linux/drivers/net/acenic.c
<<
>>
Prefs
   1/*
   2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
   3 *           and other Tigon based cards.
   4 *
   5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
   6 *
   7 * Thanks to Alteon and 3Com for providing hardware and documentation
   8 * enabling me to write this driver.
   9 *
  10 * A mailing list for discussing the use of this driver has been
  11 * setup, please subscribe to the lists if you have any questions
  12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  13 * see how to subscribe.
  14 *
  15 * This program is free software; you can redistribute it and/or modify
  16 * it under the terms of the GNU General Public License as published by
  17 * the Free Software Foundation; either version 2 of the License, or
  18 * (at your option) any later version.
  19 *
  20 * Additional credits:
  21 *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  22 *       dump support. The trace dump support has not been
  23 *       integrated yet however.
  24 *   Troy Benjegerdes: Big Endian (PPC) patches.
  25 *   Nate Stahl: Better out of memory handling and stats support.
  26 *   Aman Singla: Nasty race between interrupt handler and tx code dealing
  27 *                with 'testing the tx_ret_csm and setting tx_full'
  28 *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  29 *                                       infrastructure and Sparc support
  30 *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  31 *                              driver under Linux/Sparc64
  32 *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  33 *                                       ETHTOOL_GDRVINFO support
  34 *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  35 *                                       handler and close() cleanup.
  36 *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  37 *                                       memory mapped IO is enabled to
  38 *                                       make the driver work on RS/6000.
  39 *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  40 *                                       where the driver would disable
  41 *                                       bus master mode if it had to disable
  42 *                                       write and invalidate.
  43 *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  44 *                                       endian systems.
  45 *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
  46 *                                       rx producer index when
  47 *                                       flushing the Jumbo ring.
  48 *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
  49 *                                       driver init path.
  50 *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/moduleparam.h>
  55#include <linux/types.h>
  56#include <linux/errno.h>
  57#include <linux/ioport.h>
  58#include <linux/pci.h>
  59#include <linux/dma-mapping.h>
  60#include <linux/kernel.h>
  61#include <linux/netdevice.h>
  62#include <linux/etherdevice.h>
  63#include <linux/skbuff.h>
  64#include <linux/init.h>
  65#include <linux/delay.h>
  66#include <linux/mm.h>
  67#include <linux/highmem.h>
  68#include <linux/sockios.h>
  69#include <linux/firmware.h>
  70#include <linux/slab.h>
  71#include <linux/prefetch.h>
  72
  73#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  74#include <linux/if_vlan.h>
  75#endif
  76
  77#ifdef SIOCETHTOOL
  78#include <linux/ethtool.h>
  79#endif
  80
  81#include <net/sock.h>
  82#include <net/ip.h>
  83
  84#include <asm/system.h>
  85#include <asm/io.h>
  86#include <asm/irq.h>
  87#include <asm/byteorder.h>
  88#include <asm/uaccess.h>
  89
  90
  91#define DRV_NAME "acenic"
  92
  93#undef INDEX_DEBUG
  94
  95#ifdef CONFIG_ACENIC_OMIT_TIGON_I
  96#define ACE_IS_TIGON_I(ap)      0
  97#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
  98#else
  99#define ACE_IS_TIGON_I(ap)      (ap->version == 1)
 100#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
 101#endif
 102
 103#ifndef PCI_VENDOR_ID_ALTEON
 104#define PCI_VENDOR_ID_ALTEON            0x12ae
 105#endif
 106#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
 107#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
 108#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
 109#endif
 110#ifndef PCI_DEVICE_ID_3COM_3C985
 111#define PCI_DEVICE_ID_3COM_3C985        0x0001
 112#endif
 113#ifndef PCI_VENDOR_ID_NETGEAR
 114#define PCI_VENDOR_ID_NETGEAR           0x1385
 115#define PCI_DEVICE_ID_NETGEAR_GA620     0x620a
 116#endif
 117#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
 118#define PCI_DEVICE_ID_NETGEAR_GA620T    0x630a
 119#endif
 120
 121
 122/*
 123 * Farallon used the DEC vendor ID by mistake and they seem not
 124 * to care - stinky!
 125 */
 126#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
 127#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
 128#endif
 129#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
 130#define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
 131#endif
 132#ifndef PCI_VENDOR_ID_SGI
 133#define PCI_VENDOR_ID_SGI               0x10a9
 134#endif
 135#ifndef PCI_DEVICE_ID_SGI_ACENIC
 136#define PCI_DEVICE_ID_SGI_ACENIC        0x0009
 137#endif
 138
 139static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
 140        { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
 141          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 142        { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
 143          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 144        { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
 145          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 146        { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
 147          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 148        { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
 149          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 150        /*
 151         * Farallon used the DEC vendor ID on their cards incorrectly,
 152         * then later Alteon's ID.
 153         */
 154        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
 155          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 156        { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
 157          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 158        { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
 159          PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 160        { }
 161};
 162MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
 163
 164#define ace_sync_irq(irq)       synchronize_irq(irq)
 165
 166#ifndef offset_in_page
 167#define offset_in_page(ptr)     ((unsigned long)(ptr) & ~PAGE_MASK)
 168#endif
 169
 170#define ACE_MAX_MOD_PARMS       8
 171#define BOARD_IDX_STATIC        0
 172#define BOARD_IDX_OVERFLOW      -1
 173
 174#if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
 175        defined(NETIF_F_HW_VLAN_RX)
 176#define ACENIC_DO_VLAN          1
 177#define ACE_RCB_VLAN_FLAG       RCB_FLG_VLAN_ASSIST
 178#else
 179#define ACENIC_DO_VLAN          0
 180#define ACE_RCB_VLAN_FLAG       0
 181#endif
 182
 183#include "acenic.h"
 184
 185/*
 186 * These must be defined before the firmware is included.
 187 */
 188#define MAX_TEXT_LEN    96*1024
 189#define MAX_RODATA_LEN  8*1024
 190#define MAX_DATA_LEN    2*1024
 191
 192#ifndef tigon2FwReleaseLocal
 193#define tigon2FwReleaseLocal 0
 194#endif
 195
 196/*
 197 * This driver currently supports Tigon I and Tigon II based cards
 198 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
 199 * GA620. The driver should also work on the SGI, DEC and Farallon
 200 * versions of the card, however I have not been able to test that
 201 * myself.
 202 *
 203 * This card is really neat, it supports receive hardware checksumming
 204 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
 205 * firmware. Also the programming interface is quite neat, except for
 206 * the parts dealing with the i2c eeprom on the card ;-)
 207 *
 208 * Using jumbo frames:
 209 *
 210 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
 211 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
 212 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
 213 * interface number and <MTU> being the MTU value.
 214 *
 215 * Module parameters:
 216 *
 217 * When compiled as a loadable module, the driver allows for a number
 218 * of module parameters to be specified. The driver supports the
 219 * following module parameters:
 220 *
 221 *  trace=<val> - Firmware trace level. This requires special traced
 222 *                firmware to replace the firmware supplied with
 223 *                the driver - for debugging purposes only.
 224 *
 225 *  link=<val>  - Link state. Normally you want to use the default link
 226 *                parameters set by the driver. This can be used to
 227 *                override these in case your switch doesn't negotiate
 228 *                the link properly. Valid values are:
 229 *         0x0001 - Force half duplex link.
 230 *         0x0002 - Do not negotiate line speed with the other end.
 231 *         0x0010 - 10Mbit/sec link.
 232 *         0x0020 - 100Mbit/sec link.
 233 *         0x0040 - 1000Mbit/sec link.
 234 *         0x0100 - Do not negotiate flow control.
 235 *         0x0200 - Enable RX flow control Y
 236 *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
 237 *                Default value is 0x0270, ie. enable link+flow
 238 *                control negotiation. Negotiating the highest
 239 *                possible link speed with RX flow control enabled.
 240 *
 241 *                When disabling link speed negotiation, only one link
 242 *                speed is allowed to be specified!
 243 *
 244 *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 245 *                to wait for more packets to arive before
 246 *                interrupting the host, from the time the first
 247 *                packet arrives.
 248 *
 249 *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 250 *                to wait for more packets to arive in the transmit ring,
 251 *                before interrupting the host, after transmitting the
 252 *                first packet in the ring.
 253 *
 254 *  max_tx_desc=<val> - maximum number of transmit descriptors
 255 *                (packets) transmitted before interrupting the host.
 256 *
 257 *  max_rx_desc=<val> - maximum number of receive descriptors
 258 *                (packets) received before interrupting the host.
