linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29
  30#include <linux/clocksource.h>
  31#include <linux/interrupt.h>
  32#include <linux/kvm.h>
  33#include <linux/fs.h>
  34#include <linux/vmalloc.h>
  35#include <linux/module.h>
  36#include <linux/mman.h>
  37#include <linux/highmem.h>
  38#include <linux/iommu.h>
  39#include <linux/intel-iommu.h>
  40#include <linux/cpufreq.h>
  41#include <linux/user-return-notifier.h>
  42#include <linux/srcu.h>
  43#include <linux/slab.h>
  44#include <linux/perf_event.h>
  45#include <linux/uaccess.h>
  46#include <linux/hash.h>
  47#include <trace/events/kvm.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include "trace.h"
  51
  52#include <asm/debugreg.h>
  53#include <asm/msr.h>
  54#include <asm/desc.h>
  55#include <asm/mtrr.h>
  56#include <asm/mce.h>
  57#include <asm/i387.h>
  58#include <asm/xcr.h>
  59#include <asm/pvclock.h>
  60#include <asm/div64.h>
  61
  62#define MAX_IO_MSRS 256
  63#define KVM_MAX_MCE_BANKS 32
  64#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  65
  66#define emul_to_vcpu(ctxt) \
  67        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  68
  69/* EFER defaults:
  70 * - enable syscall per default because its emulated by KVM
  71 * - enable LME and LMA per default on 64 bit KVM
  72 */
  73#ifdef CONFIG_X86_64
  74static
  75u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  76#else
  77static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  78#endif
  79
  80#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  81#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  82
  83static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  84static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  85                                    struct kvm_cpuid_entry2 __user *entries);
  86
  87struct kvm_x86_ops *kvm_x86_ops;
  88EXPORT_SYMBOL_GPL(kvm_x86_ops);
  89
  90int ignore_msrs = 0;
  91module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  92
  93bool kvm_has_tsc_control;
  94EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  95u32  kvm_max_guest_tsc_khz;
  96EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  97
  98#define KVM_NR_SHARED_MSRS 16
  99
 100struct kvm_shared_msrs_global {
 101        int nr;
 102        u32 msrs[KVM_NR_SHARED_MSRS];
 103};
 104
 105struct kvm_shared_msrs {
 106        struct user_return_notifier urn;
 107        bool registered;
 108        struct kvm_shared_msr_values {
 109                u64 host;
 110                u64 curr;
 111        } values[KVM_NR_SHARED_MSRS];
 112};
 113
 114static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 115static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
 116
 117struct kvm_stats_debugfs_item debugfs_entries[] = {
 118        { "pf_fixed", VCPU_STAT(pf_fixed) },
 119        { "pf_guest", VCPU_STAT(pf_guest) },
 120        { "tlb_flush", VCPU_STAT(tlb_flush) },
 121        { "invlpg", VCPU_STAT(invlpg) },
 122        { "exits", VCPU_STAT(exits) },
 123        { "io_exits", VCPU_STAT(io_exits) },
 124        { "mmio_exits", VCPU_STAT(mmio_exits) },
 125        { "signal_exits", VCPU_STAT(signal_exits) },
 126        { "irq_window", VCPU_STAT(irq_window_exits) },
 127        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 128        { "halt_exits", VCPU_STAT(halt_exits) },
 129        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 130        { "hypercalls", VCPU_STAT(hypercalls) },
 131        { "request_irq", VCPU_STAT(request_irq_exits) },
 132        { "irq_exits", VCPU_STAT(irq_exits) },
 133        { "host_state_reload", VCPU_STAT(host_state_reload) },
 134        { "efer_reload", VCPU_STAT(efer_reload) },
 135        { "fpu_reload", VCPU_STAT(fpu_reload) },
 136        { "insn_emulation", VCPU_STAT(insn_emulation) },
 137        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 138        { "irq_injections", VCPU_STAT(irq_injections) },
 139        { "nmi_injections", VCPU_STAT(nmi_injections) },
 140        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 141        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 142        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 143        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 144        { "mmu_flooded", VM_STAT(mmu_flooded) },
 145        { "mmu_recycled", VM_STAT(mmu_recycled) },
 146        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 147        { "mmu_unsync", VM_STAT(mmu_unsync) },
 148        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 149        { "largepages", VM_STAT(lpages) },
 150        { NULL }
 151};
 152
 153u64 __read_mostly host_xcr0;
 154
 155int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 156
 157static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 158{
 159        int i;
 160        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 161                vcpu->arch.apf.gfns[i] = ~0;
 162}
 163
 164static void kvm_on_user_return(struct user_return_notifier *urn)
 165{
 166        unsigned slot;
 167        struct kvm_shared_msrs *locals
 168                = container_of(urn, struct kvm_shared_msrs, urn);
 169        struct kvm_shared_msr_values *values;
 170
 171        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 172                values = &locals->values[slot];
 173                if (values->host != values->curr) {
 174                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 175                        values->curr = values->host;
 176                }
 177        }
 178        locals->registered = false;
 179        user_return_notifier_unregister(urn);
 180}
 181
 182static void shared_msr_update(unsigned slot, u32 msr)
 183{
 184        struct kvm_shared_msrs *smsr;
 185        u64 value;
 186
 187        smsr = &__get_cpu_var(shared_msrs);
 188        /* only read, and nobody should modify it at this time,
 189         * so don't need lock */
 190        if (slot >= shared_msrs_global.nr) {
 191                printk(KERN_ERR "kvm: invalid MSR slot!");
 192                return;
 193        }
 194        rdmsrl_safe(msr, &value);
 195        smsr->values[slot].host = value;
 196        smsr->values[slot].curr = value;
 197}
 198
 199void kvm_define_shared_msr(unsigned slot, u32 msr)
 200{
 201        if (slot >= shared_msrs_global.nr)
 202                shared_msrs_global.nr = slot + 1;
 203        shared_msrs_global.msrs[slot] = msr;
 204        /* we need ensured the shared_msr_global have been updated */
 205        smp_wmb();
 206}
 207EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 208
 209static void kvm_shared_msr_cpu_online(void)
 210{
 211        unsigned i;
 212
 213        for (i = 0; i < shared_msrs_global.nr; ++i)
 214                shared_msr_update(i, shared_msrs_global.msrs[i]);
 215}
 216
 217void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 218{
 219        struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
 220
 221        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 222                return;
 223        smsr->values[slot].curr = value;
 224        wrmsrl(shared_msrs_global.msrs[slot], value);
 225        if (!smsr->registered) {
 226                smsr->urn.on_user_return = kvm_on_user_return;
 227                user_return_notifier_register(&smsr->urn);
 228                smsr->registered = true;
 229        }
 230}
 231EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 232
 233static void drop_user_return_notifiers(void *ignore)
 234{
 235        struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
 236
 237        if (smsr->registered)
 238                kvm_on_user_return(&smsr->urn);
 239}
 240
 241u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 242{
 243        if (irqchip_in_kernel(vcpu->kvm))
 244                return vcpu->arch.apic_base;
 245        else
 246                return vcpu->arch.apic_base;
 247}
 248EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 249
 250void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 251{
 252        /* TODO: reserve bits check */
 253        if (irqchip_in_kernel(vcpu->kvm))
 254                kvm_lapic_set_base(vcpu, data);
 255        else
 256                vcpu->arch.apic_base = data;
 257}
 258EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 259
 260#define EXCPT_BENIGN            0
 261#define EXCPT_CONTRIBUTORY      1
 262#define EXCPT_PF                2
 263
 264static int exception_class(int vector)
 265{
 266        switch (vector) {
 267        case PF_VECTOR:
 268                return EXCPT_PF;
 269        case DE_VECTOR:
 270        case TS_VECTOR:
 271        case NP_VECTOR:
 272        case SS_VECTOR:
 273        case GP_VECTOR:
 274                return EXCPT_CONTRIBUTORY;
 275        default:
 276                break;
 277        }
 278        return EXCPT_BENIGN;
 279}
 280
 281static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 282                unsigned nr, bool has_error, u32 error_code,
 283                bool reinject)
 284{
 285        u32 prev_nr;
 286        int class1, class2;
 287
 288        kvm_make_request(KVM_REQ_EVENT, vcpu);
 289
 290        if (!vcpu->arch.exception.pending) {
 291        queue:
 292                vcpu->arch.exception.pending = true;
 293                vcpu->arch.exception.has_error_code = has_error;
 294                vcpu->arch.exception.nr = nr;
 295                vcpu->arch.exception.error_code = error_code;
 296                vcpu->arch.exception.reinject = reinject;
 297                return;
 298        }
 299
 300        /* to check exception */
 301        prev_nr = vcpu->arch.exception.nr;
 302        if (prev_nr == DF_VECTOR) {
 303                /* triple fault -> shutdown */
 304                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 305                return;
 306        }
 307        class1 = exception_class(prev_nr);
 308        class2 = exception_class(nr);
 309        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 310                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 311                /* generate double fault per SDM Table 5-5 */
 312                vcpu->arch.exception.pending = true;
 313                vcpu->arch.exception.has_error_code = true;
 314                vcpu->arch.exception.nr = DF_VECTOR;
 315                vcpu->arch.exception.error_code = 0;
 316        } else
 317                /* replace previous exception with a new one in a hope
 318                   that instruction re-execution will regenerate lost
 319                   exception */
 320                goto queue;
 321}
 322
 323void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 324{
 325        kvm_multiple_exception(vcpu, nr, false, 0, false);
 326}
 327EXPORT_SYMBOL_GPL(kvm_queue_exception);
 328
 329void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 330{
 331        kvm_multiple_exception(vcpu, nr, false, 0, true);
 332}
 333EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 334
 335void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 336{
 337        if (err)
 338                kvm_inject_gp(vcpu, 0);
 339        else
 340                kvm_x86_ops->skip_emulated_instruction(vcpu);
 341}
 342EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 343
 344void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 345{
 346        ++vcpu->stat.pf_guest;
 347        vcpu->arch.cr2 = fault->address;
 348        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 349}
 350
 351void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 352{
 353        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 354                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 355        else
 356                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 357}
 358
 359void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 360{
 361        kvm_make_request(KVM_REQ_EVENT, vcpu);
 362        vcpu->arch.nmi_pending = 1;
 363}
 364EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 365
 366void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 367{
 368        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 369}
 370EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 371
 372void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 373{
 374        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 375}
 376EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 377
 378/*
 379 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 380 * a #GP and return false.
 381 */
 382bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 383{
 384        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 385                return true;
 386        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 387        return false;
 388}
 389EXPORT_SYMBOL_GPL(kvm_require_cpl);
 390
 391/*
 392 * This function will be used to read from the physical memory of the currently
 393 * running guest. The difference to kvm_read_guest_page is that this function
 394 * can read from guest physical or from the guest's guest physical memory.
 395 */
 396int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 397                            gfn_t ngfn, void *data, int offset, int len,
 398                            u32 access)
 399{
 400        gfn_t real_gfn;
 401        gpa_t ngpa;
 402
 403        ngpa     = gfn_to_gpa(ngfn);
 404        real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
 405        if (real_gfn == UNMAPPED_GVA)
 406                return -EFAULT;
 407
 408        real_gfn = gpa_to_gfn(real_gfn);
 409
 410        return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 411}
 412EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 413
 414int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 415                               void *data, int offset, int len, u32 access)
 416{
 417        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 418                                       data, offset, len, access);
 419}
 420
 421/*
 422 * Load the pae pdptrs.  Return true is they are all valid.
 423 */
 424int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 425{
 426        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 427        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 428        int i;
 429        int ret;
 430        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 431
 432        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 433                                      offset * sizeof(u64), sizeof(pdpte),
 434                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 435        if (ret < 0) {
 436                ret = 0;
 437                goto out;
 438        }
 439        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 440                if (is_present_gpte(pdpte[i]) &&
 441                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 442                        ret = 0;
 443                        goto out;
 444                }
 445        }
 446        ret = 1;
 447
 448        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 449        __set_bit(VCPU_EXREG_PDPTR,
 450                  (unsigned long *)&vcpu->arch.regs_avail);
 451        __set_bit(VCPU_EXREG_PDPTR,
 452                  (unsigned long *)&vcpu->arch.regs_dirty);
 453out:
 454
 455        return ret;
 456}
 457EXPORT_SYMBOL_GPL(load_pdptrs);
 458
 459static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 460{
 461        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 462        bool changed = true;
 463        int offset;
 464        gfn_t gfn;
 465        int r;
 466
 467        if (is_long_mode(vcpu) || !is_pae(vcpu))
 468                return false;
 469
 470        if (!test_bit(VCPU_EXREG_PDPTR,
 471                      (unsigned long *)&vcpu->arch.regs_avail))
 472                return true;
 473
 474        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 475        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 476        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 477                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 478        if (r < 0)
 479                goto out;
 480        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 481out:
 482
 483        return changed;
 484}
 485
 486int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 487{
 488        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 489        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 490                                    X86_CR0_CD | X86_CR0_NW;
 491
 492        cr0 |= X86_CR0_ET;
 493
 494#ifdef CONFIG_X86_64
 495        if (cr0 & 0xffffffff00000000UL)
 496                return 1;
 497#endif
 498
 499        cr0 &= ~CR0_RESERVED_BITS;
 500
 501        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 502                return 1;
 503
 504        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 505                return 1;
 506
 507        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 508#ifdef CONFIG_X86_64
 509                if ((vcpu->arch.efer & EFER_LME)) {
 510                        int cs_db, cs_l;
 511
 512                        if (!is_pae(vcpu))
 513                                return 1;
 514                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 515                        if (cs_l)
 516                                return 1;
 517                } else
 518#endif
 519                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 520                                                 kvm_read_cr3(vcpu)))
 521                        return 1;
 522        }
 523
 524        kvm_x86_ops->set_cr0(vcpu, cr0);
 525
 526        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 527                kvm_clear_async_pf_completion_queue(vcpu);
 528                kvm_async_pf_hash_reset(vcpu);
 529        }
 530
 531        if ((cr0 ^ old_cr0) & update_bits)
 532                kvm_mmu_reset_context(vcpu);
 533        return 0;
 534}
 535EXPORT_SYMBOL_GPL(kvm_set_cr0);
 536
 537void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 538{
 539        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 540}
 541EXPORT_SYMBOL_GPL(kvm_lmsw);
 542
 543int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 544{
 545        u64 xcr0;
 546
 547        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 548        if (index != XCR_XFEATURE_ENABLED_MASK)
 549                return 1;
 550        xcr0 = xcr;
 551        if (kvm_x86_ops->get_cpl(vcpu) != 0)
 552                return 1;
 553        if (!(xcr0 & XSTATE_FP))
 554                return 1;
 555        if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 556                return 1;
 557        if (xcr0 & ~host_xcr0)
 558                return 1;
 559        vcpu->arch.xcr0 = xcr0;
 560        vcpu->guest_xcr0_loaded = 0;
 561        return 0;
 562}
 563
 564int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 565{
 566        if (__kvm_set_xcr(vcpu, index, xcr)) {
 567                kvm_inject_gp(vcpu, 0);
 568                return 1;
 569        }
 570        return 0;
 571}
 572EXPORT_SYMBOL_GPL(kvm_set_xcr);
 573
 574static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
 575{
 576        struct kvm_cpuid_entry2 *best;
 577
 578        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 579        return best && (best->ecx & bit(X86_FEATURE_XSAVE));
 580}
 581
 582static void update_cpuid(struct kvm_vcpu *vcpu)
 583{
 584        struct kvm_cpuid_entry2 *best;
 585
 586        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 587        if (!best)
 588                return;
 589
 590        /* Update OSXSAVE bit */
 591        if (cpu_has_xsave && best->function == 0x1) {
 592                best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
 593                if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 594                        best->ecx |= bit(X86_FEATURE_OSXSAVE);
 595        }
 596}
 597
 598int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 599{
 600        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 601        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
 602
 603        if (cr4 & CR4_RESERVED_BITS)
 604                return 1;
 605
 606        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 607                return 1;
 608
 609        if (is_long_mode(vcpu)) {
 610                if (!(cr4 & X86_CR4_PAE))
 611                        return 1;
 612        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 613                   && ((cr4 ^ old_cr4) & pdptr_bits)
 614                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 615                                   kvm_read_cr3(vcpu)))
 616                return 1;
 617
 618        if (cr4 & X86_CR4_VMXE)
 619                return 1;
 620
 621        kvm_x86_ops->set_cr4(vcpu, cr4);
 622
 623        if ((cr4 ^ old_cr4) & pdptr_bits)
 624                kvm_mmu_reset_context(vcpu);
 625
 626        if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 627                update_cpuid(vcpu);
 628
 629        return 0;
 630}
 631EXPORT_SYMBOL_GPL(kvm_set_cr4);
 632
 633int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 634{
 635        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 636                kvm_mmu_sync_roots(vcpu);
 637                kvm_mmu_flush_tlb(vcpu);
 638                return 0;
 639        }
 640
 641        if (is_long_mode(vcpu)) {
 642                if (cr3 & CR3_L_MODE_RESERVED_BITS)
 643                        return 1;
 644        } else {
 645                if (is_pae(vcpu)) {
 646                        if (cr3 & CR3_PAE_RESERVED_BITS)
 647                                return 1;
 648                        if (is_paging(vcpu) &&
 649                            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 650                                return 1;
 651                }
 652                /*
 653                 * We don't check reserved bits in nonpae mode, because
 654                 * this isn't enforced, and VMware depends on this.
 655                 */
 656        }
 657
 658        /*
 659         * Does the new cr3 value map to physical memory? (Note, we
 660         * catch an invalid cr3 even in real-mode, because it would
 661         * cause trouble later on when we turn on paging anyway.)
 662         *
 663         * A real CPU would silently accept an invalid cr3 and would
 664         * attempt to use it - with largely undefined (and often hard
 665         * to debug) behavior on the guest side.
 666         */
 667        if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 668                return 1;
 669        vcpu->arch.cr3 = cr3;
 670        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 671        vcpu->arch.mmu.new_cr3(vcpu);
 672        return 0;
 673}
 674EXPORT_SYMBOL_GPL(kvm_set_cr3);
 675
 676int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 677{
 678        if (cr8 & CR8_RESERVED_BITS)
 679                return 1;
 680        if (irqchip_in_kernel(vcpu->kvm))
 681                kvm_lapic_set_tpr(vcpu, cr8);
 682        else
 683                vcpu->arch.cr8 = cr8;
 684        return 0;
 685}
 686EXPORT_SYMBOL_GPL(kvm_set_cr8);
 687
 688unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 689{
 690        if (irqchip_in_kernel(vcpu->kvm))
 691                return kvm_lapic_get_cr8(vcpu);
 692        else
 693                return vcpu->arch.cr8;
 694}
 695EXPORT_SYMBOL_GPL(kvm_get_cr8);
 696
 697static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 698{
 699        switch (dr) {
 700        case 0 ... 3:
 701                vcpu->arch.db[dr] = val;
 702                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 703                        vcpu->arch.eff_db[dr] = val;
 704                break;
 705        case 4:
 706                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 707                        return 1; /* #UD */
 708                /* fall through */
 709        case 6:
 710                if (val & 0xffffffff00000000ULL)
 711                        return -1; /* #GP */
 712                vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 713                break;
 714        case 5:
 715                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 716                        return 1; /* #UD */
 717                /* fall through */
 718        default: /* 7 */
 719                if (val & 0xffffffff00000000ULL)
 720                        return -1; /* #GP */
 721                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 722                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
 723                        kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
 724                        vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
 725                }
 726                break;
 727        }
 728
 729        return 0;
 730}
 731
 732int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 733{
 734        int res;
 735
 736        res = __kvm_set_dr(vcpu, dr, val);
 737        if (res > 0)
 738                kvm_queue_exception(vcpu, UD_VECTOR);
 739        else if (res < 0)
 740                kvm_inject_gp(vcpu, 0);
 741
 742        return res;
 743}
 744EXPORT_SYMBOL_GPL(kvm_set_dr);
 745
 746static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 747{
 748        switch (dr) {
 749        case 0 ... 3:
 750                *val = vcpu->arch.db[dr];
 751                break;
 752        case 4:
 753                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 754                        return 1;
 755                /* fall through */
 756        case 6:
 757                *val = vcpu->arch.dr6;
 758                break;
 759        case 5:
 760                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 761                        return 1;
 762                /* fall through */
 763        default: /* 7 */
 764                *val = vcpu->arch.dr7;
 765                break;
 766        }
 767
 768        return 0;
 769}
 770
 771int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 772{
 773        if (_kvm_get_dr(vcpu, dr, val)) {
 774                kvm_queue_exception(vcpu, UD_VECTOR);
 775                return 1;
 776        }
 777        return 0;
 778}
 779EXPORT_SYMBOL_GPL(kvm_get_dr);
 780
 781/*
 782 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 783 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 784 *
 785 * This list is modified at module load time to reflect the
 786 * capabilities of the host cpu. This capabilities test skips MSRs that are
 787 * kvm-specific. Those are put in the beginning of the list.
 788 */
 789
 790#define KVM_SAVE_MSRS_BEGIN     8
 791static u32 msrs_to_save[] = {
 792        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 793        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 794        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 795        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
 796        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 797        MSR_STAR,
 798#ifdef CONFIG_X86_64
 799        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 800#endif
 801        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 802};
 803
 804static unsigned num_msrs_to_save;
 805
 806static u32 emulated_msrs[] = {
 807        MSR_IA32_MISC_ENABLE,
 808        MSR_IA32_MCG_STATUS,
 809        MSR_IA32_MCG_CTL,
 810};
 811
 812static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 813{
 814        u64 old_efer = vcpu->arch.efer;
 815
 816        if (efer & efer_reserved_bits)
 817                return 1;
 818
 819        if (is_paging(vcpu)
 820            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 821                return 1;
 822
 823        if (efer & EFER_FFXSR) {
 824                struct kvm_cpuid_entry2 *feat;
 825
 826                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 827                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 828                        return 1;
 829        }
 830
 831        if (efer & EFER_SVME) {
 832                struct kvm_cpuid_entry2 *feat;
 833
 834                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 835                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 836                        return 1;
 837        }
 838
 839        efer &= ~EFER_LMA;
 840        efer |= vcpu->arch.efer & EFER_LMA;
 841
 842        kvm_x86_ops->set_efer(vcpu, efer);
 843
 844        vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
 845
 846        /* Update reserved bits */
 847        if ((efer ^ old_efer) & EFER_NX)
 848                kvm_mmu_reset_context(vcpu);
 849
 850        return 0;
 851}
 852
 853void kvm_enable_efer_bits(u64 mask)
 854{
 855       efer_reserved_bits &= ~mask;
 856}
 857EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 858
 859
 860/*
 861 * Writes msr value into into the appropriate "register".
 862 * Returns 0 on success, non-0 otherwise.
 863 * Assumes vcpu_load() was already called.
