linux/arch/tile/include/asm/page.h
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#ifndef _ASM_TILE_PAGE_H
  16#define _ASM_TILE_PAGE_H
  17
  18#include <linux/const.h>
  19#include <hv/hypervisor.h>
  20#include <arch/chip.h>
  21
  22/* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
  23#define PAGE_SHIFT      HV_LOG2_PAGE_SIZE_SMALL
  24#define HPAGE_SHIFT     HV_LOG2_PAGE_SIZE_LARGE
  25
  26#define PAGE_SIZE       (_AC(1, UL) << PAGE_SHIFT)
  27#define HPAGE_SIZE      (_AC(1, UL) << HPAGE_SHIFT)
  28
  29#define PAGE_MASK       (~(PAGE_SIZE - 1))
  30#define HPAGE_MASK      (~(HPAGE_SIZE - 1))
  31
  32/*
  33 * If the Kconfig doesn't specify, set a maximum zone order that
  34 * is enough so that we can create huge pages from small pages given
  35 * the respective sizes of the two page types.  See <linux/mmzone.h>.
  36 */
  37#ifndef CONFIG_FORCE_MAX_ZONEORDER
  38#define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
  39#endif
  40
  41#ifndef __ASSEMBLY__
  42
  43#include <linux/types.h>
  44#include <linux/string.h>
  45
  46struct page;
  47
  48static inline void clear_page(void *page)
  49{
  50        memset(page, 0, PAGE_SIZE);
  51}
  52
  53static inline void copy_page(void *to, void *from)
  54{
  55        memcpy(to, from, PAGE_SIZE);
  56}
  57
  58static inline void clear_user_page(void *page, unsigned long vaddr,
  59                                struct page *pg)
  60{
  61        clear_page(page);
  62}
  63
  64static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
  65                                struct page *topage)
  66{
  67        copy_page(to, from);
  68}
  69
  70/*
  71 * Hypervisor page tables are made of the same basic structure.
  72 */
  73
  74typedef HV_PTE pte_t;
  75typedef HV_PTE pgd_t;
  76typedef HV_PTE pgprot_t;
  77
  78/*
  79 * User L2 page tables are managed as one L2 page table per page,
  80 * because we use the page allocator for them.  This keeps the allocation
  81 * simple and makes it potentially useful to implement HIGHPTE at some point.
  82 * However, it's also inefficient, since L2 page tables are much smaller
  83 * than pages (currently 2KB vs 64KB).  So we should revisit this.
  84 */
  85typedef struct page *pgtable_t;
  86
  87/* Must be a macro since it is used to create constants. */
  88#define __pgprot(val) hv_pte(val)
  89
  90/* Rarely-used initializers, typically with a "zero" value. */
  91#define __pte(x) hv_pte(x)
  92#define __pgd(x) hv_pte(x)
  93
  94static inline u64 pgprot_val(pgprot_t pgprot)
  95{
  96        return hv_pte_val(pgprot);
  97}
  98
  99static inline u64 pte_val(pte_t pte)
 100{
 101        return hv_pte_val(pte);
 102}
 103
 104static inline u64 pgd_val(pgd_t pgd)
 105{
 106        return hv_pte_val(pgd);
 107}
 108
 109#ifdef __tilegx__
 110
 111typedef HV_PTE pmd_t;
 112
 113#define __pmd(x) hv_pte(x)
 114
 115static inline u64 pmd_val(pmd_t pmd)
 116{
 117        return hv_pte_val(pmd);
 118}
 119
 120#endif
 121
 122static inline __attribute_const__ int get_order(unsigned long size)
 123{
 124        return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
 125}
 126
 127#endif /* !__ASSEMBLY__ */
 128
 129#define HUGETLB_PAGE_ORDER      (HPAGE_SHIFT - PAGE_SHIFT)
 130
 131#define HUGE_MAX_HSTATE         2
 132
 133#ifdef CONFIG_HUGETLB_PAGE
 134#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 135#endif
 136
 137/* Each memory controller has PAs distinct in their high bits. */
 138#define NR_PA_HIGHBIT_SHIFT (CHIP_PA_WIDTH() - CHIP_LOG_NUM_MSHIMS())
 139#define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
 140#define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
 141#define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
 142
 143#ifdef __tilegx__
 144
 145/*
 146 * We reserve the lower half of memory for user-space programs, and the
 147 * upper half for system code.  We re-map all of physical memory in the
 148 * upper half, which takes a quarter of our VA space.  Then we have
 149 * the vmalloc regions.  The supervisor code lives at 0xfffffff700000000,
 150 * with the hypervisor above that.