 259 *
 260 *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
 261 *                increments of the NIC's on board memory to be used for
 262 *                transmit and receive buffers. For the 1MB NIC app. 800KB
 263 *                is available, on the 1/2MB NIC app. 300KB is available.
 264 *                68KB will always be available as a minimum for both
 265 *                directions. The default value is a 50/50 split.
 266 *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
 267 *                operations, default (1) is to always disable this as
 268 *                that is what Alteon does on NT. I have not been able
 269 *                to measure any real performance differences with
 270 *                this on my systems. Set <val>=0 if you want to
 271 *                enable these operations.
 272 *
 273 * If you use more than one NIC, specify the parameters for the
 274 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
 275 * run tracing on NIC #2 but not on NIC #1 and #3.
 276 *
 277 * TODO:
 278 *
 279 * - Proper multicast support.
 280 * - NIC dump support.
 281 * - More tuning parameters.
 282 *
 283 * The mini ring is not used under Linux and I am not sure it makes sense
 284 * to actually use it.
 285 *
 286 * New interrupt handler strategy:
 287 *
 288 * The old interrupt handler worked using the traditional method of
 289 * replacing an skbuff with a new one when a packet arrives. However
 290 * the rx rings do not need to contain a static number of buffer
 291 * descriptors, thus it makes sense to move the memory allocation out
 292 * of the main interrupt handler and do it in a bottom half handler
 293 * and only allocate new buffers when the number of buffers in the
 294 * ring is below a certain threshold. In order to avoid starving the
 295 * NIC under heavy load it is however necessary to force allocation
 296 * when hitting a minimum threshold. The strategy for alloction is as
 297 * follows:
 298 *
 299 *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
 300 *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
 301 *                           the buffers in the interrupt handler
 302 *     RX_RING_THRES       - maximum number of buffers in the rx ring
 303 *     RX_MINI_THRES       - maximum number of buffers in the mini ring
 304 *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
 305 *
 306 * One advantagous side effect of this allocation approach is that the
 307 * entire rx processing can be done without holding any spin lock
 308 * since the rx rings and registers are totally independent of the tx
 309 * ring and its registers.  This of course includes the kmalloc's of
 310 * new skb's. Thus start_xmit can run in parallel with rx processing
 311 * and the memory allocation on SMP systems.
 312 *
 313 * Note that running the skb reallocation in a bottom half opens up
 314 * another can of races which needs to be handled properly. In
 315 * particular it can happen that the interrupt handler tries to run
 316 * the reallocation while the bottom half is either running on another
 317 * CPU or was interrupted on the same CPU. To get around this the
 318 * driver uses bitops to prevent the reallocation routines from being
 319 * reentered.
 320 *
 321 * TX handling can also be done without holding any spin lock, wheee
 322 * this is fun! since tx_ret_csm is only written to by the interrupt
 323 * handler. The case to be aware of is when shutting down the device
 324 * and cleaning up where it is necessary to make sure that
 325 * start_xmit() is not running while this is happening. Well DaveM
 326 * informs me that this case is already protected against ... bye bye
 327 * Mr. Spin Lock, it was nice to know you.
 328 *
 329 * TX interrupts are now partly disabled so the NIC will only generate
 330 * TX interrupts for the number of coal ticks, not for the number of
 331 * TX packets in the queue. This should reduce the number of TX only,
 332 * ie. when no RX processing is done, interrupts seen.
 333 */
 334
 335/*
 336 * Threshold values for RX buffer allocation - the low water marks for
 337 * when to start refilling the rings are set to 75% of the ring
 338 * sizes. It seems to make sense to refill the rings entirely from the
 339 * intrrupt handler once it gets below the panic threshold, that way
 340 * we don't risk that the refilling is moved to another CPU when the
 341 * one running the interrupt handler just got the slab code hot in its
 342 * cache.
 343 */
 344#define RX_RING_SIZE            72
 345#define RX_MINI_SIZE            64
 346#define RX_JUMBO_SIZE           48
 347
 348#define RX_PANIC_STD_THRES      16
 349#define RX_PANIC_STD_REFILL     (3*RX_PANIC_STD_THRES)/2
 350#define RX_LOW_STD_THRES        (3*RX_RING_SIZE)/4
 351#define RX_PANIC_MINI_THRES     12
 352#define RX_PANIC_MINI_REFILL    (3*RX_PANIC_MINI_THRES)/2
 353#define RX_LOW_MINI_THRES       (3*RX_MINI_SIZE)/4
 354#define RX_PANIC_JUMBO_THRES    6
 355#define RX_PANIC_JUMBO_REFILL   (3*RX_PANIC_JUMBO_THRES)/2
 356#define RX_LOW_JUMBO_THRES      (3*RX_JUMBO_SIZE)/4
 357
 358
 359/*
 360 * Size of the mini ring entries, basically these just should be big
 361 * enough to take TCP ACKs
 362 */
 363#define ACE_MINI_SIZE           100
 364
 365#define ACE_MINI_BUFSIZE        ACE_MINI_SIZE
 366#define ACE_STD_BUFSIZE         (ACE_STD_MTU + ETH_HLEN + 4)
 367#define ACE_JUMBO_BUFSIZE       (ACE_JUMBO_MTU + ETH_HLEN + 4)
 368
 369/*
 370 * There seems to be a magic difference in the effect between 995 and 996
 371 * but little difference between 900 and 995 ... no idea why.
 372 *
 373 * There is now a default set of tuning parameters which is set, depending
 374 * on whether or not the user enables Jumbo frames. It's assumed that if
 375 * Jumbo frames are enabled, the user wants optimal tuning for that case.
 376 */
 377#define DEF_TX_COAL             400 /* 996 */
 378#define DEF_TX_MAX_DESC         60  /* was 40 */
 379#define DEF_RX_COAL             120 /* 1000 */
 380#define DEF_RX_MAX_DESC         25
 381#define DEF_TX_RATIO            21 /* 24 */
 382
 383#define DEF_JUMBO_TX_COAL       20
 384#define DEF_JUMBO_TX_MAX_DESC   60
 385#define DEF_JUMBO_RX_COAL       30
 386#define DEF_JUMBO_RX_MAX_DESC   6
 387#define DEF_JUMBO_TX_RATIO      21
 388
 389#if tigon2FwReleaseLocal < 20001118
 390/*
 391 * Standard firmware and early modifications duplicate
 392 * IRQ load without this flag (coal timer is never reset).
 393 * Note that with this flag tx_coal should be less than
 394 * time to xmit full tx ring.
 395 * 400usec is not so bad for tx ring size of 128.
 396 */
 397#define TX_COAL_INTS_ONLY       1       /* worth it */
 398#else
 399/*
 400 * With modified firmware, this is not necessary, but still useful.