 864 */
 865int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 866{
 867        return kvm_x86_ops->set_msr(vcpu, msr_index, data);
 868}
 869
 870/*
 871 * Adapt set_msr() to msr_io()'s calling convention
 872 */
 873static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 874{
 875        return kvm_set_msr(vcpu, index, *data);
 876}
 877
 878static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 879{
 880        int version;
 881        int r;
 882        struct pvclock_wall_clock wc;
 883        struct timespec boot;
 884
 885        if (!wall_clock)
 886                return;
 887
 888        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 889        if (r)
 890                return;
 891
 892        if (version & 1)
 893                ++version;  /* first time write, random junk */
 894
 895        ++version;
 896
 897        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 898
 899        /*
 900         * The guest calculates current wall clock time by adding
 901         * system time (updated by kvm_guest_time_update below) to the
 902         * wall clock specified here.  guest system time equals host
 903         * system time for us, thus we must fill in host boot time here.
 904         */
 905        getboottime(&boot);
 906
 907        wc.sec = boot.tv_sec;
 908        wc.nsec = boot.tv_nsec;
 909        wc.version = version;
 910
 911        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 912
 913        version++;
 914        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 915}
 916
 917static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 918{
 919        uint32_t quotient, remainder;
 920
 921        /* Don't try to replace with do_div(), this one calculates
 922         * "(dividend << 32) / divisor" */
 923        __asm__ ( "divl %4"
 924                  : "=a" (quotient), "=d" (remainder)
 925                  : "0" (0), "1" (dividend), "r" (divisor) );
 926        return quotient;
 927}
 928
 929static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
 930                               s8 *pshift, u32 *pmultiplier)
 931{
 932        uint64_t scaled64;
 933        int32_t  shift = 0;
 934        uint64_t tps64;
 935        uint32_t tps32;
 936
 937        tps64 = base_khz * 1000LL;
 938        scaled64 = scaled_khz * 1000LL;
 939        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
 940                tps64 >>= 1;
 941                shift--;
 942        }
 943
 944        tps32 = (uint32_t)tps64;
 945        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
 946                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
 947                        scaled64 >>= 1;
 948                else
 949                        tps32 <<= 1;
 950                shift++;
 951        }
 952
 953        *pshift = shift;
 954        *pmultiplier = div_frac(scaled64, tps32);
 955
 956        pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
 957                 __func__, base_khz, scaled_khz, shift, *pmultiplier);
 958}
 959
 960static inline u64 get_kernel_ns(void)
 961{
 962        struct timespec ts;
 963
 964        WARN_ON(preemptible());
 965        ktime_get_ts(&ts);
 966        monotonic_to_bootbased(&ts);
 967        return timespec_to_ns(&ts);
 968}
 969
 970static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 971unsigned long max_tsc_khz;
 972
 973static inline int kvm_tsc_changes_freq(void)
 974{
 975        int cpu = get_cpu();
 976        int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
 977                  cpufreq_quick_get(cpu) != 0;
 978        put_cpu();
 979        return ret;
 980}
 981
 982static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
 983{
 984        if (vcpu->arch.virtual_tsc_khz)
 985                return vcpu->arch.virtual_tsc_khz;
 986        else
 987                return __this_cpu_read(cpu_tsc_khz);
 988}
 989
 990static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
 991{
 992        u64 ret;
 993
 994        WARN_ON(preemptible());
 995        if (kvm_tsc_changes_freq())
 996                printk_once(KERN_WARNING
 997                 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
 998        ret = nsec * vcpu_tsc_khz(vcpu);
 999        do_div(ret, USEC_PER_SEC);
1000        return ret;
1001}
1002
1003static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1004{
1005        /* Compute a scale to convert nanoseconds in TSC cycles */
1006        kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1007                           &vcpu->arch.tsc_catchup_shift,
1008                           &vcpu->arch.tsc_catchup_mult);
1009}
1010
1011static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1012{
1013        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1014                                      vcpu->arch.tsc_catchup_mult,
1015                                      vcpu->arch.tsc_catchup_shift);
1016        tsc += vcpu->arch.last_tsc_write;
1017        return tsc;
1018}
1019
1020void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1021{
1022        struct kvm *kvm = vcpu->kvm;
1023        u64 offset, ns, elapsed;
1024        unsigned long flags;
1025        s64 sdiff;
1026
1027        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1028        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1029        ns = get_kernel_ns();
1030        elapsed = ns - kvm->arch.last_tsc_nsec;
1031        sdiff = data - kvm->arch.last_tsc_write;
1032        if (sdiff < 0)
1033                sdiff = -sdiff;
1034
1035        /*
1036         * Special case: close write to TSC within 5 seconds of
1037         * another CPU is interpreted as an attempt to synchronize
1038         * The 5 seconds is to accommodate host load / swapping as
1039         * well as any reset of TSC during the boot process.
1040         *
1041         * In that case, for a reliable TSC, we can match TSC offsets,
1042         * or make a best guest using elapsed value.
1043         */
1044        if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1045            elapsed < 5ULL * NSEC_PER_SEC) {
1046                if (!check_tsc_unstable()) {
1047                        offset = kvm->arch.last_tsc_offset;
1048                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1049                } else {
1050                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1051                        offset += delta;
1052                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1053                }
1054                ns = kvm->arch.last_tsc_nsec;
1055        }
1056        kvm->arch.last_tsc_nsec = ns;
1057        kvm->arch.last_tsc_write = data;
1058        kvm->arch.last_tsc_offset = offset;
1059        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1060        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1061
1062        /* Reset of TSC must disable overshoot protection below */
1063        vcpu->arch.hv_clock.tsc_timestamp = 0;
1064        vcpu->arch.last_tsc_write = data;
1065        vcpu->arch.last_tsc_nsec = ns;
1066}
1067EXPORT_SYMBOL_GPL(kvm_write_tsc);
1068
1069static int kvm_guest_time_update(struct kvm_vcpu *v)
1070{
1071        unsigned long flags;
1072        struct kvm_vcpu_arch *vcpu = &v->arch;
1073        void *shared_kaddr;
1074        unsigned long this_tsc_khz;
1075        s64 kernel_ns, max_kernel_ns;
1076        u64 tsc_timestamp;
1077
1078        /* Keep irq disabled to prevent changes to the clock */
1079        local_irq_save(flags);
1080        kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1081        kernel_ns = get_kernel_ns();
1082        this_tsc_khz = vcpu_tsc_khz(v);
1083        if (unlikely(this_tsc_khz == 0)) {
1084                local_irq_restore(flags);
1085                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1086                return 1;
1087        }
1088
1089        /*
1090         * We may have to catch up the TSC to match elapsed wall clock
1091         * time for two reasons, even if kvmclock is used.
1092         *   1) CPU could have been running below the maximum TSC rate
1093         *   2) Broken TSC compensation resets the base at each VCPU
1094         *      entry to avoid unknown leaps of TSC even when running
1095         *      again on the same CPU.  This may cause apparent elapsed
1096         *      time to disappear, and the guest to stand still or run
1097         *      very slowly.
1098         */
1099        if (vcpu->tsc_catchup) {
1100                u64 tsc = compute_guest_tsc(v, kernel_ns);
1101                if (tsc > tsc_timestamp) {
1102                        kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1103                        tsc_timestamp = tsc;
1104                }
1105        }
1106
1107        local_irq_restore(flags);
1108
1109        if (!vcpu->time_page)
1110                return 0;
1111
1112        /*
1113         * Time as measured by the TSC may go backwards when resetting the base
1114         * tsc_timestamp.  The reason for this is that the TSC resolution is
1115         * higher than the resolution of the other clock scales.  Thus, many
1116         * possible measurments of the TSC correspond to one measurement of any
1117         * other clock, and so a spread of values is possible.  This is not a
1118         * problem for the computation of the nanosecond clock; with TSC rates
1119         * around 1GHZ, there can only be a few cycles which correspond to one
1120         * nanosecond value, and any path through this code will inevitably
1121         * take longer than that.  However, with the kernel_ns value itself,
1122         * the precision may be much lower, down to HZ granularity.  If the
1123         * first sampling of TSC against kernel_ns ends in the low part of the
1124         * range, and the second in the high end of the range, we can get:
1125         *
1126         * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1127         *
1128         * As the sampling errors potentially range in the thousands of cycles,
1129         * it is possible such a time value has already been observed by the
1130         * guest.  To protect against this, we must compute the system time as
1131         * observed by the guest and ensure the new system time is greater.
1132         */
1133        max_kernel_ns = 0;
1134        if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1135                max_kernel_ns = vcpu->last_guest_tsc -
1136                                vcpu->hv_clock.tsc_timestamp;
1137                max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1138                                    vcpu->hv_clock.tsc_to_system_mul,
1139                                    vcpu->hv_clock.tsc_shift);
1140                max_kernel_ns += vcpu->last_kernel_ns;
1141        }
1142
1143        if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1144                kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1145                                   &vcpu->hv_clock.tsc_shift,
1146                                   &vcpu->hv_clock.tsc_to_system_mul);
1147                vcpu->hw_tsc_khz = this_tsc_khz;
1148        }
1149
1150        if (max_kernel_ns > kernel_ns)
1151                kernel_ns = max_kernel_ns;
1152
1153        /* With all the info we got, fill in the values */
1154        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1155        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1156        vcpu->last_kernel_ns = kernel_ns;
1157        vcpu->last_guest_tsc = tsc_timestamp;
1158        vcpu->hv_clock.flags = 0;
1159
1160        /*
1161         * The interface expects us to write an even number signaling that the
1162         * update is finished. Since the guest won't see the intermediate
1163         * state, we just increase by 2 at the end.
1164         */
1165        vcpu->hv_clock.version += 2;
1166
1167        shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1168
1169        memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1170               sizeof(vcpu->hv_clock));
1171
1172        kunmap_atomic(shared_kaddr, KM_USER0);
1173
1174        mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1175        return 0;
1176}
1177
1178static bool msr_mtrr_valid(unsigned msr)
1179{
1180        switch (msr) {
1181        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1182        case MSR_MTRRfix64K_00000:
1183        case MSR_MTRRfix16K_80000:
1184        case MSR_MTRRfix16K_A0000:
1185        case MSR_MTRRfix4K_C0000:
1186        case MSR_MTRRfix4K_C8000:
1187        case MSR_MTRRfix4K_D0000:
1188        case MSR_MTRRfix4K_D8000:
1189        case MSR_MTRRfix4K_E0000:
1190        case MSR_MTRRfix4K_E8000:
1191        case MSR_MTRRfix4K_F0000:
1192        case MSR_MTRRfix4K_F8000:
1193        case MSR_MTRRdefType:
1194        case MSR_IA32_CR_PAT:
1195                return true;
1196        case 0x2f8:
1197                return true;
1198        }
1199        return false;
1200}
1201
1202static bool valid_pat_type(unsigned t)
1203{
1204        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1205}
1206
1207static bool valid_mtrr_type(unsigned t)
1208{
1209        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1210}
1211
1212static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1213{
1214        int i;
1215
1216        if (!msr_mtrr_valid(msr))
1217                return false;
1218
1219        if (msr == MSR_IA32_CR_PAT) {
1220                for (i = 0; i < 8; i++)
1221                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
1222                                return false;
1223                return true;
1224        } else if (msr == MSR_MTRRdefType) {
1225                if (data & ~0xcff)
1226                        return false;
1227                return valid_mtrr_type(data & 0xff);
1228        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1229                for (i = 0; i < 8 ; i++)
1230                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1231                                return false;
1232                return true;
1233        }
1234
1235        /* variable MTRRs */
1236        return valid_mtrr_type(data & 0xff);
1237}
1238
1239static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1240{
1241        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1242
1243        if (!mtrr_valid(vcpu, msr, data))
1244                return 1;
1245
1246        if (msr == MSR_MTRRdefType) {
1247                vcpu->arch.mtrr_state.def_type = data;
1248                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1249        } else if (msr == MSR_MTRRfix64K_00000)
1250                p[0] = data;
1251        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1252                p[1 + msr - MSR_MTRRfix16K_80000] = data;
1253        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1254                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1255        else if (msr == MSR_IA32_CR_PAT)
1256                vcpu->arch.pat = data;
1257        else {  /* Variable MTRRs */
1258                int idx, is_mtrr_mask;
1259                u64 *pt;
1260
1261                idx = (msr - 0x200) / 2;
1262                is_mtrr_mask = msr - 0x200 - 2 * idx;
1263                if (!is_mtrr_mask)
1264                        pt =
1265                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1266                else
1267                        pt =
1268                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1269                *pt = data;
1270        }
1271
1272        kvm_mmu_reset_context(vcpu);
1273        return 0;
1274}
1275
1276static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1277{
1278        u64 mcg_cap = vcpu->arch.mcg_cap;
1279        unsigned bank_num = mcg_cap & 0xff;
1280
1281        switch (msr) {
1282        case MSR_IA32_MCG_STATUS:
1283                vcpu->arch.mcg_status = data;
1284                break;
1285        case MSR_IA32_MCG_CTL:
1286                if (!(mcg_cap & MCG_CTL_P))
1287                        return 1;
1288                if (data != 0 && data != ~(u64)0)
1289                        return -1;
1290                vcpu->arch.mcg_ctl = data;
1291                break;
1292        default:
1293                if (msr >= MSR_IA32_MC0_CTL &&
1294                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1295                        u32 offset = msr - MSR_IA32_MC0_CTL;
1296                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1297                         * some Linux kernels though clear bit 10 in bank 4 to
1298                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1299                         * this to avoid an uncatched #GP in the guest
1300                         */
1301                        if ((offset & 0x3) == 0 &&
1302                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1303                                return -1;
1304                        vcpu->arch.mce_banks[offset] = data;
1305                        break;
1306                }
1307                return 1;
1308        }
1309        return 0;
1310}
1311
1312static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1313{
1314        struct kvm *kvm = vcpu->kvm;
1315        int lm = is_long_mode(vcpu);
1316        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1317                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1318        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1319                : kvm->arch.xen_hvm_config.blob_size_32;
1320        u32 page_num = data & ~PAGE_MASK;
1321        u64 page_addr = data & PAGE_MASK;
1322        u8 *page;
1323        int r;
1324
1325        r = -E2BIG;
1326        if (page_num >= blob_size)
1327                goto out;
1328        r = -ENOMEM;
1329        page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1330        if (!page)
1331                goto out;
1332        r = -EFAULT;
1333        if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1334                goto out_free;
1335        if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1336                goto out_free;
1337        r = 0;
1338out_free:
1339        kfree(page);
1340out:
1341        return r;
1342}
1343
1344static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1345{
1346        return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1347}
1348
1349static bool kvm_hv_msr_partition_wide(u32 msr)
1350{
1351        bool r = false;
1352        switch (msr) {
1353        case HV_X64_MSR_GUEST_OS_ID:
1354        case HV_X64_MSR_HYPERCALL:
1355                r = true;
1356                break;
1357        }
1358
1359        return r;
1360}
1361
1362static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1363{
1364        struct kvm *kvm = vcpu->kvm;
1365
1366        switch (msr) {
1367        case HV_X64_MSR_GUEST_OS_ID:
1368                kvm->arch.hv_guest_os_id = data;
1369                /* setting guest os id to zero disables hypercall page */
1370                if (!kvm->arch.hv_guest_os_id)
1371                        kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1372                break;
1373        case HV_X64_MSR_HYPERCALL: {
1374                u64 gfn;
1375                unsigned long addr;
1376                u8 instructions[4];
1377
1378                /* if guest os id is not set hypercall should remain disabled */
1379                if (!kvm->arch.hv_guest_os_id)
1380                        break;
1381                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1382                        kvm->arch.hv_hypercall = data;
1383                        break;
1384                }
1385                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1386                addr = gfn_to_hva(kvm, gfn);
1387                if (kvm_is_error_hva(addr))
1388                        return 1;
1389                kvm_x86_ops->patch_hypercall(vcpu, instructions);
1390                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1391                if (copy_to_user((void __user *)addr, instructions, 4))
1392                        return 1;
1393                kvm->arch.hv_hypercall = data;
1394                break;
1395        }
1396        default:
1397                pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1398                          "data 0x%llx\n", msr, data);
1399                return 1;
1400        }
1401        return 0;
1402}
1403
1404static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1405{
1406        switch (msr) {
1407        case HV_X64_MSR_APIC_ASSIST_PAGE: {
1408                unsigned long addr;
1409
1410                if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1411                        vcpu->arch.hv_vapic = data;
1412                        break;
1413                }
1414                addr = gfn_to_hva(vcpu->kvm, data >>
1415                                  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1416                if (kvm_is_error_hva(addr))
1417                        return 1;
1418                if (clear_user((void __user *)addr, PAGE_SIZE))
1419                        return 1;
1420                vcpu->arch.hv_vapic = data;
1421                break;
1422        }
1423        case HV_X64_MSR_EOI:
1424                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1425        case HV_X64_MSR_ICR:
1426                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1427        case HV_X64_MSR_TPR:
1428                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1429        default:
1430                pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1431                          "data 0x%llx\n", msr, data);
1432                return 1;
1433        }
1434
1435        return 0;
1436}
1437
1438static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1439{
1440        gpa_t gpa = data & ~0x3f;
1441
1442        /* Bits 2:5 are resrved, Should be zero */
1443        if (data & 0x3c)
1444                return 1;
1445
1446        vcpu->arch.apf.msr_val = data;
1447
1448        if (!(data & KVM_ASYNC_PF_ENABLED)) {
1449                kvm_clear_async_pf_completion_queue(vcpu);
1450                kvm_async_pf_hash_reset(vcpu);
1451                return 0;
1452        }
1453
1454        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1455                return 1;
1456
1457        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1458        kvm_async_pf_wakeup_all(vcpu);
1459        return 0;
1460}
1461
1462static void kvmclock_reset(struct kvm_vcpu *vcpu)
1463{
1464        if (vcpu->arch.time_page) {
1465                kvm_release_page_dirty(vcpu->arch.time_page);
1466                vcpu->arch.time_page = NULL;
1467        }
1468}
1469
1470int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1471{
1472        switch (msr) {
1473        case MSR_EFER:
1474                return set_efer(vcpu, data);
1475        case MSR_K7_HWCR:
1476                data &= ~(u64)0x40;     /* ignore flush filter disable */
1477                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1478                if (data != 0) {
1479                        pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1480                                data);
1481                        return 1;
1482                }
1483                break;
1484        case MSR_FAM10H_MMIO_CONF_BASE:
1485                if (data != 0) {
1486                        pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1487                                "0x%llx\n", data);
1488                        return 1;
1489                }
1490                break;
1491        case MSR_AMD64_NB_CFG:
1492                break;
1493        case MSR_IA32_DEBUGCTLMSR:
1494                if (!data) {
1495                        /* We support the non-activated case already */
1496                        break;
1497                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1498                        /* Values other than LBR and BTF are vendor-specific,
1499                           thus reserved and should throw a #GP */
1500                        return 1;
1501                }
1502                pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1503                        __func__, data);
1504                break;
1505        case MSR_IA32_UCODE_REV:
1506        case MSR_IA32_UCODE_WRITE:
1507        case MSR_VM_HSAVE_PA:
1508        case MSR_AMD64_PATCH_LOADER:
1509                break;
1510        case 0x200 ... 0x2ff:
1511                return set_msr_mtrr(vcpu, msr, data);
1512        case MSR_IA32_APICBASE:
1513                kvm_set_apic_base(vcpu, data);
1514                break;
1515        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1516                return kvm_x2apic_msr_write(vcpu, msr, data);
1517        case MSR_IA32_MISC_ENABLE:
1518                vcpu->arch.ia32_misc_enable_msr = data;
1519                break;
1520        case MSR_KVM_WALL_CLOCK_NEW:
1521        case MSR_KVM_WALL_CLOCK:
1522                vcpu->kvm->arch.wall_clock = data;
1523                kvm_write_wall_clock(vcpu->kvm, data);
1524                break;
1525        case MSR_KVM_SYSTEM_TIME_NEW:
1526        case MSR_KVM_SYSTEM_TIME: {
1527                kvmclock_reset(vcpu);
1528
1529                vcpu->arch.time = data;
1530                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1531
1532                /* we verify if the enable bit is set... */
1533                if (!(data & 1))
1534                        break;
1535
1536                /* ...but clean it before doing the actual write */
1537                vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1538
1539                vcpu->arch.time_page =
1540                                gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1541
1542                if (is_error_page(vcpu->arch.time_page)) {
1543                        kvm_release_page_clean(vcpu->arch.time_page);
1544                        vcpu->arch.time_page = NULL;
1545                }
1546                break;
1547        }
1548        case MSR_KVM_ASYNC_PF_EN:
1549                if (kvm_pv_enable_async_pf(vcpu, data))
1550                        return 1;
1551                break;
1552        case MSR_IA32_MCG_CTL:
1553        case MSR_IA32_MCG_STATUS:
1554        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1555                return set_msr_mce(vcpu, msr, data);
1556
1557        /* Performance counters are not protected by a CPUID bit,
1558         * so we should check all of them in the generic path for the sake of
1559         * cross vendor migration.
1560         * Writing a zero into the event select MSRs disables them,
1561         * which we perfectly emulate ;-). Any other value should be at least
1562         * reported, some guests depend on them.
1563         */
1564        case MSR_P6_EVNTSEL0:
1565        case MSR_P6_EVNTSEL1:
1566        case MSR_K7_EVNTSEL0:
1567        case MSR_K7_EVNTSEL1:
1568        case MSR_K7_EVNTSEL2:
1569        case MSR_K7_EVNTSEL3:
1570                if (data != 0)
1571                        pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1572                                "0x%x data 0x%llx\n", msr, data);
1573                break;
1574        /* at least RHEL 4 unconditionally writes to the perfctr registers,
1575         * so we ignore writes to make it happy.
1576         */
1577        case MSR_P6_PERFCTR0:
1578        case MSR_P6_PERFCTR1:
1579        case MSR_K7_PERFCTR0:
1580        case MSR_K7_PERFCTR1:
1581        case MSR_K7_PERFCTR2:
1582        case MSR_K7_PERFCTR3:
1583                pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1584                        "0x%x data 0x%llx\n", msr, data);
1585                break;
1586        case MSR_K7_CLK_CTL:
1587                /*
1588                 * Ignore all writes to this no longer documented MSR.
1589                 * Writes are only relevant for old K7 processors,
1590                 * all pre-dating SVM, but a recommended workaround from
1591                 * AMD for these chips. It is possible to speicify the
1592                 * affected processor models on the command line, hence
1593                 * the need to ignore the workaround.
1594                 */
1595                break;
1596        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1597                if (kvm_hv_msr_partition_wide(msr)) {
1598                        int r;
1599                        mutex_lock(&vcpu->kvm->lock);
1600                        r = set_msr_hyperv_pw(vcpu, msr, data);
1601                        mutex_unlock(&vcpu->kvm->lock);
1602                        return r;
1603                } else
1604                        return set_msr_hyperv(vcpu, msr, data);
1605                break;
1606        case MSR_IA32_BBL_CR_CTL3:
1607                /* Drop writes to this legacy MSR -- see rdmsr
1608                 * counterpart for further detail.
