linux/arch/sh/kernel/smp.c
<<
>>
Prefs
   1/*
   2 * arch/sh/kernel/smp.c
   3 *
   4 * SMP support for the SuperH processors.
   5 *
   6 * Copyright (C) 2002 - 2010 Paul Mundt
   7 * Copyright (C) 2006 - 2007 Akio Idehara
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 */
  13#include <linux/err.h>
  14#include <linux/cache.h>
  15#include <linux/cpumask.h>
  16#include <linux/delay.h>
  17#include <linux/init.h>
  18#include <linux/spinlock.h>
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/cpu.h>
  22#include <linux/interrupt.h>
  23#include <linux/sched.h>
  24#include <asm/atomic.h>
  25#include <asm/processor.h>
  26#include <asm/system.h>
  27#include <asm/mmu_context.h>
  28#include <asm/smp.h>
  29#include <asm/cacheflush.h>
  30#include <asm/sections.h>
  31
  32int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
  33int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
  34
  35struct plat_smp_ops *mp_ops = NULL;
  36
  37/* State of each CPU */
  38DEFINE_PER_CPU(int, cpu_state) = { 0 };
  39
  40void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
  41{
  42        if (mp_ops)
  43                printk(KERN_WARNING "Overriding previously set SMP ops\n");
  44
  45        mp_ops = ops;
  46}
  47
  48static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
  49{
  50        struct sh_cpuinfo *c = cpu_data + cpu;
  51
  52        memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
  53
  54        c->loops_per_jiffy = loops_per_jiffy;
  55}
  56
  57void __init smp_prepare_cpus(unsigned int max_cpus)
  58{
  59        unsigned int cpu = smp_processor_id();
  60
  61        init_new_context(current, &init_mm);
  62        current_thread_info()->cpu = cpu;
  63        mp_ops->prepare_cpus(max_cpus);
  64
  65#ifndef CONFIG_HOTPLUG_CPU
  66        init_cpu_present(&cpu_possible_map);
  67#endif
  68}
  69
  70void __init smp_prepare_boot_cpu(void)
  71{
  72        unsigned int cpu = smp_processor_id();
  73
  74        __cpu_number_map[0] = cpu;
  75        __cpu_logical_map[0] = cpu;
  76
  77        set_cpu_online(cpu, true);
  78        set_cpu_possible(cpu, true);
  79
  80        per_cpu(cpu_state, cpu) = CPU_ONLINE;
  81}
  82
  83#ifdef CONFIG_HOTPLUG_CPU
  84void native_cpu_die(unsigned int cpu)
  85{
  86        unsigned int i;
  87
  88        for (i = 0; i < 10; i++) {
  89                smp_rmb();
  90                if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
  91                        if (system_state == SYSTEM_RUNNING)
  92                                pr_info("CPU %u is now offline\n", cpu);
  93
  94                        return;
  95                }
  96
  97                msleep(100);
  98        }
  99
 100        pr_err("CPU %u didn't die...\n", cpu);
 101}
 102
 103int native_cpu_disable(unsigned int cpu)
 104{
 105        return cpu == 0 ? -EPERM : 0;
 106}
 107
 108void play_dead_common(void)
 109{
 110        idle_task_exit();
 111        irq_ctx_exit(raw_smp_processor_id());
 112        mb();
 113
 114        __get_cpu_var(cpu_state) = CPU_DEAD;
 115        local_irq_disable();
 116}
 117
 118void native_play_dead(void)
 119{
 120        play_dead_common();
 121}
 122
 123int __cpu_disable(void)
 124{
 125        unsigned int cpu = smp_processor_id();
 126        struct task_struct *p;
 127        int ret;
 128
 129        ret = mp_ops->cpu_disable(cpu);
 130        if (ret)
 131                return ret;
 132
 133        /*
 134         * Take this CPU offline.  Once we clear this, we can't return,
 135         * and we must not schedule until we're ready to give up the cpu.
 136         */
 137        set_cpu_online(cpu, false);
 138
 139        /*
 140         * OK - migrate IRQs away from this CPU
 141         */
 142        migrate_irqs();
 143
 144        /*
 145         * Stop the local timer for this CPU.
 146         */
 147        local_timer_stop(cpu);
 148
 149        /*
 150         * Flush user cache and TLB mappings, and then remove this CPU
 151         * from the vm mask set of all processes.
