linux/drivers/mtd/devices/docecc.c
<<
>>
Prefs
   1/*
   2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
   3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
   4 * GNU GPL License. The rest is simply to convert the disk on chip
   5 * syndrom into a standard syndom.
   6 *
   7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
   8 * Copyright (C) 2000 Netgem S.A.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <asm/errno.h>
  27#include <asm/io.h>
  28#include <asm/uaccess.h>
  29#include <linux/delay.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/types.h>
  33
  34#include <linux/mtd/mtd.h>
  35#include <linux/mtd/doc2000.h>
  36
  37#define DEBUG_ECC 0
  38/* need to undef it (from asm/termbits.h) */
  39#undef B0
  40
  41#define MM 10 /* Symbol size in bits */
  42#define KK (1023-4) /* Number of data symbols per block */
  43#define B0 510 /* First root of generator polynomial, alpha form */
  44#define PRIM 1 /* power of alpha used to generate roots of generator poly */
  45#define NN ((1 << MM) - 1)
  46
  47typedef unsigned short dtype;
  48
  49/* 1+x^3+x^10 */
  50static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
  51
  52/* This defines the type used to store an element of the Galois Field
  53 * used by the code. Make sure this is something larger than a char if
  54 * if anything larger than GF(256) is used.
  55 *
  56 * Note: unsigned char will work up to GF(256) but int seems to run
  57 * faster on the Pentium.
  58 */
  59typedef int gf;
  60
  61/* No legal value in index form represents zero, so
  62 * we need a special value for this purpose
  63 */
  64#define A0      (NN)
  65
  66/* Compute x % NN, where NN is 2**MM - 1,
  67 * without a slow divide
  68 */
  69static inline gf
  70modnn(int x)
  71{
  72  while (x >= NN) {
  73    x -= NN;
  74    x = (x >> MM) + (x & NN);
  75  }
  76  return x;
  77}
  78
  79#define CLEAR(a,n) {\
  80int ci;\
  81for(ci=(n)-1;ci >=0;ci--)\
  82(a)[ci] = 0;\
  83}
  84
  85#define COPY(a,b,n) {\
  86int ci;\
  87for(ci=(n)-1;ci >=0;ci--)\
  88(a)[ci] = (b)[ci];\
  89}
  90
  91#define COPYDOWN(a,b,n) {\
  92int ci;\
  93for(ci=(n)-1;ci >=0;ci--)\
  94(a)[ci] = (b)[ci];\
  95}
  96
  97#define Ldec 1
  98
  99/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
 100   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
 101                   polynomial form -> index form  index_of[j=alpha**i] = i
 102   alpha=2 is the primitive element of GF(2**m)
 103   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
 104        Let @ represent the primitive element commonly called "alpha" that
 105   is the root of the primitive polynomial p(x). Then in GF(2^m), for any
 106   0 <= i <= 2^m-2,
 107        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
 108   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
 109   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
 110   example the polynomial representation of @^5 would be given by the binary
 111   representation of the integer "alpha_to[5]".
 112                   Similarly, index_of[] can be used as follows:
 113        As above, let @ represent the primitive element of GF(2^m) that is
 114   the root of the primitive polynomial p(x). In order to find the power
 115   of @ (alpha) that has the polynomial representation
 116        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
 117   we consider the integer "i" whose binary representation with a(0) being LSB
 118   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
 119   "index_of[i]". Now, @^index_of[i] is that element whose polynomial
 120    representation is (a(0),a(1),a(2),...,a(m-1)).
 121   NOTE:
 122        The element alpha_to[2^m-1] = 0 always signifying that the
 123   representation of "@^infinity" = 0 is (0,0,0,...,0).
 124        Similarly, the element index_of[0] = A0 always signifying
 125   that the power of alpha which has the polynomial representation
 126   (0,0,...,0) is "infinity".