 401 */
 402#define TX_COAL_INTS_ONLY       1
 403#endif
 404
 405#define DEF_TRACE               0
 406#define DEF_STAT                (2 * TICKS_PER_SEC)
 407
 408
 409static int link_state[ACE_MAX_MOD_PARMS];
 410static int trace[ACE_MAX_MOD_PARMS];
 411static int tx_coal_tick[ACE_MAX_MOD_PARMS];
 412static int rx_coal_tick[ACE_MAX_MOD_PARMS];
 413static int max_tx_desc[ACE_MAX_MOD_PARMS];
 414static int max_rx_desc[ACE_MAX_MOD_PARMS];
 415static int tx_ratio[ACE_MAX_MOD_PARMS];
 416static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
 417
 418MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
 419MODULE_LICENSE("GPL");
 420MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
 421#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 422MODULE_FIRMWARE("acenic/tg1.bin");
 423#endif
 424MODULE_FIRMWARE("acenic/tg2.bin");
 425
 426module_param_array_named(link, link_state, int, NULL, 0);
 427module_param_array(trace, int, NULL, 0);
 428module_param_array(tx_coal_tick, int, NULL, 0);
 429module_param_array(max_tx_desc, int, NULL, 0);
 430module_param_array(rx_coal_tick, int, NULL, 0);
 431module_param_array(max_rx_desc, int, NULL, 0);
 432module_param_array(tx_ratio, int, NULL, 0);
 433MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
 434MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
 435MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
 436MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
 437MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
 438MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
 439MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
 440
 441
 442static const char version[] __devinitconst =
 443  "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
 444  "                            http://home.cern.ch/~jes/gige/acenic.html\n";
 445
 446static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
 447static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
 448static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
 449
 450static const struct ethtool_ops ace_ethtool_ops = {
 451        .get_settings = ace_get_settings,
 452        .set_settings = ace_set_settings,
 453        .get_drvinfo = ace_get_drvinfo,
 454};
 455
 456static void ace_watchdog(struct net_device *dev);
 457
 458static const struct net_device_ops ace_netdev_ops = {
 459        .ndo_open               = ace_open,
 460        .ndo_stop               = ace_close,
 461        .ndo_tx_timeout         = ace_watchdog,
 462        .ndo_get_stats          = ace_get_stats,
 463        .ndo_start_xmit         = ace_start_xmit,
 464        .ndo_set_multicast_list = ace_set_multicast_list,
 465        .ndo_validate_addr      = eth_validate_addr,
 466        .ndo_set_mac_address    = ace_set_mac_addr,
 467        .ndo_change_mtu         = ace_change_mtu,
 468#if ACENIC_DO_VLAN
 469        .ndo_vlan_rx_register   = ace_vlan_rx_register,
 470#endif
 471};
 472
 473static int __devinit acenic_probe_one(struct pci_dev *pdev,
 474                const struct pci_device_id *id)
 475{
 476        struct net_device *dev;
 477        struct ace_private *ap;
 478        static int boards_found;
 479
 480        dev = alloc_etherdev(sizeof(struct ace_private));
 481        if (dev == NULL) {
 482                printk(KERN_ERR "acenic: Unable to allocate "
 483                       "net_device structure!\n");
 484                return -ENOMEM;
 485        }
 486
 487        SET_NETDEV_DEV(dev, &pdev->dev);
 488
 489        ap = netdev_priv(dev);
 490        ap->pdev = pdev;
 491        ap->name = pci_name(pdev);
 492
 493        dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
 494#if ACENIC_DO_VLAN
 495        dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
 496#endif
 497
 498        dev->watchdog_timeo = 5*HZ;
 499
 500        dev->netdev_ops = &ace_netdev_ops;
 501        SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
 502
 503        /* we only display this string ONCE */
 504        if (!boards_found)
 505                printk(version);
 506
 507        if (pci_enable_device(pdev))
 508                goto fail_free_netdev;
 509
 510        /*
 511         * Enable master mode before we start playing with the
 512         * pci_command word since pci_set_master() will modify
 513         * it.
 514         */
 515        pci_set_master(pdev);
 516
 517        pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
 518
 519        /* OpenFirmware on Mac's does not set this - DOH.. */
 520        if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
 521                printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
 522                       "access - was not enabled by BIOS/Firmware\n",
 523                       ap->name);
 524                ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
 525                pci_write_config_word(ap->pdev, PCI_COMMAND,
 526                                      ap->pci_command);
 527                wmb();
 528        }
 529
 530        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
 531        if (ap->pci_latency <= 0x40) {
 532                ap->pci_latency = 0x40;
 533                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
 534        }
 535
 536        /*
 537         * Remap the regs into kernel space - this is abuse of
 538         * dev->base_addr since it was means for I/O port
 539         * addresses but who gives a damn.
 540         */
 541        dev->base_addr = pci_resource_start(pdev, 0);
 542        ap->regs = ioremap(dev->base_addr, 0x4000);
 543        if (!ap->regs) {
 544                printk(KERN_ERR "%s:  Unable to map I/O register, "
 545                       "AceNIC %i will be disabled.\n",
 546                       ap->name, boards_found);
 547                goto fail_free_netdev;
 548        }
 549
 550        switch(pdev->vendor) {
 551        case PCI_VENDOR_ID_ALTEON:
 552                if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
 553                        printk(KERN_INFO "%s: Farallon PN9100-T ",
 554                               ap->name);
 555                } else {
 556                        printk(KERN_INFO "%s: Alteon AceNIC ",
 557                               ap->name);
 558                }
 559                break;
 560        case PCI_VENDOR_ID_3COM:
 561                printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
 562                break;
 563        case PCI_VENDOR_ID_NETGEAR:
 564                printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
 565                break;
 566        case PCI_VENDOR_ID_DEC:
 567                if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
 568                        printk(KERN_INFO "%s: Farallon PN9000-SX ",
 569                               ap->name);
 570                        break;
 571                }
 572        case PCI_VENDOR_ID_SGI:
 573                printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
 574                break;
 575        default:
 576                printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
 577                break;
 578        }
 579
 580        printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
 581        printk("irq %d\n", pdev->irq);
 582
 583#ifdef CONFIG_ACENIC_OMIT_TIGON_I
 584        if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
 585                printk(KERN_ERR "%s: Driver compiled without Tigon I"
 586                       " support - NIC disabled\n", dev->name);
 587                goto fail_uninit;
 588        }
 589#endif
 590
 591        if (ace_allocate_descriptors(dev))
 592                goto fail_free_netdev;
 593
 594#ifdef MODULE
 595        if (boards_found >= ACE_MAX_MOD_PARMS)
 596                ap->board_idx = BOARD_IDX_OVERFLOW;
 597        else
 598                ap->board_idx = boards_found;
 599#else
 600        ap->board_idx = BOARD_IDX_STATIC;
 601#endif
 602
 603        if (ace_init(dev))
 604                goto fail_free_netdev;
 605
 606        if (register_netdev(dev)) {
 607                printk(KERN_ERR "acenic: device registration failed\n");
 608                goto fail_uninit;
 609        }
 610        ap->name = dev->name;
 611
 612        if (ap->pci_using_dac)
 613                dev->features |= NETIF_F_HIGHDMA;
 614
 615        pci_set_drvdata(pdev, dev);
 616
 617        boards_found++;
 618        return 0;
 619
 620 fail_uninit:
 621        ace_init_cleanup(dev);
 622 fail_free_netdev:
 623        free_netdev(dev);
 624        return -ENODEV;
 625}
 626
 627static void __devexit acenic_remove_one(struct pci_dev *pdev)
 628{
 629        struct net_device *dev = pci_get_drvdata(pdev);
 630        struct ace_private *ap = netdev_priv(dev);
 631        struct ace_regs __iomem *regs = ap->regs;
 632        short i;
 633
 634        unregister_netdev(dev);
 635
 636        writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 637        if (ap->version >= 2)
 638                writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 639
 640        /*
 641         * This clears any pending interrupts
 642         */
 643        writel(1, &regs->Mb0Lo);
 644        readl(&regs->CpuCtrl);  /* flush */
 645
 646        /*
 647         * Make sure no other CPUs are processing interrupts
 648         * on the card before the buffers are being released.
 649         * Otherwise one might experience some `interesting'
 650         * effects.
 651         *
 652         * Then release the RX buffers - jumbo buffers were
 653         * already released in ace_close().
