        spin_unlock_bh(&queue->lock);
 523}
 524EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 525
 526static void __rpc_queue_timer_fn(unsigned long ptr)
 527{
 528        struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 529        struct rpc_task *task, *n;
 530        unsigned long expires, now, timeo;
 531
 532        spin_lock(&queue->lock);
 533        expires = now = jiffies;
 534        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 535                timeo = task->u.tk_wait.expires;
 536                if (time_after_eq(now, timeo)) {
 537                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 538                        task->tk_status = -ETIMEDOUT;
 539                        rpc_wake_up_task_queue_locked(queue, task);
 540                        continue;
 541                }
 542                if (expires == now || time_after(expires, timeo))
 543                        expires = timeo;
 544        }
 545        if (!list_empty(&queue->timer_list.list))
 546                rpc_set_queue_timer(queue, expires);
 547        spin_unlock(&queue->lock);
 548}
 549
 550static void __rpc_atrun(struct rpc_task *task)
 551{
 552        task->tk_status = 0;
 553}
 554
 555/*
 556 * Run a task at a later time
 557 */
 558void rpc_delay(struct rpc_task *task, unsigned long delay)
 559{
 560        task->tk_timeout = delay;
 561        rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 562}
 563EXPORT_SYMBOL_GPL(rpc_delay);
 564
 565/*
 566 * Helper to call task->tk_ops->rpc_call_prepare
 567 */
 568void rpc_prepare_task(struct rpc_task *task)
 569{
 570        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 571}
 572
 573/*
 574 * Helper that calls task->tk_ops->rpc_call_done if it exists
 575 */
 576void rpc_exit_task(struct rpc_task *task)
 577{
 578        task->tk_action = NULL;
 579        if (task->tk_ops->rpc_call_done != NULL) {
 580                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 581                if (task->tk_action != NULL) {
 582                        WARN_ON(RPC_ASSASSINATED(task));
 583                        /* Always release the RPC slot and buffer memory */
 584                        xprt_release(task);
 585                }
 586        }
 587}
 588
 589void rpc_exit(struct rpc_task *task, int status)
 590{
 591        task->tk_status = status;
 592        task->tk_action = rpc_exit_task;
 593        if (RPC_IS_QUEUED(task))
 594                rpc_wake_up_queued_task(task->tk_waitqueue, task);
 595}
 596EXPORT_SYMBOL_GPL(rpc_exit);
 597
 598void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 599{
 600        if (ops->rpc_release != NULL)
 601                ops->rpc_release(calldata);
 602}
 603
 604/*
 605 * This is the RPC `scheduler' (or rather, the finite state machine).
 606 */
 607static void __rpc_execute(struct rpc_task *task)
 608{
 609        struct rpc_wait_queue *queue;
 610        int task_is_async = RPC_IS_ASYNC(task);
 611        int status = 0;
 612
 613        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 614                        task->tk_pid, task->tk_flags);
 615
 616        BUG_ON(RPC_IS_QUEUED(task));
 617
 618        for (;;) {
 619
 620                /*
 621                 * Execute any pending callback.
 622                 */
 623                if (task->tk_callback) {
 624                        void (*save_callback)(struct rpc_task *);
 625
 626                        /*
 627                         * We set tk_callback to NULL before calling it,
 628                         * in case it sets the tk_callback field itself:
 629                         */
 630                        save_callback = task->tk_callback;
 631                        task->tk_callback = NULL;
 632                        save_callback(task);
 633                } else {
 634                        /*
 635                         * Perform the next FSM step.
 636                         * tk_action may be NULL when the task has been killed
 637                         * by someone else.
 638                         */
 639                        if (task->tk_action == NULL)
 640                                break;
 641                        task->tk_action(task);
 642                }
 643
 644                /*
 645                 * Lockless check for whether task is sleeping or not.
 646                 */
 647                if (!RPC_IS_QUEUED(task))
 648                        continue;
 649                /*
 650                 * The queue->lock protects against races with
 651                 * rpc_make_runnable().