1609                 */
1610                pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1611                break;
1612        default:
1613                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1614                        return xen_hvm_config(vcpu, data);
1615                if (!ignore_msrs) {
1616                        pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1617                                msr, data);
1618                        return 1;
1619                } else {
1620                        pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1621                                msr, data);
1622                        break;
1623                }
1624        }
1625        return 0;
1626}
1627EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1628
1629
1630/*
1631 * Reads an msr value (of 'msr_index') into 'pdata'.
1632 * Returns 0 on success, non-0 otherwise.
1633 * Assumes vcpu_load() was already called.
1634 */
1635int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1636{
1637        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1638}
1639
1640static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1641{
1642        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1643
1644        if (!msr_mtrr_valid(msr))
1645                return 1;
1646
1647        if (msr == MSR_MTRRdefType)
1648                *pdata = vcpu->arch.mtrr_state.def_type +
1649                         (vcpu->arch.mtrr_state.enabled << 10);
1650        else if (msr == MSR_MTRRfix64K_00000)
1651                *pdata = p[0];
1652        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1653                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1654        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1655                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1656        else if (msr == MSR_IA32_CR_PAT)
1657                *pdata = vcpu->arch.pat;
1658        else {  /* Variable MTRRs */
1659                int idx, is_mtrr_mask;
1660                u64 *pt;
1661
1662                idx = (msr - 0x200) / 2;
1663                is_mtrr_mask = msr - 0x200 - 2 * idx;
1664                if (!is_mtrr_mask)
1665                        pt =
1666                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1667                else
1668                        pt =
1669                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1670                *pdata = *pt;
1671        }
1672
1673        return 0;
1674}
1675
1676static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1677{
1678        u64 data;
1679        u64 mcg_cap = vcpu->arch.mcg_cap;
1680        unsigned bank_num = mcg_cap & 0xff;
1681
1682        switch (msr) {
1683        case MSR_IA32_P5_MC_ADDR:
1684        case MSR_IA32_P5_MC_TYPE:
1685                data = 0;
1686                break;
1687        case MSR_IA32_MCG_CAP:
1688                data = vcpu->arch.mcg_cap;
1689                break;
1690        case MSR_IA32_MCG_CTL:
1691                if (!(mcg_cap & MCG_CTL_P))
1692                        return 1;
1693                data = vcpu->arch.mcg_ctl;
1694                break;
1695        case MSR_IA32_MCG_STATUS:
1696                data = vcpu->arch.mcg_status;
1697                break;
1698        default:
1699                if (msr >= MSR_IA32_MC0_CTL &&
1700                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1701                        u32 offset = msr - MSR_IA32_MC0_CTL;
1702                        data = vcpu->arch.mce_banks[offset];
1703                        break;
1704                }
1705                return 1;
1706        }
1707        *pdata = data;
1708        return 0;
1709}
1710
1711static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712{
1713        u64 data = 0;
1714        struct kvm *kvm = vcpu->kvm;
1715
1716        switch (msr) {
1717        case HV_X64_MSR_GUEST_OS_ID:
1718                data = kvm->arch.hv_guest_os_id;
1719                break;
1720        case HV_X64_MSR_HYPERCALL:
1721                data = kvm->arch.hv_hypercall;
1722                break;
1723        default:
1724                pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1725                return 1;
1726        }
1727
1728        *pdata = data;
1729        return 0;
1730}
1731
1732static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1733{
1734        u64 data = 0;
1735
1736        switch (msr) {
1737        case HV_X64_MSR_VP_INDEX: {
1738                int r;
1739                struct kvm_vcpu *v;
1740                kvm_for_each_vcpu(r, v, vcpu->kvm)
1741                        if (v == vcpu)
1742                                data = r;
1743                break;
1744        }
1745        case HV_X64_MSR_EOI:
1746                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1747        case HV_X64_MSR_ICR:
1748                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1749        case HV_X64_MSR_TPR:
1750                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1751        default:
1752                pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1753                return 1;
1754        }
1755        *pdata = data;
1756        return 0;
1757}
1758
1759int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1760{
1761        u64 data;
1762
1763        switch (msr) {
1764        case MSR_IA32_PLATFORM_ID:
1765        case MSR_IA32_UCODE_REV:
1766        case MSR_IA32_EBL_CR_POWERON:
1767        case MSR_IA32_DEBUGCTLMSR:
1768        case MSR_IA32_LASTBRANCHFROMIP:
1769        case MSR_IA32_LASTBRANCHTOIP:
1770        case MSR_IA32_LASTINTFROMIP:
1771        case MSR_IA32_LASTINTTOIP:
1772        case MSR_K8_SYSCFG:
1773        case MSR_K7_HWCR:
1774        case MSR_VM_HSAVE_PA:
1775        case MSR_P6_PERFCTR0:
1776        case MSR_P6_PERFCTR1:
1777        case MSR_P6_EVNTSEL0:
1778        case MSR_P6_EVNTSEL1:
1779        case MSR_K7_EVNTSEL0:
1780        case MSR_K7_PERFCTR0:
1781        case MSR_K8_INT_PENDING_MSG:
1782        case MSR_AMD64_NB_CFG:
1783        case MSR_FAM10H_MMIO_CONF_BASE:
1784                data = 0;
1785                break;
1786        case MSR_MTRRcap:
1787                data = 0x500 | KVM_NR_VAR_MTRR;
1788                break;
1789        case 0x200 ... 0x2ff:
1790                return get_msr_mtrr(vcpu, msr, pdata);
1791        case 0xcd: /* fsb frequency */
1792                data = 3;
1793                break;
1794                /*
1795                 * MSR_EBC_FREQUENCY_ID
1796                 * Conservative value valid for even the basic CPU models.
1797                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1798                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1799                 * and 266MHz for model 3, or 4. Set Core Clock
1800                 * Frequency to System Bus Frequency Ratio to 1 (bits
1801                 * 31:24) even though these are only valid for CPU
1802                 * models > 2, however guests may end up dividing or
1803                 * multiplying by zero otherwise.
1804                 */
1805        case MSR_EBC_FREQUENCY_ID:
1806                data = 1 << 24;
1807                break;
1808        case MSR_IA32_APICBASE:
1809                data = kvm_get_apic_base(vcpu);
1810                break;
1811        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1812                return kvm_x2apic_msr_read(vcpu, msr, pdata);
1813                break;
1814        case MSR_IA32_MISC_ENABLE:
1815                data = vcpu->arch.ia32_misc_enable_msr;
1816                break;
1817        case MSR_IA32_PERF_STATUS:
1818                /* TSC increment by tick */
1819                data = 1000ULL;
1820                /* CPU multiplier */
1821                data |= (((uint64_t)4ULL) << 40);
1822                break;
1823        case MSR_EFER:
1824                data = vcpu->arch.efer;
1825                break;
1826        case MSR_KVM_WALL_CLOCK:
1827        case MSR_KVM_WALL_CLOCK_NEW:
1828                data = vcpu->kvm->arch.wall_clock;
1829                break;
1830        case MSR_KVM_SYSTEM_TIME:
1831        case MSR_KVM_SYSTEM_TIME_NEW:
1832                data = vcpu->arch.time;
1833                break;
1834        case MSR_KVM_ASYNC_PF_EN:
1835                data = vcpu->arch.apf.msr_val;
1836                break;
1837        case MSR_IA32_P5_MC_ADDR:
1838        case MSR_IA32_P5_MC_TYPE:
1839        case MSR_IA32_MCG_CAP:
1840        case MSR_IA32_MCG_CTL:
1841        case MSR_IA32_MCG_STATUS:
1842        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1843                return get_msr_mce(vcpu, msr, pdata);
1844        case MSR_K7_CLK_CTL:
1845                /*
1846                 * Provide expected ramp-up count for K7. All other
1847                 * are set to zero, indicating minimum divisors for
1848                 * every field.
1849                 *
1850                 * This prevents guest kernels on AMD host with CPU
1851                 * type 6, model 8 and higher from exploding due to
1852                 * the rdmsr failing.
1853                 */
1854                data = 0x20000000;
1855                break;
1856        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1857                if (kvm_hv_msr_partition_wide(msr)) {
1858                        int r;
1859                        mutex_lock(&vcpu->kvm->lock);
1860                        r = get_msr_hyperv_pw(vcpu, msr, pdata);
1861                        mutex_unlock(&vcpu->kvm->lock);
1862                        return r;
1863                } else
1864                        return get_msr_hyperv(vcpu, msr, pdata);
1865                break;
1866        case MSR_IA32_BBL_CR_CTL3:
1867                /* This legacy MSR exists but isn't fully documented in current
1868                 * silicon.  It is however accessed by winxp in very narrow
1869                 * scenarios where it sets bit #19, itself documented as
1870                 * a "reserved" bit.  Best effort attempt to source coherent
1871                 * read data here should the balance of the register be
1872                 * interpreted by the guest:
1873                 *
1874                 * L2 cache control register 3: 64GB range, 256KB size,
1875                 * enabled, latency 0x1, configured
1876                 */
1877                data = 0xbe702111;
1878                break;
1879        default:
1880                if (!ignore_msrs) {
1881                        pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1882                        return 1;
1883                } else {
1884                        pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1885                        data = 0;
1886                }
1887                break;
1888        }
1889        *pdata = data;
1890        return 0;
1891}
1892EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1893
1894/*
1895 * Read or write a bunch of msrs. All parameters are kernel addresses.
1896 *
1897 * @return number of msrs set successfully.
1898 */
1899static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1900                    struct kvm_msr_entry *entries,
1901                    int (*do_msr)(struct kvm_vcpu *vcpu,
1902                                  unsigned index, u64 *data))
1903{
1904        int i, idx;
1905
1906        idx = srcu_read_lock(&vcpu->kvm->srcu);
1907        for (i = 0; i < msrs->nmsrs; ++i)
1908                if (do_msr(vcpu, entries[i].index, &entries[i].data))
1909                        break;
1910        srcu_read_unlock(&vcpu->kvm->srcu, idx);
1911
1912        return i;
1913}
1914
1915/*
1916 * Read or write a bunch of msrs. Parameters are user addresses.
1917 *
1918 * @return number of msrs set successfully.
1919 */
1920static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1921                  int (*do_msr)(struct kvm_vcpu *vcpu,
1922                                unsigned index, u64 *data),
1923                  int writeback)
1924{
1925        struct kvm_msrs msrs;
1926        struct kvm_msr_entry *entries;
1927        int r, n;
1928        unsigned size;
1929
1930        r = -EFAULT;
1931        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1932                goto out;
1933
1934        r = -E2BIG;
1935        if (msrs.nmsrs >= MAX_IO_MSRS)
1936                goto out;
1937
1938        r = -ENOMEM;
1939        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1940        entries = kmalloc(size, GFP_KERNEL);
1941        if (!entries)
1942                goto out;
1943
1944        r = -EFAULT;
1945        if (copy_from_user(entries, user_msrs->entries, size))
1946                goto out_free;
1947
1948        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1949        if (r < 0)
1950                goto out_free;
1951
1952        r = -EFAULT;
1953        if (writeback && copy_to_user(user_msrs->entries, entries, size))
1954                goto out_free;
1955
1956        r = n;
1957
1958out_free:
1959        kfree(entries);
1960out:
1961        return r;
1962}
1963
1964int kvm_dev_ioctl_check_extension(long ext)
1965{
1966        int r;
1967
1968        switch (ext) {
1969        case KVM_CAP_IRQCHIP:
1970        case KVM_CAP_HLT:
1971        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1972        case KVM_CAP_SET_TSS_ADDR:
1973        case KVM_CAP_EXT_CPUID:
1974        case KVM_CAP_CLOCKSOURCE:
1975        case KVM_CAP_PIT:
1976        case KVM_CAP_NOP_IO_DELAY:
1977        case KVM_CAP_MP_STATE:
1978        case KVM_CAP_SYNC_MMU:
1979        case KVM_CAP_USER_NMI:
1980        case KVM_CAP_REINJECT_CONTROL:
1981        case KVM_CAP_IRQ_INJECT_STATUS:
1982        case KVM_CAP_ASSIGN_DEV_IRQ:
1983        case KVM_CAP_IRQFD:
1984        case KVM_CAP_IOEVENTFD:
1985        case KVM_CAP_PIT2:
1986        case KVM_CAP_PIT_STATE2:
1987        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1988        case KVM_CAP_XEN_HVM:
1989        case KVM_CAP_ADJUST_CLOCK:
1990        case KVM_CAP_VCPU_EVENTS:
1991        case KVM_CAP_HYPERV:
1992        case KVM_CAP_HYPERV_VAPIC:
1993        case KVM_CAP_HYPERV_SPIN:
1994        case KVM_CAP_PCI_SEGMENT:
1995        case KVM_CAP_DEBUGREGS:
1996        case KVM_CAP_X86_ROBUST_SINGLESTEP:
1997        case KVM_CAP_XSAVE:
1998        case KVM_CAP_ASYNC_PF:
1999        case KVM_CAP_GET_TSC_KHZ:
2000                r = 1;
2001                break;
2002        case KVM_CAP_COALESCED_MMIO:
2003                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2004                break;
2005        case KVM_CAP_VAPIC:
2006                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2007                break;
2008        case KVM_CAP_NR_VCPUS:
2009                r = KVM_MAX_VCPUS;
2010                break;
2011        case KVM_CAP_NR_MEMSLOTS:
2012                r = KVM_MEMORY_SLOTS;
2013                break;
2014        case KVM_CAP_PV_MMU:    /* obsolete */
2015                r = 0;
2016                break;
2017        case KVM_CAP_IOMMU:
2018                r = iommu_found();
2019                break;
2020        case KVM_CAP_MCE:
2021                r = KVM_MAX_MCE_BANKS;
2022                break;
2023        case KVM_CAP_XCRS:
2024                r = cpu_has_xsave;
2025                break;
2026        case KVM_CAP_TSC_CONTROL:
2027                r = kvm_has_tsc_control;
2028                break;
2029        default:
2030                r = 0;
2031                break;
2032        }
2033        return r;
2034
2035}
2036
2037long kvm_arch_dev_ioctl(struct file *filp,
2038                        unsigned int ioctl, unsigned long arg)
2039{
2040        void __user *argp = (void __user *)arg;
2041        long r;
2042
2043        switch (ioctl) {
2044        case KVM_GET_MSR_INDEX_LIST: {
2045                struct kvm_msr_list __user *user_msr_list = argp;
2046                struct kvm_msr_list msr_list;
2047                unsigned n;
2048
2049                r = -EFAULT;
2050                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2051                        goto out;
2052                n = msr_list.nmsrs;
2053                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2054                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2055                        goto out;
2056                r = -E2BIG;
2057                if (n < msr_list.nmsrs)
2058                        goto out;
2059                r = -EFAULT;
2060                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2061                                 num_msrs_to_save * sizeof(u32)))
2062                        goto out;
2063                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2064                                 &emulated_msrs,
2065                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2066                        goto out;
2067                r = 0;
2068                break;
2069        }
2070        case KVM_GET_SUPPORTED_CPUID: {
2071                struct kvm_cpuid2 __user *cpuid_arg = argp;
2072                struct kvm_cpuid2 cpuid;
2073
2074                r = -EFAULT;
2075                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2076                        goto out;
2077                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2078                                                      cpuid_arg->entries);
2079                if (r)
2080                        goto out;
2081
2082                r = -EFAULT;
2083                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2084                        goto out;
2085                r = 0;
2086                break;
2087        }
2088        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2089                u64 mce_cap;
2090
2091                mce_cap = KVM_MCE_CAP_SUPPORTED;
2092                r = -EFAULT;
2093                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2094                        goto out;
2095                r = 0;
2096                break;
2097        }
2098        default:
2099                r = -EINVAL;
2100        }
2101out:
2102        return r;
2103}
2104
2105static void wbinvd_ipi(void *garbage)
2106{
2107        wbinvd();
2108}
2109
2110static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2111{
2112        return vcpu->kvm->arch.iommu_domain &&
2113                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2114}
2115
2116void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2117{
2118        /* Address WBINVD may be executed by guest */
2119        if (need_emulate_wbinvd(vcpu)) {
2120                if (kvm_x86_ops->has_wbinvd_exit())
2121                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2122                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2123                        smp_call_function_single(vcpu->cpu,
2124                                        wbinvd_ipi, NULL, 1);
2125        }
2126
2127        kvm_x86_ops->vcpu_load(vcpu, cpu);
2128        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2129                /* Make sure TSC doesn't go backwards */
2130                s64 tsc_delta;
2131                u64 tsc;
2132
2133                kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2134                tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2135                             tsc - vcpu->arch.last_guest_tsc;
2136
2137                if (tsc_delta < 0)
2138                        mark_tsc_unstable("KVM discovered backwards TSC");
2139                if (check_tsc_unstable()) {
2140                        kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2141                        vcpu->arch.tsc_catchup = 1;
2142                }
2143                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2144                if (vcpu->cpu != cpu)
2145                        kvm_migrate_timers(vcpu);
2146                vcpu->cpu = cpu;
2147        }
2148}
2149
2150void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2151{
2152        kvm_x86_ops->vcpu_put(vcpu);
2153        kvm_put_guest_fpu(vcpu);
2154        kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2155}
2156
2157static int is_efer_nx(void)
2158{
2159        unsigned long long efer = 0;
2160
2161        rdmsrl_safe(MSR_EFER, &efer);
2162        return efer & EFER_NX;
2163}
2164
2165static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2166{
2167        int i;
2168        struct kvm_cpuid_entry2 *e, *entry;
2169
2170        entry = NULL;
2171        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2172                e = &vcpu->arch.cpuid_entries[i];
2173                if (e->function == 0x80000001) {
2174                        entry = e;
2175                        break;
2176                }
2177        }
2178        if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2179                entry->edx &= ~(1 << 20);
2180                printk(KERN_INFO "kvm: guest NX capability removed\n");
2181        }
2182}
2183
2184/* when an old userspace process fills a new kernel module */
2185static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2186                                    struct kvm_cpuid *cpuid,
2187                                    struct kvm_cpuid_entry __user *entries)
2188{
2189        int r, i;
2190        struct kvm_cpuid_entry *cpuid_entries;
2191
2192        r = -E2BIG;
2193        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2194                goto out;
2195        r = -ENOMEM;
2196        cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2197        if (!cpuid_entries)
2198                goto out;
2199        r = -EFAULT;
2200        if (copy_from_user(cpuid_entries, entries,
2201                           cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2202                goto out_free;
2203        for (i = 0; i < cpuid->nent; i++) {
2204                vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2205                vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2206                vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2207                vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2208                vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2209                vcpu->arch.cpuid_entries[i].index = 0;
2210                vcpu->arch.cpuid_entries[i].flags = 0;
2211                vcpu->arch.cpuid_entries[i].padding[0] = 0;
2212                vcpu->arch.cpuid_entries[i].padding[1] = 0;
2213                vcpu->arch.cpuid_entries[i].padding[2] = 0;
2214        }
2215        vcpu->arch.cpuid_nent = cpuid->nent;
2216        cpuid_fix_nx_cap(vcpu);
2217        r = 0;
2218        kvm_apic_set_version(vcpu);
2219        kvm_x86_ops->cpuid_update(vcpu);
2220        update_cpuid(vcpu);
2221
2222out_free:
2223        vfree(cpuid_entries);
2224out:
2225        return r;
2226}
2227
2228static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2229                                     struct kvm_cpuid2 *cpuid,
2230                                     struct kvm_cpuid_entry2 __user *entries)
2231{
2232        int r;
2233
2234        r = -E2BIG;
2235        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2236                goto out;
2237        r = -EFAULT;
2238        if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2239                           cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2240                goto out;
2241        vcpu->arch.cpuid_nent = cpuid->nent;
2242        kvm_apic_set_version(vcpu);
2243        kvm_x86_ops->cpuid_update(vcpu);
2244        update_cpuid(vcpu);
2245        return 0;
2246
2247out:
2248        return r;
2249}
2250
2251static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2252                                     struct kvm_cpuid2 *cpuid,
2253                                     struct kvm_cpuid_entry2 __user *entries)
2254{
2255        int r;
2256
2257        r = -E2BIG;
2258        if (cpuid->nent < vcpu->arch.cpuid_nent)
2259                goto out;
2260        r = -EFAULT;
2261        if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2262                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2263                goto out;
2264        return 0;
2265
2266out:
2267        cpuid->nent = vcpu->arch.cpuid_nent;
2268        return r;
2269}
2270
2271static void cpuid_mask(u32 *word, int wordnum)
2272{
2273        *word &= boot_cpu_data.x86_capability[wordnum];
2274}
2275
2276static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277                           u32 index)
2278{
2279        entry->function = function;
2280        entry->index = index;
2281        cpuid_count(entry->function, entry->index,
2282                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2283        entry->flags = 0;
2284}
2285
2286#define F(x) bit(X86_FEATURE_##x)
2287
2288static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2289                         u32 index, int *nent, int maxnent)
2290{
2291        unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2292#ifdef CONFIG_X86_64
2293        unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2294                                ? F(GBPAGES) : 0;
2295        unsigned f_lm = F(LM);
2296#else
2297        unsigned f_gbpages = 0;
2298        unsigned f_lm = 0;
2299#endif
2300        unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2301
2302        /* cpuid 1.edx */
2303        const u32 kvm_supported_word0_x86_features =
2304                F(FPU) | F(VME) | F(DE) | F(PSE) |
2305                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2306                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2307                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2308                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2309                0 /* Reserved, DS, ACPI */ | F(MMX) |
2310                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2311                0 /* HTT, TM, Reserved, PBE */;
2312        /* cpuid 0x80000001.edx */
2313        const u32 kvm_supported_word1_x86_features =
2314                F(FPU) | F(VME) | F(DE) | F(PSE) |
2315                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2316                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2317                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2318                F(PAT) | F(PSE36) | 0 /* Reserved */ |
2319                f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2320                F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2321                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2322        /* cpuid 1.ecx */
2323        const u32 kvm_supported_word4_x86_features =
2324                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2325                0 /* DS-CPL, VMX, SMX, EST */ |
2326                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2327                0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2328                0 /* Reserved, DCA */ | F(XMM4_1) |
2329                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2330                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2331                F(F16C);
2332        /* cpuid 0x80000001.ecx */
2333        const u32 kvm_supported_word6_x86_features =
2334                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2335                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2336                F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2337                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2338
2339        /* cpuid 0xC0000001.edx */
2340        const u32 kvm_supported_word5_x86_features =
2341                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2342                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2343                F(PMM) | F(PMM_EN);
2344
2345        /* all calls to cpuid_count() should be made on the same cpu */
2346        get_cpu();
2347        do_cpuid_1_ent(entry, function, index);
2348        ++*nent;
2349
2350        switch (function) {
2351        case 0:
2352                entry->eax = min(entry->eax, (u32)0xd);
2353                break;
2354        case 1:
2355                entry->edx &= kvm_supported_word0_x86_features;
2356                cpuid_mask(&entry->edx, 0);
2357                entry->ecx &= kvm_supported_word4_x86_features;
2358                cpuid_mask(&entry->ecx, 4);
2359                /* we support x2apic emulation even if host does not support
2360                 * it since we emulate x2apic in software */
2361                entry->ecx |= F(X2APIC);
2362                break;
2363        /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2364         * may return different values. This forces us to get_cpu() before
2365         * issuing the first command, and also to emulate this annoying behavior
2366         * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2367        case 2: {
2368                int t, times = entry->eax & 0xff;
2369
2370                entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2371                entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2372                for (t = 1; t < times && *nent < maxnent; ++t) {
2373                        do_cpuid_1_ent(&entry[t], function, 0);
2374                        entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2375                        ++*nent;
2376                }
2377                break;
2378        }
2379        /* function 4 and 0xb have additional index. */
2380        case 4: {
2381                int i, cache_type;
2382
2383                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2384                /* read more entries until cache_type is zero */
2385                for (i = 1; *nent < maxnent; ++i) {
2386                        cache_type = entry[i - 1].eax & 0x1f;
2387                        if (!cache_type)
2388                                break;
2389                        do_cpuid_1_ent(&entry[i], function, i);
2390                        entry[i].flags |=
2391                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2392                        ++*nent;
2393                }
2394                break;
2395        }
2396        case 0xb: {
2397                int i, level_type;
2398
2399                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2400                /* read more entries until level_type is zero */
2401                for (i = 1; *nent < maxnent; ++i) {
2402                        level_type = entry[i - 1].ecx & 0xff00;
2403                        if (!level_type)
2404                                break;
2405                        do_cpuid_1_ent(&entry[i], function, i);
2406                        entry[i].flags |=
2407                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2408                        ++*nent;
2409                }
2410                break;
2411        }
2412        case 0xd: {
2413                int i;
2414
2415                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2416                for (i = 1; *nent < maxnent && i < 64; ++i) {
2417                        if (entry[i].eax == 0)
2418                                continue;
2419                        do_cpuid_1_ent(&entry[i], function, i);
2420                        entry[i].flags |=
2421                               KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2422                        ++*nent;
2423                }
2424                break;
2425        }
2426        case KVM_CPUID_SIGNATURE: {
2427                char signature[12] = "KVMKVMKVM\0\0";
2428                u32 *sigptr = (u32 *)signature;
2429                entry->eax = 0;
2430                entry->ebx = sigptr[0];
2431                entry->ecx = sigptr[1];
2432                entry->edx = sigptr[2];