 654         */
 655        ace_sync_irq(dev->irq);
 656
 657        for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
 658                struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
 659
 660                if (skb) {
 661                        struct ring_info *ringp;
 662                        dma_addr_t mapping;
 663
 664                        ringp = &ap->skb->rx_std_skbuff[i];
 665                        mapping = dma_unmap_addr(ringp, mapping);
 666                        pci_unmap_page(ap->pdev, mapping,
 667                                       ACE_STD_BUFSIZE,
 668                                       PCI_DMA_FROMDEVICE);
 669
 670                        ap->rx_std_ring[i].size = 0;
 671                        ap->skb->rx_std_skbuff[i].skb = NULL;
 672                        dev_kfree_skb(skb);
 673                }
 674        }
 675
 676        if (ap->version >= 2) {
 677                for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
 678                        struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
 679
 680                        if (skb) {
 681                                struct ring_info *ringp;
 682                                dma_addr_t mapping;
 683
 684                                ringp = &ap->skb->rx_mini_skbuff[i];
 685                                mapping = dma_unmap_addr(ringp,mapping);
 686                                pci_unmap_page(ap->pdev, mapping,
 687                                               ACE_MINI_BUFSIZE,
 688                                               PCI_DMA_FROMDEVICE);
 689
 690                                ap->rx_mini_ring[i].size = 0;
 691                                ap->skb->rx_mini_skbuff[i].skb = NULL;
 692                                dev_kfree_skb(skb);
 693                        }
 694                }
 695        }
 696
 697        for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 698                struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
 699                if (skb) {
 700                        struct ring_info *ringp;
 701                        dma_addr_t mapping;
 702
 703                        ringp = &ap->skb->rx_jumbo_skbuff[i];
 704                        mapping = dma_unmap_addr(ringp, mapping);
 705                        pci_unmap_page(ap->pdev, mapping,
 706                                       ACE_JUMBO_BUFSIZE,
 707                                       PCI_DMA_FROMDEVICE);
 708
 709                        ap->rx_jumbo_ring[i].size = 0;
 710                        ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 711                        dev_kfree_skb(skb);
 712                }
 713        }
 714
 715        ace_init_cleanup(dev);
 716        free_netdev(dev);
 717}
 718
 719static struct pci_driver acenic_pci_driver = {
 720        .name           = "acenic",
 721        .id_table       = acenic_pci_tbl,
 722        .probe          = acenic_probe_one,
 723        .remove         = __devexit_p(acenic_remove_one),
 724};
 725
 726static int __init acenic_init(void)
 727{
 728        return pci_register_driver(&acenic_pci_driver);
 729}
 730
 731static void __exit acenic_exit(void)
 732{
 733        pci_unregister_driver(&acenic_pci_driver);
 734}
 735
 736module_init(acenic_init);
 737module_exit(acenic_exit);
 738
 739static void ace_free_descriptors(struct net_device *dev)
 740{
 741        struct ace_private *ap = netdev_priv(dev);
 742        int size;
 743
 744        if (ap->rx_std_ring != NULL) {
 745                size = (sizeof(struct rx_desc) *
 746                        (RX_STD_RING_ENTRIES +
 747                         RX_JUMBO_RING_ENTRIES +
 748                         RX_MINI_RING_ENTRIES +
 749                         RX_RETURN_RING_ENTRIES));
 750                pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
 751                                    ap->rx_ring_base_dma);
 752                ap->rx_std_ring = NULL;
 753                ap->rx_jumbo_ring = NULL;
 754                ap->rx_mini_ring = NULL;
 755                ap->rx_return_ring = NULL;
 756        }
 757        if (ap->evt_ring != NULL) {
 758                size = (sizeof(struct event) * EVT_RING_ENTRIES);
 759                pci_free_consistent(ap->pdev, size, ap->evt_ring,
 760                                    ap->evt_ring_dma);
 761                ap->evt_ring = NULL;
 762        }
 763        if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
 764                size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 765                pci_free_consistent(ap->pdev, size, ap->tx_ring,
 766                                    ap->tx_ring_dma);
 767        }
 768        ap->tx_ring = NULL;
 769
 770        if (ap->evt_prd != NULL) {
 771                pci_free_consistent(ap->pdev, sizeof(u32),
 772                                    (void *)ap->evt_prd, ap->evt_prd_dma);
 773                ap->evt_prd = NULL;
 774        }
 775        if (ap->rx_ret_prd != NULL) {
 776                pci_free_consistent(ap->pdev, sizeof(u32),
 777                                    (void *)ap->rx_ret_prd,
 778                                    ap->rx_ret_prd_dma);
 779                ap->rx_ret_prd = NULL;
 780        }
 781        if (ap->tx_csm != NULL) {
 782                pci_free_consistent(ap->pdev, sizeof(u32),
 783                                    (void *)ap->tx_csm, ap->tx_csm_dma);
 784                ap->tx_csm = NULL;
 785        }
 786}
 787
 788
 789static int ace_allocate_descriptors(struct net_device *dev)
 790{
 791        struct ace_private *ap = netdev_priv(dev);
 792        int size;
 793
 794        size = (sizeof(struct rx_desc) *
 795                (RX_STD_RING_ENTRIES +
 796                 RX_JUMBO_RING_ENTRIES +
 797                 RX_MINI_RING_ENTRIES +
 798                 RX_RETURN_RING_ENTRIES));
 799
 800        ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
 801                                               &ap->rx_ring_base_dma);
 802        if (ap->rx_std_ring == NULL)
 803                goto fail;
 804
 805        ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
 806        ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
 807        ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
 808
 809        size = (sizeof(struct event) * EVT_RING_ENTRIES);
 810
 811        ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
 812
 813        if (ap->evt_ring == NULL)
 814                goto fail;
 815
 816        /*
 817         * Only allocate a host TX ring for the Tigon II, the Tigon I
 818         * has to use PCI registers for this ;-(
 819         */
 820        if (!ACE_IS_TIGON_I(ap)) {
 821                size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 822
 823                ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
 824                                                   &ap->tx_ring_dma);
 825
 826                if (ap->tx_ring == NULL)
 827                        goto fail;
 828        }
 829
 830        ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 831                                           &ap->evt_prd_dma);
 832        if (ap->evt_prd == NULL)
 833                goto fail;
 834
 835        ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 836                                              &ap->rx_ret_prd_dma);
 837        if (ap->rx_ret_prd == NULL)
 838                goto fail;
 839
 840        ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
 841                                          &ap->tx_csm_dma);
 842        if (ap->tx_csm == NULL)
 843                goto fail;
 844
 845        return 0;
 846
 847fail:
 848        /* Clean up. */
 849        ace_init_cleanup(dev);
 850        return 1;
 851}
 852
 853
 854/*
 855 * Generic cleanup handling data allocated during init. Used when the
 856 * module is unloaded or if an error occurs during initialization
 857 */
 858static void ace_init_cleanup(struct net_device *dev)
 859{
 860        struct ace_private *ap;
 861
 862        ap = netdev_priv(dev);
 863
 864        ace_free_descriptors(dev);
 865
 866        if (ap->info)
 867                pci_free_consistent(ap->pdev, sizeof(struct ace_info),
 868                                    ap->info, ap->info_dma);
 869        kfree(ap->skb);
 870        kfree(ap->trace_buf);
 871
 872        if (dev->irq)
 873                free_irq(dev->irq, dev);
 874
 875        iounmap(ap->regs);
 876}
 877
 878
 879/*
 880 * Commands are considered to be slow.
 881 */
 882static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
 883{
 884        u32 idx;
 885
 886        idx = readl(&regs->CmdPrd);
 887
 888        writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
 889        idx = (idx + 1) % CMD_RING_ENTRIES;
 890
 891        writel(idx, &regs->CmdPrd);
 892}
 893
 894
 895static int __devinit ace_init(struct net_device *dev)
 896{
 897        struct ace_private *ap;
 898        struct ace_regs __iomem *regs;
 899        struct ace_info *info = NULL;
 900        struct pci_dev *pdev;
 901        unsigned long myjif;
 902        u64 tmp_ptr;
 903        u32 tig_ver, mac1, mac2, tmp, pci_state;
 904        int board_idx, ecode = 0;
 905        short i;
 906        unsigned char cache_size;
 907
 908        ap = netdev_priv(dev);
 909        regs = ap->regs;
 910
 911        board_idx = ap->board_idx;
 912
 913        /*
 914         * aman@sgi.com - its useful to do a NIC reset here to
 915         * address the `Firmware not running' problem subsequent
 916         * to any crashes involving the NIC
 917         */
 918        writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
 919        readl(&regs->HostCtrl);         /* PCI write posting */
 920        udelay(5);
 921
 922        /*
 923         * Don't access any other registers before this point!
 924         */
 925#ifdef __BIG_ENDIAN
 926        /*
 927         * This will most likely need BYTE_SWAP once we switch
 928         * to using __raw_writel()
 929         */
 930        writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
 931               &regs->HostCtrl);
 932#else
 933        writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
 934               &regs->HostCtrl);
 935#endif
 936        readl(&regs->HostCtrl);         /* PCI write posting */
 937
 938        /*
 939         * Stop the NIC CPU and clear pending interrupts
 940         */
 941        writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 942        readl(&regs->CpuCtrl);          /* PCI write posting */
 943        writel(0, &regs->Mb0Lo);
 944
 945        tig_ver = readl(&regs->HostCtrl) >> 28;
 946
 947        switch(tig_ver){
 948#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 949        case 4:
 950        case 5:
 951                printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
 952                       tig_ver, ap->firmware_major, ap->firmware_minor,
 953                       ap->firmware_fix);
 954                writel(0, &regs->LocalCtrl);
 955                ap->version = 1;
 956                ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
 957                break;
 958#endif
 959        case 6:
 960                printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
 961                       tig_ver, ap->firmware_major, ap->firmware_minor,
 962                       ap->firmware_fix);
 963                writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 964                readl(&regs->CpuBCtrl);         /* PCI write posting */
 965                /*
 966                 * The SRAM bank size does _not_ indicate the amount
 967                 * of memory on the card, it controls the _bank_ size!
 968                 * Ie. a 1MB AceNIC will have two banks of 512KB.
 969                 */
 970                writel(SRAM_BANK_512K, &regs->LocalCtrl);
 971                writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
 972                ap->version = 2;
 973                ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
 974                break;
 975        default:
 976                printk(KERN_WARNING "  Unsupported Tigon version detected "
 977                       "(%i)\n", tig_ver);
 978                ecode = -ENODEV;
 979                goto init_error;
 980        }
 981
 982        /*
 983         * ModeStat _must_ be set after the SRAM settings as this change
 984         * seems to corrupt the ModeStat and possible other registers.
