linux/security/keys/key.c
<<
>>
Prefs
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24static struct kmem_cache        *key_jar;
  25struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;      /* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;   /* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39static void key_cleanup(struct work_struct *work);
  40static DECLARE_WORK(key_cleanup_task, key_cleanup);
  41
  42/* We serialise key instantiation and link */
  43DEFINE_MUTEX(key_construction_mutex);
  44
  45/* Any key who's type gets unegistered will be re-typed to this */
  46static struct key_type key_type_dead = {
  47        .name           = "dead",
  48};
  49
  50#ifdef KEY_DEBUGGING
  51void __key_check(const struct key *key)
  52{
  53        printk("__key_check: key %p {%08x} should be {%08x}\n",
  54               key, key->magic, KEY_DEBUG_MAGIC);
  55        BUG();
  56}
  57#endif
  58
  59/*
  60 * Get the key quota record for a user, allocating a new record if one doesn't
  61 * already exist.
  62 */
  63struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  64{
  65        struct key_user *candidate = NULL, *user;
  66        struct rb_node *parent = NULL;
  67        struct rb_node **p;
  68
  69try_again:
  70        p = &key_user_tree.rb_node;
  71        spin_lock(&key_user_lock);
  72
  73        /* search the tree for a user record with a matching UID */
  74        while (*p) {
  75                parent = *p;
  76                user = rb_entry(parent, struct key_user, node);
  77
  78                if (uid < user->uid)
  79                        p = &(*p)->rb_left;
  80                else if (uid > user->uid)
  81                        p = &(*p)->rb_right;
  82                else if (user_ns < user->user_ns)
  83                        p = &(*p)->rb_left;
  84                else if (user_ns > user->user_ns)
  85                        p = &(*p)->rb_right;
  86                else
  87                        goto found;
  88        }
  89
  90        /* if we get here, we failed to find a match in the tree */
  91        if (!candidate) {
  92                /* allocate a candidate user record if we don't already have
  93                 * one */
  94                spin_unlock(&key_user_lock);
  95
  96                user = NULL;
  97                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  98                if (unlikely(!candidate))
  99                        goto out;
 100
 101                /* the allocation may have scheduled, so we need to repeat the
 102                 * search lest someone else added the record whilst we were
 103                 * asleep */
 104                goto try_again;
 105        }
 106
 107        /* if we get here, then the user record still hadn't appeared on the
 108         * second pass - so we use the candidate record */
 109        atomic_set(&candidate->usage, 1);
 110        atomic_set(&candidate->nkeys, 0);
 111        atomic_set(&candidate->nikeys, 0);
 112        candidate->uid = uid;
 113        candidate->user_ns = get_user_ns(user_ns);
 114        candidate->qnkeys = 0;
 115        candidate->qnbytes = 0;
 116        spin_lock_init(&candidate->lock);
 117        mutex_init(&candidate->cons_lock);
 118
 119        rb_link_node(&candidate->node, parent, p);
 120        rb_insert_color(&candidate->node, &key_user_tree);
 121        spin_unlock(&key_user_lock);
 122        user = candidate;
 123        goto out;
 124
 125        /* okay - we found a user record for this UID */
 126found:
 127        atomic_inc(&user->usage);
 128        spin_unlock(&key_user_lock);
 129        kfree(candidate);
 130out:
 131        return user;
 132}
 133
 134/*
 135 * Dispose of a user structure
 136 */
 137void key_user_put(struct key_user *user)
 138{
 139        if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 140                rb_erase(&user->node, &key_user_tree);
 141                spin_unlock(&key_user_lock);
 142                put_user_ns(user->user_ns);
 143
 144                kfree(user);
 145        }
 146}
 147
 148/*
 149 * Allocate a serial number for a key.  These are assigned randomly to avoid
 150 * security issues through covert channel problems.
