linux/arch/sparc/mm/tsb.c
<<
>>
Prefs
   1/* arch/sparc64/mm/tsb.c
   2 *
   3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/preempt.h>
   8#include <linux/slab.h>
   9#include <asm/system.h>
  10#include <asm/page.h>
  11#include <asm/tlbflush.h>
  12#include <asm/tlb.h>
  13#include <asm/mmu_context.h>
  14#include <asm/pgtable.h>
  15#include <asm/tsb.h>
  16#include <asm/oplib.h>
  17
  18extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  19
  20static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  21{
  22        vaddr >>= hash_shift;
  23        return vaddr & (nentries - 1);
  24}
  25
  26static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  27{
  28        return (tag == (vaddr >> 22));
  29}
  30
  31/* TSB flushes need only occur on the processor initiating the address
  32 * space modification, not on each cpu the address space has run on.
  33 * Only the TLB flush needs that treatment.
  34 */
  35
  36void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  37{
  38        unsigned long v;
  39
  40        for (v = start; v < end; v += PAGE_SIZE) {
  41                unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  42                                              KERNEL_TSB_NENTRIES);
  43                struct tsb *ent = &swapper_tsb[hash];
  44
  45                if (tag_compare(ent->tag, v))
  46                        ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  47        }
  48}
  49
  50static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
  51                            unsigned long tsb, unsigned long nentries)
  52{
  53        unsigned long i;
  54
  55        for (i = 0; i < tb->tlb_nr; i++) {
  56                unsigned long v = tb->vaddrs[i];
  57                unsigned long tag, ent, hash;
  58
  59                v &= ~0x1UL;
  60
  61                hash = tsb_hash(v, hash_shift, nentries);
  62                ent = tsb + (hash * sizeof(struct tsb));
  63                tag = (v >> 22UL);
  64
  65                tsb_flush(ent, tag);
  66        }
  67}
  68
  69void flush_tsb_user(struct tlb_batch *tb)
  70{
  71        struct mm_struct *mm = tb->mm;
  72        unsigned long nentries, base, flags;
  73
  74        spin_lock_irqsave(&mm->context.lock, flags);
  75
  76        base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  77        nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  78        if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  79                base = __pa(base);
  80        __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
  81
  82#ifdef CONFIG_HUGETLB_PAGE
  83        if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  84                base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  85                nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  86                if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  87                        base = __pa(base);
  88                __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
  89        }
  90#endif
  91        spin_unlock_irqrestore(&mm->context.lock, flags);
  92}
  93
  94#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
  95#define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
  96#define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
  97#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
  98#define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_64K
  99#define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_64K
 100#else
 101#error Broken base page size setting...
 102#endif
 103
 104#ifdef CONFIG_HUGETLB_PAGE
 105#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
 106#define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_64K
 107#define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_64K
 108#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
 109#define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_512K
 110#define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_512K
 111#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
 112#define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
 113#define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
 114#else
 115#error Broken huge page size setting...
 116#endif
 117#endif
 118
 119static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
 120{
 121        unsigned long tsb_reg, base, tsb_paddr;
 122        unsigned long page_sz, tte;
 123
 124        mm->context.tsb_block[tsb_idx].tsb_nentries =
 125                tsb_bytes / sizeof(struct tsb);
 126
 127        base = TSBMAP_BASE;
 128        tte = pgprot_val(PAGE_KERNEL_LOCKED);
 129        tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
 130        BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
 131
 132        /* Use the smallest page size that can map the whole TSB
 133         * in one TLB entry.