 985         * The SRAM settings survive resets and setting it to the same
 986         * value a second time works as well. This is what caused the
 987         * `Firmware not running' problem on the Tigon II.
 988         */
 989#ifdef __BIG_ENDIAN
 990        writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
 991               ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 992#else
 993        writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
 994               ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 995#endif
 996        readl(&regs->ModeStat);         /* PCI write posting */
 997
 998        mac1 = 0;
 999        for(i = 0; i < 4; i++) {
1000                int t;
1001
1002                mac1 = mac1 << 8;
1003                t = read_eeprom_byte(dev, 0x8c+i);
1004                if (t < 0) {
1005                        ecode = -EIO;
1006                        goto init_error;
1007                } else
1008                        mac1 |= (t & 0xff);
1009        }
1010        mac2 = 0;
1011        for(i = 4; i < 8; i++) {
1012                int t;
1013
1014                mac2 = mac2 << 8;
1015                t = read_eeprom_byte(dev, 0x8c+i);
1016                if (t < 0) {
1017                        ecode = -EIO;
1018                        goto init_error;
1019                } else
1020                        mac2 |= (t & 0xff);
1021        }
1022
1023        writel(mac1, &regs->MacAddrHi);
1024        writel(mac2, &regs->MacAddrLo);
1025
1026        dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1027        dev->dev_addr[1] = mac1 & 0xff;
1028        dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1029        dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1030        dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1031        dev->dev_addr[5] = mac2 & 0xff;
1032
1033        printk("MAC: %pM\n", dev->dev_addr);
1034
1035        /*
1036         * Looks like this is necessary to deal with on all architectures,
1037         * even this %$#%$# N440BX Intel based thing doesn't get it right.
1038         * Ie. having two NICs in the machine, one will have the cache
1039         * line set at boot time, the other will not.
1040         */
1041        pdev = ap->pdev;
1042        pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1043        cache_size <<= 2;
1044        if (cache_size != SMP_CACHE_BYTES) {
1045                printk(KERN_INFO "  PCI cache line size set incorrectly "
1046                       "(%i bytes) by BIOS/FW, ", cache_size);
1047                if (cache_size > SMP_CACHE_BYTES)
1048                        printk("expecting %i\n", SMP_CACHE_BYTES);
1049                else {
1050                        printk("correcting to %i\n", SMP_CACHE_BYTES);
1051                        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1052                                              SMP_CACHE_BYTES >> 2);
1053                }
1054        }
1055
1056        pci_state = readl(&regs->PciState);
1057        printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1058               "latency: %i clks\n",
1059                (pci_state & PCI_32BIT) ? 32 : 64,
1060                (pci_state & PCI_66MHZ) ? 66 : 33,
1061                ap->pci_latency);
1062
1063        /*
1064         * Set the max DMA transfer size. Seems that for most systems
1065         * the performance is better when no MAX parameter is
1066         * set. However for systems enabling PCI write and invalidate,
1067         * DMA writes must be set to the L1 cache line size to get
1068         * optimal performance.
1069         *
1070         * The default is now to turn the PCI write and invalidate off
1071         * - that is what Alteon does for NT.
1072         */
1073        tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1074        if (ap->version >= 2) {
1075                tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1076                /*
1077                 * Tuning parameters only supported for 8 cards
1078                 */
1079                if (board_idx == BOARD_IDX_OVERFLOW ||
1080                    dis_pci_mem_inval[board_idx]) {
1081                        if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1082                                ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1083                                pci_write_config_word(pdev, PCI_COMMAND,
1084                                                      ap->pci_command);
1085                                printk(KERN_INFO "  Disabling PCI memory "
1086                                       "write and invalidate\n");
1087                        }
1088                } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1089                        printk(KERN_INFO "  PCI memory write & invalidate "
1090                               "enabled by BIOS, enabling counter measures\n");
1091
1092                        switch(SMP_CACHE_BYTES) {
1093                        case 16:
1094                                tmp |= DMA_WRITE_MAX_16;
1095                                break;
1096                        case 32:
1097                                tmp |= DMA_WRITE_MAX_32;
1098                                break;
1099                        case 64:
1100                                tmp |= DMA_WRITE_MAX_64;
1101                                break;
1102                        case 128:
1103                                tmp |= DMA_WRITE_MAX_128;
1104                                break;
1105                        default:
1106                                printk(KERN_INFO "  Cache line size %i not "
1107                                       "supported, PCI write and invalidate "
1108                                       "disabled\n", SMP_CACHE_BYTES);
1109                                ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1110                                pci_write_config_word(pdev, PCI_COMMAND,
1111                                                      ap->pci_command);
1112                        }
1113                }
1114        }
1115
1116#ifdef __sparc__
1117        /*
1118         * On this platform, we know what the best dma settings
1119         * are.  We use 64-byte maximum bursts, because if we
1120         * burst larger than the cache line size (or even cross
1121         * a 64byte boundary in a single burst) the UltraSparc
1122         * PCI controller will disconnect at 64-byte multiples.
1123         *
1124         * Read-multiple will be properly enabled above, and when
1125         * set will give the PCI controller proper hints about
1126         * prefetching.
1127         */
1128        tmp &= ~DMA_READ_WRITE_MASK;
1129        tmp |= DMA_READ_MAX_64;
1130        tmp |= DMA_WRITE_MAX_64;
1131#endif
1132#ifdef __alpha__
1133        tmp &= ~DMA_READ_WRITE_MASK;
1134        tmp |= DMA_READ_MAX_128;
1135        /*
1136         * All the docs say MUST NOT. Well, I did.
1137         * Nothing terrible happens, if we load wrong size.
1138         * Bit w&i still works better!
1139         */
1140        tmp |= DMA_WRITE_MAX_128;
1141#endif
1142        writel(tmp, &regs->PciState);
1143
1144#if 0
1145        /*
1146         * The Host PCI bus controller driver has to set FBB.
1147         * If all devices on that PCI bus support FBB, then the controller
1148         * can enable FBB support in the Host PCI Bus controller (or on
1149         * the PCI-PCI bridge if that applies).
1150         * -ggg
1151         */
1152        /*
1153         * I have received reports from people having problems when this
1154         * bit is enabled.
1155         */
1156        if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1157                printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1158                ap->pci_command |= PCI_COMMAND_FAST_BACK;
1159                pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1160        }
1161#endif
1162
1163        /*
1164         * Configure DMA attributes.
1165         */
1166        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1167                ap->pci_using_dac = 1;
1168        } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1169                ap->pci_using_dac = 0;
1170        } else {
1171                ecode = -ENODEV;
1172                goto init_error;
1173        }
1174
1175        /*
1176         * Initialize the generic info block and the command+event rings
1177         * and the control blocks for the transmit and receive rings
1178         * as they need to be setup once and for all.
1179         */
1180        if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1181                                          &ap->info_dma))) {
1182                ecode = -EAGAIN;
1183                goto init_error;
1184        }
1185        ap->info = info;
1186
1187        /*
1188         * Get the memory for the skb rings.