2433                break;
2434        }
2435        case KVM_CPUID_FEATURES:
2436                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2437                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
2438                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
2439                             (1 << KVM_FEATURE_ASYNC_PF) |
2440                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2441                entry->ebx = 0;
2442                entry->ecx = 0;
2443                entry->edx = 0;
2444                break;
2445        case 0x80000000:
2446                entry->eax = min(entry->eax, 0x8000001a);
2447                break;
2448        case 0x80000001:
2449                entry->edx &= kvm_supported_word1_x86_features;
2450                cpuid_mask(&entry->edx, 1);
2451                entry->ecx &= kvm_supported_word6_x86_features;
2452                cpuid_mask(&entry->ecx, 6);
2453                break;
2454        /*Add support for Centaur's CPUID instruction*/
2455        case 0xC0000000:
2456                /*Just support up to 0xC0000004 now*/
2457                entry->eax = min(entry->eax, 0xC0000004);
2458                break;
2459        case 0xC0000001:
2460                entry->edx &= kvm_supported_word5_x86_features;
2461                cpuid_mask(&entry->edx, 5);
2462                break;
2463        case 0xC0000002:
2464        case 0xC0000003:
2465        case 0xC0000004:
2466                /*Now nothing to do, reserved for the future*/
2467                break;
2468        }
2469
2470        kvm_x86_ops->set_supported_cpuid(function, entry);
2471
2472        put_cpu();
2473}
2474
2475#undef F
2476
2477static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2478                                     struct kvm_cpuid_entry2 __user *entries)
2479{
2480        struct kvm_cpuid_entry2 *cpuid_entries;
2481        int limit, nent = 0, r = -E2BIG;
2482        u32 func;
2483
2484        if (cpuid->nent < 1)
2485                goto out;
2486        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2487                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2488        r = -ENOMEM;
2489        cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2490        if (!cpuid_entries)
2491                goto out;
2492
2493        do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2494        limit = cpuid_entries[0].eax;
2495        for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2496                do_cpuid_ent(&cpuid_entries[nent], func, 0,
2497                             &nent, cpuid->nent);
2498        r = -E2BIG;
2499        if (nent >= cpuid->nent)
2500                goto out_free;
2501
2502        do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2503        limit = cpuid_entries[nent - 1].eax;
2504        for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2505                do_cpuid_ent(&cpuid_entries[nent], func, 0,
2506                             &nent, cpuid->nent);
2507
2508
2509
2510        r = -E2BIG;
2511        if (nent >= cpuid->nent)
2512                goto out_free;
2513
2514        /* Add support for Centaur's CPUID instruction. */
2515        if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2516                do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2517                                &nent, cpuid->nent);
2518
2519                r = -E2BIG;
2520                if (nent >= cpuid->nent)
2521                        goto out_free;
2522
2523                limit = cpuid_entries[nent - 1].eax;
2524                for (func = 0xC0000001;
2525                        func <= limit && nent < cpuid->nent; ++func)
2526                        do_cpuid_ent(&cpuid_entries[nent], func, 0,
2527                                        &nent, cpuid->nent);
2528
2529                r = -E2BIG;
2530                if (nent >= cpuid->nent)
2531                        goto out_free;
2532        }
2533
2534        do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2535                     cpuid->nent);
2536
2537        r = -E2BIG;
2538        if (nent >= cpuid->nent)
2539                goto out_free;
2540
2541        do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2542                     cpuid->nent);
2543
2544        r = -E2BIG;
2545        if (nent >= cpuid->nent)
2546                goto out_free;
2547
2548        r = -EFAULT;
2549        if (copy_to_user(entries, cpuid_entries,
2550                         nent * sizeof(struct kvm_cpuid_entry2)))
2551                goto out_free;
2552        cpuid->nent = nent;
2553        r = 0;
2554
2555out_free:
2556        vfree(cpuid_entries);
2557out:
2558        return r;
2559}
2560
2561static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2562                                    struct kvm_lapic_state *s)
2563{
2564        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2565
2566        return 0;
2567}
2568
2569static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2570                                    struct kvm_lapic_state *s)
2571{
2572        memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2573        kvm_apic_post_state_restore(vcpu);
2574        update_cr8_intercept(vcpu);
2575
2576        return 0;
2577}
2578
2579static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2580                                    struct kvm_interrupt *irq)
2581{
2582        if (irq->irq < 0 || irq->irq >= 256)
2583                return -EINVAL;
2584        if (irqchip_in_kernel(vcpu->kvm))
2585                return -ENXIO;
2586
2587        kvm_queue_interrupt(vcpu, irq->irq, false);
2588        kvm_make_request(KVM_REQ_EVENT, vcpu);
2589
2590        return 0;
2591}
2592
2593static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2594{
2595        kvm_inject_nmi(vcpu);
2596
2597        return 0;
2598}
2599
2600static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2601                                           struct kvm_tpr_access_ctl *tac)
2602{
2603        if (tac->flags)
2604                return -EINVAL;
2605        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2606        return 0;
2607}
2608
2609static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2610                                        u64 mcg_cap)
2611{
2612        int r;
2613        unsigned bank_num = mcg_cap & 0xff, bank;
2614
2615        r = -EINVAL;
2616        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2617                goto out;
2618        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2619                goto out;
2620        r = 0;
2621        vcpu->arch.mcg_cap = mcg_cap;
2622        /* Init IA32_MCG_CTL to all 1s */
2623        if (mcg_cap & MCG_CTL_P)
2624                vcpu->arch.mcg_ctl = ~(u64)0;
2625        /* Init IA32_MCi_CTL to all 1s */
2626        for (bank = 0; bank < bank_num; bank++)
2627                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2628out:
2629        return r;
2630}
2631
2632static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2633                                      struct kvm_x86_mce *mce)
2634{
2635        u64 mcg_cap = vcpu->arch.mcg_cap;
2636        unsigned bank_num = mcg_cap & 0xff;
2637        u64 *banks = vcpu->arch.mce_banks;
2638
2639        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2640                return -EINVAL;
2641        /*
2642         * if IA32_MCG_CTL is not all 1s, the uncorrected error
2643         * reporting is disabled
2644         */
2645        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2646            vcpu->arch.mcg_ctl != ~(u64)0)
2647                return 0;
2648        banks += 4 * mce->bank;
2649        /*
2650         * if IA32_MCi_CTL is not all 1s, the uncorrected error
2651         * reporting is disabled for the bank
2652         */
2653        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2654                return 0;
2655        if (mce->status & MCI_STATUS_UC) {
2656                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2657                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2658                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2659                        return 0;
2660                }
2661                if (banks[1] & MCI_STATUS_VAL)
2662                        mce->status |= MCI_STATUS_OVER;
2663                banks[2] = mce->addr;
2664                banks[3] = mce->misc;
2665                vcpu->arch.mcg_status = mce->mcg_status;
2666                banks[1] = mce->status;
2667                kvm_queue_exception(vcpu, MC_VECTOR);
2668        } else if (!(banks[1] & MCI_STATUS_VAL)
2669                   || !(banks[1] & MCI_STATUS_UC)) {
2670                if (banks[1] & MCI_STATUS_VAL)
2671                        mce->status |= MCI_STATUS_OVER;
2672                banks[2] = mce->addr;
2673                banks[3] = mce->misc;
2674                banks[1] = mce->status;
2675        } else
2676                banks[1] |= MCI_STATUS_OVER;
2677        return 0;
2678}
2679
2680static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2681                                               struct kvm_vcpu_events *events)
2682{
2683        events->exception.injected =
2684                vcpu->arch.exception.pending &&
2685                !kvm_exception_is_soft(vcpu->arch.exception.nr);
2686        events->exception.nr = vcpu->arch.exception.nr;
2687        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2688        events->exception.pad = 0;
2689        events->exception.error_code = vcpu->arch.exception.error_code;
2690
2691        events->interrupt.injected =
2692                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2693        events->interrupt.nr = vcpu->arch.interrupt.nr;
2694        events->interrupt.soft = 0;
2695        events->interrupt.shadow =
2696                kvm_x86_ops->get_interrupt_shadow(vcpu,
2697                        KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2698
2699        events->nmi.injected = vcpu->arch.nmi_injected;
2700        events->nmi.pending = vcpu->arch.nmi_pending;
2701        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2702        events->nmi.pad = 0;
2703
2704        events->sipi_vector = vcpu->arch.sipi_vector;
2705
2706        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2707                         | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2708                         | KVM_VCPUEVENT_VALID_SHADOW);
2709        memset(&events->reserved, 0, sizeof(events->reserved));
2710}
2711
2712static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2713                                              struct kvm_vcpu_events *events)
2714{
2715        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2716                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2717                              | KVM_VCPUEVENT_VALID_SHADOW))
2718                return -EINVAL;
2719
2720        vcpu->arch.exception.pending = events->exception.injected;
2721        vcpu->arch.exception.nr = events->exception.nr;
2722        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2723        vcpu->arch.exception.error_code = events->exception.error_code;
2724
2725        vcpu->arch.interrupt.pending = events->interrupt.injected;
2726        vcpu->arch.interrupt.nr = events->interrupt.nr;
2727        vcpu->arch.interrupt.soft = events->interrupt.soft;
2728        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2729                kvm_x86_ops->set_interrupt_shadow(vcpu,
2730                                                  events->interrupt.shadow);
2731
2732        vcpu->arch.nmi_injected = events->nmi.injected;
2733        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2734                vcpu->arch.nmi_pending = events->nmi.pending;
2735        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2736
2737        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2738                vcpu->arch.sipi_vector = events->sipi_vector;
2739
2740        kvm_make_request(KVM_REQ_EVENT, vcpu);
2741
2742        return 0;
2743}
2744
2745static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2746                                             struct kvm_debugregs *dbgregs)
2747{
2748        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2749        dbgregs->dr6 = vcpu->arch.dr6;
2750        dbgregs->dr7 = vcpu->arch.dr7;
2751        dbgregs->flags = 0;
2752        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2753}
2754
2755static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2756                                            struct kvm_debugregs *dbgregs)
2757{
2758        if (dbgregs->flags)
2759                return -EINVAL;
2760
2761        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2762        vcpu->arch.dr6 = dbgregs->dr6;
2763        vcpu->arch.dr7 = dbgregs->dr7;
2764
2765        return 0;
2766}
2767
2768static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2769                                         struct kvm_xsave *guest_xsave)
2770{
2771        if (cpu_has_xsave)
2772                memcpy(guest_xsave->region,
2773                        &vcpu->arch.guest_fpu.state->xsave,
2774                        xstate_size);
2775        else {
2776                memcpy(guest_xsave->region,
2777                        &vcpu->arch.guest_fpu.state->fxsave,
2778                        sizeof(struct i387_fxsave_struct));
2779                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2780                        XSTATE_FPSSE;
2781        }
2782}
2783
2784static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2785                                        struct kvm_xsave *guest_xsave)
2786{
2787        u64 xstate_bv =
2788                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2789
2790        if (cpu_has_xsave)
2791                memcpy(&vcpu->arch.guest_fpu.state->xsave,
2792                        guest_xsave->region, xstate_size);
2793        else {
2794                if (xstate_bv & ~XSTATE_FPSSE)
2795                        return -EINVAL;
2796                memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2797                        guest_xsave->region, sizeof(struct i387_fxsave_struct));
2798        }
2799        return 0;
2800}
2801
2802static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2803                                        struct kvm_xcrs *guest_xcrs)
2804{
2805        if (!cpu_has_xsave) {
2806                guest_xcrs->nr_xcrs = 0;
2807                return;
2808        }
2809
2810        guest_xcrs->nr_xcrs = 1;
2811        guest_xcrs->flags = 0;
2812        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2813        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2814}
2815
2816static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2817                                       struct kvm_xcrs *guest_xcrs)
2818{
2819        int i, r = 0;
2820
2821        if (!cpu_has_xsave)
2822                return -EINVAL;
2823
2824        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2825                return -EINVAL;
2826
2827        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2828                /* Only support XCR0 currently */
2829                if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2830                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2831                                guest_xcrs->xcrs[0].value);
2832                        break;
2833                }
2834        if (r)
2835                r = -EINVAL;
2836        return r;
2837}
2838
2839long kvm_arch_vcpu_ioctl(struct file *filp,
2840                         unsigned int ioctl, unsigned long arg)
2841{
2842        struct kvm_vcpu *vcpu = filp->private_data;
2843        void __user *argp = (void __user *)arg;
2844        int r;
2845        union {
2846                struct kvm_lapic_state *lapic;
2847                struct kvm_xsave *xsave;
2848                struct kvm_xcrs *xcrs;
2849                void *buffer;
2850        } u;
2851
2852        u.buffer = NULL;
2853        switch (ioctl) {
2854        case KVM_GET_LAPIC: {
2855                r = -EINVAL;
2856                if (!vcpu->arch.apic)
2857                        goto out;
2858                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2859
2860                r = -ENOMEM;
2861                if (!u.lapic)
2862                        goto out;
2863                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2864                if (r)
2865                        goto out;
2866                r = -EFAULT;
2867                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2868                        goto out;
2869                r = 0;
2870                break;
2871        }
2872        case KVM_SET_LAPIC: {
2873                r = -EINVAL;
2874                if (!vcpu->arch.apic)
2875                        goto out;
2876                u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2877                r = -ENOMEM;
2878                if (!u.lapic)
2879                        goto out;
2880                r = -EFAULT;
2881                if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2882                        goto out;
2883                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2884                if (r)
2885                        goto out;
2886                r = 0;
2887                break;
2888        }
2889        case KVM_INTERRUPT: {
2890                struct kvm_interrupt irq;
2891
2892                r = -EFAULT;
2893                if (copy_from_user(&irq, argp, sizeof irq))
2894                        goto out;
2895                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2896                if (r)
2897                        goto out;
2898                r = 0;
2899                break;
2900        }
2901        case KVM_NMI: {
2902                r = kvm_vcpu_ioctl_nmi(vcpu);
2903                if (r)
2904                        goto out;
2905                r = 0;
2906                break;
2907        }
2908        case KVM_SET_CPUID: {
2909                struct kvm_cpuid __user *cpuid_arg = argp;
2910                struct kvm_cpuid cpuid;
2911
2912                r = -EFAULT;
2913                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2914                        goto out;
2915                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2916                if (r)
2917                        goto out;
2918                break;
2919        }
2920        case KVM_SET_CPUID2: {
2921                struct kvm_cpuid2 __user *cpuid_arg = argp;
2922                struct kvm_cpuid2 cpuid;
2923
2924                r = -EFAULT;
2925                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2926                        goto out;
2927                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2928                                              cpuid_arg->entries);
2929                if (r)
2930                        goto out;
2931                break;
2932        }
2933        case KVM_GET_CPUID2: {
2934                struct kvm_cpuid2 __user *cpuid_arg = argp;
2935                struct kvm_cpuid2 cpuid;
2936
2937                r = -EFAULT;
2938                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2939                        goto out;
2940                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2941                                              cpuid_arg->entries);
2942                if (r)
2943                        goto out;
2944                r = -EFAULT;
2945                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2946                        goto out;
2947                r = 0;
2948                break;
2949        }
2950        case KVM_GET_MSRS:
2951                r = msr_io(vcpu, argp, kvm_get_msr, 1);
2952                break;
2953        case KVM_SET_MSRS:
2954                r = msr_io(vcpu, argp, do_set_msr, 0);
2955                break;
2956        case KVM_TPR_ACCESS_REPORTING: {
2957                struct kvm_tpr_access_ctl tac;
2958
2959                r = -EFAULT;
2960                if (copy_from_user(&tac, argp, sizeof tac))
2961                        goto out;
2962                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2963                if (r)
2964                        goto out;
2965                r = -EFAULT;
2966                if (copy_to_user(argp, &tac, sizeof tac))
2967                        goto out;
2968                r = 0;
2969                break;
2970        };
2971        case KVM_SET_VAPIC_ADDR: {
2972                struct kvm_vapic_addr va;
2973
2974                r = -EINVAL;
2975                if (!irqchip_in_kernel(vcpu->kvm))
2976                        goto out;
2977                r = -EFAULT;
2978                if (copy_from_user(&va, argp, sizeof va))
2979                        goto out;
2980                r = 0;
2981                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2982                break;
2983        }
2984        case KVM_X86_SETUP_MCE: {
2985                u64 mcg_cap;
2986
2987                r = -EFAULT;
2988                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2989                        goto out;
2990                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2991                break;
2992        }
2993        case KVM_X86_SET_MCE: {
2994                struct kvm_x86_mce mce;
2995
2996                r = -EFAULT;
2997                if (copy_from_user(&mce, argp, sizeof mce))
2998                        goto out;
2999                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3000                break;
3001        }
3002        case KVM_GET_VCPU_EVENTS: {
3003                struct kvm_vcpu_events events;
3004
3005                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3006
3007                r = -EFAULT;
3008                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3009                        break;
3010                r = 0;
3011                break;
3012        }
3013        case KVM_SET_VCPU_EVENTS: {
3014                struct kvm_vcpu_events events;
3015
3016                r = -EFAULT;
3017                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3018                        break;
3019
3020                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3021                break;
3022        }
3023        case KVM_GET_DEBUGREGS: {
3024                struct kvm_debugregs dbgregs;
3025
3026                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3027
3028                r = -EFAULT;
3029                if (copy_to_user(argp, &dbgregs,
3030                                 sizeof(struct kvm_debugregs)))
3031                        break;
3032                r = 0;
3033                break;
3034        }
3035        case KVM_SET_DEBUGREGS: {
3036                struct kvm_debugregs dbgregs;
3037
3038                r = -EFAULT;
3039                if (copy_from_user(&dbgregs, argp,
3040                                   sizeof(struct kvm_debugregs)))
3041                        break;
3042
3043                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3044                break;
3045        }
3046        case KVM_GET_XSAVE: {
3047                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3048                r = -ENOMEM;
3049                if (!u.xsave)
3050                        break;
3051
3052                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3053
3054                r = -EFAULT;
3055                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3056                        break;
3057                r = 0;
3058                break;
3059        }
3060        case KVM_SET_XSAVE: {
3061                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3062                r = -ENOMEM;
3063                if (!u.xsave)
3064                        break;
3065
3066                r = -EFAULT;
3067                if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3068                        break;
3069
3070                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3071                break;
3072        }
3073        case KVM_GET_XCRS: {
3074                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3075                r = -ENOMEM;
3076                if (!u.xcrs)
3077                        break;
3078
3079                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3080
3081                r = -EFAULT;
3082                if (copy_to_user(argp, u.xcrs,
3083                                 sizeof(struct kvm_xcrs)))
3084                        break;
3085                r = 0;
3086                break;
3087        }
3088        case KVM_SET_XCRS: {
3089                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3090                r = -ENOMEM;
3091                if (!u.xcrs)
3092                        break;
3093
3094                r = -EFAULT;
3095                if (copy_from_user(u.xcrs, argp,
3096                                   sizeof(struct kvm_xcrs)))
3097                        break;
3098
3099                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3100                break;
3101        }
3102        case KVM_SET_TSC_KHZ: {
3103                u32 user_tsc_khz;
3104
3105                r = -EINVAL;
3106                if (!kvm_has_tsc_control)
3107                        break;
3108
3109                user_tsc_khz = (u32)arg;
3110
3111                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3112                        goto out;
3113
3114                kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3115
3116                r = 0;
3117                goto out;
3118        }
3119        case KVM_GET_TSC_KHZ: {
3120                r = -EIO;
3121                if (check_tsc_unstable())
3122                        goto out;
3123
3124                r = vcpu_tsc_khz(vcpu);
3125
3126                goto out;
3127        }
3128        default:
3129                r = -EINVAL;
3130        }
3131out:
3132        kfree(u.buffer);
3133        return r;
3134}
3135
3136static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3137{
3138        int ret;
3139
3140        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3141                return -1;
3142        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3143        return ret;
3144}
3145
3146static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3147                                              u64 ident_addr)
3148{
3149        kvm->arch.ept_identity_map_addr = ident_addr;
3150        return 0;
3151}
3152
3153static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3154                                          u32 kvm_nr_mmu_pages)
3155{
3156        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3157                return -EINVAL;
3158
3159        mutex_lock(&kvm->slots_lock);
3160        spin_lock(&kvm->mmu_lock);
3161
3162        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3163        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3164
3165        spin_unlock(&kvm->mmu_lock);
3166        mutex_unlock(&kvm->slots_lock);
3167        return 0;
3168}
3169
3170static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3171{
3172        return kvm->arch.n_max_mmu_pages;
3173}
3174
3175static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3176{
3177        int r;
3178
3179        r = 0;
3180        switch (chip->chip_id) {
3181        case KVM_IRQCHIP_PIC_MASTER:
3182                memcpy(&chip->chip.pic,
3183                        &pic_irqchip(kvm)->pics[0],
3184                        sizeof(struct kvm_pic_state));
3185                break;
3186        case KVM_IRQCHIP_PIC_SLAVE:
3187                memcpy(&chip->chip.pic,
3188                        &pic_irqchip(kvm)->pics[1],
3189                        sizeof(struct kvm_pic_state));
3190                break;
3191        case KVM_IRQCHIP_IOAPIC:
3192                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3193                break;
3194        default:
3195                r = -EINVAL;
3196                break;
3197        }
3198        return r;
3199}
3200
3201static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3202{
3203        int r;
3204
3205        r = 0;
3206        switch (chip->chip_id) {
3207        case KVM_IRQCHIP_PIC_MASTER:
3208                spin_lock(&pic_irqchip(kvm)->lock);
3209                memcpy(&pic_irqchip(kvm)->pics[0],
3210                        &chip->chip.pic,
3211                        sizeof(struct kvm_pic_state));
3212                spin_unlock(&pic_irqchip(kvm)->lock);
3213                break;
3214        case KVM_IRQCHIP_PIC_SLAVE:
3215                spin_lock(&pic_irqchip(kvm)->lock);
3216                memcpy(&pic_irqchip(kvm)->pics[1],
3217                        &chip->chip.pic,
3218                        sizeof(struct kvm_pic_state));
3219                spin_unlock(&pic_irqchip(kvm)->lock);
3220                break;
3221        case KVM_IRQCHIP_IOAPIC:
3222                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3223                break;
3224        default:
3225                r = -EINVAL;
3226                break;
3227        }
3228        kvm_pic_update_irq(pic_irqchip(kvm));
3229        return r;
3230}
3231
3232static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3233{
3234        int r = 0;
3235
3236        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3237        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3238        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3239        return r;
3240}
3241
3242static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3243{
3244        int r = 0;
3245
3246        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3247        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3248        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3249        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3250        return r;
3251}
3252
3253static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3254{
3255        int r = 0;
3256
3257        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3258        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3259                sizeof(ps->channels));
3260        ps->flags = kvm->arch.vpit->pit_state.flags;
3261        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3262        memset(&ps->reserved, 0, sizeof(ps->reserved));
3263        return r;
3264}
3265
3266static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3267{
3268        int r = 0, start = 0;
3269        u32 prev_legacy, cur_legacy;
3270        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3271        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3272        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3273        if (!prev_legacy && cur_legacy)
3274                start = 1;
3275        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3276               sizeof(kvm->arch.vpit->pit_state.channels));
3277        kvm->arch.vpit->pit_state.flags = ps->flags;
3278        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3279        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3280        return r;
3281}
3282
3283static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3284                                 struct kvm_reinject_control *control)
3285{
3286        if (!kvm->arch.vpit)
3287                return -ENXIO;
3288        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3289        kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3290        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3291        return 0;
3292}
3293
3294/*
3295 * Get (and clear) the dirty memory log for a memory slot.