 652                 *
 653                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 654                 * rpc_task, rpc_make_runnable() can assign it to a
 655                 * different workqueue. We therefore cannot assume that the
 656                 * rpc_task pointer may still be dereferenced.
 657                 */
 658                queue = task->tk_waitqueue;
 659                spin_lock_bh(&queue->lock);
 660                if (!RPC_IS_QUEUED(task)) {
 661                        spin_unlock_bh(&queue->lock);
 662                        continue;
 663                }
 664                rpc_clear_running(task);
 665                spin_unlock_bh(&queue->lock);
 666                if (task_is_async)
 667                        return;
 668
 669                /* sync task: sleep here */
 670                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 671                status = out_of_line_wait_on_bit(&task->tk_runstate,
 672                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 673                                TASK_KILLABLE);
 674                if (status == -ERESTARTSYS) {
 675                        /*
 676                         * When a sync task receives a signal, it exits with
 677                         * -ERESTARTSYS. In order to catch any callbacks that
 678                         * clean up after sleeping on some queue, we don't
 679                         * break the loop here, but go around once more.
 680                         */
 681                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 682                        task->tk_flags |= RPC_TASK_KILLED;
 683                        rpc_exit(task, -ERESTARTSYS);
 684                }
 685                rpc_set_running(task);
 686                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 687        }
 688
 689        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 690                        task->tk_status);
 691        /* Release all resources associated with the task */
 692        rpc_release_task(task);
 693}
 694
 695/*
 696 * User-visible entry point to the scheduler.
 697 *
 698 * This may be called recursively if e.g. an async NFS task updates
 699 * the attributes and finds that dirty pages must be flushed.
 700 * NOTE: Upon exit of this function the task is guaranteed to be
 701 *       released. In particular note that tk_release() will have
 702 *       been called, so your task memory may have been freed.
 703 */
 704void rpc_execute(struct rpc_task *task)
 705{
 706        rpc_set_active(task);
 707        rpc_make_runnable(task);
 708        if (!RPC_IS_ASYNC(task))
 709                __rpc_execute(task);
 710}
 711
 712static void rpc_async_schedule(struct work_struct *work)
 713{
 714        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 715}
 716
 717/**
 718 * rpc_malloc - allocate an RPC buffer
 719 * @task: RPC task that will use this buffer
 720 * @size: requested byte size
 721 *
 722 * To prevent rpciod from hanging, this allocator never sleeps,
 723 * returning NULL if the request cannot be serviced immediately.
 724 * The caller can arrange to sleep in a way that is safe for rpciod.
 725 *
 726 * Most requests are 'small' (under 2KiB) and can be serviced from a
 727 * mempool, ensuring that NFS reads and writes can always proceed,
 728 * and that there is good locality of reference for these buffers.
 729 *
 730 * In order to avoid memory starvation triggering more writebacks of
 731 * NFS requests, we avoid using GFP_KERNEL.