 127
 128*/
 129
 130static void
 131generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
 132{
 133  register int i, mask;
 134
 135  mask = 1;
 136  Alpha_to[MM] = 0;
 137  for (i = 0; i < MM; i++) {
 138    Alpha_to[i] = mask;
 139    Index_of[Alpha_to[i]] = i;
 140    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
 141    if (Pp[i] != 0)
 142      Alpha_to[MM] ^= mask;     /* Bit-wise EXOR operation */
 143    mask <<= 1; /* single left-shift */
 144  }
 145  Index_of[Alpha_to[MM]] = MM;
 146  /*
 147   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
 148   * poly-repr of @^i shifted left one-bit and accounting for any @^MM
 149   * term that may occur when poly-repr of @^i is shifted.
 150   */
 151  mask >>= 1;
 152  for (i = MM + 1; i < NN; i++) {
 153    if (Alpha_to[i - 1] >= mask)
 154      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
 155    else
 156      Alpha_to[i] = Alpha_to[i - 1] << 1;
 157    Index_of[Alpha_to[i]] = i;
 158  }
 159  Index_of[0] = A0;
 160  Alpha_to[NN] = 0;
 161}
 162
 163/*
 164 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
 165 * of the feedback shift register after having processed the data and
 166 * the ECC.
 167 *
 168 * Return number of symbols corrected, or -1 if codeword is illegal
 169 * or uncorrectable. If eras_pos is non-null, the detected error locations
 170 * are written back. NOTE! This array must be at least NN-KK elements long.
 171 * The corrected data are written in eras_val[]. They must be xor with the data
 172 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
 173 *
 174 * First "no_eras" erasures are declared by the calling program. Then, the
 175 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
 176 * If the number of channel errors is not greater than "t_after_eras" the
 177 * transmitted codeword will be recovered. Details of algorithm can be found
 178 * in R. Blahut's "Theory ... of Error-Correcting Codes".
 179
 180 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
 181 * will result. The decoder *could* check for this condition, but it would involve
 182 * extra time on every decoding operation.
 183 * */
 184static int
 185eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
 186            gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
 187            int no_eras)
 188{
 189  int deg_lambda, el, deg_omega;
 190  int i, j, r,k;
 191  gf u,q,tmp,num1,num2,den,discr_r;
 192  gf lambda[NN-KK + 1], s[NN-KK + 1];   /* Err+Eras Locator poly
 193                                         * and syndrome poly */
 194  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
 195  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
 196  int syn_error, count;
 197
 198  syn_error = 0;
 199  for(i=0;i<NN-KK;i++)
 200      syn_error |= bb[i];
 201
 202  if (!syn_error) {
 203    /* if remainder is zero, data[] is a codeword and there are no
 204     * errors to correct. So return data[] unmodified
 205     */
 206    count = 0;
 207    goto finish;
 208  }
 209
 210  for(i=1;i<=NN-KK;i++){
 211    s[i] = bb[0];
 212  }
 213  for(j=1;j<NN-KK;j++){
 214    if(bb[j] == 0)
 215      continue;
 216    tmp = Index_of[bb[j]];
 217
 218    for(i=1;i<=NN-KK;i++)
 219      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
 220  }
 221
 222  /* undo the feedback register implicit multiplication and convert
 223     syndromes to index form */
 224
 225  for(i=1;i<=NN-KK;i++) {
 226      tmp = Index_of[s[i]];
 227      if (tmp != A0)
 228          tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
 229      s[i] = tmp;
 230  }
 231
 232  CLEAR(&lambda[1],NN-KK);
 233  lambda[0] = 1;
 234
 235  if (no_eras > 0) {
 236    /* Init lambda to be the erasure locator polynomial */
 237    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
 238    for (i = 1; i < no_eras; i++) {
 239      u = modnn(PRIM*eras_pos[i]);
 240      for (j = i+1; j > 0; j--) {
 241        tmp = Index_of[lambda[j - 1]];
 242        if(tmp != A0)