 151 *
 152 * Loadable kernel modules are placed immediately after the static
 153 * supervisor code, with each being allocated a 256MB region of
 154 * address space, so we don't have to worry about the range of "jal"
 155 * and other branch instructions.
 156 *
 157 * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
 158 * Similarly, for now we don't play any struct page mapping games.
 159 */
 160
 161#if CHIP_PA_WIDTH() + 2 > CHIP_VA_WIDTH()
 162# error Too much PA to map with the VA available!
 163#endif
 164#define HALF_VA_SPACE           (_AC(1, UL) << (CHIP_VA_WIDTH() - 1))
 165
 166#define MEM_LOW_END             (HALF_VA_SPACE - 1)         /* low half */
 167#define MEM_HIGH_START          (-HALF_VA_SPACE)            /* high half */
 168#define PAGE_OFFSET             MEM_HIGH_START
 169#define _VMALLOC_START          _AC(0xfffffff500000000, UL) /* 4 GB */
 170#define HUGE_VMAP_BASE          _AC(0xfffffff600000000, UL) /* 4 GB */
 171#define MEM_SV_START            _AC(0xfffffff700000000, UL) /* 256 MB */
 172#define MEM_SV_INTRPT           MEM_SV_START
 173#define MEM_MODULE_START        _AC(0xfffffff710000000, UL) /* 256 MB */
 174#define MEM_MODULE_END          (MEM_MODULE_START + (256*1024*1024))
 175#define MEM_HV_START            _AC(0xfffffff800000000, UL) /* 32 GB */
 176
 177/* Highest DTLB address we will use */
 178#define KERNEL_HIGH_VADDR       MEM_SV_START
 179
 180/* Since we don't currently provide any fixmaps, we use an impossible VA. */
 181#define FIXADDR_TOP             MEM_HV_START
 182
 183#else /* !__tilegx__ */
 184
 185/*
 186 * A PAGE_OFFSET of 0xC0000000 means that the kernel has
 187 * a virtual address space of one gigabyte, which limits the
 188 * amount of physical memory you can use to about 768MB.
 189 * If you want more physical memory than this then see the CONFIG_HIGHMEM
 190 * option in the kernel configuration.
 191 *
 192 * The top 16MB chunk in the table below is unavailable to Linux.  Since
 193 * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
 194 * (depending on whether the kernel is at PL2 or Pl1), we map all of the
 195 * bottom of RAM at this address with a huge page table entry to minimize
 196 * its ITLB footprint (as well as at PAGE_OFFSET).  The last architected
 197 * requirement is that user interrupt vectors live at 0xfc000000, so we
 198 * make that range of memory available to user processes.  The remaining
 199 * regions are sized as shown; the first four addresses use the PL 1
 200 * values, and after that, we show "typical" values, since the actual
 201 * addresses depend on kernel #defines.