 152         */
 153        flush_cache_all();
 154        local_flush_tlb_all();
 155
 156        read_lock(&tasklist_lock);
 157        for_each_process(p)
 158                if (p->mm)
 159                        cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
 160        read_unlock(&tasklist_lock);
 161
 162        return 0;
 163}
 164#else /* ... !CONFIG_HOTPLUG_CPU */
 165int native_cpu_disable(unsigned int cpu)
 166{
 167        return -ENOSYS;
 168}
 169
 170void native_cpu_die(unsigned int cpu)
 171{
 172        /* We said "no" in __cpu_disable */
 173        BUG();
 174}
 175
 176void native_play_dead(void)
 177{
 178        BUG();
 179}
 180#endif
 181
 182asmlinkage void __cpuinit start_secondary(void)
 183{
 184        unsigned int cpu = smp_processor_id();
 185        struct mm_struct *mm = &init_mm;
 186
 187        enable_mmu();
 188        atomic_inc(&mm->mm_count);
 189        atomic_inc(&mm->mm_users);
 190        current->active_mm = mm;
 191        enter_lazy_tlb(mm, current);
 192        local_flush_tlb_all();
 193
 194        per_cpu_trap_init();
 195
 196        preempt_disable();
 197
 198        notify_cpu_starting(cpu);
 199
 200        local_irq_enable();
 201
 202        /* Enable local timers */
 203        local_timer_setup(cpu);
 204        calibrate_delay();
 205
 206        smp_store_cpu_info(cpu);
 207
 208        set_cpu_online(cpu, true);
 209        per_cpu(cpu_state, cpu) = CPU_ONLINE;
 210
 211        cpu_idle();
 212}
 213
 214extern struct {
 215        unsigned long sp;
 216        unsigned long bss_start;
 217        unsigned long bss_end;
 218        void *start_kernel_fn;
 219        void *cpu_init_fn;
 220        void *thread_info;
 221} stack_start;
 222
 223int __cpuinit __cpu_up(unsigned int cpu)
 224{
 225        struct task_struct *tsk;
 226        unsigned long timeout;
 227
 228        tsk = cpu_data[cpu].idle;
 229        if (!tsk) {
 230                tsk = fork_idle(cpu);
 231                if (IS_ERR(tsk)) {
 232                        pr_err("Failed forking idle task for cpu %d\n", cpu);
 233                        return PTR_ERR(tsk);
 234                }
 235
 236                cpu_data[cpu].idle = tsk;
 237        }
 238
 239        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 240
 241        /* Fill in data in head.S for secondary cpus */
 242        stack_start.sp = tsk->thread.sp;
 243        stack_start.thread_info = tsk->stack;
 244        stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
 245        stack_start.start_kernel_fn = start_secondary;
 246
 247        flush_icache_range((unsigned long)&stack_start,
 248                           (unsigned long)&stack_start + sizeof(stack_start));
 249        wmb();
 250
 251        mp_ops->start_cpu(cpu, (unsigned long)_stext);
 252
 253        timeout = jiffies + HZ;
 254        while (time_before(jiffies, timeout)) {
 255                if (cpu_online(cpu))
 256                        break;
 257
 258                udelay(10);
 259                barrier();
 260        }
 261
 262        if (cpu_online(cpu))
 263                return 0;
 264
 265        return -ENOENT;
 266}
 267
 268void __init smp_cpus_done(unsigned int max_cpus)
 269{
 270        unsigned long bogosum = 0;
 271        int cpu;
 272
 273        for_each_online_cpu(cpu)
 274                bogosum += cpu_data[cpu].loops_per_jiffy;
 275
 276        printk(KERN_INFO "SMP: Total of %d processors activated "
 277               "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
 278               bogosum / (500000/HZ),
 279               (bogosum / (5000/HZ)) % 100);
 280}
 281
 282void smp_send_reschedule(int cpu)
 283{
 284        mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
 285}
 286
 287void smp_send_stop(void)
 288{
 289        smp_call_function(stop_this_cpu, 0, 0);
 290}
 291
 292void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 293{
 294        int cpu;
 295
 296        for_each_cpu(cpu, mask)
 297                mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
 298}
 299
 300void arch_send_call_function_single_ipi(int cpu)
 301{
 302        mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
 303}
 304
 305void smp_timer_broadcast(const struct cpumask *mask)
 306{
 307        int cpu;
 308
 309        for_each_cpu(cpu, mask)
 310                mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
 311}
 312
 313static void ipi_timer(void)
 314{
 315        irq_enter();
 316        local_timer_interrupt();
 317        irq_exit();
 318}
 319
 320void smp_message_recv(unsigned int msg)
 321{
 322        switch (msg) {
 323        case SMP_MSG_FUNCTION:
 324                generic_smp_call_function_interrupt();
 325                break;
 326        case SMP_MSG_RESCHEDULE:
 327                scheduler_ipi();
 328                break;
 329        case SMP_MSG_FUNCTION_SINGLE:
 330                generic_smp_call_function_single_interrupt();
 331                break;
 332        case SMP_MSG_TIMER:
 333                ipi_timer();
 334                break;
 335        default:
 336                printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
 337                       smp_processor_id(), __func__, msg);
 338                break;
 339        }
 340}
 341
 342/* Not really SMP stuff ... */
 343int setup_profiling_timer(unsigned int multiplier)
 344{
 345        return 0;
 346}
 347
 348static void flush_tlb_all_ipi(void *info)
 349{
 350        local_flush_tlb_all();
 351}
 352
 353void flush_tlb_all(void)
 354{
 355        on_each_cpu(flush_tlb_all_ipi, 0, 1);
 356}
 357
 358static void flush_tlb_mm_ipi(void *mm)
 359{
 360        local_flush_tlb_mm((struct mm_struct *)mm);
 361}
 362
 363/*
 364 * The following tlb flush calls are invoked when old translations are
 365 * being torn down, or pte attributes are changing. For single threaded
 366 * address spaces, a new context is obtained on the current cpu, and tlb
 367 * context on other cpus are invalidated to force a new context allocation
 368 * at switch_mm time, should the mm ever be used on other cpus. For
 369 * multithreaded address spaces, intercpu interrupts have to be sent.
 370 * Another case where intercpu interrupts are required is when the target
 371 * mm might be active on another cpu (eg debuggers doing the flushes on
 372 * behalf of debugees, kswapd stealing pages from another process etc).
 373 * Kanoj 07/00.
 374 */
 375void flush_tlb_mm(struct mm_struct *mm)
 376{
 377        preempt_disable();
 378
 379        if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 380                smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
 381        } else {
 382                int i;
 383                for (i = 0; i < num_online_cpus(); i++)
 384                        if (smp_processor_id() != i)
 385                                cpu_context(i, mm) = 0;
 386        }
 387        local_flush_tlb_mm(mm);
 388
 389        preempt_enable();
 390}
 391
 392struct flush_tlb_data {
 393        struct vm_area_struct *vma;
 394        unsigned long addr1;
 395        unsigned long addr2;
 396};
 397
 398static void flush_tlb_range_ipi(void *info)
 399{
 400        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 401
 402        local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
 403}
 404
 405void flush_tlb_range(struct vm_area_struct *vma,
 406                     unsigned long start, unsigned long end)
 407{
 408        struct mm_struct *mm = vma->vm_mm;
 409
 410        preempt_disable();
 411        if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 412                struct flush_tlb_data fd;
 413
 414                fd.vma = vma;
 415                fd.addr1 = start;
 416                fd.addr2 = end;
 417                smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
 418        } else {
 419                int i;
 420                for (i = 0; i < num_online_cpus(); i++)
 421                        if (smp_processor_id() != i)
 422                                cpu_context(i, mm) = 0;
 423        }
 424        local_flush_tlb_range(vma, start, end);
 425        preempt_enable();
 426}
 427
 428static void flush_tlb_kernel_range_ipi(void *info)
 429{
 430        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 431
 432        local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
 433}
 434
 435void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 436{
 437        struct flush_tlb_data fd;
 438
 439        fd.addr1 = start;
 440        fd.addr2 = end;
 441        on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
 442}
 443
 444static void flush_tlb_page_ipi(void *info)
 445{
 446        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 447
 448        local_flush_tlb_page(fd->vma, fd->addr1);
 449}
 450
 451void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 452{
 453        preempt_disable();
 454        if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
 455            (current->mm != vma->vm_mm)) {
 456                struct flush_tlb_data fd;
 457
 458                fd.vma = vma;
 459                fd.addr1 = page;
 460                smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
 461        } else {
 462                int i;
 463                for (i = 0; i < num_online_cpus(); i++)
 464                        if (smp_processor_id() != i)
 465                                cpu_context(i, vma->vm_mm) = 0;
 466        }
 467        local_flush_tlb_page(vma, page);
 468        preempt_enable();
 469}
 470
 471static void flush_tlb_one_ipi(void *info)
 472{
 473        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 474        local_flush_tlb_one(fd->addr1, fd->addr2);
 475}
 476
 477void flush_tlb_one(unsigned long asid, unsigned long vaddr)
 478{
 479        struct flush_tlb_data fd;
 480
 481        fd.addr1 = asid;
 482        fd.addr2 = vaddr;
 483
 484        smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
 485        local_flush_tlb_one(asid, vaddr);
 486}
 487