 151 */
 152static inline void key_alloc_serial(struct key *key)
 153{
 154        struct rb_node *parent, **p;
 155        struct key *xkey;
 156
 157        /* propose a random serial number and look for a hole for it in the
 158         * serial number tree */
 159        do {
 160                get_random_bytes(&key->serial, sizeof(key->serial));
 161
 162                key->serial >>= 1; /* negative numbers are not permitted */
 163        } while (key->serial < 3);
 164
 165        spin_lock(&key_serial_lock);
 166
 167attempt_insertion:
 168        parent = NULL;
 169        p = &key_serial_tree.rb_node;
 170
 171        while (*p) {
 172                parent = *p;
 173                xkey = rb_entry(parent, struct key, serial_node);
 174
 175                if (key->serial < xkey->serial)
 176                        p = &(*p)->rb_left;
 177                else if (key->serial > xkey->serial)
 178                        p = &(*p)->rb_right;
 179                else
 180                        goto serial_exists;
 181        }
 182
 183        /* we've found a suitable hole - arrange for this key to occupy it */
 184        rb_link_node(&key->serial_node, parent, p);
 185        rb_insert_color(&key->serial_node, &key_serial_tree);
 186
 187        spin_unlock(&key_serial_lock);
 188        return;
 189
 190        /* we found a key with the proposed serial number - walk the tree from
 191         * that point looking for the next unused serial number */
 192serial_exists:
 193        for (;;) {
 194                key->serial++;
 195                if (key->serial < 3) {
 196                        key->serial = 3;
 197                        goto attempt_insertion;
 198                }
 199
 200                parent = rb_next(parent);
 201                if (!parent)
 202                        goto attempt_insertion;
 203
 204                xkey = rb_entry(parent, struct key, serial_node);
 205                if (key->serial < xkey->serial)
 206                        goto attempt_insertion;
 207        }
 208}
 209
 210/**
 211 * key_alloc - Allocate a key of the specified type.
 212 * @type: The type of key to allocate.
 213 * @desc: The key description to allow the key to be searched out.
 214 * @uid: The owner of the new key.
 215 * @gid: The group ID for the new key's group permissions.
 216 * @cred: The credentials specifying UID namespace.
 217 * @perm: The permissions mask of the new key.
 218 * @flags: Flags specifying quota properties.
 219 *
 220 * Allocate a key of the specified type with the attributes given.  The key is
 221 * returned in an uninstantiated state and the caller needs to instantiate the
 222 * key before returning.
 223 *
 224 * The user's key count quota is updated to reflect the creation of the key and
 225 * the user's key data quota has the default for the key type reserved.  The
 226 * instantiation function should amend this as necessary.  If insufficient
 227 * quota is available, -EDQUOT will be returned.
 228 *
 229 * The LSM security modules can prevent a key being created, in which case
 230 * -EACCES will be returned.
 231 *
 232 * Returns a pointer to the new key if successful and an error code otherwise.
 233 *
 234 * Note that the caller needs to ensure the key type isn't uninstantiated.
 235 * Internally this can be done by locking key_types_sem.  Externally, this can
 236 * be done by either never unregistering the key type, or making sure
 237 * key_alloc() calls don't race with module unloading.
 238 */
 239struct key *key_alloc(struct key_type *type, const char *desc,
 240                      uid_t uid, gid_t gid, const struct cred *cred,
 241                      key_perm_t perm, unsigned long flags)
 242{
 243        struct key_user *user = NULL;
 244        struct key *key;
 245        size_t desclen, quotalen;
 246        int ret;
 247
 248        key = ERR_PTR(-EINVAL);
 249        if (!desc || !*desc)
 250                goto error;
 251
 252        if (type->vet_description) {
 253                ret = type->vet_description(desc);
 254                if (ret < 0) {
 255                        key = ERR_PTR(ret);
 256                        goto error;
 257                }
 258        }
 259
 260        desclen = strlen(desc) + 1;
 261        quotalen = desclen + type->def_datalen;
 262
 263        /* get hold of the key tracking for this user */
 264        user = key_user_lookup(uid, cred->user->user_ns);
 265        if (!user)
 266                goto no_memory_1;
 267
 268        /* check that the user's quota permits allocation of another key and
 269         * its description */
 270        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 271                unsigned maxkeys = (uid == 0) ?
 272                        key_quota_root_maxkeys : key_quota_maxkeys;
 273                unsigned maxbytes = (uid == 0) ?
