linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1#include <linux/init.h>
   2
   3#include <linux/mm.h>
   4#include <linux/spinlock.h>
   5#include <linux/smp.h>
   6#include <linux/interrupt.h>
   7#include <linux/module.h>
   8#include <linux/cpu.h>
   9
  10#include <asm/tlbflush.h>
  11#include <asm/mmu_context.h>
  12#include <asm/cache.h>
  13#include <asm/apic.h>
  14#include <asm/uv/uv.h>
  15
  16DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  17                        = { &init_mm, 0, };
  18
  19/*
  20 *      Smarter SMP flushing macros.
  21 *              c/o Linus Torvalds.
  22 *
  23 *      These mean you can really definitely utterly forget about
  24 *      writing to user space from interrupts. (Its not allowed anyway).
  25 *
  26 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  27 *
  28 *      More scalable flush, from Andi Kleen
  29 *
  30 *      To avoid global state use 8 different call vectors.
  31 *      Each CPU uses a specific vector to trigger flushes on other
  32 *      CPUs. Depending on the received vector the target CPUs look into
  33 *      the right array slot for the flush data.
  34 *
  35 *      With more than 8 CPUs they are hashed to the 8 available
  36 *      vectors. The limited global vector space forces us to this right now.
  37 *      In future when interrupts are split into per CPU domains this could be
  38 *      fixed, at the cost of triggering multiple IPIs in some cases.
  39 */
  40
  41union smp_flush_state {
  42        struct {
  43                struct mm_struct *flush_mm;
  44                unsigned long flush_va;
  45                raw_spinlock_t tlbstate_lock;
  46                DECLARE_BITMAP(flush_cpumask, NR_CPUS);
  47        };
  48        char pad[INTERNODE_CACHE_BYTES];
  49} ____cacheline_internodealigned_in_smp;
  50
  51/* State is put into the per CPU data section, but padded
  52   to a full cache line because other CPUs can access it and we don't
  53   want false sharing in the per cpu data segment. */
  54static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
  55
  56static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset);
  57
  58/*
  59 * We cannot call mmdrop() because we are in interrupt context,
  60 * instead update mm->cpu_vm_mask.
  61 */
  62void leave_mm(int cpu)
  63{
  64        if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  65                BUG();
  66        cpumask_clear_cpu(cpu,
  67                          mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
  68        load_cr3(swapper_pg_dir);
  69}
  70EXPORT_SYMBOL_GPL(leave_mm);
  71
  72/*
  73 *
  74 * The flush IPI assumes that a thread switch happens in this order:
  75 * [cpu0: the cpu that switches]
  76 * 1) switch_mm() either 1a) or 1b)
  77 * 1a) thread switch to a different mm
  78 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  79 *      Stop ipi delivery for the old mm. This is not synchronized with
  80 *      the other cpus, but smp_invalidate_interrupt ignore flush ipis
  81 *      for the wrong mm, and in the worst case we perform a superfluous
  82 *      tlb flush.
  83 * 1a2) set cpu mmu_state to TLBSTATE_OK
  84 *      Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  85 *      was in lazy tlb mode.
  86 * 1a3) update cpu active_mm
  87 *      Now cpu0 accepts tlb flushes for the new mm.
  88 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  89 *      Now the other cpus will send tlb flush ipis.
  90 * 1a4) change cr3.
  91 * 1b) thread switch without mm change
  92 *      cpu active_mm is correct, cpu0 already handles
  93 *      flush ipis.
  94 * 1b1) set cpu mmu_state to TLBSTATE_OK
  95 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  96 *      Atomically set the bit [other cpus will start sending flush ipis],
  97 *      and test the bit.
  98 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  99 * 2) switch %%esp, ie current
 100 *
 101 * The interrupt must handle 2 special cases:
 102 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 103 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 104 *   runs in kernel space, the cpu could load tlb entries for user space
 105 *   pages.
 106 *
 107 * The good news is that cpu mmu_state is local to each cpu, no
 108 * write/read ordering problems.
 109 */
 110
 111/*
 112 * TLB flush IPI:
 113 *
 114 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 115 * 2) Leave the mm if we are in the lazy tlb mode.
 116 *
 117 * Interrupts are disabled.
 118 */
 119
 120/*
 121 * FIXME: use of asmlinkage is not consistent.  On x86_64 it's noop
 122 * but still used for documentation purpose but the usage is slightly
 123 * inconsistent.  On x86_32, asmlinkage is regparm(0) but interrupt
 124 * entry calls in with the first parameter in %eax.  Maybe define
 125 * intrlinkage?
 126 */
 127#ifdef CONFIG_X86_64
 128asmlinkage
 129#endif
 130void smp_invalidate_interrupt(struct pt_regs *regs)
 131{
 132        unsigned int cpu;
 133        unsigned int sender;
 134        union smp_flush_state *f;
 135
 136        cpu = smp_processor_id();
 137        /*
 138         * orig_rax contains the negated interrupt vector.
 139         * Use that to determine where the sender put the data.