 134         */
 135        switch (tsb_bytes) {
 136        case 8192 << 0:
 137                tsb_reg = 0x0UL;
 138#ifdef DCACHE_ALIASING_POSSIBLE
 139                base += (tsb_paddr & 8192);
 140#endif
 141                page_sz = 8192;
 142                break;
 143
 144        case 8192 << 1:
 145                tsb_reg = 0x1UL;
 146                page_sz = 64 * 1024;
 147                break;
 148
 149        case 8192 << 2:
 150                tsb_reg = 0x2UL;
 151                page_sz = 64 * 1024;
 152                break;
 153
 154        case 8192 << 3:
 155                tsb_reg = 0x3UL;
 156                page_sz = 64 * 1024;
 157                break;
 158
 159        case 8192 << 4:
 160                tsb_reg = 0x4UL;
 161                page_sz = 512 * 1024;
 162                break;
 163
 164        case 8192 << 5:
 165                tsb_reg = 0x5UL;
 166                page_sz = 512 * 1024;
 167                break;
 168
 169        case 8192 << 6:
 170                tsb_reg = 0x6UL;
 171                page_sz = 512 * 1024;
 172                break;
 173
 174        case 8192 << 7:
 175                tsb_reg = 0x7UL;
 176                page_sz = 4 * 1024 * 1024;
 177                break;
 178
 179        default:
 180                printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
 181                       current->comm, current->pid, tsb_bytes);
 182                do_exit(SIGSEGV);
 183        }
 184        tte |= pte_sz_bits(page_sz);
 185
 186        if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
 187                /* Physical mapping, no locked TLB entry for TSB.  */
 188                tsb_reg |= tsb_paddr;
 189
 190                mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
 191                mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
 192                mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
 193        } else {
 194                tsb_reg |= base;
 195                tsb_reg |= (tsb_paddr & (page_sz - 1UL));
 196                tte |= (tsb_paddr & ~(page_sz - 1UL));
 197
 198                mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
 199                mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
 200                mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
 201        }
 202
 203        /* Setup the Hypervisor TSB descriptor.  */
 204        if (tlb_type == hypervisor) {
 205                struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
 206
 207                switch (tsb_idx) {
 208                case MM_TSB_BASE:
 209                        hp->pgsz_idx = HV_PGSZ_IDX_BASE;
 210                        break;
 211#ifdef CONFIG_HUGETLB_PAGE
 212                case MM_TSB_HUGE:
 213                        hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
 214                        break;
 215#endif
 216                default:
 217                        BUG();
 218                }
 219                hp->assoc = 1;
 220                hp->num_ttes = tsb_bytes / 16;
 221                hp->ctx_idx = 0;
 222                switch (tsb_idx) {
 223                case MM_TSB_BASE:
 224                        hp->pgsz_mask = HV_PGSZ_MASK_BASE;
 225                        break;
 226#ifdef CONFIG_HUGETLB_PAGE
 227                case MM_TSB_HUGE:
 228                        hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
 229                        break;
 230#endif
 231                default:
 232                        BUG();
 233                }
 234                hp->tsb_base = tsb_paddr;
 235                hp->resv = 0;
 236        }
 237}
 238
 239static struct kmem_cache *tsb_caches[8] __read_mostly;
 240
 241static const char *tsb_cache_names[8] = {
 242        "tsb_8KB",
 243        "tsb_16KB",
 244        "tsb_32KB",
 245        "tsb_64KB",
 246        "tsb_128KB",
 247        "tsb_256KB",
 248        "tsb_512KB",
 249        "tsb_1MB",
 250};
 251
 252void __init pgtable_cache_init(void)
 253{
 254        unsigned long i;
 255
 256        for (i = 0; i < 8; i++) {
 257                unsigned long size = 8192 << i;
 258                const char *name = tsb_cache_names[i];
 259
 260                tsb_caches[i] = kmem_cache_create(name,
 261                                                  size, size,
 262                                                  0, NULL);
 263                if (!tsb_caches[i]) {
 264                        prom_printf("Could not create %s cache\n", name);
 265                        prom_halt();
 266                }
 267        }
 268}
 269
 270int sysctl_tsb_ratio = -2;
 271
 272static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
 273{
 274        unsigned long num_ents = (new_size / sizeof(struct tsb));
 275
 276        if (sysctl_tsb_ratio < 0)
 277                return num_ents - (num_ents >> -sysctl_tsb_ratio);
 278        else
 279                return num_ents + (num_ents >> sysctl_tsb_ratio);
 280}
 281
 282/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
 283 * do_sparc64_fault() invokes this routine to try and grow it.