 274                        key_quota_root_maxbytes : key_quota_maxbytes;
 275
 276                spin_lock(&user->lock);
 277                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 278                        if (user->qnkeys + 1 >= maxkeys ||
 279                            user->qnbytes + quotalen >= maxbytes ||
 280                            user->qnbytes + quotalen < user->qnbytes)
 281                                goto no_quota;
 282                }
 283
 284                user->qnkeys++;
 285                user->qnbytes += quotalen;
 286                spin_unlock(&user->lock);
 287        }
 288
 289        /* allocate and initialise the key and its description */
 290        key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 291        if (!key)
 292                goto no_memory_2;
 293
 294        if (desc) {
 295                key->description = kmemdup(desc, desclen, GFP_KERNEL);
 296                if (!key->description)
 297                        goto no_memory_3;
 298        }
 299
 300        atomic_set(&key->usage, 1);
 301        init_rwsem(&key->sem);
 302        key->type = type;
 303        key->user = user;
 304        key->quotalen = quotalen;
 305        key->datalen = type->def_datalen;
 306        key->uid = uid;
 307        key->gid = gid;
 308        key->perm = perm;
 309        key->flags = 0;
 310        key->expiry = 0;
 311        key->payload.data = NULL;
 312        key->security = NULL;
 313
 314        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 315                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 316
 317        memset(&key->type_data, 0, sizeof(key->type_data));
 318
 319#ifdef KEY_DEBUGGING
 320        key->magic = KEY_DEBUG_MAGIC;
 321#endif
 322
 323        /* let the security module know about the key */
 324        ret = security_key_alloc(key, cred, flags);
 325        if (ret < 0)
 326                goto security_error;
 327
 328        /* publish the key by giving it a serial number */
 329        atomic_inc(&user->nkeys);
 330        key_alloc_serial(key);
 331
 332error:
 333        return key;
 334
 335security_error:
 336        kfree(key->description);
 337        kmem_cache_free(key_jar, key);
 338        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 339                spin_lock(&user->lock);
 340                user->qnkeys--;
 341                user->qnbytes -= quotalen;
 342                spin_unlock(&user->lock);
 343        }
 344        key_user_put(user);
 345        key = ERR_PTR(ret);
 346        goto error;
 347
 348no_memory_3:
 349        kmem_cache_free(key_jar, key);
 350no_memory_2:
 351        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 352                spin_lock(&user->lock);
 353                user->qnkeys--;
 354                user->qnbytes -= quotalen;
 355                spin_unlock(&user->lock);
 356        }
 357        key_user_put(user);
 358no_memory_1:
 359        key = ERR_PTR(-ENOMEM);
 360        goto error;
 361
 362no_quota:
 363        spin_unlock(&user->lock);
 364        key_user_put(user);
 365        key = ERR_PTR(-EDQUOT);
 366        goto error;
 367}
 368EXPORT_SYMBOL(key_alloc);
 369
 370/**
 371 * key_payload_reserve - Adjust data quota reservation for the key's payload
 372 * @key: The key to make the reservation for.
 373 * @datalen: The amount of data payload the caller now wants.
 374 *
 375 * Adjust the amount of the owning user's key data quota that a key reserves.
 376 * If the amount is increased, then -EDQUOT may be returned if there isn't
 377 * enough free quota available.
 378 *
 379 * If successful, 0 is returned.
 380 */
 381int key_payload_reserve(struct key *key, size_t datalen)
 382{
 383        int delta = (int)datalen - key->datalen;
 384        int ret = 0;
 385
 386        key_check(key);
 387
 388        /* contemplate the quota adjustment */
 389        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 390                unsigned maxbytes = (key->user->uid == 0) ?
 391                        key_quota_root_maxbytes : key_quota_maxbytes;
 392
 393                spin_lock(&key->user->lock);
 394
 395                if (delta > 0 &&
 396                    (key->user->qnbytes + delta >= maxbytes ||
 397                     key->user->qnbytes + delta < key->user->qnbytes)) {
 398                        ret = -EDQUOT;
 399                }
 400                else {
 401                        key->user->qnbytes += delta;
 402                        key->quotalen += delta;
 403                }
 404                spin_unlock(&key->user->lock);
 405        }
 406
 407        /* change the recorded data length if that didn't generate an error */
 408        if (ret == 0)
 409                key->datalen = datalen;
 410
 411        return ret;
 412}
 413EXPORT_SYMBOL(key_payload_reserve);
 414
 415/*
 416 * Instantiate a key and link it into the target keyring atomically.  Must be
 417 * called with the target keyring's semaphore writelocked.  The target key's
 418 * semaphore need not be locked as instantiation is serialised by
 419 * key_construction_mutex.