 140         */
 141        sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
 142        f = &flush_state[sender];
 143
 144        if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
 145                goto out;
 146                /*
 147                 * This was a BUG() but until someone can quote me the
 148                 * line from the intel manual that guarantees an IPI to
 149                 * multiple CPUs is retried _only_ on the erroring CPUs
 150                 * its staying as a return
 151                 *
 152                 * BUG();
 153                 */
 154
 155        if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
 156                if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
 157                        if (f->flush_va == TLB_FLUSH_ALL)
 158                                local_flush_tlb();
 159                        else
 160                                __flush_tlb_one(f->flush_va);
 161                } else
 162                        leave_mm(cpu);
 163        }
 164out:
 165        ack_APIC_irq();
 166        smp_mb__before_clear_bit();
 167        cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
 168        smp_mb__after_clear_bit();
 169        inc_irq_stat(irq_tlb_count);
 170}
 171
 172static void flush_tlb_others_ipi(const struct cpumask *cpumask,
 173                                 struct mm_struct *mm, unsigned long va)
 174{
 175        unsigned int sender;
 176        union smp_flush_state *f;
 177
 178        /* Caller has disabled preemption */
 179        sender = this_cpu_read(tlb_vector_offset);
 180        f = &flush_state[sender];
 181
 182        if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
 183                raw_spin_lock(&f->tlbstate_lock);
 184
 185        f->flush_mm = mm;
 186        f->flush_va = va;
 187        if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
 188                /*
 189                 * We have to send the IPI only to
 190                 * CPUs affected.
 191                 */
 192                apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
 193                              INVALIDATE_TLB_VECTOR_START + sender);
 194
 195                while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
 196                        cpu_relax();
 197        }
 198
 199        f->flush_mm = NULL;
 200        f->flush_va = 0;
 201        if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
 202                raw_spin_unlock(&f->tlbstate_lock);
 203}
 204
 205void native_flush_tlb_others(const struct cpumask *cpumask,
 206                             struct mm_struct *mm, unsigned long va)
 207{
 208        if (is_uv_system()) {
 209                unsigned int cpu;
 210
 211                cpu = smp_processor_id();
 212                cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
 213                if (cpumask)
 214                        flush_tlb_others_ipi(cpumask, mm, va);
 215                return;
 216        }
 217        flush_tlb_others_ipi(cpumask, mm, va);
 218}
 219
 220static void __cpuinit calculate_tlb_offset(void)
 221{
 222        int cpu, node, nr_node_vecs, idx = 0;
 223        /*
 224         * we are changing tlb_vector_offset for each CPU in runtime, but this
 225         * will not cause inconsistency, as the write is atomic under X86. we
 226         * might see more lock contentions in a short time, but after all CPU's
 227         * tlb_vector_offset are changed, everything should go normal
 228         *
 229         * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might
 230         * waste some vectors.
 231         **/
 232        if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS)
 233                nr_node_vecs = 1;
 234        else
 235                nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes;
 236
 237        for_each_online_node(node) {
 238                int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) *
 239                        nr_node_vecs;
 240                int cpu_offset = 0;
 241                for_each_cpu(cpu, cpumask_of_node(node)) {
 242                        per_cpu(tlb_vector_offset, cpu) = node_offset +
 243                                cpu_offset;
 244                        cpu_offset++;
 245                        cpu_offset = cpu_offset % nr_node_vecs;
 246                }
 247                idx++;
 248        }
 249}
 250
 251static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n,
 252                unsigned long action, void *hcpu)
 253{
 254        switch (action & 0xf) {
 255        case CPU_ONLINE:
 256        case CPU_DEAD:
 257                calculate_tlb_offset();
 258        }
 259        return NOTIFY_OK;
 260}
 261
 262static int __cpuinit init_smp_flush(void)
 263{
 264        int i;
 265
 266        for (i = 0; i < ARRAY_SIZE(flush_state); i++)
 267                raw_spin_lock_init(&flush_state[i].tlbstate_lock);
 268
 269        calculate_tlb_offset();
 270        hotcpu_notifier(tlb_cpuhp_notify, 0);
 271        return 0;
 272}
 273core_initcall(init_smp_flush);
 274
 275void flush_tlb_current_task(void)
 276{
 277        struct mm_struct *mm = current->mm;
 278
 279        preempt_disable();
 280
 281        local_flush_tlb();
 282        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 283                flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
 284        preempt_enable();
 285}
 286
 287void flush_tlb_mm(struct mm_struct *mm)
 288{
 289        preempt_disable();
 290
 291        if (current->active_mm == mm) {
 292                if (current->mm)
 293                        local_flush_tlb();
 294                else
 295                        leave_mm(smp_processor_id());
 296        }
 297        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 298                flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
 299
 300        preempt_enable();
 301}
 302
 303void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
 304{
 305        struct mm_struct *mm = vma->vm_mm;
 306
 307        preempt_disable();
 308
 309        if (current->active_mm == mm) {
 310                if (current->mm)
 311                        __flush_tlb_one(va);
 312                else
 313                        leave_mm(smp_processor_id());
 314        }
 315
 316        if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
 317                flush_tlb_others(mm_cpumask(mm), mm, va);
 318
 319        preempt_enable();
 320}
 321
 322static void do_flush_tlb_all(void *info)
 323{
 324        __flush_tlb_all();
 325        if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
 326                leave_mm(smp_processor_id());
 327}
 328
 329void flush_tlb_all(void)
 330{
 331        on_each_cpu(do_flush_tlb_all, NULL, 1);
 332}
 333