 243          lambda[j] ^= Alpha_to[modnn(u + tmp)];
 244      }
 245    }
 246#if DEBUG_ECC >= 1
 247    /* Test code that verifies the erasure locator polynomial just constructed
 248       Needed only for decoder debugging. */
 249
 250    /* find roots of the erasure location polynomial */
 251    for(i=1;i<=no_eras;i++)
 252      reg[i] = Index_of[lambda[i]];
 253    count = 0;
 254    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
 255      q = 1;
 256      for (j = 1; j <= no_eras; j++)
 257        if (reg[j] != A0) {
 258          reg[j] = modnn(reg[j] + j);
 259          q ^= Alpha_to[reg[j]];
 260        }
 261      if (q != 0)
 262        continue;
 263      /* store root and error location number indices */
 264      root[count] = i;
 265      loc[count] = k;
 266      count++;
 267    }
 268    if (count != no_eras) {
 269      printf("\n lambda(x) is WRONG\n");
 270      count = -1;
 271      goto finish;
 272    }
 273#if DEBUG_ECC >= 2
 274    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
 275    for (i = 0; i < count; i++)
 276      printf("%d ", loc[i]);
 277    printf("\n");
 278#endif
 279#endif
 280  }
 281  for(i=0;i<NN-KK+1;i++)
 282    b[i] = Index_of[lambda[i]];
 283
 284  /*
 285   * Begin Berlekamp-Massey algorithm to determine error+erasure
 286   * locator polynomial
 287   */
 288  r = no_eras;
 289  el = no_eras;
 290  while (++r <= NN-KK) {        /* r is the step number */
 291    /* Compute discrepancy at the r-th step in poly-form */
 292    discr_r = 0;
 293    for (i = 0; i < r; i++){
 294      if ((lambda[i] != 0) && (s[r - i] != A0)) {
 295        discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
 296      }
 297    }
 298    discr_r = Index_of[discr_r];        /* Index form */
 299    if (discr_r == A0) {
 300      /* 2 lines below: B(x) <-- x*B(x) */
 301      COPYDOWN(&b[1],b,NN-KK);
 302      b[0] = A0;
 303    } else {
 304      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
 305      t[0] = lambda[0];
 306      for (i = 0 ; i < NN-KK; i++) {
 307        if(b[i] != A0)
 308          t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
 309        else
 310          t[i+1] = lambda[i+1];
 311      }
 312      if (2 * el <= r + no_eras - 1) {
 313        el = r + no_eras - el;
 314        /*
 315         * 2 lines below: B(x) <-- inv(discr_r) *
 316         * lambda(x)
 317         */
 318        for (i = 0; i <= NN-KK; i++)
 319          b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
 320      } else {
 321        /* 2 lines below: B(x) <-- x*B(x) */
 322        COPYDOWN(&b[1],b,NN-KK);
 323        b[0] = A0;
 324      }
 325      COPY(lambda,t,NN-KK+1);
 326    }
 327  }
 328
 329  /* Convert lambda to index form and compute deg(lambda(x)) */
 330  deg_lambda = 0;
 331  for(i=0;i<NN-KK+1;i++){
 332    lambda[i] = Index_of[lambda[i]];
 333    if(lambda[i] != A0)
 334      deg_lambda = i;
 335  }
 336  /*
 337   * Find roots of the error+erasure locator polynomial by Chien
 338   * Search
 339   */
 340  COPY(&reg[1],&lambda[1],NN-KK);
 341  count = 0;            /* Number of roots of lambda(x) */
 342  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
 343    q = 1;
 344    for (j = deg_lambda; j > 0; j--){
 345      if (reg[j] != A0) {
 346        reg[j] = modnn(reg[j] + j);
 347        q ^= Alpha_to[reg[j]];
 348      }
 349    }
 350    if (q != 0)
 351      continue;
 352    /* store root (index-form) and error location number */
 353    root[count] = i;
 354    loc[count] = k;
 355    /* If we've already found max possible roots,
 356     * abort the search to save time
 357     */
 358    if(++count == deg_lambda)
 359      break;
 360  }
 361  if (deg_lambda != count) {
 362    /*
 363     * deg(lambda) unequal to number of roots => uncorrectable
 364     * error detected
 365     */
 366    count = -1;
 367    goto finish;
 368  }
 369  /*
 370   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
 371   * x**(NN-KK)). in index form. Also find deg(omega).