 420 */
 421static int __key_instantiate_and_link(struct key *key,
 422                                      const void *data,
 423                                      size_t datalen,
 424                                      struct key *keyring,
 425                                      struct key *authkey,
 426                                      unsigned long *_prealloc)
 427{
 428        int ret, awaken;
 429
 430        key_check(key);
 431        key_check(keyring);
 432
 433        awaken = 0;
 434        ret = -EBUSY;
 435
 436        mutex_lock(&key_construction_mutex);
 437
 438        /* can't instantiate twice */
 439        if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 440                /* instantiate the key */
 441                ret = key->type->instantiate(key, data, datalen);
 442
 443                if (ret == 0) {
 444                        /* mark the key as being instantiated */
 445                        atomic_inc(&key->user->nikeys);
 446                        set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 447
 448                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449                                awaken = 1;
 450
 451                        /* and link it into the destination keyring */
 452                        if (keyring)
 453                                __key_link(keyring, key, _prealloc);
 454
 455                        /* disable the authorisation key */
 456                        if (authkey)
 457                                key_revoke(authkey);
 458                }
 459        }
 460
 461        mutex_unlock(&key_construction_mutex);
 462
 463        /* wake up anyone waiting for a key to be constructed */
 464        if (awaken)
 465                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 466
 467        return ret;
 468}
 469
 470/**
 471 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 472 * @key: The key to instantiate.
 473 * @data: The data to use to instantiate the keyring.
 474 * @datalen: The length of @data.
 475 * @keyring: Keyring to create a link in on success (or NULL).
 476 * @authkey: The authorisation token permitting instantiation.
 477 *
 478 * Instantiate a key that's in the uninstantiated state using the provided data
 479 * and, if successful, link it in to the destination keyring if one is
 480 * supplied.
 481 *
 482 * If successful, 0 is returned, the authorisation token is revoked and anyone
 483 * waiting for the key is woken up.  If the key was already instantiated,
 484 * -EBUSY will be returned.
 485 */
 486int key_instantiate_and_link(struct key *key,
 487                             const void *data,
 488                             size_t datalen,
 489                             struct key *keyring,
 490                             struct key *authkey)
 491{
 492        unsigned long prealloc;
 493        int ret;
 494
 495        if (keyring) {
 496                ret = __key_link_begin(keyring, key->type, key->description,
 497                                       &prealloc);
 498                if (ret < 0)
 499                        return ret;
 500        }
 501
 502        ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 503                                         &prealloc);
 504
 505        if (keyring)
 506                __key_link_end(keyring, key->type, prealloc);
 507
 508        return ret;
 509}
 510
 511EXPORT_SYMBOL(key_instantiate_and_link);
 512
 513/**
 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 515 * @key: The key to instantiate.
 516 * @timeout: The timeout on the negative key.
 517 * @error: The error to return when the key is hit.
 518 * @keyring: Keyring to create a link in on success (or NULL).
 519 * @authkey: The authorisation token permitting instantiation.
 520 *
 521 * Negatively instantiate a key that's in the uninstantiated state and, if
 522 * successful, set its timeout and stored error and link it in to the
 523 * destination keyring if one is supplied.  The key and any links to the key
 524 * will be automatically garbage collected after the timeout expires.
 525 *
 526 * Negative keys are used to rate limit repeated request_key() calls by causing
 527 * them to return the stored error code (typically ENOKEY) until the negative
 528 * key expires.
 529 *
 530 * If successful, 0 is returned, the authorisation token is revoked and anyone
 531 * waiting for the key is woken up.  If the key was already instantiated,
 532 * -EBUSY will be returned.