3296 */
3297int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3298                                      struct kvm_dirty_log *log)
3299{
3300        int r, i;
3301        struct kvm_memory_slot *memslot;
3302        unsigned long n;
3303        unsigned long is_dirty = 0;
3304
3305        mutex_lock(&kvm->slots_lock);
3306
3307        r = -EINVAL;
3308        if (log->slot >= KVM_MEMORY_SLOTS)
3309                goto out;
3310
3311        memslot = &kvm->memslots->memslots[log->slot];
3312        r = -ENOENT;
3313        if (!memslot->dirty_bitmap)
3314                goto out;
3315
3316        n = kvm_dirty_bitmap_bytes(memslot);
3317
3318        for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3319                is_dirty = memslot->dirty_bitmap[i];
3320
3321        /* If nothing is dirty, don't bother messing with page tables. */
3322        if (is_dirty) {
3323                struct kvm_memslots *slots, *old_slots;
3324                unsigned long *dirty_bitmap;
3325
3326                dirty_bitmap = memslot->dirty_bitmap_head;
3327                if (memslot->dirty_bitmap == dirty_bitmap)
3328                        dirty_bitmap += n / sizeof(long);
3329                memset(dirty_bitmap, 0, n);
3330
3331                r = -ENOMEM;
3332                slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3333                if (!slots)
3334                        goto out;
3335                memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3336                slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3337                slots->generation++;
3338
3339                old_slots = kvm->memslots;
3340                rcu_assign_pointer(kvm->memslots, slots);
3341                synchronize_srcu_expedited(&kvm->srcu);
3342                dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3343                kfree(old_slots);
3344
3345                spin_lock(&kvm->mmu_lock);
3346                kvm_mmu_slot_remove_write_access(kvm, log->slot);
3347                spin_unlock(&kvm->mmu_lock);
3348
3349                r = -EFAULT;
3350                if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3351                        goto out;
3352        } else {
3353                r = -EFAULT;
3354                if (clear_user(log->dirty_bitmap, n))
3355                        goto out;
3356        }
3357
3358        r = 0;
3359out:
3360        mutex_unlock(&kvm->slots_lock);
3361        return r;
3362}
3363
3364long kvm_arch_vm_ioctl(struct file *filp,
3365                       unsigned int ioctl, unsigned long arg)
3366{
3367        struct kvm *kvm = filp->private_data;
3368        void __user *argp = (void __user *)arg;
3369        int r = -ENOTTY;
3370        /*
3371         * This union makes it completely explicit to gcc-3.x
3372         * that these two variables' stack usage should be
3373         * combined, not added together.
3374         */
3375        union {
3376                struct kvm_pit_state ps;
3377                struct kvm_pit_state2 ps2;
3378                struct kvm_pit_config pit_config;
3379        } u;
3380
3381        switch (ioctl) {
3382        case KVM_SET_TSS_ADDR:
3383                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3384                if (r < 0)
3385                        goto out;
3386                break;
3387        case KVM_SET_IDENTITY_MAP_ADDR: {
3388                u64 ident_addr;
3389
3390                r = -EFAULT;
3391                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3392                        goto out;
3393                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3394                if (r < 0)
3395                        goto out;
3396                break;
3397        }
3398        case KVM_SET_NR_MMU_PAGES:
3399                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3400                if (r)
3401                        goto out;
3402                break;
3403        case KVM_GET_NR_MMU_PAGES:
3404                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3405                break;
3406        case KVM_CREATE_IRQCHIP: {
3407                struct kvm_pic *vpic;
3408
3409                mutex_lock(&kvm->lock);
3410                r = -EEXIST;
3411                if (kvm->arch.vpic)
3412                        goto create_irqchip_unlock;
3413                r = -ENOMEM;
3414                vpic = kvm_create_pic(kvm);
3415                if (vpic) {
3416                        r = kvm_ioapic_init(kvm);
3417                        if (r) {
3418                                mutex_lock(&kvm->slots_lock);
3419                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3420                                                          &vpic->dev);
3421                                mutex_unlock(&kvm->slots_lock);
3422                                kfree(vpic);
3423                                goto create_irqchip_unlock;
3424                        }
3425                } else
3426                        goto create_irqchip_unlock;
3427                smp_wmb();
3428                kvm->arch.vpic = vpic;
3429                smp_wmb();
3430                r = kvm_setup_default_irq_routing(kvm);
3431                if (r) {
3432                        mutex_lock(&kvm->slots_lock);
3433                        mutex_lock(&kvm->irq_lock);
3434                        kvm_ioapic_destroy(kvm);
3435                        kvm_destroy_pic(kvm);
3436                        mutex_unlock(&kvm->irq_lock);
3437                        mutex_unlock(&kvm->slots_lock);
3438                }
3439        create_irqchip_unlock:
3440                mutex_unlock(&kvm->lock);
3441                break;
3442        }
3443        case KVM_CREATE_PIT:
3444                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3445                goto create_pit;
3446        case KVM_CREATE_PIT2:
3447                r = -EFAULT;
3448                if (copy_from_user(&u.pit_config, argp,
3449                                   sizeof(struct kvm_pit_config)))
3450                        goto out;
3451        create_pit:
3452                mutex_lock(&kvm->slots_lock);
3453                r = -EEXIST;
3454                if (kvm->arch.vpit)
3455                        goto create_pit_unlock;
3456                r = -ENOMEM;
3457                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3458                if (kvm->arch.vpit)
3459                        r = 0;
3460        create_pit_unlock:
3461                mutex_unlock(&kvm->slots_lock);
3462                break;
3463        case KVM_IRQ_LINE_STATUS:
3464        case KVM_IRQ_LINE: {
3465                struct kvm_irq_level irq_event;
3466
3467                r = -EFAULT;
3468                if (copy_from_user(&irq_event, argp, sizeof irq_event))
3469                        goto out;
3470                r = -ENXIO;
3471                if (irqchip_in_kernel(kvm)) {
3472                        __s32 status;
3473                        status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3474                                        irq_event.irq, irq_event.level);
3475                        if (ioctl == KVM_IRQ_LINE_STATUS) {
3476                                r = -EFAULT;
3477                                irq_event.status = status;
3478                                if (copy_to_user(argp, &irq_event,
3479                                                        sizeof irq_event))
3480                                        goto out;
3481                        }
3482                        r = 0;
3483                }
3484                break;
3485        }
3486        case KVM_GET_IRQCHIP: {
3487                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3488                struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3489
3490                r = -ENOMEM;
3491                if (!chip)
3492                        goto out;
3493                r = -EFAULT;
3494                if (copy_from_user(chip, argp, sizeof *chip))
3495                        goto get_irqchip_out;
3496                r = -ENXIO;
3497                if (!irqchip_in_kernel(kvm))
3498                        goto get_irqchip_out;
3499                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3500                if (r)
3501                        goto get_irqchip_out;
3502                r = -EFAULT;
3503                if (copy_to_user(argp, chip, sizeof *chip))
3504                        goto get_irqchip_out;
3505                r = 0;
3506        get_irqchip_out:
3507                kfree(chip);
3508                if (r)
3509                        goto out;
3510                break;
3511        }
3512        case KVM_SET_IRQCHIP: {
3513                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3514                struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3515
3516                r = -ENOMEM;
3517                if (!chip)
3518                        goto out;
3519                r = -EFAULT;
3520                if (copy_from_user(chip, argp, sizeof *chip))
3521                        goto set_irqchip_out;
3522                r = -ENXIO;
3523                if (!irqchip_in_kernel(kvm))
3524                        goto set_irqchip_out;
3525                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3526                if (r)
3527                        goto set_irqchip_out;
3528                r = 0;
3529        set_irqchip_out:
3530                kfree(chip);
3531                if (r)
3532                        goto out;
3533                break;
3534        }
3535        case KVM_GET_PIT: {
3536                r = -EFAULT;
3537                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3538                        goto out;
3539                r = -ENXIO;
3540                if (!kvm->arch.vpit)
3541                        goto out;
3542                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3543                if (r)
3544                        goto out;
3545                r = -EFAULT;
3546                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3547                        goto out;
3548                r = 0;
3549                break;
3550        }
3551        case KVM_SET_PIT: {
3552                r = -EFAULT;
3553                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3554                        goto out;
3555                r = -ENXIO;
3556                if (!kvm->arch.vpit)
3557                        goto out;
3558                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3559                if (r)
3560                        goto out;
3561                r = 0;
3562                break;
3563        }
3564        case KVM_GET_PIT2: {
3565                r = -ENXIO;
3566                if (!kvm->arch.vpit)
3567                        goto out;
3568                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3569                if (r)
3570                        goto out;
3571                r = -EFAULT;
3572                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3573                        goto out;
3574                r = 0;
3575                break;
3576        }
3577        case KVM_SET_PIT2: {
3578                r = -EFAULT;
3579                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3580                        goto out;
3581                r = -ENXIO;
3582                if (!kvm->arch.vpit)
3583                        goto out;
3584                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3585                if (r)
3586                        goto out;
3587                r = 0;
3588                break;
3589        }
3590        case KVM_REINJECT_CONTROL: {
3591                struct kvm_reinject_control control;
3592                r =  -EFAULT;
3593                if (copy_from_user(&control, argp, sizeof(control)))
3594                        goto out;
3595                r = kvm_vm_ioctl_reinject(kvm, &control);
3596                if (r)
3597                        goto out;
3598                r = 0;
3599                break;
3600        }
3601        case KVM_XEN_HVM_CONFIG: {
3602                r = -EFAULT;
3603                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3604                                   sizeof(struct kvm_xen_hvm_config)))
3605                        goto out;
3606                r = -EINVAL;
3607                if (kvm->arch.xen_hvm_config.flags)
3608                        goto out;
3609                r = 0;
3610                break;
3611        }
3612        case KVM_SET_CLOCK: {
3613                struct kvm_clock_data user_ns;
3614                u64 now_ns;
3615                s64 delta;
3616
3617                r = -EFAULT;
3618                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3619                        goto out;
3620
3621                r = -EINVAL;
3622                if (user_ns.flags)
3623                        goto out;
3624
3625                r = 0;
3626                local_irq_disable();
3627                now_ns = get_kernel_ns();
3628                delta = user_ns.clock - now_ns;
3629                local_irq_enable();
3630                kvm->arch.kvmclock_offset = delta;
3631                break;
3632        }
3633        case KVM_GET_CLOCK: {
3634                struct kvm_clock_data user_ns;
3635                u64 now_ns;
3636
3637                local_irq_disable();
3638                now_ns = get_kernel_ns();
3639                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3640                local_irq_enable();
3641                user_ns.flags = 0;
3642                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3643
3644                r = -EFAULT;
3645                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3646                        goto out;
3647                r = 0;
3648                break;
3649        }
3650
3651        default:
3652                ;
3653        }
3654out:
3655        return r;
3656}
3657
3658static void kvm_init_msr_list(void)
3659{
3660        u32 dummy[2];
3661        unsigned i, j;
3662
3663        /* skip the first msrs in the list. KVM-specific */
3664        for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3665                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3666                        continue;
3667                if (j < i)
3668                        msrs_to_save[j] = msrs_to_save[i];
3669                j++;
3670        }
3671        num_msrs_to_save = j;
3672}
3673
3674static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3675                           const void *v)
3676{
3677        int handled = 0;
3678        int n;
3679
3680        do {
3681                n = min(len, 8);
3682                if (!(vcpu->arch.apic &&
3683                      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3684                    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3685                        break;
3686                handled += n;
3687                addr += n;
3688                len -= n;
3689                v += n;
3690        } while (len);
3691
3692        return handled;
3693}
3694
3695static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3696{
3697        int handled = 0;
3698        int n;
3699
3700        do {
3701                n = min(len, 8);
3702                if (!(vcpu->arch.apic &&
3703                      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3704                    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3705                        break;
3706                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3707                handled += n;
3708                addr += n;
3709                len -= n;
3710                v += n;
3711        } while (len);
3712
3713        return handled;
3714}
3715
3716static void kvm_set_segment(struct kvm_vcpu *vcpu,
3717                        struct kvm_segment *var, int seg)
3718{
3719        kvm_x86_ops->set_segment(vcpu, var, seg);
3720}
3721
3722void kvm_get_segment(struct kvm_vcpu *vcpu,
3723                     struct kvm_segment *var, int seg)
3724{
3725        kvm_x86_ops->get_segment(vcpu, var, seg);
3726}
3727
3728static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3729{
3730        return gpa;
3731}
3732
3733static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3734{
3735        gpa_t t_gpa;
3736        struct x86_exception exception;
3737
3738        BUG_ON(!mmu_is_nested(vcpu));
3739
3740        /* NPT walks are always user-walks */
3741        access |= PFERR_USER_MASK;
3742        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3743
3744        return t_gpa;
3745}
3746
3747gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3748                              struct x86_exception *exception)
3749{
3750        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3751        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3752}
3753
3754 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3755                                struct x86_exception *exception)
3756{
3757        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3758        access |= PFERR_FETCH_MASK;
3759        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3760}
3761
3762gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3763                               struct x86_exception *exception)
3764{
3765        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3766        access |= PFERR_WRITE_MASK;
3767        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3768}
3769
3770/* uses this to access any guest's mapped memory without checking CPL */
3771gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3772                                struct x86_exception *exception)
3773{
3774        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3775}
3776
3777static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3778                                      struct kvm_vcpu *vcpu, u32 access,
3779                                      struct x86_exception *exception)
3780{
3781        void *data = val;
3782        int r = X86EMUL_CONTINUE;
3783
3784        while (bytes) {
3785                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3786                                                            exception);
3787                unsigned offset = addr & (PAGE_SIZE-1);
3788                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3789                int ret;
3790
3791                if (gpa == UNMAPPED_GVA)
3792                        return X86EMUL_PROPAGATE_FAULT;
3793                ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3794                if (ret < 0) {
3795                        r = X86EMUL_IO_NEEDED;
3796                        goto out;
3797                }
3798
3799                bytes -= toread;
3800                data += toread;
3801                addr += toread;
3802        }
3803out:
3804        return r;
3805}
3806
3807/* used for instruction fetching */
3808static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3809                                gva_t addr, void *val, unsigned int bytes,
3810                                struct x86_exception *exception)
3811{
3812        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3813        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3814
3815        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3816                                          access | PFERR_FETCH_MASK,
3817                                          exception);
3818}
3819
3820static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3821                               gva_t addr, void *val, unsigned int bytes,
3822                               struct x86_exception *exception)
3823{
3824        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3825        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3826
3827        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3828                                          exception);
3829}
3830
3831static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3832                                      gva_t addr, void *val, unsigned int bytes,
3833                                      struct x86_exception *exception)
3834{
3835        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3836        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3837}
3838
3839static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3840                                       gva_t addr, void *val,
3841                                       unsigned int bytes,
3842                                       struct x86_exception *exception)
3843{
3844        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3845        void *data = val;
3846        int r = X86EMUL_CONTINUE;
3847
3848        while (bytes) {
3849                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3850                                                             PFERR_WRITE_MASK,
3851                                                             exception);
3852                unsigned offset = addr & (PAGE_SIZE-1);
3853                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3854                int ret;
3855
3856                if (gpa == UNMAPPED_GVA)
3857                        return X86EMUL_PROPAGATE_FAULT;
3858                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3859                if (ret < 0) {
3860                        r = X86EMUL_IO_NEEDED;
3861                        goto out;
3862                }
3863
3864                bytes -= towrite;
3865                data += towrite;
3866                addr += towrite;
3867        }
3868out:
3869        return r;
3870}
3871
3872static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3873                                  unsigned long addr,
3874                                  void *val,
3875                                  unsigned int bytes,
3876                                  struct x86_exception *exception)
3877{
3878        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3879        gpa_t                 gpa;
3880        int handled;
3881
3882        if (vcpu->mmio_read_completed) {
3883                memcpy(val, vcpu->mmio_data, bytes);
3884                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3885                               vcpu->mmio_phys_addr, *(u64 *)val);
3886                vcpu->mmio_read_completed = 0;
3887                return X86EMUL_CONTINUE;
3888        }
3889
3890        gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3891
3892        if (gpa == UNMAPPED_GVA)
3893                return X86EMUL_PROPAGATE_FAULT;
3894
3895        /* For APIC access vmexit */
3896        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3897                goto mmio;
3898
3899        if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
3900            == X86EMUL_CONTINUE)
3901                return X86EMUL_CONTINUE;
3902
3903mmio:
3904        /*
3905         * Is this MMIO handled locally?
3906         */
3907        handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3908
3909        if (handled == bytes)
3910                return X86EMUL_CONTINUE;
3911
3912        gpa += handled;
3913        bytes -= handled;
3914        val += handled;
3915
3916        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3917
3918        vcpu->mmio_needed = 1;
3919        vcpu->run->exit_reason = KVM_EXIT_MMIO;
3920        vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3921        vcpu->mmio_size = bytes;
3922        vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3923        vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3924        vcpu->mmio_index = 0;
3925
3926        return X86EMUL_IO_NEEDED;
3927}
3928
3929int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3930                        const void *val, int bytes)
3931{
3932        int ret;
3933
3934        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3935        if (ret < 0)
3936                return 0;
3937        kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3938        return 1;
3939}
3940
3941static int emulator_write_emulated_onepage(unsigned long addr,
3942                                           const void *val,
3943                                           unsigned int bytes,
3944                                           struct x86_exception *exception,
3945                                           struct kvm_vcpu *vcpu)
3946{
3947        gpa_t                 gpa;
3948        int handled;
3949
3950        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3951
3952        if (gpa == UNMAPPED_GVA)
3953                return X86EMUL_PROPAGATE_FAULT;
3954
3955        /* For APIC access vmexit */
3956        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3957                goto mmio;
3958
3959        if (emulator_write_phys(vcpu, gpa, val, bytes))
3960                return X86EMUL_CONTINUE;
3961
3962mmio:
3963        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3964        /*
3965         * Is this MMIO handled locally?
