linux/arch/powerpc/platforms/cell/pmu.c
<<
>>
Prefs
   1/*
   2 * Cell Broadband Engine Performance Monitor
   3 *
   4 * (C) Copyright IBM Corporation 2001,2006
   5 *
   6 * Author:
   7 *    David Erb (djerb@us.ibm.com)
   8 *    Kevin Corry (kevcorry@us.ibm.com)
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2, or (at your option)
  13 * any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/interrupt.h>
  26#include <linux/types.h>
  27#include <asm/io.h>
  28#include <asm/irq_regs.h>
  29#include <asm/machdep.h>
  30#include <asm/pmc.h>
  31#include <asm/reg.h>
  32#include <asm/spu.h>
  33#include <asm/cell-regs.h>
  34
  35#include "interrupt.h"
  36
  37/*
  38 * When writing to write-only mmio addresses, save a shadow copy. All of the
  39 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
  40 * pmd_regs.
  41 */
  42
  43#define WRITE_WO_MMIO(reg, x)                                   \
  44        do {                                                    \
  45                u32 _x = (x);                                   \
  46                struct cbe_pmd_regs __iomem *pmd_regs;          \
  47                struct cbe_pmd_shadow_regs *shadow_regs;        \
  48                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  49                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  50                out_be64(&(pmd_regs->reg), (((u64)_x) << 32));  \
  51                shadow_regs->reg = _x;                          \
  52        } while (0)
  53
  54#define READ_SHADOW_REG(val, reg)                               \
  55        do {                                                    \
  56                struct cbe_pmd_shadow_regs *shadow_regs;        \
  57                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  58                (val) = shadow_regs->reg;                       \
  59        } while (0)
  60
  61#define READ_MMIO_UPPER32(val, reg)                             \
  62        do {                                                    \
  63                struct cbe_pmd_regs __iomem *pmd_regs;          \
  64                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  65                (val) = (u32)(in_be64(&pmd_regs->reg) >> 32);   \
  66        } while (0)
  67
  68/*
  69 * Physical counter registers.
  70 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
  71 */
  72
  73u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
  74{
  75        u32 val_in_latch, val = 0;
  76
  77        if (phys_ctr < NR_PHYS_CTRS) {
  78                READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
  79
  80                /* Read the latch or the actual counter, whichever is newer. */
  81                if (val_in_latch & (1 << phys_ctr)) {
  82                        READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
  83                } else {
  84                        READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
  85                }
  86        }
  87
  88        return val;
  89}
  90EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
  91
  92void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
  93{
  94        struct cbe_pmd_shadow_regs *shadow_regs;
  95        u32 pm_ctrl;
  96
  97        if (phys_ctr < NR_PHYS_CTRS) {
  98                /* Writing to a counter only writes to a hardware latch.
  99                 * The new value is not propagated to the actual counter
 100                 * until the performance monitor is enabled.
 101                 */
 102                WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
 103
 104                pm_ctrl = cbe_read_pm(cpu, pm_control);
 105                if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
 106                        /* The counters are already active, so we need to
 107                         * rewrite the pm_control register to "re-enable"
 108                         * the PMU.
 109                         */
 110                        cbe_write_pm(cpu, pm_control, pm_ctrl);
 111                } else {
 112                        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 113                        shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
 114                }
 115        }
 116}
 117EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
 118
 119/*
 120 * "Logical" counter registers.
 121 * These will read/write 16-bits or 32-bits depending on the
 122 * current size of the counter. Counters 4 - 7 are always 16-bit.