 533 */
 534int key_reject_and_link(struct key *key,
 535                        unsigned timeout,
 536                        unsigned error,
 537                        struct key *keyring,
 538                        struct key *authkey)
 539{
 540        unsigned long prealloc;
 541        struct timespec now;
 542        int ret, awaken, link_ret = 0;
 543
 544        key_check(key);
 545        key_check(keyring);
 546
 547        awaken = 0;
 548        ret = -EBUSY;
 549
 550        if (keyring)
 551                link_ret = __key_link_begin(keyring, key->type,
 552                                            key->description, &prealloc);
 553
 554        mutex_lock(&key_construction_mutex);
 555
 556        /* can't instantiate twice */
 557        if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 558                /* mark the key as being negatively instantiated */
 559                atomic_inc(&key->user->nikeys);
 560                set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 561                set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 562                key->type_data.reject_error = -error;
 563                now = current_kernel_time();
 564                key->expiry = now.tv_sec + timeout;
 565                key_schedule_gc(key->expiry + key_gc_delay);
 566
 567                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 568                        awaken = 1;
 569
 570                ret = 0;
 571
 572                /* and link it into the destination keyring */
 573                if (keyring && link_ret == 0)
 574                        __key_link(keyring, key, &prealloc);
 575
 576                /* disable the authorisation key */
 577                if (authkey)
 578                        key_revoke(authkey);
 579        }
 580
 581        mutex_unlock(&key_construction_mutex);
 582
 583        if (keyring)
 584                __key_link_end(keyring, key->type, prealloc);
 585
 586        /* wake up anyone waiting for a key to be constructed */
 587        if (awaken)
 588                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 589
 590        return ret == 0 ? link_ret : ret;
 591}
 592EXPORT_SYMBOL(key_reject_and_link);
 593
 594/*
 595 * Garbage collect keys in process context so that we don't have to disable
 596 * interrupts all over the place.
 597 *
 598 * key_put() schedules this rather than trying to do the cleanup itself, which
 599 * means key_put() doesn't have to sleep.
 600 */
 601static void key_cleanup(struct work_struct *work)
 602{
 603        struct rb_node *_n;
 604        struct key *key;
 605
 606go_again:
 607        /* look for a dead key in the tree */
 608        spin_lock(&key_serial_lock);
 609
 610        for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
 611                key = rb_entry(_n, struct key, serial_node);
 612
 613                if (atomic_read(&key->usage) == 0)
 614                        goto found_dead_key;
 615        }
 616
 617        spin_unlock(&key_serial_lock);
 618        return;
 619
 620found_dead_key:
 621        /* we found a dead key - once we've removed it from the tree, we can
 622         * drop the lock */
 623        rb_erase(&key->serial_node, &key_serial_tree);
 624        spin_unlock(&key_serial_lock);
 625
 626        key_check(key);
 627
 628        security_key_free(key);
 629
 630        /* deal with the user's key tracking and quota */
 631        if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 632                spin_lock(&key->user->lock);
 633                key->user->qnkeys--;
 634                key->user->qnbytes -= key->quotalen;
 635                spin_unlock(&key->user->lock);
 636        }
 637
 638        atomic_dec(&key->user->nkeys);
 639        if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
 640                atomic_dec(&key->user->nikeys);
 641
 642        key_user_put(key->user);
 643
 644        /* now throw away the key memory */
 645        if (key->type->destroy)
 646                key->type->destroy(key);
 647
 648        kfree(key->description);
 649
 650#ifdef KEY_DEBUGGING
 651        key->magic = KEY_DEBUG_MAGIC_X;
 652#endif
 653        kmem_cache_free(key_jar, key);
 654
 655        /* there may, of course, be more than one key to destroy */
 656        goto go_again;
 657}
 658
 659/**
 660 * key_put - Discard a reference to a key.
 661 * @key: The key to discard a reference from.
 662 *
 663 * Discard a reference to a key, and when all the references are gone, we
 664 * schedule the cleanup task to come and pull it out of the tree in process
 665 * context at some later time.
 666 */
 667void key_put(struct key *key)
 668{
 669        if (key) {
 670                key_check(key);
 671
 672                if (atomic_dec_and_test(&key->usage))
 673                        schedule_work(&key_cleanup_task);
 674        }
 675}
 676EXPORT_SYMBOL(key_put);
 677
 678/*
 679 * Find a key by its serial number.