 732 */
 733void *rpc_malloc(struct rpc_task *task, size_t size)
 734{
 735        struct rpc_buffer *buf;
 736        gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
 737
 738        size += sizeof(struct rpc_buffer);
 739        if (size <= RPC_BUFFER_MAXSIZE)
 740                buf = mempool_alloc(rpc_buffer_mempool, gfp);
 741        else
 742                buf = kmalloc(size, gfp);
 743
 744        if (!buf)
 745                return NULL;
 746
 747        buf->len = size;
 748        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 749                        task->tk_pid, size, buf);
 750        return &buf->data;
 751}
 752EXPORT_SYMBOL_GPL(rpc_malloc);
 753
 754/**
 755 * rpc_free - free buffer allocated via rpc_malloc
 756 * @buffer: buffer to free
 757 *
 758 */
 759void rpc_free(void *buffer)
 760{
 761        size_t size;
 762        struct rpc_buffer *buf;
 763
 764        if (!buffer)
 765                return;
 766
 767        buf = container_of(buffer, struct rpc_buffer, data);
 768        size = buf->len;
 769
 770        dprintk("RPC:       freeing buffer of size %zu at %p\n",
 771                        size, buf);
 772
 773        if (size <= RPC_BUFFER_MAXSIZE)
 774                mempool_free(buf, rpc_buffer_mempool);
 775        else
 776                kfree(buf);
 777}
 778EXPORT_SYMBOL_GPL(rpc_free);
 779
 780/*
 781 * Creation and deletion of RPC task structures
 782 */
 783static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 784{
 785        memset(task, 0, sizeof(*task));
 786        atomic_set(&task->tk_count, 1);
 787        task->tk_flags  = task_setup_data->flags;
 788        task->tk_ops = task_setup_data->callback_ops;
 789        task->tk_calldata = task_setup_data->callback_data;
 790        INIT_LIST_HEAD(&task->tk_task);
 791
 792        /* Initialize retry counters */
 793        task->tk_garb_retry = 2;
 794        task->tk_cred_retry = 2;
 795
 796        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 797        task->tk_owner = current->tgid;
 798
 799        /* Initialize workqueue for async tasks */
 800        task->tk_workqueue = task_setup_data->workqueue;
 801
 802        if (task->tk_ops->rpc_call_prepare != NULL)
 803                task->tk_action = rpc_prepare_task;
 804
 805        /* starting timestamp */
 806        task->tk_start = ktime_get();
 807
 808        dprintk("RPC:       new task initialized, procpid %u\n",
 809                                task_pid_nr(current));
 810}
 811
 812static struct rpc_task *
 813rpc_alloc_task(void)
 814{
 815        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
 816}
 817
 818/*
 819 * Create a new task for the specified client.
 820 */
 821struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 822{
 823        struct rpc_task *task = setup_data->task;
 824        unsigned short flags = 0;
 825
 826        if (task == NULL) {
 827                task = rpc_alloc_task();
 828                if (task == NULL) {
 829                        rpc_release_calldata(setup_data->callback_ops,
 830                                        setup_data->callback_data);
 831                        return ERR_PTR(-ENOMEM);
 832                }
 833                flags = RPC_TASK_DYNAMIC;
 834        }
 835
 836        rpc_init_task(task, setup_data);
 837        task->tk_flags |= flags;
 838        dprintk("RPC:       allocated task %p\n", task);
 839        return task;
 840}
 841
 842static void rpc_free_task(struct rpc_task *task)
 843{
 844        const struct rpc_call_ops *tk_ops = task->tk_ops;
 845        void *calldata = task->tk_calldata;
 846
 847        if (task->tk_flags & RPC_TASK_DYNAMIC) {
 848                dprintk("RPC: %5u freeing task\n", task->tk_pid);
 849                mempool_free(task, rpc_task_mempool);
 850        }
 851        rpc_release_calldata(tk_ops, calldata);
 852}
 853
 854static void rpc_async_release(struct work_struct *work)
 855{
 856        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 857}
 858
 859static void rpc_release_resources_task(struct rpc_task *task)
 860{
 861        if (task->tk_rqstp)
 862                xprt_release(task);
 863        if (task->tk_msg.rpc_cred) {
 864                put_rpccred(task->tk_msg.rpc_cred);
 865                task->tk_msg.rpc_cred = NULL;
 866        }
 867        rpc_task_release_client(task);
 868}
 869
 870static void rpc_final_put_task(struct rpc_task *task,
 871                struct workqueue_struct *q)
 872{
 873        if (q != NULL) {
 874                INIT_WORK(&task->u.tk_work, rpc_async_release);
 875                queue_work(q, &task->u.tk_work);
 876        } else
 877                rpc_free_task(task);
 878}
 879
 880static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
 881{
 882        if (atomic_dec_and_test(&task->tk_count)) {
 883                rpc_release_resources_task(task);
 884                rpc_final_put_task(task, q);
 885        }
 886}
 887
 888void rpc_put_task(struct rpc_task *task)
 889{
 890        rpc_do_put_task(task, NULL);
 891}
 892EXPORT_SYMBOL_GPL(rpc_put_task);
 893
 894void rpc_put_task_async(struct rpc_task *task)
 895{
 896        rpc_do_put_task(task, task->tk_workqueue);
 897}
 898EXPORT_SYMBOL_GPL(rpc_put_task_async);
 899
 900static void rpc_release_task(struct rpc_task *task)
 901{
 902        dprintk("RPC: %5u release task\n", task->tk_pid);
 903
 904        BUG_ON (RPC_IS_QUEUED(task));
 905
 906        rpc_release_resources_task(task);
 907
 908        /*
 909         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
 910         * so it should be safe to use task->tk_count as a test for whether
 911         * or not any other processes still hold references to our rpc_task.