 372   */
 373  deg_omega = 0;
 374  for (i = 0; i < NN-KK;i++){
 375    tmp = 0;
 376    j = (deg_lambda < i) ? deg_lambda : i;
 377    for(;j >= 0; j--){
 378      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
 379        tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
 380    }
 381    if(tmp != 0)
 382      deg_omega = i;
 383    omega[i] = Index_of[tmp];
 384  }
 385  omega[NN-KK] = A0;
 386
 387  /*
 388   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
 389   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
 390   */
 391  for (j = count-1; j >=0; j--) {
 392    num1 = 0;
 393    for (i = deg_omega; i >= 0; i--) {
 394      if (omega[i] != A0)
 395        num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
 396    }
 397    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
 398    den = 0;
 399
 400    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
 401    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
 402      if(lambda[i+1] != A0)
 403        den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
 404    }
 405    if (den == 0) {
 406#if DEBUG_ECC >= 1
 407      printf("\n ERROR: denominator = 0\n");
 408#endif
 409      /* Convert to dual- basis */
 410      count = -1;
 411      goto finish;
 412    }
 413    /* Apply error to data */
 414    if (num1 != 0) {
 415        eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
 416    } else {
 417        eras_val[j] = 0;
 418    }
 419  }
 420 finish:
 421  for(i=0;i<count;i++)
 422      eras_pos[i] = loc[i];
 423  return count;
 424}
 425
 426/***************************************************************************/
 427/* The DOC specific code begins here */
 428
 429#define SECTOR_SIZE 512
 430/* The sector bytes are packed into NB_DATA MM bits words */
 431#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
 432
 433/*
 434 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
 435 * content of the feedback shift register applyied to the sector and
 436 * the ECC. Return the number of errors corrected (and correct them in
 437 * sector), or -1 if error
 438 */
 439int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
 440{
 441    int parity, i, nb_errors;
 442    gf bb[NN - KK + 1];
 443    gf error_val[NN-KK];
 444    int error_pos[NN-KK], pos, bitpos, index, val;
 445    dtype *Alpha_to, *Index_of;
 446
 447    /* init log and exp tables here to save memory. However, it is slower */
 448    Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
 449    if (!Alpha_to)
 450        return -1;
 451
 452    Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
 453    if (!Index_of) {
 454        kfree(Alpha_to);
 455        return -1;
 456    }
 457
 458    generate_gf(Alpha_to, Index_of);
 459
 460    parity = ecc1[1];
 461
 462    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
 463    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
 464    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
 465    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
 466
 467    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
 468                            error_val, error_pos, 0);
 469    if (nb_errors <= 0)
 470        goto the_end;
 471
 472    /* correct the errors */
 473    for(i=0;i<nb_errors;i++) {
 474        pos = error_pos[i];
 475        if (pos >= NB_DATA && pos < KK) {
 476            nb_errors = -1;
 477            goto the_end;
 478        }
 479        if (pos < NB_DATA) {
 480            /* extract bit position (MSB first) */
 481            pos = 10 * (NB_DATA - 1 - pos) - 6;
 482            /* now correct the following 10 bits. At most two bytes
 483               can be modified since pos is even */
 484            index = (pos >> 3) ^ 1;
 485            bitpos = pos & 7;
 486            if ((index >= 0 && index < SECTOR_SIZE) ||
 487                index == (SECTOR_SIZE + 1)) {
 488                val = error_val[i] >> (2 + bitpos);
 489                parity ^= val;
 490                if (index < SECTOR_SIZE)
 491                    sector[index] ^= val;
 492            }
 493            index = ((pos >> 3) + 1) ^ 1;
 494            bitpos = (bitpos + 10) & 7;
 495            if (bitpos == 0)
 496                bitpos = 8;
 497            if ((index >= 0 && index < SECTOR_SIZE) ||
 498                index == (SECTOR_SIZE + 1)) {
 499                val = error_val[i] << (8 - bitpos);
 500                parity ^= val;
 501                if (index < SECTOR_SIZE)
 502                    sector[index] ^= val;
 503            }
 504        }
 505    }
 506
 507    /* use parity to test extra errors */
 508    if ((parity & 0xff) != 0)
 509        nb_errors = -1;
 510
 511 the_end:
 512    kfree(Alpha_to);
 513    kfree(Index_of);
 514    return nb_errors;
 515}
 516
 517EXPORT_SYMBOL_GPL(doc_decode_ecc);
 518
 519MODULE_LICENSE("GPL");
 520MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
 521MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");
 522