 680 */
 681struct key *key_lookup(key_serial_t id)
 682{
 683        struct rb_node *n;
 684        struct key *key;
 685
 686        spin_lock(&key_serial_lock);
 687
 688        /* search the tree for the specified key */
 689        n = key_serial_tree.rb_node;
 690        while (n) {
 691                key = rb_entry(n, struct key, serial_node);
 692
 693                if (id < key->serial)
 694                        n = n->rb_left;
 695                else if (id > key->serial)
 696                        n = n->rb_right;
 697                else
 698                        goto found;
 699        }
 700
 701not_found:
 702        key = ERR_PTR(-ENOKEY);
 703        goto error;
 704
 705found:
 706        /* pretend it doesn't exist if it is awaiting deletion */
 707        if (atomic_read(&key->usage) == 0)
 708                goto not_found;
 709
 710        /* this races with key_put(), but that doesn't matter since key_put()
 711         * doesn't actually change the key
 712         */
 713        atomic_inc(&key->usage);
 714
 715error:
 716        spin_unlock(&key_serial_lock);
 717        return key;
 718}
 719
 720/*
 721 * Find and lock the specified key type against removal.
 722 *
 723 * We return with the sem read-locked if successful.  If the type wasn't
 724 * available -ENOKEY is returned instead.
 725 */
 726struct key_type *key_type_lookup(const char *type)
 727{
 728        struct key_type *ktype;
 729
 730        down_read(&key_types_sem);
 731
 732        /* look up the key type to see if it's one of the registered kernel
 733         * types */
 734        list_for_each_entry(ktype, &key_types_list, link) {
 735                if (strcmp(ktype->name, type) == 0)
 736                        goto found_kernel_type;
 737        }
 738
 739        up_read(&key_types_sem);
 740        ktype = ERR_PTR(-ENOKEY);
 741
 742found_kernel_type:
 743        return ktype;
 744}
 745
 746/*
 747 * Unlock a key type locked by key_type_lookup().
 748 */
 749void key_type_put(struct key_type *ktype)
 750{
 751        up_read(&key_types_sem);
 752}
 753
 754/*
 755 * Attempt to update an existing key.
 756 *
 757 * The key is given to us with an incremented refcount that we need to discard
 758 * if we get an error.
 759 */
 760static inline key_ref_t __key_update(key_ref_t key_ref,
 761                                     const void *payload, size_t plen)
 762{
 763        struct key *key = key_ref_to_ptr(key_ref);
 764        int ret;
 765
 766        /* need write permission on the key to update it */
 767        ret = key_permission(key_ref, KEY_WRITE);
 768        if (ret < 0)
 769                goto error;
 770
 771        ret = -EEXIST;
 772        if (!key->type->update)
 773                goto error;
 774
 775        down_write(&key->sem);
 776
 777        ret = key->type->update(key, payload, plen);
 778        if (ret == 0)
 779                /* updating a negative key instantiates it */
 780                clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 781
 782        up_write(&key->sem);
 783
 784        if (ret < 0)
 785                goto error;
 786out:
 787        return key_ref;
 788
 789error:
 790        key_put(key);
 791        key_ref = ERR_PTR(ret);
 792        goto out;
 793}
 794
 795/**
 796 * key_create_or_update - Update or create and instantiate a key.
 797 * @keyring_ref: A pointer to the destination keyring with possession flag.
 798 * @type: The type of key.
 799 * @description: The searchable description for the key.
 800 * @payload: The data to use to instantiate or update the key.
 801 * @plen: The length of @payload.
 802 * @perm: The permissions mask for a new key.
 803 * @flags: The quota flags for a new key.
 804 *
 805 * Search the destination keyring for a key of the same description and if one
 806 * is found, update it, otherwise create and instantiate a new one and create a
 807 * link to it from that keyring.
 808 *
 809 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 810 * concocted.
 811 *
 812 * Returns a pointer to the new key if successful, -ENODEV if the key type
 813 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 814 * caller isn't permitted to modify the keyring or the LSM did not permit
 815 * creation of the key.
 816 *
 817 * On success, the possession flag from the keyring ref will be tacked on to
 818 * the key ref before it is returned.