1189         */
1190        if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1191                ecode = -EAGAIN;
1192                goto init_error;
1193        }
1194
1195        ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1196                            DRV_NAME, dev);
1197        if (ecode) {
1198                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1199                       DRV_NAME, pdev->irq);
1200                goto init_error;
1201        } else
1202                dev->irq = pdev->irq;
1203
1204#ifdef INDEX_DEBUG
1205        spin_lock_init(&ap->debug_lock);
1206        ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1207        ap->last_std_rx = 0;
1208        ap->last_mini_rx = 0;
1209#endif
1210
1211        memset(ap->info, 0, sizeof(struct ace_info));
1212        memset(ap->skb, 0, sizeof(struct ace_skb));
1213
1214        ecode = ace_load_firmware(dev);
1215        if (ecode)
1216                goto init_error;
1217
1218        ap->fw_running = 0;
1219
1220        tmp_ptr = ap->info_dma;
1221        writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1222        writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1223
1224        memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1225
1226        set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1227        info->evt_ctrl.flags = 0;
1228
1229        *(ap->evt_prd) = 0;
1230        wmb();
1231        set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1232        writel(0, &regs->EvtCsm);
1233
1234        set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1235        info->cmd_ctrl.flags = 0;
1236        info->cmd_ctrl.max_len = 0;
1237
1238        for (i = 0; i < CMD_RING_ENTRIES; i++)
1239                writel(0, &regs->CmdRng[i]);
1240
1241        writel(0, &regs->CmdPrd);
1242        writel(0, &regs->CmdCsm);
1243
1244        tmp_ptr = ap->info_dma;
1245        tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1246        set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1247
1248        set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1249        info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1250        info->rx_std_ctrl.flags =
1251          RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1252
1253        memset(ap->rx_std_ring, 0,
1254               RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1255
1256        for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1257                ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1258
1259        ap->rx_std_skbprd = 0;
1260        atomic_set(&ap->cur_rx_bufs, 0);
1261
1262        set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1263                    (ap->rx_ring_base_dma +
1264                     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1265        info->rx_jumbo_ctrl.max_len = 0;
1266        info->rx_jumbo_ctrl.flags =
1267          RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1268
1269        memset(ap->rx_jumbo_ring, 0,
1270               RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1271
1272        for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1273                ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1274
1275        ap->rx_jumbo_skbprd = 0;
1276        atomic_set(&ap->cur_jumbo_bufs, 0);
1277
1278        memset(ap->rx_mini_ring, 0,
1279               RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1280
1281        if (ap->version >= 2) {
1282                set_aceaddr(&info->rx_mini_ctrl.rngptr,
1283                            (ap->rx_ring_base_dma +
1284                             (sizeof(struct rx_desc) *
1285                              (RX_STD_RING_ENTRIES +
1286                               RX_JUMBO_RING_ENTRIES))));
1287                info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1288                info->rx_mini_ctrl.flags =
1289                  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1290
1291                for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1292                        ap->rx_mini_ring[i].flags =
1293                                BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1294        } else {
1295                set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1296                info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1297                info->rx_mini_ctrl.max_len = 0;
1298        }
1299
1300        ap->rx_mini_skbprd = 0;
1301        atomic_set(&ap->cur_mini_bufs, 0);
1302
1303        set_aceaddr(&info->rx_return_ctrl.rngptr,
1304                    (ap->rx_ring_base_dma +
1305                     (sizeof(struct rx_desc) *
1306                      (RX_STD_RING_ENTRIES +
1307                       RX_JUMBO_RING_ENTRIES +
1308                       RX_MINI_RING_ENTRIES))));
1309        info->rx_return_ctrl.flags = 0;
1310        info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1311
1312        memset(ap->rx_return_ring, 0,
1313               RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1314
1315        set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1316        *(ap->rx_ret_prd) = 0;
1317
1318        writel(TX_RING_BASE, &regs->WinBase);
1319
1320        if (ACE_IS_TIGON_I(ap)) {
1321                ap->tx_ring = (__force struct tx_desc *) regs->Window;
1322                for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1323                                 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1324                        writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1325
1326                set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1327        } else {
1328                memset(ap->tx_ring, 0,
1329                       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1330
1331                set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1332        }
1333
1334        info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1335        tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1336
1337        /*
1338         * The Tigon I does not like having the TX ring in host memory ;-(
1339         */
1340        if (!ACE_IS_TIGON_I(ap))
1341                tmp |= RCB_FLG_TX_HOST_RING;
1342#if TX_COAL_INTS_ONLY
1343        tmp |= RCB_FLG_COAL_INT_ONLY;
1344#endif
1345        info->tx_ctrl.flags = tmp;
1346
1347        set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1348
1349        /*
1350         * Potential item for tuning parameter
1351         */
1352#if 0 /* NO */
1353        writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1354        writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1355#else
1356        writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1357        writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1358#endif
1359
1360        writel(0, &regs->MaskInt);
1361        writel(1, &regs->IfIdx);
1362#if 0
1363        /*
1364         * McKinley boxes do not like us fiddling with AssistState
1365         * this early
1366         */
1367        writel(1, &regs->AssistState);
1368#endif
1369
1370        writel(DEF_STAT, &regs->TuneStatTicks);
1371        writel(DEF_TRACE, &regs->TuneTrace);
1372
1373        ace_set_rxtx_parms(dev, 0);
1374
1375        if (board_idx == BOARD_IDX_OVERFLOW) {
1376                printk(KERN_WARNING "%s: more than %i NICs detected, "
1377                       "ignoring module parameters!\n",
1378                       ap->name, ACE_MAX_MOD_PARMS);
1379        } else if (board_idx >= 0) {
1380                if (tx_coal_tick[board_idx])
1381                        writel(tx_coal_tick[board_idx],
1382                               &regs->TuneTxCoalTicks);
1383                if (max_tx_desc[board_idx])
1384                        writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1385
1386                if (rx_coal_tick[board_idx])
1387                        writel(rx_coal_tick[board_idx],
1388                               &regs->TuneRxCoalTicks);
1389                if (max_rx_desc[board_idx])
1390                        writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1391
1392                if (trace[board_idx])
1393                        writel(trace[board_idx], &regs->TuneTrace);
1394
1395                if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1396                        writel(tx_ratio[board_idx], &regs->TxBufRat);
1397        }
1398
1399        /*
1400         * Default link parameters
1401         */
1402        tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1403                LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1404        if(ap->version >= 2)
1405                tmp |= LNK_TX_FLOW_CTL_Y;
1406
1407        /*
1408         * Override link default parameters
1409         */
1410        if ((board_idx >= 0) && link_state[board_idx]) {
1411                int option = link_state[board_idx];
1412
1413                tmp = LNK_ENABLE;
1414
1415                if (option & 0x01) {
1416                        printk(KERN_INFO "%s: Setting half duplex link\n",
1417                               ap->name);
1418                        tmp &= ~LNK_FULL_DUPLEX;
1419                }
1420                if (option & 0x02)
1421                        tmp &= ~LNK_NEGOTIATE;
1422                if (option & 0x10)
1423                        tmp |= LNK_10MB;
1424                if (option & 0x20)
1425                        tmp |= LNK_100MB;
1426                if (option & 0x40)
1427                        tmp |= LNK_1000MB;
1428                if ((option & 0x70) == 0) {
1429                        printk(KERN_WARNING "%s: No media speed specified, "
1430                               "forcing auto negotiation\n", ap->name);
1431                        tmp |= LNK_NEGOTIATE | LNK_1000MB |
1432                                LNK_100MB | LNK_10MB;
1433                }
1434                if ((option & 0x100) == 0)
1435                        tmp |= LNK_NEG_FCTL;
1436                else
1437                        printk(KERN_INFO "%s: Disabling flow control "
1438                               "negotiation\n", ap->name);
1439                if (option & 0x200)
1440                        tmp |= LNK_RX_FLOW_CTL_Y;
1441                if ((option & 0x400) && (ap->version >= 2)) {
1442                        printk(KERN_INFO "%s: Enabling TX flow control\n",
1443                               ap->name);
1444                        tmp |= LNK_TX_FLOW_CTL_Y;
1445                }
1446        }
1447
1448        ap->link = tmp;
1449        writel(tmp, &regs->TuneLink);
1450        if (ap->version >= 2)
1451                writel(tmp, &regs->TuneFastLink);
1452
1453        writel(ap->firmware_start, &regs->Pc);
1454
1455        writel(0, &regs->Mb0Lo);
1456
1457        /*
1458         * Set tx_csm before we start receiving interrupts, otherwise
1459         * the interrupt handler might think it is supposed to process
1460         * tx ints before we are up and running, which may cause a null
1461         * pointer access in the int handler.
1462         */
1463        ap->cur_rx = 0;
1464        ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1465
1466        wmb();
1467        ace_set_txprd(regs, ap, 0);
1468        writel(0, &regs->RxRetCsm);
1469
1470       /*
1471        * Enable DMA engine now.
1472        * If we do this sooner, Mckinley box pukes.
1473        * I assume it's because Tigon II DMA engine wants to check
1474        * *something* even before the CPU is started.
1475        */
1476       writel(1, &regs->AssistState);  /* enable DMA */
1477
1478        /*
1479         * Start the NIC CPU
1480         */
1481        writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1482        readl(&regs->CpuCtrl);
1483
1484        /*
1485         * Wait for the firmware to spin up - max 3 seconds.