 123 */
 124
 125u32 cbe_read_ctr(u32 cpu, u32 ctr)
 126{
 127        u32 val;
 128        u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 129
 130        val = cbe_read_phys_ctr(cpu, phys_ctr);
 131
 132        if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
 133                val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
 134
 135        return val;
 136}
 137EXPORT_SYMBOL_GPL(cbe_read_ctr);
 138
 139void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
 140{
 141        u32 phys_ctr;
 142        u32 phys_val;
 143
 144        phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 145
 146        if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
 147                phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
 148
 149                if (ctr < NR_PHYS_CTRS)
 150                        val = (val << 16) | (phys_val & 0xffff);
 151                else
 152                        val = (val & 0xffff) | (phys_val & 0xffff0000);
 153        }
 154
 155        cbe_write_phys_ctr(cpu, phys_ctr, val);
 156}
 157EXPORT_SYMBOL_GPL(cbe_write_ctr);
 158
 159/*
 160 * Counter-control registers.
 161 * Each "logical" counter has a corresponding control register.
 162 */
 163
 164u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
 165{
 166        u32 pm07_control = 0;
 167
 168        if (ctr < NR_CTRS)
 169                READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
 170
 171        return pm07_control;
 172}
 173EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
 174
 175void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
 176{
 177        if (ctr < NR_CTRS)
 178                WRITE_WO_MMIO(pm07_control[ctr], val);
 179}
 180EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
 181
 182/*
 183 * Other PMU control registers. Most of these are write-only.
 184 */
 185
 186u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
 187{
 188        u32 val = 0;
 189
 190        switch (reg) {
 191        case group_control:
 192                READ_SHADOW_REG(val, group_control);
 193                break;
 194
 195        case debug_bus_control:
 196                READ_SHADOW_REG(val, debug_bus_control);
 197                break;
 198
 199        case trace_address:
 200                READ_MMIO_UPPER32(val, trace_address);
 201                break;
 202
 203        case ext_tr_timer:
 204                READ_SHADOW_REG(val, ext_tr_timer);
 205                break;
 206
 207        case pm_status:
 208                READ_MMIO_UPPER32(val, pm_status);
 209                break;
 210
 211        case pm_control:
 212                READ_SHADOW_REG(val, pm_control);
 213                break;
 214
 215        case pm_interval:
 216                READ_MMIO_UPPER32(val, pm_interval);
 217                break;
 218
 219        case pm_start_stop:
 220                READ_SHADOW_REG(val, pm_start_stop);
 221                break;
 222        }
 223
 224        return val;
 225}
 226EXPORT_SYMBOL_GPL(cbe_read_pm);
 227
 228void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
 229{
 230        switch (reg) {
 231        case group_control:
 232                WRITE_WO_MMIO(group_control, val);
 233                break;
 234
 235        case debug_bus_control:
 236                WRITE_WO_MMIO(debug_bus_control, val);
 237                break;
 238
 239        case trace_address:
 240                WRITE_WO_MMIO(trace_address, val);
 241                break;
 242
 243        case ext_tr_timer:
 244                WRITE_WO_MMIO(ext_tr_timer, val);
 245                break;
 246
 247        case pm_status:
 248                WRITE_WO_MMIO(pm_status, val);
 249                break;
 250
 251        case pm_control:
 252                WRITE_WO_MMIO(pm_control, val);
 253                break;
 254
 255        case pm_interval:
 256                WRITE_WO_MMIO(pm_interval, val);
 257                break;
 258
 259        case pm_start_stop:
 260                WRITE_WO_MMIO(pm_start_stop, val);
 261                break;
 262        }
 263}
 264EXPORT_SYMBOL_GPL(cbe_write_pm);
 265
 266/*
 267 * Get/set the size of a physical counter to either 16 or 32 bits.
 268 */
 269
 270u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
 271{
 272        u32 pm_ctrl, size = 0;
 273
 274        if (phys_ctr < NR_PHYS_CTRS) {
 275                pm_ctrl = cbe_read_pm(cpu, pm_control);
 276                size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
 277        }
 278
 279        return size;
 280}
 281EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
 282
 283void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
 284{
 285        u32 pm_ctrl;
 286
 287        if (phys_ctr < NR_PHYS_CTRS) {
 288                pm_ctrl = cbe_read_pm(cpu, pm_control);
 289                switch (ctr_size) {
 290                case 16:
 291                        pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
 292                        break;
 293
 294                case 32:
 295                        pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
 296                        break;
 297                }
 298                cbe_write_pm(cpu, pm_control, pm_ctrl);
 299        }
 300}
 301EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
 302
 303/*
 304 * Enable/disable the entire performance monitoring unit.