 819 */
 820key_ref_t key_create_or_update(key_ref_t keyring_ref,
 821                               const char *type,
 822                               const char *description,
 823                               const void *payload,
 824                               size_t plen,
 825                               key_perm_t perm,
 826                               unsigned long flags)
 827{
 828        unsigned long prealloc;
 829        const struct cred *cred = current_cred();
 830        struct key_type *ktype;
 831        struct key *keyring, *key = NULL;
 832        key_ref_t key_ref;
 833        int ret;
 834
 835        /* look up the key type to see if it's one of the registered kernel
 836         * types */
 837        ktype = key_type_lookup(type);
 838        if (IS_ERR(ktype)) {
 839                key_ref = ERR_PTR(-ENODEV);
 840                goto error;
 841        }
 842
 843        key_ref = ERR_PTR(-EINVAL);
 844        if (!ktype->match || !ktype->instantiate)
 845                goto error_2;
 846
 847        keyring = key_ref_to_ptr(keyring_ref);
 848
 849        key_check(keyring);
 850
 851        key_ref = ERR_PTR(-ENOTDIR);
 852        if (keyring->type != &key_type_keyring)
 853                goto error_2;
 854
 855        ret = __key_link_begin(keyring, ktype, description, &prealloc);
 856        if (ret < 0)
 857                goto error_2;
 858
 859        /* if we're going to allocate a new key, we're going to have
 860         * to modify the keyring */
 861        ret = key_permission(keyring_ref, KEY_WRITE);
 862        if (ret < 0) {
 863                key_ref = ERR_PTR(ret);
 864                goto error_3;
 865        }
 866
 867        /* if it's possible to update this type of key, search for an existing
 868         * key of the same type and description in the destination keyring and
 869         * update that instead if possible
 870         */
 871        if (ktype->update) {
 872                key_ref = __keyring_search_one(keyring_ref, ktype, description,
 873                                               0);
 874                if (!IS_ERR(key_ref))
 875                        goto found_matching_key;
 876        }
 877
 878        /* if the client doesn't provide, decide on the permissions we want */
 879        if (perm == KEY_PERM_UNDEF) {
 880                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 881                perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 882
 883                if (ktype->read)
 884                        perm |= KEY_POS_READ | KEY_USR_READ;
 885
 886                if (ktype == &key_type_keyring || ktype->update)
 887                        perm |= KEY_USR_WRITE;
 888        }
 889
 890        /* allocate a new key */
 891        key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 892                        perm, flags);
 893        if (IS_ERR(key)) {
 894                key_ref = ERR_CAST(key);
 895                goto error_3;
 896        }
 897
 898        /* instantiate it and link it into the target keyring */
 899        ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 900                                         &prealloc);
 901        if (ret < 0) {
 902                key_put(key);
 903                key_ref = ERR_PTR(ret);
 904                goto error_3;
 905        }
 906
 907        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 908
 909 error_3:
 910        __key_link_end(keyring, ktype, prealloc);
 911 error_2:
 912        key_type_put(ktype);
 913 error:
 914        return key_ref;
 915
 916 found_matching_key:
 917        /* we found a matching key, so we're going to try to update it
 918         * - we can drop the locks first as we have the key pinned
 919         */
 920        __key_link_end(keyring, ktype, prealloc);
 921        key_type_put(ktype);
 922
 923        key_ref = __key_update(key_ref, payload, plen);
 924        goto error;
 925}
 926EXPORT_SYMBOL(key_create_or_update);
 927
 928/**
 929 * key_update - Update a key's contents.
 930 * @key_ref: The pointer (plus possession flag) to the key.
 931 * @payload: The data to be used to update the key.
 932 * @plen: The length of @payload.
 933 *
 934 * Attempt to update the contents of a key with the given payload data.  The
 935 * caller must be granted Write permission on the key.  Negative keys can be
 936 * instantiated by this method.
 937 *
 938 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 939 * type does not support updating.  The key type may return other errors.
 940 */
 941int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 942{
 943        struct key *key = key_ref_to_ptr(key_ref);
 944        int ret;
 945
 946        key_check(key);
 947
 948        /* the key must be writable */
 949        ret = key_permission(key_ref, KEY_WRITE);
 950        if (ret < 0)
 951                goto error;
 952
 953        /* attempt to update it if supported */
 954        ret = -EOPNOTSUPP;
 955        if (key->type->update) {
 956                down_write(&key->sem);
 957
 958                ret = key->type->update(key, payload, plen);
 959                if (ret == 0)
 960                        /* updating a negative key instantiates it */
 961                        clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 962
 963                up_write(&key->sem);
 964        }
 965
 966 error:
 967        return ret;
 968}
 969EXPORT_SYMBOL(key_update);
 970
 971/**
 972 * key_revoke - Revoke a key.
 973 * @key: The key to be revoked.
 974 *
 975 * Mark a key as being revoked and ask the type to free up its resources.  The
 976 * revocation timeout is set and the key and all its links will be
 977 * automatically garbage collected after key_gc_delay amount of time if they
 978 * are not manually dealt with first.