3966         */
3967        handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
3968        if (handled == bytes)
3969                return X86EMUL_CONTINUE;
3970
3971        gpa += handled;
3972        bytes -= handled;
3973        val += handled;
3974
3975        vcpu->mmio_needed = 1;
3976        memcpy(vcpu->mmio_data, val, bytes);
3977        vcpu->run->exit_reason = KVM_EXIT_MMIO;
3978        vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3979        vcpu->mmio_size = bytes;
3980        vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3981        vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3982        memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3983        vcpu->mmio_index = 0;
3984
3985        return X86EMUL_CONTINUE;
3986}
3987
3988int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3989                            unsigned long addr,
3990                            const void *val,
3991                            unsigned int bytes,
3992                            struct x86_exception *exception)
3993{
3994        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3995
3996        /* Crossing a page boundary? */
3997        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3998                int rc, now;
3999
4000                now = -addr & ~PAGE_MASK;
4001                rc = emulator_write_emulated_onepage(addr, val, now, exception,
4002                                                     vcpu);
4003                if (rc != X86EMUL_CONTINUE)
4004                        return rc;
4005                addr += now;
4006                val += now;
4007                bytes -= now;
4008        }
4009        return emulator_write_emulated_onepage(addr, val, bytes, exception,
4010                                               vcpu);
4011}
4012
4013#define CMPXCHG_TYPE(t, ptr, old, new) \
4014        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4015
4016#ifdef CONFIG_X86_64
4017#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4018#else
4019#  define CMPXCHG64(ptr, old, new) \
4020        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4021#endif
4022
4023static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4024                                     unsigned long addr,
4025                                     const void *old,
4026                                     const void *new,
4027                                     unsigned int bytes,
4028                                     struct x86_exception *exception)
4029{
4030        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4031        gpa_t gpa;
4032        struct page *page;
4033        char *kaddr;
4034        bool exchanged;
4035
4036        /* guests cmpxchg8b have to be emulated atomically */
4037        if (bytes > 8 || (bytes & (bytes - 1)))
4038                goto emul_write;
4039
4040        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4041
4042        if (gpa == UNMAPPED_GVA ||
4043            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4044                goto emul_write;
4045
4046        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4047                goto emul_write;
4048
4049        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4050        if (is_error_page(page)) {
4051                kvm_release_page_clean(page);
4052                goto emul_write;
4053        }
4054
4055        kaddr = kmap_atomic(page, KM_USER0);
4056        kaddr += offset_in_page(gpa);
4057        switch (bytes) {
4058        case 1:
4059                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4060                break;
4061        case 2:
4062                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4063                break;
4064        case 4:
4065                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4066                break;
4067        case 8:
4068                exchanged = CMPXCHG64(kaddr, old, new);
4069                break;
4070        default:
4071                BUG();
4072        }
4073        kunmap_atomic(kaddr, KM_USER0);
4074        kvm_release_page_dirty(page);
4075
4076        if (!exchanged)
4077                return X86EMUL_CMPXCHG_FAILED;
4078
4079        kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4080
4081        return X86EMUL_CONTINUE;
4082
4083emul_write:
4084        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4085
4086        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4087}
4088
4089static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4090{
4091        /* TODO: String I/O for in kernel device */
4092        int r;
4093
4094        if (vcpu->arch.pio.in)
4095                r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4096                                    vcpu->arch.pio.size, pd);
4097        else
4098                r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4099                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
4100                                     pd);
4101        return r;
4102}
4103
4104
4105static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4106                                    int size, unsigned short port, void *val,
4107                                    unsigned int count)
4108{
4109        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4110
4111        if (vcpu->arch.pio.count)
4112                goto data_avail;
4113
4114        trace_kvm_pio(0, port, size, count);
4115
4116        vcpu->arch.pio.port = port;
4117        vcpu->arch.pio.in = 1;
4118        vcpu->arch.pio.count  = count;
4119        vcpu->arch.pio.size = size;
4120
4121        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4122        data_avail:
4123                memcpy(val, vcpu->arch.pio_data, size * count);
4124                vcpu->arch.pio.count = 0;
4125                return 1;
4126        }
4127
4128        vcpu->run->exit_reason = KVM_EXIT_IO;
4129        vcpu->run->io.direction = KVM_EXIT_IO_IN;
4130        vcpu->run->io.size = size;
4131        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4132        vcpu->run->io.count = count;
4133        vcpu->run->io.port = port;
4134
4135        return 0;
4136}
4137
4138static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4139                                     int size, unsigned short port,
4140                                     const void *val, unsigned int count)
4141{
4142        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4143
4144        trace_kvm_pio(1, port, size, count);
4145
4146        vcpu->arch.pio.port = port;
4147        vcpu->arch.pio.in = 0;
4148        vcpu->arch.pio.count = count;
4149        vcpu->arch.pio.size = size;
4150
4151        memcpy(vcpu->arch.pio_data, val, size * count);
4152
4153        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4154                vcpu->arch.pio.count = 0;
4155                return 1;
4156        }
4157
4158        vcpu->run->exit_reason = KVM_EXIT_IO;
4159        vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4160        vcpu->run->io.size = size;
4161        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4162        vcpu->run->io.count = count;
4163        vcpu->run->io.port = port;
4164
4165        return 0;
4166}
4167
4168static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4169{
4170        return kvm_x86_ops->get_segment_base(vcpu, seg);
4171}
4172
4173static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4174{
4175        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4176}
4177
4178int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4179{
4180        if (!need_emulate_wbinvd(vcpu))
4181                return X86EMUL_CONTINUE;
4182
4183        if (kvm_x86_ops->has_wbinvd_exit()) {
4184                int cpu = get_cpu();
4185
4186                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4187                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4188                                wbinvd_ipi, NULL, 1);
4189                put_cpu();
4190                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4191        } else
4192                wbinvd();
4193        return X86EMUL_CONTINUE;
4194}
4195EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4196
4197static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4198{
4199        kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4200}
4201
4202int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4203{
4204        return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4205}
4206
4207int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4208{
4209
4210        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4211}
4212
4213static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4214{
4215        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4216}
4217
4218static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4219{
4220        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221        unsigned long value;
4222
4223        switch (cr) {
4224        case 0:
4225                value = kvm_read_cr0(vcpu);
4226                break;
4227        case 2:
4228                value = vcpu->arch.cr2;
4229                break;
4230        case 3:
4231                value = kvm_read_cr3(vcpu);
4232                break;
4233        case 4:
4234                value = kvm_read_cr4(vcpu);
4235                break;
4236        case 8:
4237                value = kvm_get_cr8(vcpu);
4238                break;
4239        default:
4240                vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4241                return 0;
4242        }
4243
4244        return value;
4245}
4246
4247static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4248{
4249        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250        int res = 0;
4251
4252        switch (cr) {
4253        case 0:
4254                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4255                break;
4256        case 2:
4257                vcpu->arch.cr2 = val;
4258                break;
4259        case 3:
4260                res = kvm_set_cr3(vcpu, val);
4261                break;
4262        case 4:
4263                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4264                break;
4265        case 8:
4266                res = kvm_set_cr8(vcpu, val);
4267                break;
4268        default:
4269                vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4270                res = -1;
4271        }
4272
4273        return res;
4274}
4275
4276static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4277{
4278        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4279}
4280
4281static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4282{
4283        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4284}
4285
4286static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4287{
4288        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4289}
4290
4291static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4292{
4293        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4294}
4295
4296static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4297{
4298        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4299}
4300
4301static unsigned long emulator_get_cached_segment_base(
4302        struct x86_emulate_ctxt *ctxt, int seg)
4303{
4304        return get_segment_base(emul_to_vcpu(ctxt), seg);
4305}
4306
4307static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4308                                 struct desc_struct *desc, u32 *base3,
4309                                 int seg)
4310{
4311        struct kvm_segment var;
4312
4313        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4314        *selector = var.selector;
4315
4316        if (var.unusable)
4317                return false;
4318
4319        if (var.g)
4320                var.limit >>= 12;
4321        set_desc_limit(desc, var.limit);
4322        set_desc_base(desc, (unsigned long)var.base);
4323#ifdef CONFIG_X86_64
4324        if (base3)
4325                *base3 = var.base >> 32;
4326#endif
4327        desc->type = var.type;
4328        desc->s = var.s;
4329        desc->dpl = var.dpl;
4330        desc->p = var.present;
4331        desc->avl = var.avl;
4332        desc->l = var.l;
4333        desc->d = var.db;
4334        desc->g = var.g;
4335
4336        return true;
4337}
4338
4339static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4340                                 struct desc_struct *desc, u32 base3,
4341                                 int seg)
4342{
4343        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4344        struct kvm_segment var;
4345
4346        var.selector = selector;
4347        var.base = get_desc_base(desc);
4348#ifdef CONFIG_X86_64
4349        var.base |= ((u64)base3) << 32;
4350#endif
4351        var.limit = get_desc_limit(desc);
4352        if (desc->g)
4353                var.limit = (var.limit << 12) | 0xfff;
4354        var.type = desc->type;
4355        var.present = desc->p;
4356        var.dpl = desc->dpl;
4357        var.db = desc->d;
4358        var.s = desc->s;
4359        var.l = desc->l;
4360        var.g = desc->g;
4361        var.avl = desc->avl;
4362        var.present = desc->p;
4363        var.unusable = !var.present;
4364        var.padding = 0;
4365
4366        kvm_set_segment(vcpu, &var, seg);
4367        return;
4368}
4369
4370static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4371                            u32 msr_index, u64 *pdata)
4372{
4373        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4374}
4375
4376static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4377                            u32 msr_index, u64 data)
4378{
4379        return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4380}
4381
4382static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4383{
4384        emul_to_vcpu(ctxt)->arch.halt_request = 1;
4385}
4386
4387static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4388{
4389        preempt_disable();
4390        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4391        /*
4392         * CR0.TS may reference the host fpu state, not the guest fpu state,
4393         * so it may be clear at this point.
4394         */
4395        clts();
4396}
4397
4398static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4399{
4400        preempt_enable();
4401}
4402
4403static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4404                              struct x86_instruction_info *info,
4405                              enum x86_intercept_stage stage)
4406{
4407        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4408}
4409
4410static struct x86_emulate_ops emulate_ops = {
4411        .read_std            = kvm_read_guest_virt_system,
4412        .write_std           = kvm_write_guest_virt_system,
4413        .fetch               = kvm_fetch_guest_virt,
4414        .read_emulated       = emulator_read_emulated,
4415        .write_emulated      = emulator_write_emulated,
4416        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4417        .invlpg              = emulator_invlpg,
4418        .pio_in_emulated     = emulator_pio_in_emulated,
4419        .pio_out_emulated    = emulator_pio_out_emulated,
4420        .get_segment         = emulator_get_segment,
4421        .set_segment         = emulator_set_segment,
4422        .get_cached_segment_base = emulator_get_cached_segment_base,
4423        .get_gdt             = emulator_get_gdt,
4424        .get_idt             = emulator_get_idt,
4425        .set_gdt             = emulator_set_gdt,
4426        .set_idt             = emulator_set_idt,
4427        .get_cr              = emulator_get_cr,
4428        .set_cr              = emulator_set_cr,
4429        .cpl                 = emulator_get_cpl,
4430        .get_dr              = emulator_get_dr,
4431        .set_dr              = emulator_set_dr,
4432        .set_msr             = emulator_set_msr,
4433        .get_msr             = emulator_get_msr,
4434        .halt                = emulator_halt,
4435        .wbinvd              = emulator_wbinvd,
4436        .fix_hypercall       = emulator_fix_hypercall,
4437        .get_fpu             = emulator_get_fpu,
4438        .put_fpu             = emulator_put_fpu,
4439        .intercept           = emulator_intercept,
4440};
4441
4442static void cache_all_regs(struct kvm_vcpu *vcpu)
4443{
4444        kvm_register_read(vcpu, VCPU_REGS_RAX);
4445        kvm_register_read(vcpu, VCPU_REGS_RSP);
4446        kvm_register_read(vcpu, VCPU_REGS_RIP);
4447        vcpu->arch.regs_dirty = ~0;
4448}
4449
4450static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4451{
4452        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4453        /*
4454         * an sti; sti; sequence only disable interrupts for the first
4455         * instruction. So, if the last instruction, be it emulated or
4456         * not, left the system with the INT_STI flag enabled, it
4457         * means that the last instruction is an sti. We should not
4458         * leave the flag on in this case. The same goes for mov ss
4459         */
4460        if (!(int_shadow & mask))
4461                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4462}
4463
4464static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4465{
4466        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4467        if (ctxt->exception.vector == PF_VECTOR)
4468                kvm_propagate_fault(vcpu, &ctxt->exception);
4469        else if (ctxt->exception.error_code_valid)
4470                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4471                                      ctxt->exception.error_code);
4472        else
4473                kvm_queue_exception(vcpu, ctxt->exception.vector);
4474}
4475
4476static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4477{
4478        struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4479        int cs_db, cs_l;
4480
4481        /*
4482         * TODO: fix emulate.c to use guest_read/write_register
4483         * instead of direct ->regs accesses, can save hundred cycles
4484         * on Intel for instructions that don't read/change RSP, for
4485         * for example.
4486         */
4487        cache_all_regs(vcpu);
4488
4489        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4490
4491        vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
4492        vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4493        vcpu->arch.emulate_ctxt.mode =
4494                (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4495                (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4496                ? X86EMUL_MODE_VM86 : cs_l
4497                ? X86EMUL_MODE_PROT64 : cs_db
4498                ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4499        vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
4500        memset(c, 0, sizeof(struct decode_cache));
4501        memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4502        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4503}
4504
4505int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4506{
4507        struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4508        int ret;
4509
4510        init_emulate_ctxt(vcpu);
4511
4512        vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4513        vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4514        vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
4515                                                                 inc_eip;
4516        ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4517
4518        if (ret != X86EMUL_CONTINUE)
4519                return EMULATE_FAIL;
4520
4521        vcpu->arch.emulate_ctxt.eip = c->eip;
4522        memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4523        kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4524        kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4525
4526        if (irq == NMI_VECTOR)
4527                vcpu->arch.nmi_pending = false;
4528        else
4529                vcpu->arch.interrupt.pending = false;
4530
4531        return EMULATE_DONE;
4532}
4533EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4534
4535static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4536{
4537        int r = EMULATE_DONE;
4538
4539        ++vcpu->stat.insn_emulation_fail;
4540        trace_kvm_emulate_insn_failed(vcpu);
4541        if (!is_guest_mode(vcpu)) {
4542                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4543                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4544                vcpu->run->internal.ndata = 0;
4545                r = EMULATE_FAIL;
4546        }
4547        kvm_queue_exception(vcpu, UD_VECTOR);
4548
4549        return r;
4550}
4551
4552static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4553{
4554        gpa_t gpa;
4555
4556        if (tdp_enabled)
4557                return false;
4558
4559        /*
4560         * if emulation was due to access to shadowed page table
4561         * and it failed try to unshadow page and re-entetr the
4562         * guest to let CPU execute the instruction.
4563         */
4564        if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4565                return true;
4566
4567        gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4568
4569        if (gpa == UNMAPPED_GVA)
4570                return true; /* let cpu generate fault */
4571
4572        if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4573                return true;
4574
4575        return false;
4576}
4577
4578int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4579                            unsigned long cr2,
4580                            int emulation_type,
4581                            void *insn,
4582                            int insn_len)
4583{
4584        int r;
4585        struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4586        bool writeback = true;
4587
4588        kvm_clear_exception_queue(vcpu);
4589
4590        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4591                init_emulate_ctxt(vcpu);
4592                vcpu->arch.emulate_ctxt.interruptibility = 0;
4593                vcpu->arch.emulate_ctxt.have_exception = false;
4594                vcpu->arch.emulate_ctxt.perm_ok = false;
4595
4596                vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4597                        = emulation_type & EMULTYPE_TRAP_UD;
4598
4599                r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4600
4601                trace_kvm_emulate_insn_start(vcpu);
4602                ++vcpu->stat.insn_emulation;
4603                if (r)  {
4604                        if (emulation_type & EMULTYPE_TRAP_UD)
4605                                return EMULATE_FAIL;
4606                        if (reexecute_instruction(vcpu, cr2))
4607                                return EMULATE_DONE;
4608                        if (emulation_type & EMULTYPE_SKIP)
4609                                return EMULATE_FAIL;
4610                        return handle_emulation_failure(vcpu);
4611                }
4612        }
4613
4614        if (emulation_type & EMULTYPE_SKIP) {
4615                kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4616                return EMULATE_DONE;
4617        }
4618
4619        /* this is needed for vmware backdoor interface to work since it
4620           changes registers values  during IO operation */
4621        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4622                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4623                memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4624        }
4625
4626restart:
4627        r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4628
4629        if (r == EMULATION_INTERCEPTED)
4630                return EMULATE_DONE;
4631
4632        if (r == EMULATION_FAILED) {
4633                if (reexecute_instruction(vcpu, cr2))
4634                        return EMULATE_DONE;
4635
4636                return handle_emulation_failure(vcpu);
4637        }
4638
4639        if (vcpu->arch.emulate_ctxt.have_exception) {
4640                inject_emulated_exception(vcpu);
4641                r = EMULATE_DONE;
4642        } else if (vcpu->arch.pio.count) {
4643                if (!vcpu->arch.pio.in)
4644                        vcpu->arch.pio.count = 0;
4645                else
4646                        writeback = false;
4647                r = EMULATE_DO_MMIO;
4648        } else if (vcpu->mmio_needed) {
4649                if (!vcpu->mmio_is_write)
4650                        writeback = false;
4651                r = EMULATE_DO_MMIO;
4652        } else if (r == EMULATION_RESTART)
4653                goto restart;
4654        else
4655                r = EMULATE_DONE;
4656
4657        if (writeback) {
4658                toggle_interruptibility(vcpu,
4659                                vcpu->arch.emulate_ctxt.interruptibility);
4660                kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4661                kvm_make_request(KVM_REQ_EVENT, vcpu);
4662                memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4663                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4664                kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4665        } else
4666                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4667
4668        return r;
4669}
4670EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4671
4672int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4673{
4674        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4675        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4676                                            size, port, &val, 1);
4677        /* do not return to emulator after return from userspace */
4678        vcpu->arch.pio.count = 0;
4679        return ret;
4680}
4681EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4682
4683static void tsc_bad(void *info)
4684{
4685        __this_cpu_write(cpu_tsc_khz, 0);
4686}
4687
4688static void tsc_khz_changed(void *data)
4689{
4690        struct cpufreq_freqs *freq = data;
4691        unsigned long khz = 0;
4692
4693        if (data)
4694                khz = freq->new;
4695        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4696                khz = cpufreq_quick_get(raw_smp_processor_id());
4697        if (!khz)
4698                khz = tsc_khz;
4699        __this_cpu_write(cpu_tsc_khz, khz);
4700}
4701
4702static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4703                                     void *data)
4704{
4705        struct cpufreq_freqs *freq = data;
4706        struct kvm *kvm;
4707        struct kvm_vcpu *vcpu;
4708        int i, send_ipi = 0;
4709
4710        /*
4711         * We allow guests to temporarily run on slowing clocks,
4712         * provided we notify them after, or to run on accelerating
4713         * clocks, provided we notify them before.  Thus time never
4714         * goes backwards.
4715         *
4716         * However, we have a problem.  We can't atomically update
4717         * the frequency of a given CPU from this function; it is
4718         * merely a notifier, which can be called from any CPU.
4719         * Changing the TSC frequency at arbitrary points in time
4720         * requires a recomputation of local variables related to
4721         * the TSC for each VCPU.  We must flag these local variables
4722         * to be updated and be sure the update takes place with the
4723         * new frequency before any guests proceed.
4724         *
4725         * Unfortunately, the combination of hotplug CPU and frequency
4726         * change creates an intractable locking scenario; the order
4727         * of when these callouts happen is undefined with respect to
4728         * CPU hotplug, and they can race with each other.  As such,
4729         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4730         * undefined; you can actually have a CPU frequency change take
4731         * place in between the computation of X and the setting of the
4732         * variable.  To protect against this problem, all updates of
4733         * the per_cpu tsc_khz variable are done in an interrupt
4734         * protected IPI, and all callers wishing to update the value
4735         * must wait for a synchronous IPI to complete (which is trivial
4736         * if the caller is on the CPU already).  This establishes the
4737         * necessary total order on variable updates.
4738         *
4739         * Note that because a guest time update may take place
4740         * anytime after the setting of the VCPU's request bit, the
4741         * correct TSC value must be set before the request.  However,
4742         * to ensure the update actually makes it to any guest which
4743         * starts running in hardware virtualization between the set
4744         * and the acquisition of the spinlock, we must also ping the
4745         * CPU after setting the request bit.
4746         *
4747         */
4748
4749        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4750                return 0;
4751        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4752                return 0;
4753
4754        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4755
4756        raw_spin_lock(&kvm_lock);
4757        list_for_each_entry(kvm, &vm_list, vm_list) {
4758                kvm_for_each_vcpu(i, vcpu, kvm) {
4759                        if (vcpu->cpu != freq->cpu)
4760                                continue;
4761                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4762                        if (vcpu->cpu != smp_processor_id())
4763                                send_ipi = 1;
4764                }
4765        }
4766        raw_spin_unlock(&kvm_lock);
4767
4768        if (freq->old < freq->new && send_ipi) {
4769                /*
4770                 * We upscale the frequency.  Must make the guest
4771                 * doesn't see old kvmclock values while running with
4772                 * the new frequency, otherwise we risk the guest sees
4773                 * time go backwards.
4774                 *
4775                 * In case we update the frequency for another cpu
4776                 * (which might be in guest context) send an interrupt
4777                 * to kick the cpu out of guest context.  Next time
4778                 * guest context is entered kvmclock will be updated,
4779                 * so the guest will not see stale values.