 305 * When we enable the PMU, all pending writes to counters get committed.
 306 */
 307
 308void cbe_enable_pm(u32 cpu)
 309{
 310        struct cbe_pmd_shadow_regs *shadow_regs;
 311        u32 pm_ctrl;
 312
 313        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 314        shadow_regs->counter_value_in_latch = 0;
 315
 316        pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
 317        cbe_write_pm(cpu, pm_control, pm_ctrl);
 318}
 319EXPORT_SYMBOL_GPL(cbe_enable_pm);
 320
 321void cbe_disable_pm(u32 cpu)
 322{
 323        u32 pm_ctrl;
 324        pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
 325        cbe_write_pm(cpu, pm_control, pm_ctrl);
 326}
 327EXPORT_SYMBOL_GPL(cbe_disable_pm);
 328
 329/*
 330 * Reading from the trace_buffer.
 331 * The trace buffer is two 64-bit registers. Reading from
 332 * the second half automatically increments the trace_address.
 333 */
 334
 335void cbe_read_trace_buffer(u32 cpu, u64 *buf)
 336{
 337        struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
 338
 339        *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
 340        *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
 341}
 342EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
 343
 344/*
 345 * Enabling/disabling interrupts for the entire performance monitoring unit.
 346 */
 347
 348u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
 349{
 350        /* Reading pm_status clears the interrupt bits. */
 351        return cbe_read_pm(cpu, pm_status);
 352}
 353EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
 354
 355void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
 356{
 357        /* Set which node and thread will handle the next interrupt. */
 358        iic_set_interrupt_routing(cpu, thread, 0);
 359
 360        /* Enable the interrupt bits in the pm_status register. */
 361        if (mask)
 362                cbe_write_pm(cpu, pm_status, mask);
 363}
 364EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
 365
 366void cbe_disable_pm_interrupts(u32 cpu)
 367{
 368        cbe_get_and_clear_pm_interrupts(cpu);
 369        cbe_write_pm(cpu, pm_status, 0);
 370}
 371EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
 372
 373static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
 374{
 375        perf_irq(get_irq_regs());
 376        return IRQ_HANDLED;
 377}
 378
 379static int __init cbe_init_pm_irq(void)
 380{
 381        unsigned int irq;
 382        int rc, node;
 383
 384        for_each_node(node) {
 385                irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
 386                                               (node << IIC_IRQ_NODE_SHIFT));
 387                if (irq == NO_IRQ) {
 388                        printk("ERROR: Unable to allocate irq for node %d\n",
 389                               node);
 390                        return -EINVAL;
 391                }
 392
 393                rc = request_irq(irq, cbe_pm_irq,
 394                                 IRQF_DISABLED, "cbe-pmu-0", NULL);
 395                if (rc) {
 396                        printk("ERROR: Request for irq on node %d failed\n",
 397                               node);
 398                        return rc;
 399                }
 400        }
 401
 402        return 0;
 403}
 404machine_arch_initcall(cell, cbe_init_pm_irq);
 405
 406void cbe_sync_irq(int node)
 407{
 408        unsigned int irq;
 409
 410        irq = irq_find_mapping(NULL,
 411                               IIC_IRQ_IOEX_PMI
 412                               | (node << IIC_IRQ_NODE_SHIFT));
 413
 414        if (irq == NO_IRQ) {
 415                printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
 416                "for node %d\n", irq, node);
 417                return;
 418        }
 419
 420        synchronize_irq(irq);
 421}
 422EXPORT_SYMBOL_GPL(cbe_sync_irq);
 423
 424