 979 */
 980void key_revoke(struct key *key)
 981{
 982        struct timespec now;
 983        time_t time;
 984
 985        key_check(key);
 986
 987        /* make sure no one's trying to change or use the key when we mark it
 988         * - we tell lockdep that we might nest because we might be revoking an
 989         *   authorisation key whilst holding the sem on a key we've just
 990         *   instantiated
 991         */
 992        down_write_nested(&key->sem, 1);
 993        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 994            key->type->revoke)
 995                key->type->revoke(key);
 996
 997        /* set the death time to no more than the expiry time */
 998        now = current_kernel_time();
 999        time = now.tv_sec;
1000        if (key->revoked_at == 0 || key->revoked_at > time) {
1001                key->revoked_at = time;
1002                key_schedule_gc(key->revoked_at + key_gc_delay);
1003        }
1004
1005        up_write(&key->sem);
1006}
1007EXPORT_SYMBOL(key_revoke);
1008
1009/**
1010 * register_key_type - Register a type of key.
1011 * @ktype: The new key type.
1012 *
1013 * Register a new key type.
1014 *
1015 * Returns 0 on success or -EEXIST if a type of this name already exists.
1016 */
1017int register_key_type(struct key_type *ktype)
1018{
1019        struct key_type *p;
1020        int ret;
1021
1022        ret = -EEXIST;
1023        down_write(&key_types_sem);
1024
1025        /* disallow key types with the same name */
1026        list_for_each_entry(p, &key_types_list, link) {
1027                if (strcmp(p->name, ktype->name) == 0)
1028                        goto out;
1029        }
1030
1031        /* store the type */
1032        list_add(&ktype->link, &key_types_list);
1033        ret = 0;
1034
1035out:
1036        up_write(&key_types_sem);
1037        return ret;
1038}
1039EXPORT_SYMBOL(register_key_type);
1040
1041/**
1042 * unregister_key_type - Unregister a type of key.
1043 * @ktype: The key type.
1044 *
1045 * Unregister a key type and mark all the extant keys of this type as dead.
1046 * Those keys of this type are then destroyed to get rid of their payloads and
1047 * they and their links will be garbage collected as soon as possible.
1048 */
1049void unregister_key_type(struct key_type *ktype)
1050{
1051        struct rb_node *_n;
1052        struct key *key;
1053
1054        down_write(&key_types_sem);
1055
1056        /* withdraw the key type */
1057        list_del_init(&ktype->link);
1058
1059        /* mark all the keys of this type dead */
1060        spin_lock(&key_serial_lock);
1061
1062        for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063                key = rb_entry(_n, struct key, serial_node);
1064
1065                if (key->type == ktype) {
1066                        key->type = &key_type_dead;
1067                        set_bit(KEY_FLAG_DEAD, &key->flags);
1068                }
1069        }
1070
1071        spin_unlock(&key_serial_lock);
1072
1073        /* make sure everyone revalidates their keys */
1074        synchronize_rcu();
1075
1076        /* we should now be able to destroy the payloads of all the keys of
1077         * this type with impunity */
1078        spin_lock(&key_serial_lock);
1079
1080        for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081                key = rb_entry(_n, struct key, serial_node);
1082
1083                if (key->type == ktype) {
1084                        if (ktype->destroy)
1085                                ktype->destroy(key);
1086                        memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1087                }
1088        }
1089
1090        spin_unlock(&key_serial_lock);
1091        up_write(&key_types_sem);
1092
1093        key_schedule_gc(0);
1094}
1095EXPORT_SYMBOL(unregister_key_type);
1096
1097/*
1098 * Initialise the key management state.
1099 */
1100void __init key_init(void)
1101{
1102        /* allocate a slab in which we can store keys */
1103        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1105
1106        /* add the special key types */
1107        list_add_tail(&key_type_keyring.link, &key_types_list);
1108        list_add_tail(&key_type_dead.link, &key_types_list);
1109        list_add_tail(&key_type_user.link, &key_types_list);
1110
1111        /* record the root user tracking */
1112        rb_link_node(&root_key_user.node,
1113                     NULL,
1114                     &key_user_tree.rb_node);
1115
1116        rb_insert_color(&root_key_user.node,
1117                        &key_user_tree);
1118}
1119