4780                 */
4781                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4782        }
4783        return 0;
4784}
4785
4786static struct notifier_block kvmclock_cpufreq_notifier_block = {
4787        .notifier_call  = kvmclock_cpufreq_notifier
4788};
4789
4790static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4791                                        unsigned long action, void *hcpu)
4792{
4793        unsigned int cpu = (unsigned long)hcpu;
4794
4795        switch (action) {
4796                case CPU_ONLINE:
4797                case CPU_DOWN_FAILED:
4798                        smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4799                        break;
4800                case CPU_DOWN_PREPARE:
4801                        smp_call_function_single(cpu, tsc_bad, NULL, 1);
4802                        break;
4803        }
4804        return NOTIFY_OK;
4805}
4806
4807static struct notifier_block kvmclock_cpu_notifier_block = {
4808        .notifier_call  = kvmclock_cpu_notifier,
4809        .priority = -INT_MAX
4810};
4811
4812static void kvm_timer_init(void)
4813{
4814        int cpu;
4815
4816        max_tsc_khz = tsc_khz;
4817        register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4818        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4819#ifdef CONFIG_CPU_FREQ
4820                struct cpufreq_policy policy;
4821                memset(&policy, 0, sizeof(policy));
4822                cpu = get_cpu();
4823                cpufreq_get_policy(&policy, cpu);
4824                if (policy.cpuinfo.max_freq)
4825                        max_tsc_khz = policy.cpuinfo.max_freq;
4826                put_cpu();
4827#endif
4828                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4829                                          CPUFREQ_TRANSITION_NOTIFIER);
4830        }
4831        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4832        for_each_online_cpu(cpu)
4833                smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4834}
4835
4836static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4837
4838static int kvm_is_in_guest(void)
4839{
4840        return percpu_read(current_vcpu) != NULL;
4841}
4842
4843static int kvm_is_user_mode(void)
4844{
4845        int user_mode = 3;
4846
4847        if (percpu_read(current_vcpu))
4848                user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4849
4850        return user_mode != 0;
4851}
4852
4853static unsigned long kvm_get_guest_ip(void)
4854{
4855        unsigned long ip = 0;
4856
4857        if (percpu_read(current_vcpu))
4858                ip = kvm_rip_read(percpu_read(current_vcpu));
4859
4860        return ip;
4861}
4862
4863static struct perf_guest_info_callbacks kvm_guest_cbs = {
4864        .is_in_guest            = kvm_is_in_guest,
4865        .is_user_mode           = kvm_is_user_mode,
4866        .get_guest_ip           = kvm_get_guest_ip,
4867};
4868
4869void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4870{
4871        percpu_write(current_vcpu, vcpu);
4872}
4873EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4874
4875void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4876{
4877        percpu_write(current_vcpu, NULL);
4878}
4879EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4880
4881int kvm_arch_init(void *opaque)
4882{
4883        int r;
4884        struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4885
4886        if (kvm_x86_ops) {
4887                printk(KERN_ERR "kvm: already loaded the other module\n");
4888                r = -EEXIST;
4889                goto out;
4890        }
4891
4892        if (!ops->cpu_has_kvm_support()) {
4893                printk(KERN_ERR "kvm: no hardware support\n");
4894                r = -EOPNOTSUPP;
4895                goto out;
4896        }
4897        if (ops->disabled_by_bios()) {
4898                printk(KERN_ERR "kvm: disabled by bios\n");
4899                r = -EOPNOTSUPP;
4900                goto out;
4901        }
4902
4903        r = kvm_mmu_module_init();
4904        if (r)
4905                goto out;
4906
4907        kvm_init_msr_list();
4908
4909        kvm_x86_ops = ops;
4910        kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4911        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4912                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
4913
4914        kvm_timer_init();
4915
4916        perf_register_guest_info_callbacks(&kvm_guest_cbs);
4917
4918        if (cpu_has_xsave)
4919                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4920
4921        return 0;
4922
4923out:
4924        return r;
4925}
4926
4927void kvm_arch_exit(void)
4928{
4929        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4930
4931        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4932                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4933                                            CPUFREQ_TRANSITION_NOTIFIER);
4934        unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4935        kvm_x86_ops = NULL;
4936        kvm_mmu_module_exit();
4937}
4938
4939int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4940{
4941        ++vcpu->stat.halt_exits;
4942        if (irqchip_in_kernel(vcpu->kvm)) {
4943                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4944                return 1;
4945        } else {
4946                vcpu->run->exit_reason = KVM_EXIT_HLT;
4947                return 0;
4948        }
4949}
4950EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4951
4952static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4953                           unsigned long a1)
4954{
4955        if (is_long_mode(vcpu))
4956                return a0;
4957        else
4958                return a0 | ((gpa_t)a1 << 32);
4959}
4960
4961int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4962{
4963        u64 param, ingpa, outgpa, ret;
4964        uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4965        bool fast, longmode;
4966        int cs_db, cs_l;
4967
4968        /*
4969         * hypercall generates UD from non zero cpl and real mode
4970         * per HYPER-V spec
4971         */
4972        if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4973                kvm_queue_exception(vcpu, UD_VECTOR);
4974                return 0;
4975        }
4976
4977        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4978        longmode = is_long_mode(vcpu) && cs_l == 1;
4979
4980        if (!longmode) {
4981                param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4982                        (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4983                ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4984                        (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4985                outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4986                        (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4987        }
4988#ifdef CONFIG_X86_64
4989        else {
4990                param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4991                ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4992                outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4993        }
4994#endif
4995
4996        code = param & 0xffff;
4997        fast = (param >> 16) & 0x1;
4998        rep_cnt = (param >> 32) & 0xfff;
4999        rep_idx = (param >> 48) & 0xfff;
5000
5001        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5002
5003        switch (code) {
5004        case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5005                kvm_vcpu_on_spin(vcpu);
5006                break;
5007        default:
5008                res = HV_STATUS_INVALID_HYPERCALL_CODE;
5009                break;
5010        }
5011
5012        ret = res | (((u64)rep_done & 0xfff) << 32);
5013        if (longmode) {
5014                kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5015        } else {
5016                kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5017                kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5018        }
5019
5020        return 1;
5021}
5022
5023int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5024{
5025        unsigned long nr, a0, a1, a2, a3, ret;
5026        int r = 1;
5027
5028        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5029                return kvm_hv_hypercall(vcpu);
5030
5031        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5032        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5033        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5034        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5035        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5036
5037        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5038
5039        if (!is_long_mode(vcpu)) {
5040                nr &= 0xFFFFFFFF;
5041                a0 &= 0xFFFFFFFF;
5042                a1 &= 0xFFFFFFFF;
5043                a2 &= 0xFFFFFFFF;
5044                a3 &= 0xFFFFFFFF;
5045        }
5046
5047        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5048                ret = -KVM_EPERM;
5049                goto out;
5050        }
5051
5052        switch (nr) {
5053        case KVM_HC_VAPIC_POLL_IRQ:
5054                ret = 0;
5055                break;
5056        case KVM_HC_MMU_OP:
5057                r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5058                break;
5059        default:
5060                ret = -KVM_ENOSYS;
5061                break;
5062        }
5063out:
5064        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5065        ++vcpu->stat.hypercalls;
5066        return r;
5067}
5068EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5069
5070int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5071{
5072        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5073        char instruction[3];
5074        unsigned long rip = kvm_rip_read(vcpu);
5075
5076        /*
5077         * Blow out the MMU to ensure that no other VCPU has an active mapping
5078         * to ensure that the updated hypercall appears atomically across all
5079         * VCPUs.
5080         */
5081        kvm_mmu_zap_all(vcpu->kvm);
5082
5083        kvm_x86_ops->patch_hypercall(vcpu, instruction);
5084
5085        return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
5086                                       rip, instruction, 3, NULL);
5087}
5088
5089static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5090{
5091        struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5092        int j, nent = vcpu->arch.cpuid_nent;
5093
5094        e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5095        /* when no next entry is found, the current entry[i] is reselected */
5096        for (j = i + 1; ; j = (j + 1) % nent) {
5097                struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5098                if (ej->function == e->function) {
5099                        ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5100                        return j;
5101                }
5102        }
5103        return 0; /* silence gcc, even though control never reaches here */
5104}
5105
5106/* find an entry with matching function, matching index (if needed), and that
5107 * should be read next (if it's stateful) */
5108static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5109        u32 function, u32 index)
5110{
5111        if (e->function != function)
5112                return 0;
5113        if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5114                return 0;
5115        if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5116            !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5117                return 0;
5118        return 1;
5119}
5120
5121struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5122                                              u32 function, u32 index)
5123{
5124        int i;
5125        struct kvm_cpuid_entry2 *best = NULL;
5126
5127        for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5128                struct kvm_cpuid_entry2 *e;
5129
5130                e = &vcpu->arch.cpuid_entries[i];
5131                if (is_matching_cpuid_entry(e, function, index)) {
5132                        if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5133                                move_to_next_stateful_cpuid_entry(vcpu, i);
5134                        best = e;
5135                        break;
5136                }
5137        }
5138        return best;
5139}
5140EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5141
5142int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5143{
5144        struct kvm_cpuid_entry2 *best;
5145
5146        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5147        if (!best || best->eax < 0x80000008)
5148                goto not_found;
5149        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5150        if (best)
5151                return best->eax & 0xff;
5152not_found:
5153        return 36;
5154}
5155
5156/*
5157 * If no match is found, check whether we exceed the vCPU's limit
5158 * and return the content of the highest valid _standard_ leaf instead.
5159 * This is to satisfy the CPUID specification.
5160 */
5161static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5162                                                  u32 function, u32 index)
5163{
5164        struct kvm_cpuid_entry2 *maxlevel;
5165
5166        maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5167        if (!maxlevel || maxlevel->eax >= function)
5168                return NULL;
5169        if (function & 0x80000000) {
5170                maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5171                if (!maxlevel)
5172                        return NULL;
5173        }
5174        return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5175}
5176
5177void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5178{
5179        u32 function, index;
5180        struct kvm_cpuid_entry2 *best;
5181
5182        function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5183        index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5184        kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5185        kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5186        kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5187        kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5188        best = kvm_find_cpuid_entry(vcpu, function, index);
5189
5190        if (!best)
5191                best = check_cpuid_limit(vcpu, function, index);
5192
5193        if (best) {
5194                kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5195                kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5196                kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5197                kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5198        }
5199        kvm_x86_ops->skip_emulated_instruction(vcpu);
5200        trace_kvm_cpuid(function,
5201                        kvm_register_read(vcpu, VCPU_REGS_RAX),
5202                        kvm_register_read(vcpu, VCPU_REGS_RBX),
5203                        kvm_register_read(vcpu, VCPU_REGS_RCX),
5204                        kvm_register_read(vcpu, VCPU_REGS_RDX));
5205}
5206EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5207
5208/*
5209 * Check if userspace requested an interrupt window, and that the
5210 * interrupt window is open.
5211 *
5212 * No need to exit to userspace if we already have an interrupt queued.
5213 */
5214static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5215{
5216        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5217                vcpu->run->request_interrupt_window &&
5218                kvm_arch_interrupt_allowed(vcpu));
5219}
5220
5221static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5222{
5223        struct kvm_run *kvm_run = vcpu->run;
5224
5225        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5226        kvm_run->cr8 = kvm_get_cr8(vcpu);
5227        kvm_run->apic_base = kvm_get_apic_base(vcpu);
5228        if (irqchip_in_kernel(vcpu->kvm))
5229                kvm_run->ready_for_interrupt_injection = 1;
5230        else
5231                kvm_run->ready_for_interrupt_injection =
5232                        kvm_arch_interrupt_allowed(vcpu) &&
5233                        !kvm_cpu_has_interrupt(vcpu) &&
5234                        !kvm_event_needs_reinjection(vcpu);
5235}
5236
5237static void vapic_enter(struct kvm_vcpu *vcpu)
5238{
5239        struct kvm_lapic *apic = vcpu->arch.apic;
5240        struct page *page;
5241
5242        if (!apic || !apic->vapic_addr)
5243                return;
5244
5245        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5246
5247        vcpu->arch.apic->vapic_page = page;
5248}
5249
5250static void vapic_exit(struct kvm_vcpu *vcpu)
5251{
5252        struct kvm_lapic *apic = vcpu->arch.apic;
5253        int idx;
5254
5255        if (!apic || !apic->vapic_addr)
5256                return;
5257
5258        idx = srcu_read_lock(&vcpu->kvm->srcu);
5259        kvm_release_page_dirty(apic->vapic_page);
5260        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5261        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5262}
5263
5264static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5265{
5266        int max_irr, tpr;
5267
5268        if (!kvm_x86_ops->update_cr8_intercept)
5269                return;
5270
5271        if (!vcpu->arch.apic)
5272                return;
5273
5274        if (!vcpu->arch.apic->vapic_addr)
5275                max_irr = kvm_lapic_find_highest_irr(vcpu);
5276        else
5277                max_irr = -1;
5278
5279        if (max_irr != -1)
5280                max_irr >>= 4;
5281
5282        tpr = kvm_lapic_get_cr8(vcpu);
5283
5284        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5285}
5286
5287static void inject_pending_event(struct kvm_vcpu *vcpu)
5288{
5289        /* try to reinject previous events if any */
5290        if (vcpu->arch.exception.pending) {
5291                trace_kvm_inj_exception(vcpu->arch.exception.nr,
5292                                        vcpu->arch.exception.has_error_code,
5293                                        vcpu->arch.exception.error_code);
5294                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5295                                          vcpu->arch.exception.has_error_code,
5296                                          vcpu->arch.exception.error_code,
5297                                          vcpu->arch.exception.reinject);
5298                return;
5299        }
5300
5301        if (vcpu->arch.nmi_injected) {
5302                kvm_x86_ops->set_nmi(vcpu);
5303                return;
5304        }
5305
5306        if (vcpu->arch.interrupt.pending) {
5307                kvm_x86_ops->set_irq(vcpu);
5308                return;
5309        }
5310
5311        /* try to inject new event if pending */
5312        if (vcpu->arch.nmi_pending) {
5313                if (kvm_x86_ops->nmi_allowed(vcpu)) {
5314                        vcpu->arch.nmi_pending = false;
5315                        vcpu->arch.nmi_injected = true;
5316                        kvm_x86_ops->set_nmi(vcpu);
5317                }
5318        } else if (kvm_cpu_has_interrupt(vcpu)) {
5319                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5320                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5321                                            false);
5322                        kvm_x86_ops->set_irq(vcpu);
5323                }
5324        }
5325}
5326
5327static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5328{
5329        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5330                        !vcpu->guest_xcr0_loaded) {
5331                /* kvm_set_xcr() also depends on this */
5332                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5333                vcpu->guest_xcr0_loaded = 1;
5334        }
5335}
5336
5337static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5338{
5339        if (vcpu->guest_xcr0_loaded) {
5340                if (vcpu->arch.xcr0 != host_xcr0)
5341                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5342                vcpu->guest_xcr0_loaded = 0;
5343        }
5344}
5345
5346static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5347{
5348        int r;
5349        bool nmi_pending;
5350        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5351                vcpu->run->request_interrupt_window;
5352
5353        if (vcpu->requests) {
5354                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5355                        kvm_mmu_unload(vcpu);
5356                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5357                        __kvm_migrate_timers(vcpu);
5358                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5359                        r = kvm_guest_time_update(vcpu);
5360                        if (unlikely(r))
5361                                goto out;
5362                }
5363                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5364                        kvm_mmu_sync_roots(vcpu);
5365                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5366                        kvm_x86_ops->tlb_flush(vcpu);
5367                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5368                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5369                        r = 0;
5370                        goto out;
5371                }
5372                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5373                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5374                        r = 0;
5375                        goto out;
5376                }
5377                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5378                        vcpu->fpu_active = 0;
5379                        kvm_x86_ops->fpu_deactivate(vcpu);
5380                }
5381                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5382                        /* Page is swapped out. Do synthetic halt */
5383                        vcpu->arch.apf.halted = true;
5384                        r = 1;
5385                        goto out;
5386                }
5387        }
5388
5389        r = kvm_mmu_reload(vcpu);
5390        if (unlikely(r))
5391                goto out;
5392
5393        /*
5394         * An NMI can be injected between local nmi_pending read and
5395         * vcpu->arch.nmi_pending read inside inject_pending_event().
5396         * But in that case, KVM_REQ_EVENT will be set, which makes
5397         * the race described above benign.
5398         */
5399        nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5400
5401        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5402                inject_pending_event(vcpu);
5403
5404                /* enable NMI/IRQ window open exits if needed */
5405                if (nmi_pending)
5406                        kvm_x86_ops->enable_nmi_window(vcpu);
5407                else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5408                        kvm_x86_ops->enable_irq_window(vcpu);
5409
5410                if (kvm_lapic_enabled(vcpu)) {
5411                        update_cr8_intercept(vcpu);
5412                        kvm_lapic_sync_to_vapic(vcpu);
5413                }
5414        }
5415
5416        preempt_disable();
5417
5418        kvm_x86_ops->prepare_guest_switch(vcpu);
5419        if (vcpu->fpu_active)
5420                kvm_load_guest_fpu(vcpu);
5421        kvm_load_guest_xcr0(vcpu);
5422
5423        vcpu->mode = IN_GUEST_MODE;
5424
5425        /* We should set ->mode before check ->requests,
5426         * see the comment in make_all_cpus_request.
5427         */
5428        smp_mb();
5429
5430        local_irq_disable();
5431
5432        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5433            || need_resched() || signal_pending(current)) {
5434                vcpu->mode = OUTSIDE_GUEST_MODE;
5435                smp_wmb();
5436                local_irq_enable();
5437                preempt_enable();
5438                kvm_x86_ops->cancel_injection(vcpu);
5439                r = 1;
5440                goto out;
5441        }
5442
5443        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5444
5445        kvm_guest_enter();
5446
5447        if (unlikely(vcpu->arch.switch_db_regs)) {
5448                set_debugreg(0, 7);
5449                set_debugreg(vcpu->arch.eff_db[0], 0);
5450                set_debugreg(vcpu->arch.eff_db[1], 1);
5451                set_debugreg(vcpu->arch.eff_db[2], 2);
5452                set_debugreg(vcpu->arch.eff_db[3], 3);
5453        }
5454
5455        trace_kvm_entry(vcpu->vcpu_id);
5456        kvm_x86_ops->run(vcpu);
5457
5458        /*
5459         * If the guest has used debug registers, at least dr7
5460         * will be disabled while returning to the host.
5461         * If we don't have active breakpoints in the host, we don't
5462         * care about the messed up debug address registers. But if
5463         * we have some of them active, restore the old state.
5464         */
5465        if (hw_breakpoint_active())
5466                hw_breakpoint_restore();
5467
5468        kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5469
5470        vcpu->mode = OUTSIDE_GUEST_MODE;
5471        smp_wmb();
5472        local_irq_enable();
5473
5474        ++vcpu->stat.exits;
5475
5476        /*
5477         * We must have an instruction between local_irq_enable() and
5478         * kvm_guest_exit(), so the timer interrupt isn't delayed by
5479         * the interrupt shadow.  The stat.exits increment will do nicely.
5480         * But we need to prevent reordering, hence this barrier():
5481         */
5482        barrier();
5483
5484        kvm_guest_exit();
5485
5486        preempt_enable();
5487
5488        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5489
5490        /*
5491         * Profile KVM exit RIPs:
5492         */
5493        if (unlikely(prof_on == KVM_PROFILING)) {
5494                unsigned long rip = kvm_rip_read(vcpu);
5495                profile_hit(KVM_PROFILING, (void *)rip);
5496        }
5497
5498
5499        kvm_lapic_sync_from_vapic(vcpu);
5500
5501        r = kvm_x86_ops->handle_exit(vcpu);
5502out:
5503        return r;
5504}
5505
5506
5507static int __vcpu_run(struct kvm_vcpu *vcpu)
5508{
5509        int r;
5510        struct kvm *kvm = vcpu->kvm;
5511
5512        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5513                pr_debug("vcpu %d received sipi with vector # %x\n",
5514                         vcpu->vcpu_id, vcpu->arch.sipi_vector);
5515                kvm_lapic_reset(vcpu);
5516                r = kvm_arch_vcpu_reset(vcpu);
5517                if (r)
5518                        return r;
5519                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5520        }
5521
5522        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5523        vapic_enter(vcpu);
5524
5525        r = 1;
5526        while (r > 0) {
5527                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5528                    !vcpu->arch.apf.halted)
5529                        r = vcpu_enter_guest(vcpu);
5530                else {
5531                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5532                        kvm_vcpu_block(vcpu);
5533                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5534                        if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5535                        {
5536                                switch(vcpu->arch.mp_state) {
5537                                case KVM_MP_STATE_HALTED:
5538                                        vcpu->arch.mp_state =
5539                                                KVM_MP_STATE_RUNNABLE;
5540                                case KVM_MP_STATE_RUNNABLE:
5541                                        vcpu->arch.apf.halted = false;
5542                                        break;
5543                                case KVM_MP_STATE_SIPI_RECEIVED:
5544                                default:
5545                                        r = -EINTR;
5546                                        break;
5547                                }
5548                        }
5549                }
5550
5551                if (r <= 0)
5552                        break;
5553
5554                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5555                if (kvm_cpu_has_pending_timer(vcpu))
5556                        kvm_inject_pending_timer_irqs(vcpu);
5557
5558                if (dm_request_for_irq_injection(vcpu)) {
5559                        r = -EINTR;
5560                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5561                        ++vcpu->stat.request_irq_exits;
5562                }
5563
5564                kvm_check_async_pf_completion(vcpu);
5565
5566                if (signal_pending(current)) {
5567                        r = -EINTR;
5568                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5569                        ++vcpu->stat.signal_exits;
5570                }
5571                if (need_resched()) {
5572                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5573                        kvm_resched(vcpu);
5574                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5575                }
5576        }
5577
5578        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5579
5580        vapic_exit(vcpu);
5581
5582        return r;
5583}
5584
5585static int complete_mmio(struct kvm_vcpu *vcpu)
5586{
5587        struct kvm_run *run = vcpu->run;
5588        int r;
5589
5590        if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5591                return 1;
5592
5593        if (vcpu->mmio_needed) {
5594                vcpu->mmio_needed = 0;
5595                if (!vcpu->mmio_is_write)
5596                        memcpy(vcpu->mmio_data + vcpu->mmio_index,
5597                               run->mmio.data, 8);
5598                vcpu->mmio_index += 8;
5599                if (vcpu->mmio_index < vcpu->mmio_size) {
5600                        run->exit_reason = KVM_EXIT_MMIO;
5601                        run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5602                        memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5603                        run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5604                        run->mmio.is_write = vcpu->mmio_is_write;
5605                        vcpu->mmio_needed = 1;
5606                        return 0;
5607                }
5608                if (vcpu->mmio_is_write)
5609                        return 1;
5610                vcpu->mmio_read_completed = 1;
5611        }
5612        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5613        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5614        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5615        if (r != EMULATE_DONE)
5616                return 0;
5617        return 1;
5618}
5619
5620int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5621{
5622        int r;
5623        sigset_t sigsaved;
5624
5625        if (!tsk_used_math(current) && init_fpu(current))
5626                return -ENOMEM;
5627
5628        if (vcpu->sigset_active)
5629                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5630
5631        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5632                kvm_vcpu_block(vcpu);
5633                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5634                r = -EAGAIN;
5635                goto out;
5636        }
5637
5638        /* re-sync apic's tpr */
5639        if (!irqchip_in_kernel(vcpu->kvm)) {
5640                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5641                        r = -EINVAL;
5642                        goto out;
5643                }
5644        }
5645
5646        r = complete_mmio(vcpu);
5647        if (r <= 0)
5648                goto out;
5649
5650        if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5651                kvm_register_write(vcpu, VCPU_REGS_RAX,
5652                                     kvm_run->hypercall.ret);
5653
5654        r = __vcpu_run(vcpu);
5655
5656out:
5657        post_kvm_run_save(vcpu);
5658        if (vcpu->sigset_active)
5659                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5660
5661        return r;
5662}
5663
5664int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5665{
5666        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5667                /*
5668                 * We are here if userspace calls get_regs() in the middle of
5669                 * instruction emulation. Registers state needs to be copied
5670                 * back from emulation context to vcpu. Usrapace shouldn't do
5671                 * that usually, but some bad designed PV devices (vmware
5672                 * backdoor interface) need this to work
5673                 */
5674                struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5675                memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5676                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5677        }
5678        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5679        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5680        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5681        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5682        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5683        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5684        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5685        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5686#ifdef CONFIG_X86_64
5687        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5688        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5689        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5690        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5691        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5692        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5693        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5694        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5695#endif
5696
5697        regs->rip = kvm_rip_read(vcpu);
5698        regs->rflags = kvm_get_rflags(vcpu);
5699
5700        return 0;
5701}
5702
5703int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5704{
5705        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5706        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5707
5708        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5709        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5710        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5711        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5712        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5713        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5714        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5715        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5716#ifdef CONFIG_X86_64
5717        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5718        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5719        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5720        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5721        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5722        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5723        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5724        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5725#endif
5726
5727        kvm_rip_write(vcpu, regs->rip);
5728        kvm_set_rflags(vcpu, regs->rflags);
5729
5730        vcpu->arch.exception.pending = false;
5731
5732        kvm_make_request(KVM_REQ_EVENT, vcpu);
5733
5734        return 0;
5735}
5736
5737void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5738{
5739        struct kvm_segment cs;
5740
5741        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5742        *db = cs.db;
5743        *l = cs.l;
5744}
5745EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5746
5747int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5748                                  struct kvm_sregs *sregs)
5749{
5750        struct desc_ptr dt;
5751
5752        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5753        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5754        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5755        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5756        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5757        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5758
5759        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5760        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5761
5762        kvm_x86_ops->get_idt(vcpu, &dt);
5763        sregs->idt.limit = dt.size;
5764        sregs->idt.base = dt.address;
5765        kvm_x86_ops->get_gdt(vcpu, &dt);
5766        sregs->gdt.limit = dt.size;
5767        sregs->gdt.base = dt.address;
5768
5769        sregs->cr0 = kvm_read_cr0(vcpu);
5770        sregs->cr2 = vcpu->arch.cr2;
5771        sregs->cr3 = kvm_read_cr3(vcpu);
5772        sregs->cr4 = kvm_read_cr4(vcpu);
5773        sregs->cr8 = kvm_get_cr8(vcpu);
5774        sregs->efer = vcpu->arch.efer;
5775        sregs->apic_base = kvm_get_apic_base(vcpu);
5776
5777        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5778
5779        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5780                set_bit(vcpu->arch.interrupt.nr,
5781                        (unsigned long *)sregs->interrupt_bitmap);
5782
5783        return 0;
5784}
5785
5786int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5787                                    struct kvm_mp_state *mp_state)
5788{
5789        mp_state->mp_state = vcpu->arch.mp_state;
5790        return 0;
5791}
5792
5793int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5794                                    struct kvm_mp_state *mp_state)
5795{
5796        vcpu->arch.mp_state = mp_state->mp_state;
5797        kvm_make_request(KVM_REQ_EVENT, vcpu);
5798        return 0;
5799}
5800
5801int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5802                    bool has_error_code, u32 error_code)
5803{
5804        struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5805        int ret;
5806
5807        init_emulate_ctxt(vcpu);
5808
5809        ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5810                                   tss_selector, reason, has_error_code,
5811                                   error_code);
5812
5813        if (ret)
5814                return EMULATE_FAIL;
5815
5816        memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5817        kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5818        kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5819        kvm_make_request(KVM_REQ_EVENT, vcpu);
5820        return EMULATE_DONE;
5821}
5822EXPORT_SYMBOL_GPL(kvm_task_switch);
5823
5824int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5825                                  struct kvm_sregs *sregs)
5826{
5827        int mmu_reset_needed = 0;
5828        int pending_vec, max_bits, idx;
5829        struct desc_ptr dt;
5830
5831        dt.size = sregs->idt.limit;
5832        dt.address = sregs->idt.base;
5833        kvm_x86_ops->set_idt(vcpu, &dt);
5834        dt.size = sregs->gdt.limit;
5835        dt.address = sregs->gdt.base;
5836        kvm_x86_ops->set_gdt(vcpu, &dt);
5837
5838        vcpu->arch.cr2 = sregs->cr2;
5839        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5840        vcpu->arch.cr3 = sregs->cr3;
5841        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5842
5843        kvm_set_cr8(vcpu, sregs->cr8);
5844
5845        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5846        kvm_x86_ops->set_efer(vcpu, sregs->efer);
5847        kvm_set_apic_base(vcpu, sregs->apic_base);
5848
5849        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5850        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5851        vcpu->arch.cr0 = sregs->cr0;
5852
5853        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5854        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5855        if (sregs->cr4 & X86_CR4_OSXSAVE)
5856                update_cpuid(vcpu);
5857
5858        idx = srcu_read_lock(&vcpu->kvm->srcu);
5859        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5860                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5861                mmu_reset_needed = 1;
5862        }
5863        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5864
5865        if (mmu_reset_needed)
5866                kvm_mmu_reset_context(vcpu);
5867
5868        max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5869        pending_vec = find_first_bit(
5870                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5871        if (pending_vec < max_bits) {
5872                kvm_queue_interrupt(vcpu, pending_vec, false);
5873                pr_debug("Set back pending irq %d\n", pending_vec);
5874        }
5875
5876        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5877        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5878        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5879        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5880        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5881        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5882
5883        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5884        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5885
5886        update_cr8_intercept(vcpu);
5887
5888        /* Older userspace won't unhalt the vcpu on reset. */
5889        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5890            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5891            !is_protmode(vcpu))
5892                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5893
5894        kvm_make_request(KVM_REQ_EVENT, vcpu);
5895
5896        return 0;
5897}
5898
5899int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5900                                        struct kvm_guest_debug *dbg)
5901{
5902        unsigned long rflags;
5903        int i, r;
5904
5905        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5906                r = -EBUSY;
5907                if (vcpu->arch.exception.pending)
5908                        goto out;
5909                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5910                        kvm_queue_exception(vcpu, DB_VECTOR);
5911                else
5912                        kvm_queue_exception(vcpu, BP_VECTOR);
5913        }
5914
5915        /*
5916         * Read rflags as long as potentially injected trace flags are still
5917         * filtered out.