1486         */
1487        myjif = jiffies + 3 * HZ;
1488        while (time_before(jiffies, myjif) && !ap->fw_running)
1489                cpu_relax();
1490
1491        if (!ap->fw_running) {
1492                printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1493
1494                ace_dump_trace(ap);
1495                writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1496                readl(&regs->CpuCtrl);
1497
1498                /* aman@sgi.com - account for badly behaving firmware/NIC:
1499                 * - have observed that the NIC may continue to generate
1500                 *   interrupts for some reason; attempt to stop it - halt
1501                 *   second CPU for Tigon II cards, and also clear Mb0
1502                 * - if we're a module, we'll fail to load if this was
1503                 *   the only GbE card in the system => if the kernel does
1504                 *   see an interrupt from the NIC, code to handle it is
1505                 *   gone and OOps! - so free_irq also
1506                 */
1507                if (ap->version >= 2)
1508                        writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1509                               &regs->CpuBCtrl);
1510                writel(0, &regs->Mb0Lo);
1511                readl(&regs->Mb0Lo);
1512
1513                ecode = -EBUSY;
1514                goto init_error;
1515        }
1516
1517        /*
1518         * We load the ring here as there seem to be no way to tell the
1519         * firmware to wipe the ring without re-initializing it.
1520         */
1521        if (!test_and_set_bit(0, &ap->std_refill_busy))
1522                ace_load_std_rx_ring(ap, RX_RING_SIZE);
1523        else
1524                printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1525                       ap->name);
1526        if (ap->version >= 2) {
1527                if (!test_and_set_bit(0, &ap->mini_refill_busy))
1528                        ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1529                else
1530                        printk(KERN_ERR "%s: Someone is busy refilling "
1531                               "the RX mini ring\n", ap->name);
1532        }
1533        return 0;
1534
1535 init_error:
1536        ace_init_cleanup(dev);
1537        return ecode;
1538}
1539
1540
1541static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1542{
1543        struct ace_private *ap = netdev_priv(dev);
1544        struct ace_regs __iomem *regs = ap->regs;
1545        int board_idx = ap->board_idx;
1546
1547        if (board_idx >= 0) {
1548                if (!jumbo) {
1549                        if (!tx_coal_tick[board_idx])
1550                                writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1551                        if (!max_tx_desc[board_idx])
1552                                writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1553                        if (!rx_coal_tick[board_idx])
1554                                writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1555                        if (!max_rx_desc[board_idx])
1556                                writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1557                        if (!tx_ratio[board_idx])
1558                                writel(DEF_TX_RATIO, &regs->TxBufRat);
1559                } else {
1560                        if (!tx_coal_tick[board_idx])
1561                                writel(DEF_JUMBO_TX_COAL,
1562                                       &regs->TuneTxCoalTicks);
1563                        if (!max_tx_desc[board_idx])
1564                                writel(DEF_JUMBO_TX_MAX_DESC,
1565                                       &regs->TuneMaxTxDesc);
1566                        if (!rx_coal_tick[board_idx])
1567                                writel(DEF_JUMBO_RX_COAL,
1568                                       &regs->TuneRxCoalTicks);
1569                        if (!max_rx_desc[board_idx])
1570                                writel(DEF_JUMBO_RX_MAX_DESC,
1571                                       &regs->TuneMaxRxDesc);
1572                        if (!tx_ratio[board_idx])
1573                                writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1574                }
1575        }
1576}
1577
1578
1579static void ace_watchdog(struct net_device *data)
1580{
1581        struct net_device *dev = data;
1582        struct ace_private *ap = netdev_priv(dev);
1583        struct ace_regs __iomem *regs = ap->regs;
1584
1585        /*
1586         * We haven't received a stats update event for more than 2.5
1587         * seconds and there is data in the transmit queue, thus we
1588         * assume the card is stuck.
1589         */
1590        if (*ap->tx_csm != ap->tx_ret_csm) {
1591                printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1592                       dev->name, (unsigned int)readl(&regs->HostCtrl));
1593                /* This can happen due to ieee flow control. */
1594        } else {
1595                printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1596                       dev->name);
1597#if 0
1598                netif_wake_queue(dev);
1599#endif
1600        }
1601}
1602
1603
1604static void ace_tasklet(unsigned long dev)
1605{
1606        struct ace_private *ap = netdev_priv((struct net_device *)dev);
1607        int cur_size;
1608
1609        cur_size = atomic_read(&ap->cur_rx_bufs);
1610        if ((cur_size < RX_LOW_STD_THRES) &&
1611            !test_and_set_bit(0, &ap->std_refill_busy)) {
1612#ifdef DEBUG
1613                printk("refilling buffers (current %i)\n", cur_size);
1614#endif
1615                ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1616        }
1617
1618        if (ap->version >= 2) {
1619                cur_size = atomic_read(&ap->cur_mini_bufs);
1620                if ((cur_size < RX_LOW_MINI_THRES) &&
1621                    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1622#ifdef DEBUG
1623                        printk("refilling mini buffers (current %i)\n",
1624                               cur_size);
1625#endif
1626                        ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1627                }
1628        }
1629
1630        cur_size = atomic_read(&ap->cur_jumbo_bufs);
1631        if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1632            !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1633#ifdef DEBUG
1634                printk("refilling jumbo buffers (current %i)\n", cur_size);
1635#endif
1636                ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1637        }
1638        ap->tasklet_pending = 0;
1639}
1640
1641
1642/*
1643 * Copy the contents of the NIC's trace buffer to kernel memory.
1644 */
1645static void ace_dump_trace(struct ace_private *ap)
1646{
1647#if 0
1648        if (!ap->trace_buf)
1649                if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1650                    return;
1651#endif
1652}
1653
1654
1655/*
1656 * Load the standard rx ring.
1657 *
1658 * Loading rings is safe without holding the spin lock since this is
1659 * done only before the device is enabled, thus no interrupts are
1660 * generated and by the interrupt handler/tasklet handler.
1661 */
1662static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1663{
1664        struct ace_regs __iomem *regs = ap->regs;
1665        short i, idx;
1666
1667
1668        prefetchw(&ap->cur_rx_bufs);
1669
1670        idx = ap->rx_std_skbprd;
1671
1672        for (i = 0; i < nr_bufs; i++) {
1673                struct sk_buff *skb;
1674                struct rx_desc *rd;
1675                dma_addr_t mapping;
1676
1677                skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1678                if (!skb)
1679                        break;
1680
1681                skb_reserve(skb, NET_IP_ALIGN);
1682                mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1683                                       offset_in_page(skb->data),
1684                                       ACE_STD_BUFSIZE,
1685                                       PCI_DMA_FROMDEVICE);
1686                ap->skb->rx_std_skbuff[idx].skb = skb;
1687                dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1688                                   mapping, mapping);
1689
1690                rd = &ap->rx_std_ring[idx];
1691                set_aceaddr(&rd->addr, mapping);
1692                rd->size = ACE_STD_BUFSIZE;
1693                rd->idx = idx;
1694                idx = (idx + 1) % RX_STD_RING_ENTRIES;
1695        }
1696
1697        if (!i)
1698                goto error_out;
1699
1700        atomic_add(i, &ap->cur_rx_bufs);
1701        ap->rx_std_skbprd = idx;
1702
1703        if (ACE_IS_TIGON_I(ap)) {
1704                struct cmd cmd;
1705                cmd.evt = C_SET_RX_PRD_IDX;
1706                cmd.code = 0;
1707                cmd.idx = ap->rx_std_skbprd;
1708                ace_issue_cmd(regs, &cmd);
1709        } else {
1710                writel(idx, &regs->RxStdPrd);
1711                wmb();
1712        }
1713
1714 out:
1715        clear_bit(0, &ap->std_refill_busy);
1716        return;
1717
1718 error_out:
1719        printk(KERN_INFO "Out of memory when allocating "
1720               "standard receive buffers\n");
1721        goto out;
1722}
1723
1724
1725static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1726{
1727        struct ace_regs __iomem *regs = ap->regs;
1728        short i, idx;
1729
1730        prefetchw(&ap->cur_mini_bufs);
1731
1732        idx = ap->rx_mini_skbprd;
1733        for (i = 0; i < nr_bufs; i++) {
1734                struct sk_buff *skb;
1735                struct rx_desc *rd;
1736                dma_addr_t mapping;
1737
1738                skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1739                if (!skb)
1740                        break;
1741
1742                skb_reserve(skb, NET_IP_ALIGN);
1743                mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1744                                       offset_in_page(skb->data),
1745                                       ACE_MINI_BUFSIZE,
1746                                       PCI_DMA_FROMDEVICE);
1747                ap->skb->rx_mini_skbuff[idx].skb = skb;
1748                dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1749                                   mapping, mapping);
1750
1751                rd = &ap->rx_mini_ring[idx];
1752                set_aceaddr(&rd->addr, mapping);
1753                rd->size = ACE_MINI_BUFSIZE;
1754                rd->idx = idx;
1755                idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1756        }
1757
1758        if (!i)
1759                goto error_out;
1760
1761        atomic_add(i, &ap->cur_mini_bufs);
1762
1763        ap->rx_mini_skbprd = idx;
1764
1765        writel(idx, &regs->RxMiniPrd);
1766        wmb();
1767
1768 out:
1769        clear_bit(0, &ap->mini_refill_busy);
1770        return;
1771 error_out:
1772        printk(KERN_INFO "Out of memory when allocating "
1773               "mini receive buffers\n");
1774        goto out;
1775}
1776
1777
1778/*
1779 * Load the jumbo rx ring, this may happen at any time if the MTU
1780 * is changed to a value > 1500.