 912         */
 913        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
 914                /* Wake up anyone who may be waiting for task completion */
 915                if (!rpc_complete_task(task))
 916                        return;
 917        } else {
 918                if (!atomic_dec_and_test(&task->tk_count))
 919                        return;
 920        }
 921        rpc_final_put_task(task, task->tk_workqueue);
 922}
 923
 924int rpciod_up(void)
 925{
 926        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
 927}
 928
 929void rpciod_down(void)
 930{
 931        module_put(THIS_MODULE);
 932}
 933
 934/*
 935 * Start up the rpciod workqueue.
 936 */
 937static int rpciod_start(void)
 938{
 939        struct workqueue_struct *wq;
 940
 941        /*
 942         * Create the rpciod thread and wait for it to start.
 943         */
 944        dprintk("RPC:       creating workqueue rpciod\n");
 945        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
 946        rpciod_workqueue = wq;
 947        return rpciod_workqueue != NULL;
 948}
 949
 950static void rpciod_stop(void)
 951{
 952        struct workqueue_struct *wq = NULL;
 953
 954        if (rpciod_workqueue == NULL)
 955                return;
 956        dprintk("RPC:       destroying workqueue rpciod\n");
 957
 958        wq = rpciod_workqueue;
 959        rpciod_workqueue = NULL;
 960        destroy_workqueue(wq);
 961}
 962
 963void
 964rpc_destroy_mempool(void)
 965{
 966        rpciod_stop();
 967        if (rpc_buffer_mempool)
 968                mempool_destroy(rpc_buffer_mempool);
 969        if (rpc_task_mempool)
 970                mempool_destroy(rpc_task_mempool);
 971        if (rpc_task_slabp)
 972                kmem_cache_destroy(rpc_task_slabp);
 973        if (rpc_buffer_slabp)
 974                kmem_cache_destroy(rpc_buffer_slabp);
 975        rpc_destroy_wait_queue(&delay_queue);
 976}
 977
 978int
 979rpc_init_mempool(void)
 980{
 981        /*
 982         * The following is not strictly a mempool initialisation,
 983         * but there is no harm in doing it here
 984         */
 985        rpc_init_wait_queue(&delay_queue, "delayq");
 986        if (!rpciod_start())
 987                goto err_nomem;
 988
 989        rpc_task_slabp = kmem_cache_create("rpc_tasks",
 990                                             sizeof(struct rpc_task),
 991                                             0, SLAB_HWCACHE_ALIGN,
 992                                             NULL);
 993        if (!rpc_task_slabp)
 994                goto err_nomem;
 995        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
 996                                             RPC_BUFFER_MAXSIZE,
 997                                             0, SLAB_HWCACHE_ALIGN,
 998                                             NULL);
 999        if (!rpc_buffer_slabp)
1000                goto err_nomem;
1001        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1002                                                    rpc_task_slabp);
1003        if (!rpc_task_mempool)
1004                goto err_nomem;
1005        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1006                                                      rpc_buffer_slabp);
1007        if (!rpc_buffer_mempool)
1008                goto err_nomem;
1009        return 0;
1010err_nomem:
1011        rpc_destroy_mempool();
1012        return -ENOMEM;
1013}
1014