5918         */
5919        rflags = kvm_get_rflags(vcpu);
5920
5921        vcpu->guest_debug = dbg->control;
5922        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5923                vcpu->guest_debug = 0;
5924
5925        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5926                for (i = 0; i < KVM_NR_DB_REGS; ++i)
5927                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5928                vcpu->arch.switch_db_regs =
5929                        (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5930        } else {
5931                for (i = 0; i < KVM_NR_DB_REGS; i++)
5932                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5933                vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5934        }
5935
5936        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5937                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5938                        get_segment_base(vcpu, VCPU_SREG_CS);
5939
5940        /*
5941         * Trigger an rflags update that will inject or remove the trace
5942         * flags.
5943         */
5944        kvm_set_rflags(vcpu, rflags);
5945
5946        kvm_x86_ops->set_guest_debug(vcpu, dbg);
5947
5948        r = 0;
5949
5950out:
5951
5952        return r;
5953}
5954
5955/*
5956 * Translate a guest virtual address to a guest physical address.
5957 */
5958int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5959                                    struct kvm_translation *tr)
5960{
5961        unsigned long vaddr = tr->linear_address;
5962        gpa_t gpa;
5963        int idx;
5964
5965        idx = srcu_read_lock(&vcpu->kvm->srcu);
5966        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5967        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5968        tr->physical_address = gpa;
5969        tr->valid = gpa != UNMAPPED_GVA;
5970        tr->writeable = 1;
5971        tr->usermode = 0;
5972
5973        return 0;
5974}
5975
5976int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5977{
5978        struct i387_fxsave_struct *fxsave =
5979                        &vcpu->arch.guest_fpu.state->fxsave;
5980
5981        memcpy(fpu->fpr, fxsave->st_space, 128);
5982        fpu->fcw = fxsave->cwd;
5983        fpu->fsw = fxsave->swd;
5984        fpu->ftwx = fxsave->twd;
5985        fpu->last_opcode = fxsave->fop;
5986        fpu->last_ip = fxsave->rip;
5987        fpu->last_dp = fxsave->rdp;
5988        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5989
5990        return 0;
5991}
5992
5993int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5994{
5995        struct i387_fxsave_struct *fxsave =
5996                        &vcpu->arch.guest_fpu.state->fxsave;
5997
5998        memcpy(fxsave->st_space, fpu->fpr, 128);
5999        fxsave->cwd = fpu->fcw;
6000        fxsave->swd = fpu->fsw;
6001        fxsave->twd = fpu->ftwx;
6002        fxsave->fop = fpu->last_opcode;
6003        fxsave->rip = fpu->last_ip;
6004        fxsave->rdp = fpu->last_dp;
6005        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6006
6007        return 0;
6008}
6009
6010int fx_init(struct kvm_vcpu *vcpu)
6011{
6012        int err;
6013
6014        err = fpu_alloc(&vcpu->arch.guest_fpu);
6015        if (err)
6016                return err;
6017
6018        fpu_finit(&vcpu->arch.guest_fpu);
6019
6020        /*
6021         * Ensure guest xcr0 is valid for loading
6022         */
6023        vcpu->arch.xcr0 = XSTATE_FP;
6024
6025        vcpu->arch.cr0 |= X86_CR0_ET;
6026
6027        return 0;
6028}
6029EXPORT_SYMBOL_GPL(fx_init);
6030
6031static void fx_free(struct kvm_vcpu *vcpu)
6032{
6033        fpu_free(&vcpu->arch.guest_fpu);
6034}
6035
6036void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6037{
6038        if (vcpu->guest_fpu_loaded)
6039                return;
6040
6041        /*
6042         * Restore all possible states in the guest,
6043         * and assume host would use all available bits.
6044         * Guest xcr0 would be loaded later.
6045         */
6046        kvm_put_guest_xcr0(vcpu);
6047        vcpu->guest_fpu_loaded = 1;
6048        unlazy_fpu(current);
6049        fpu_restore_checking(&vcpu->arch.guest_fpu);
6050        trace_kvm_fpu(1);
6051}
6052
6053void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6054{
6055        kvm_put_guest_xcr0(vcpu);
6056
6057        if (!vcpu->guest_fpu_loaded)
6058                return;
6059
6060        vcpu->guest_fpu_loaded = 0;
6061        fpu_save_init(&vcpu->arch.guest_fpu);
6062        ++vcpu->stat.fpu_reload;
6063        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6064        trace_kvm_fpu(0);
6065}
6066
6067void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6068{
6069        kvmclock_reset(vcpu);
6070
6071        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6072        fx_free(vcpu);
6073        kvm_x86_ops->vcpu_free(vcpu);
6074}
6075
6076struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6077                                                unsigned int id)
6078{
6079        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6080                printk_once(KERN_WARNING
6081                "kvm: SMP vm created on host with unstable TSC; "
6082                "guest TSC will not be reliable\n");
6083        return kvm_x86_ops->vcpu_create(kvm, id);
6084}
6085
6086int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6087{
6088        int r;
6089
6090        vcpu->arch.mtrr_state.have_fixed = 1;
6091        vcpu_load(vcpu);
6092        r = kvm_arch_vcpu_reset(vcpu);
6093        if (r == 0)
6094                r = kvm_mmu_setup(vcpu);
6095        vcpu_put(vcpu);
6096        if (r < 0)
6097                goto free_vcpu;
6098
6099        return 0;
6100free_vcpu:
6101        kvm_x86_ops->vcpu_free(vcpu);
6102        return r;
6103}
6104
6105void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6106{
6107        vcpu->arch.apf.msr_val = 0;
6108
6109        vcpu_load(vcpu);
6110        kvm_mmu_unload(vcpu);
6111        vcpu_put(vcpu);
6112
6113        fx_free(vcpu);
6114        kvm_x86_ops->vcpu_free(vcpu);
6115}
6116
6117int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6118{
6119        vcpu->arch.nmi_pending = false;
6120        vcpu->arch.nmi_injected = false;
6121
6122        vcpu->arch.switch_db_regs = 0;
6123        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6124        vcpu->arch.dr6 = DR6_FIXED_1;
6125        vcpu->arch.dr7 = DR7_FIXED_1;
6126
6127        kvm_make_request(KVM_REQ_EVENT, vcpu);
6128        vcpu->arch.apf.msr_val = 0;
6129
6130        kvmclock_reset(vcpu);
6131
6132        kvm_clear_async_pf_completion_queue(vcpu);
6133        kvm_async_pf_hash_reset(vcpu);
6134        vcpu->arch.apf.halted = false;
6135
6136        return kvm_x86_ops->vcpu_reset(vcpu);
6137}
6138
6139int kvm_arch_hardware_enable(void *garbage)
6140{
6141        struct kvm *kvm;
6142        struct kvm_vcpu *vcpu;
6143        int i;
6144
6145        kvm_shared_msr_cpu_online();
6146        list_for_each_entry(kvm, &vm_list, vm_list)
6147                kvm_for_each_vcpu(i, vcpu, kvm)
6148                        if (vcpu->cpu == smp_processor_id())
6149                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6150        return kvm_x86_ops->hardware_enable(garbage);
6151}
6152
6153void kvm_arch_hardware_disable(void *garbage)
6154{
6155        kvm_x86_ops->hardware_disable(garbage);
6156        drop_user_return_notifiers(garbage);
6157}
6158
6159int kvm_arch_hardware_setup(void)
6160{
6161        return kvm_x86_ops->hardware_setup();
6162}
6163
6164void kvm_arch_hardware_unsetup(void)
6165{
6166        kvm_x86_ops->hardware_unsetup();
6167}
6168
6169void kvm_arch_check_processor_compat(void *rtn)
6170{
6171        kvm_x86_ops->check_processor_compatibility(rtn);
6172}
6173
6174int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6175{
6176        struct page *page;
6177        struct kvm *kvm;
6178        int r;
6179
6180        BUG_ON(vcpu->kvm == NULL);
6181        kvm = vcpu->kvm;
6182
6183        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6184        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6185        vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6186        vcpu->arch.mmu.translate_gpa = translate_gpa;
6187        vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6188        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6189                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6190        else
6191                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6192
6193        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6194        if (!page) {
6195                r = -ENOMEM;
6196                goto fail;
6197        }
6198        vcpu->arch.pio_data = page_address(page);
6199
6200        kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6201
6202        r = kvm_mmu_create(vcpu);
6203        if (r < 0)
6204                goto fail_free_pio_data;
6205
6206        if (irqchip_in_kernel(kvm)) {
6207                r = kvm_create_lapic(vcpu);
6208                if (r < 0)
6209                        goto fail_mmu_destroy;
6210        }
6211
6212        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6213                                       GFP_KERNEL);
6214        if (!vcpu->arch.mce_banks) {
6215                r = -ENOMEM;
6216                goto fail_free_lapic;
6217        }
6218        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6219
6220        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6221                goto fail_free_mce_banks;
6222
6223        kvm_async_pf_hash_reset(vcpu);
6224
6225        return 0;
6226fail_free_mce_banks:
6227        kfree(vcpu->arch.mce_banks);
6228fail_free_lapic:
6229        kvm_free_lapic(vcpu);
6230fail_mmu_destroy:
6231        kvm_mmu_destroy(vcpu);
6232fail_free_pio_data:
6233        free_page((unsigned long)vcpu->arch.pio_data);
6234fail:
6235        return r;
6236}
6237
6238void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6239{
6240        int idx;
6241
6242        kfree(vcpu->arch.mce_banks);
6243        kvm_free_lapic(vcpu);
6244        idx = srcu_read_lock(&vcpu->kvm->srcu);
6245        kvm_mmu_destroy(vcpu);
6246        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6247        free_page((unsigned long)vcpu->arch.pio_data);
6248}
6249
6250int kvm_arch_init_vm(struct kvm *kvm)
6251{
6252        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6253        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6254
6255        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6256        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6257
6258        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6259
6260        return 0;
6261}
6262
6263static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6264{
6265        vcpu_load(vcpu);
6266        kvm_mmu_unload(vcpu);
6267        vcpu_put(vcpu);
6268}
6269
6270static void kvm_free_vcpus(struct kvm *kvm)
6271{
6272        unsigned int i;
6273        struct kvm_vcpu *vcpu;
6274
6275        /*
6276         * Unpin any mmu pages first.
6277         */
6278        kvm_for_each_vcpu(i, vcpu, kvm) {
6279                kvm_clear_async_pf_completion_queue(vcpu);
6280                kvm_unload_vcpu_mmu(vcpu);
6281        }
6282        kvm_for_each_vcpu(i, vcpu, kvm)
6283                kvm_arch_vcpu_free(vcpu);
6284
6285        mutex_lock(&kvm->lock);
6286        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6287                kvm->vcpus[i] = NULL;
6288
6289        atomic_set(&kvm->online_vcpus, 0);
6290        mutex_unlock(&kvm->lock);
6291}
6292
6293void kvm_arch_sync_events(struct kvm *kvm)
6294{
6295        kvm_free_all_assigned_devices(kvm);
6296        kvm_free_pit(kvm);
6297}
6298
6299void kvm_arch_destroy_vm(struct kvm *kvm)
6300{
6301        kvm_iommu_unmap_guest(kvm);
6302        kfree(kvm->arch.vpic);
6303        kfree(kvm->arch.vioapic);
6304        kvm_free_vcpus(kvm);
6305        if (kvm->arch.apic_access_page)
6306                put_page(kvm->arch.apic_access_page);
6307        if (kvm->arch.ept_identity_pagetable)
6308                put_page(kvm->arch.ept_identity_pagetable);
6309}
6310
6311int kvm_arch_prepare_memory_region(struct kvm *kvm,
6312                                struct kvm_memory_slot *memslot,
6313                                struct kvm_memory_slot old,
6314                                struct kvm_userspace_memory_region *mem,
6315                                int user_alloc)
6316{
6317        int npages = memslot->npages;
6318        int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6319
6320        /* Prevent internal slot pages from being moved by fork()/COW. */
6321        if (memslot->id >= KVM_MEMORY_SLOTS)
6322                map_flags = MAP_SHARED | MAP_ANONYMOUS;
6323
6324        /*To keep backward compatibility with older userspace,
6325         *x86 needs to hanlde !user_alloc case.
6326         */
6327        if (!user_alloc) {
6328                if (npages && !old.rmap) {
6329                        unsigned long userspace_addr;
6330
6331                        down_write(&current->mm->mmap_sem);
6332                        userspace_addr = do_mmap(NULL, 0,
6333                                                 npages * PAGE_SIZE,
6334                                                 PROT_READ | PROT_WRITE,
6335                                                 map_flags,
6336                                                 0);
6337                        up_write(&current->mm->mmap_sem);
6338
6339                        if (IS_ERR((void *)userspace_addr))
6340                                return PTR_ERR((void *)userspace_addr);
6341
6342                        memslot->userspace_addr = userspace_addr;
6343                }
6344        }
6345
6346
6347        return 0;
6348}
6349
6350void kvm_arch_commit_memory_region(struct kvm *kvm,
6351                                struct kvm_userspace_memory_region *mem,
6352                                struct kvm_memory_slot old,
6353                                int user_alloc)
6354{
6355
6356        int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6357
6358        if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6359                int ret;
6360
6361                down_write(&current->mm->mmap_sem);
6362                ret = do_munmap(current->mm, old.userspace_addr,
6363                                old.npages * PAGE_SIZE);
6364                up_write(&current->mm->mmap_sem);
6365                if (ret < 0)
6366                        printk(KERN_WARNING
6367                               "kvm_vm_ioctl_set_memory_region: "
6368                               "failed to munmap memory\n");
6369        }
6370
6371        if (!kvm->arch.n_requested_mmu_pages)
6372                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6373
6374        spin_lock(&kvm->mmu_lock);
6375        if (nr_mmu_pages)
6376                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6377        kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6378        spin_unlock(&kvm->mmu_lock);
6379}
6380
6381void kvm_arch_flush_shadow(struct kvm *kvm)
6382{
6383        kvm_mmu_zap_all(kvm);
6384        kvm_reload_remote_mmus(kvm);
6385}
6386
6387int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6388{
6389        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6390                !vcpu->arch.apf.halted)
6391                || !list_empty_careful(&vcpu->async_pf.done)
6392                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6393                || vcpu->arch.nmi_pending ||
6394                (kvm_arch_interrupt_allowed(vcpu) &&
6395                 kvm_cpu_has_interrupt(vcpu));
6396}
6397
6398void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6399{
6400        int me;
6401        int cpu = vcpu->cpu;
6402
6403        if (waitqueue_active(&vcpu->wq)) {
6404                wake_up_interruptible(&vcpu->wq);
6405                ++vcpu->stat.halt_wakeup;
6406        }
6407
6408        me = get_cpu();
6409        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6410                if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6411                        smp_send_reschedule(cpu);
6412        put_cpu();
6413}
6414
6415int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6416{
6417        return kvm_x86_ops->interrupt_allowed(vcpu);
6418}
6419
6420bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6421{
6422        unsigned long current_rip = kvm_rip_read(vcpu) +
6423                get_segment_base(vcpu, VCPU_SREG_CS);
6424
6425        return current_rip == linear_rip;
6426}
6427EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6428
6429unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6430{
6431        unsigned long rflags;
6432
6433        rflags = kvm_x86_ops->get_rflags(vcpu);
6434        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6435                rflags &= ~X86_EFLAGS_TF;
6436        return rflags;
6437}
6438EXPORT_SYMBOL_GPL(kvm_get_rflags);
6439
6440void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6441{
6442        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6443            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6444                rflags |= X86_EFLAGS_TF;
6445        kvm_x86_ops->set_rflags(vcpu, rflags);
6446        kvm_make_request(KVM_REQ_EVENT, vcpu);
6447}
6448EXPORT_SYMBOL_GPL(kvm_set_rflags);
6449
6450void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6451{
6452        int r;
6453
6454        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6455              is_error_page(work->page))
6456                return;
6457
6458        r = kvm_mmu_reload(vcpu);
6459        if (unlikely(r))
6460                return;
6461
6462        if (!vcpu->arch.mmu.direct_map &&
6463              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6464                return;
6465
6466        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6467}
6468
6469static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6470{
6471        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6472}
6473
6474static inline u32 kvm_async_pf_next_probe(u32 key)
6475{
6476        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6477}
6478
6479static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6480{
6481        u32 key = kvm_async_pf_hash_fn(gfn);
6482
6483        while (vcpu->arch.apf.gfns[key] != ~0)
6484                key = kvm_async_pf_next_probe(key);
6485
6486        vcpu->arch.apf.gfns[key] = gfn;
6487}
6488
6489static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6490{
6491        int i;
6492        u32 key = kvm_async_pf_hash_fn(gfn);
6493
6494        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6495                     (vcpu->arch.apf.gfns[key] != gfn &&
6496                      vcpu->arch.apf.gfns[key] != ~0); i++)
6497                key = kvm_async_pf_next_probe(key);
6498
6499        return key;
6500}
6501
6502bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6503{
6504        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6505}
6506
6507static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6508{
6509        u32 i, j, k;
6510
6511        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6512        while (true) {
6513                vcpu->arch.apf.gfns[i] = ~0;
6514                do {
6515                        j = kvm_async_pf_next_probe(j);
6516                        if (vcpu->arch.apf.gfns[j] == ~0)
6517                                return;
6518                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6519                        /*
6520                         * k lies cyclically in ]i,j]
6521                         * |    i.k.j |
6522                         * |....j i.k.| or  |.k..j i...|
6523                         */
6524                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6525                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6526                i = j;
6527        }
6528}
6529
6530static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6531{
6532
6533        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6534                                      sizeof(val));
6535}
6536
6537void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6538                                     struct kvm_async_pf *work)
6539{
6540        struct x86_exception fault;
6541
6542        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6543        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6544
6545        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6546            (vcpu->arch.apf.send_user_only &&
6547             kvm_x86_ops->get_cpl(vcpu) == 0))
6548                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6549        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6550                fault.vector = PF_VECTOR;
6551                fault.error_code_valid = true;
6552                fault.error_code = 0;
6553                fault.nested_page_fault = false;
6554                fault.address = work->arch.token;
6555                kvm_inject_page_fault(vcpu, &fault);
6556        }
6557}
6558
6559void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6560                                 struct kvm_async_pf *work)
6561{
6562        struct x86_exception fault;
6563
6564        trace_kvm_async_pf_ready(work->arch.token, work->gva);
6565        if (is_error_page(work->page))
6566                work->arch.token = ~0; /* broadcast wakeup */
6567        else
6568                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6569
6570        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6571            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6572                fault.vector = PF_VECTOR;
6573                fault.error_code_valid = true;
6574                fault.error_code = 0;
6575                fault.nested_page_fault = false;
6576                fault.address = work->arch.token;
6577                kvm_inject_page_fault(vcpu, &fault);
6578        }
6579        vcpu->arch.apf.halted = false;
6580}
6581
6582bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6583{
6584        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6585                return true;
6586        else
6587                return !kvm_event_needs_reinjection(vcpu) &&
6588                        kvm_x86_ops->interrupt_allowed(vcpu);
6589}
6590
6591EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6592EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6593EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6594EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6595EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6596EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6597EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6598EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6599EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6600EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6601EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6602EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6603