 202 *
 203 * MEM_HV_INTRPT                   0xfe000000
 204 * MEM_SV_INTRPT (kernel code)     0xfd000000
 205 * MEM_USER_INTRPT (user vector)   0xfc000000
 206 * FIX_KMAP_xxx                    0xf8000000 (via NR_CPUS * KM_TYPE_NR)
 207 * PKMAP_BASE                      0xf7000000 (via LAST_PKMAP)
 208 * HUGE_VMAP                       0xf3000000 (via CONFIG_NR_HUGE_VMAPS)
 209 * VMALLOC_START                   0xf0000000 (via __VMALLOC_RESERVE)
 210 * mapped LOWMEM                   0xc0000000
 211 */
 212
 213#define MEM_USER_INTRPT         _AC(0xfc000000, UL)
 214#if CONFIG_KERNEL_PL == 1
 215#define MEM_SV_INTRPT           _AC(0xfd000000, UL)
 216#define MEM_HV_INTRPT           _AC(0xfe000000, UL)
 217#else
 218#define MEM_GUEST_INTRPT        _AC(0xfd000000, UL)
 219#define MEM_SV_INTRPT           _AC(0xfe000000, UL)
 220#define MEM_HV_INTRPT           _AC(0xff000000, UL)
 221#endif
 222
 223#define INTRPT_SIZE             0x4000
 224
 225/* Tolerate page size larger than the architecture interrupt region size. */
 226#if PAGE_SIZE > INTRPT_SIZE
 227#undef INTRPT_SIZE
 228#define INTRPT_SIZE PAGE_SIZE
 229#endif
 230
 231#define KERNEL_HIGH_VADDR       MEM_USER_INTRPT
 232#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - PAGE_SIZE)
 233
 234#define PAGE_OFFSET             _AC(CONFIG_PAGE_OFFSET, UL)
 235
 236/* On 32-bit architectures we mix kernel modules in with other vmaps. */
 237#define MEM_MODULE_START        VMALLOC_START
 238#define MEM_MODULE_END          VMALLOC_END
 239
 240#endif /* __tilegx__ */
 241
 242#ifndef __ASSEMBLY__
 243
 244#ifdef CONFIG_HIGHMEM
 245
 246/* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
 247extern unsigned long pbase_map[];
 248extern void *vbase_map[];
 249
 250static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
 251{
 252        unsigned long kaddr = (unsigned long)_kaddr;
 253        return pbase_map[kaddr >> HPAGE_SHIFT] +
 254                ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
 255}
 256
 257static inline void *pfn_to_kaddr(unsigned long pfn)
 258{
 259        return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
 260}
 261
 262static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 263{
 264        unsigned long pfn = kaddr_to_pfn(kaddr);
 265        return ((phys_addr_t)pfn << PAGE_SHIFT) +
 266                ((unsigned long)kaddr & (PAGE_SIZE-1));
 267}
 268
 269static inline void *phys_to_virt(phys_addr_t paddr)
 270{
 271        return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
 272}
 273
 274/* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
 275static inline int virt_addr_valid(const volatile void *kaddr)
 276{
 277        extern void *high_memory;  /* copied from <linux/mm.h> */
 278        return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
 279}
 280
 281#else /* !CONFIG_HIGHMEM */
 282
 283static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
 284{
 285        return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
 286}
 287
 288static inline void *pfn_to_kaddr(unsigned long pfn)
 289{
 290        return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
 291}
 292
 293static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 294{
 295        return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
 296}
 297
 298static inline void *phys_to_virt(phys_addr_t paddr)
 299{
 300        return (void *)((unsigned long)paddr + PAGE_OFFSET);
 301}
 302
 303/* Check that the given address is within some mapped range of PAs. */
 304#define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
 305
 306#endif /* !CONFIG_HIGHMEM */
 307
 308/* All callers are not consistent in how they call these functions. */
 309#define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
 310#define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
 311
 312extern int devmem_is_allowed(unsigned long pagenr);
 313
 314#ifdef CONFIG_FLATMEM
 315static inline int pfn_valid(unsigned long pfn)
 316{
 317        return pfn < max_mapnr;
 318}
 319#endif
 320
 321/* Provide as macros since these require some other headers included. */
 322#define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
 323#define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
 324#define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
 325
 326struct mm_struct;
 327extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
 328
 329#endif /* !__ASSEMBLY__ */
 330
 331#define VM_DATA_DEFAULT_FLAGS \
 332        (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 333
 334#include <asm-generic/memory_model.h>
 335
 336#endif /* _ASM_TILE_PAGE_H */
 337