 284 *
 285 * When we reach the maximum TSB size supported, we stick ~0UL into
 286 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
 287 * will not trigger any longer.
 288 *
 289 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
 290 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
 291 * must be 512K aligned.  It also must be physically contiguous, so we
 292 * cannot use vmalloc().
 293 *
 294 * The idea here is to grow the TSB when the RSS of the process approaches
 295 * the number of entries that the current TSB can hold at once.  Currently,
 296 * we trigger when the RSS hits 3/4 of the TSB capacity.
 297 */
 298void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
 299{
 300        unsigned long max_tsb_size = 1 * 1024 * 1024;
 301        unsigned long new_size, old_size, flags;
 302        struct tsb *old_tsb, *new_tsb;
 303        unsigned long new_cache_index, old_cache_index;
 304        unsigned long new_rss_limit;
 305        gfp_t gfp_flags;
 306
 307        if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
 308                max_tsb_size = (PAGE_SIZE << MAX_ORDER);
 309
 310        new_cache_index = 0;
 311        for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
 312                new_rss_limit = tsb_size_to_rss_limit(new_size);
 313                if (new_rss_limit > rss)
 314                        break;
 315                new_cache_index++;
 316        }
 317
 318        if (new_size == max_tsb_size)
 319                new_rss_limit = ~0UL;
 320
 321retry_tsb_alloc:
 322        gfp_flags = GFP_KERNEL;
 323        if (new_size > (PAGE_SIZE * 2))
 324                gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
 325
 326        new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
 327                                        gfp_flags, numa_node_id());
 328        if (unlikely(!new_tsb)) {
 329                /* Not being able to fork due to a high-order TSB
 330                 * allocation failure is very bad behavior.  Just back
 331                 * down to a 0-order allocation and force no TSB
 332                 * growing for this address space.
 333                 */
 334                if (mm->context.tsb_block[tsb_index].tsb == NULL &&
 335                    new_cache_index > 0) {
 336                        new_cache_index = 0;
 337                        new_size = 8192;
 338                        new_rss_limit = ~0UL;
 339                        goto retry_tsb_alloc;
 340                }
 341
 342                /* If we failed on a TSB grow, we are under serious
 343                 * memory pressure so don't try to grow any more.
 344                 */
 345                if (mm->context.tsb_block[tsb_index].tsb != NULL)
 346                        mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
 347                return;
 348        }
 349
 350        /* Mark all tags as invalid.  */
 351        tsb_init(new_tsb, new_size);
 352
 353        /* Ok, we are about to commit the changes.  If we are
 354         * growing an existing TSB the locking is very tricky,
 355         * so WATCH OUT!
 356         *
 357         * We have to hold mm->context.lock while committing to the
 358         * new TSB, this synchronizes us with processors in
 359         * flush_tsb_user() and switch_mm() for this address space.
 360         *
 361         * But even with that lock held, processors run asynchronously
 362         * accessing the old TSB via TLB miss handling.  This is OK
 363         * because those actions are just propagating state from the
 364         * Linux page tables into the TSB, page table mappings are not
 365         * being changed.  If a real fault occurs, the processor will
 366         * synchronize with us when it hits flush_tsb_user(), this is
 367         * also true for the case where vmscan is modifying the page
 368         * tables.  The only thing we need to be careful with is to
 369         * skip any locked TSB entries during copy_tsb().
 370         *
 371         * When we finish committing to the new TSB, we have to drop
 372         * the lock and ask all other cpus running this address space
 373         * to run tsb_context_switch() to see the new TSB table.
 374         */
 375        spin_lock_irqsave(&mm->context.lock, flags);
 376
 377        old_tsb = mm->context.tsb_block[tsb_index].tsb;
 378        old_cache_index =
 379                (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
 380        old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
 381                    sizeof(struct tsb));
 382
 383
 384        /* Handle multiple threads trying to grow the TSB at the same time.
 385         * One will get in here first, and bump the size and the RSS limit.
 386         * The others will get in here next and hit this check.
 387         */
 388        if (unlikely(old_tsb &&
 389                     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
 390                spin_unlock_irqrestore(&mm->context.lock, flags);
 391
 392                kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
 393                return;
 394        }
 395
 396        mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
 397
 398        if (old_tsb) {
 399                extern void copy_tsb(unsigned long old_tsb_base,
 400                                     unsigned long old_tsb_size,
 401                                     unsigned long new_tsb_base,
 402                                     unsigned long new_tsb_size);
 403                unsigned long old_tsb_base = (unsigned long) old_tsb;
 404                unsigned long new_tsb_base = (unsigned long) new_tsb;
 405
 406                if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
 407                        old_tsb_base = __pa(old_tsb_base);
 408                        new_tsb_base = __pa(new_tsb_base);
 409                }
 410                copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
 411        }
 412
 413        mm->context.tsb_block[tsb_index].tsb = new_tsb;
 414        setup_tsb_params(mm, tsb_index, new_size);
 415
 416        spin_unlock_irqrestore(&mm->context.lock, flags);
 417
 418        /* If old_tsb is NULL, we're being invoked for the first time
 419         * from init_new_context().
 420         */
 421        if (old_tsb) {
 422                /* Reload it on the local cpu.  */
 423                tsb_context_switch(mm);
 424
 425                /* Now force other processors to do the same.  */
 426                preempt_disable();
 427                smp_tsb_sync(mm);
 428                preempt_enable();
 429
 430                /* Now it is safe to free the old tsb.  */
 431                kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
 432        }
 433}
 434
 435int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 436{
 437#ifdef CONFIG_HUGETLB_PAGE
 438        unsigned long huge_pte_count;
 439#endif
 440        unsigned int i;
 441
 442        spin_lock_init(&mm->context.lock);
 443
 444        mm->context.sparc64_ctx_val = 0UL;
 445
 446#ifdef CONFIG_HUGETLB_PAGE
 447        /* We reset it to zero because the fork() page copying
 448         * will re-increment the counters as the parent PTEs are
 449         * copied into the child address space.
 450         */
 451        huge_pte_count = mm->context.huge_pte_count;
 452        mm->context.huge_pte_count = 0;
 453#endif
 454
 455        /* copy_mm() copies over the parent's mm_struct before calling
 456         * us, so we need to zero out the TSB pointer or else tsb_grow()
 457         * will be confused and think there is an older TSB to free up.
 458         */
 459        for (i = 0; i < MM_NUM_TSBS; i++)
 460                mm->context.tsb_block[i].tsb = NULL;
 461
 462        /* If this is fork, inherit the parent's TSB size.  We would
 463         * grow it to that size on the first page fault anyways.
 464         */
 465        tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
 466
 467#ifdef CONFIG_HUGETLB_PAGE
 468        if (unlikely(huge_pte_count))
 469                tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
 470#endif
 471
 472        if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
 473                return -ENOMEM;
 474
 475        return 0;
 476}
 477
 478static void tsb_destroy_one(struct tsb_config *tp)
 479{
 480        unsigned long cache_index;
 481
 482        if (!tp->tsb)
 483                return;
 484        cache_index = tp->tsb_reg_val & 0x7UL;
 485        kmem_cache_free(tsb_caches[cache_index], tp->tsb);
 486        tp->tsb = NULL;
 487        tp->tsb_reg_val = 0UL;
 488}
 489
 490void destroy_context(struct mm_struct *mm)
 491{
 492        unsigned long flags, i;
 493
 494        for (i = 0; i < MM_NUM_TSBS; i++)
 495                tsb_destroy_one(&mm->context.tsb_block[i]);
 496
 497        spin_lock_irqsave(&ctx_alloc_lock, flags);
 498
 499        if (CTX_VALID(mm->context)) {
 500                unsigned long nr = CTX_NRBITS(mm->context);
 501                mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
 502        }
 503
 504        spin_unlock_irqrestore(&ctx_alloc_lock, flags);
 505}
 506