1781 */
1782static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1783{
1784        struct ace_regs __iomem *regs = ap->regs;
1785        short i, idx;
1786
1787        idx = ap->rx_jumbo_skbprd;
1788
1789        for (i = 0; i < nr_bufs; i++) {
1790                struct sk_buff *skb;
1791                struct rx_desc *rd;
1792                dma_addr_t mapping;
1793
1794                skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1795                if (!skb)
1796                        break;
1797
1798                skb_reserve(skb, NET_IP_ALIGN);
1799                mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1800                                       offset_in_page(skb->data),
1801                                       ACE_JUMBO_BUFSIZE,
1802                                       PCI_DMA_FROMDEVICE);
1803                ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1804                dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1805                                   mapping, mapping);
1806
1807                rd = &ap->rx_jumbo_ring[idx];
1808                set_aceaddr(&rd->addr, mapping);
1809                rd->size = ACE_JUMBO_BUFSIZE;
1810                rd->idx = idx;
1811                idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1812        }
1813
1814        if (!i)
1815                goto error_out;
1816
1817        atomic_add(i, &ap->cur_jumbo_bufs);
1818        ap->rx_jumbo_skbprd = idx;
1819
1820        if (ACE_IS_TIGON_I(ap)) {
1821                struct cmd cmd;
1822                cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1823                cmd.code = 0;
1824                cmd.idx = ap->rx_jumbo_skbprd;
1825                ace_issue_cmd(regs, &cmd);
1826        } else {
1827                writel(idx, &regs->RxJumboPrd);
1828                wmb();
1829        }
1830
1831 out:
1832        clear_bit(0, &ap->jumbo_refill_busy);
1833        return;
1834 error_out:
1835        if (net_ratelimit())
1836                printk(KERN_INFO "Out of memory when allocating "
1837                       "jumbo receive buffers\n");
1838        goto out;
1839}
1840
1841
1842/*
1843 * All events are considered to be slow (RX/TX ints do not generate
1844 * events) and are handled here, outside the main interrupt handler,
1845 * to reduce the size of the handler.
1846 */
1847static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1848{
1849        struct ace_private *ap;
1850
1851        ap = netdev_priv(dev);
1852
1853        while (evtcsm != evtprd) {
1854                switch (ap->evt_ring[evtcsm].evt) {
1855                case E_FW_RUNNING:
1856                        printk(KERN_INFO "%s: Firmware up and running\n",
1857                               ap->name);
1858                        ap->fw_running = 1;
1859                        wmb();
1860                        break;
1861                case E_STATS_UPDATED:
1862                        break;
1863                case E_LNK_STATE:
1864                {
1865                        u16 code = ap->evt_ring[evtcsm].code;
1866                        switch (code) {
1867                        case E_C_LINK_UP:
1868                        {
1869                                u32 state = readl(&ap->regs->GigLnkState);
1870                                printk(KERN_WARNING "%s: Optical link UP "
1871                                       "(%s Duplex, Flow Control: %s%s)\n",
1872                                       ap->name,
1873                                       state & LNK_FULL_DUPLEX ? "Full":"Half",
1874                                       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1875                                       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1876                                break;
1877                        }
1878                        case E_C_LINK_DOWN:
1879                                printk(KERN_WARNING "%s: Optical link DOWN\n",
1880                                       ap->name);
1881                                break;
1882                        case E_C_LINK_10_100:
1883                                printk(KERN_WARNING "%s: 10/100BaseT link "
1884                                       "UP\n", ap->name);
1885                                break;
1886                        default:
1887                                printk(KERN_ERR "%s: Unknown optical link "
1888                                       "state %02x\n", ap->name, code);
1889                        }
1890                        break;
1891                }
1892                case E_ERROR:
1893                        switch(ap->evt_ring[evtcsm].code) {
1894                        case E_C_ERR_INVAL_CMD:
1895                                printk(KERN_ERR "%s: invalid command error\n",
1896                                       ap->name);
1897                                break;
1898                        case E_C_ERR_UNIMP_CMD:
1899                                printk(KERN_ERR "%s: unimplemented command "
1900                                       "error\n", ap->name);
1901                                break;
1902                        case E_C_ERR_BAD_CFG:
1903                                printk(KERN_ERR "%s: bad config error\n",
1904                                       ap->name);
1905                                break;
1906                        default:
1907                                printk(KERN_ERR "%s: unknown error %02x\n",
1908                                       ap->name, ap->evt_ring[evtcsm].code);
1909                        }
1910                        break;
1911                case E_RESET_JUMBO_RNG:
1912                {
1913                        int i;
1914                        for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1915                                if (ap->skb->rx_jumbo_skbuff[i].skb) {
1916                                        ap->rx_jumbo_ring[i].size = 0;
1917                                        set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1918                                        dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1919                                        ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1920                                }
1921                        }
1922
1923                        if (ACE_IS_TIGON_I(ap)) {
1924                                struct cmd cmd;
1925                                cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1926                                cmd.code = 0;
1927                                cmd.idx = 0;
1928                                ace_issue_cmd(ap->regs, &cmd);
1929                        } else {
1930                                writel(0, &((ap->regs)->RxJumboPrd));
1931                                wmb();
1932                        }
1933
1934                        ap->jumbo = 0;
1935                        ap->rx_jumbo_skbprd = 0;
1936                        printk(KERN_INFO "%s: Jumbo ring flushed\n",
1937                               ap->name);
1938                        clear_bit(0, &ap->jumbo_refill_busy);
1939                        break;
1940                }
1941                default:
1942                        printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1943                               ap->name, ap->evt_ring[evtcsm].evt);
1944                }
1945                evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1946        }
1947
1948        return evtcsm;
1949}
1950
1951
1952static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1953{
1954        struct ace_private *ap = netdev_priv(dev);
1955        u32 idx;
1956        int mini_count = 0, std_count = 0;
1957
1958        idx = rxretcsm;
1959
1960        prefetchw(&ap->cur_rx_bufs);
1961        prefetchw(&ap->cur_mini_bufs);
1962
1963        while (idx != rxretprd) {
1964                struct ring_info *rip;
1965                struct sk_buff *skb;
1966                struct rx_desc *rxdesc, *retdesc;
1967                u32 skbidx;
1968                int bd_flags, desc_type, mapsize;
1969                u16 csum;
1970
1971
1972                /* make sure the rx descriptor isn't read before rxretprd */
1973                if (idx == rxretcsm)
1974                        rmb();
1975
1976                retdesc = &ap->rx_return_ring[idx];
1977                skbidx = retdesc->idx;
1978                bd_flags = retdesc->flags;
1979                desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1980
1981                switch(desc_type) {
1982                        /*
1983                         * Normal frames do not have any flags set
1984                         *
1985                         * Mini and normal frames arrive frequently,
1986                         * so use a local counter to avoid doing
1987                         * atomic operations for each packet arriving.
1988                         */
1989                case 0:
1990                        rip = &ap->skb->rx_std_skbuff[skbidx];
1991                        mapsize = ACE_STD_BUFSIZE;
1992                        rxdesc = &ap->rx_std_ring[skbidx];
1993                        std_count++;
1994                        break;
1995                case BD_FLG_JUMBO:
1996                        rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1997                        mapsize = ACE_JUMBO_BUFSIZE;
1998                        rxdesc = &ap->rx_jumbo_ring[skbidx];
1999                        atomic_dec(&ap->cur_jumbo_bufs);
2000                        break;
2001                case BD_FLG_MINI:
2002                        rip = &ap->skb->rx_mini_skbuff[skbidx];
2003                        mapsize = ACE_MINI_BUFSIZE;
2004                        rxdesc = &ap->rx_mini_ring[skbidx];
2005                        mini_count++;
2006                        break;
2007                default:
2008                        printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2009                               "returned by NIC\n", dev->name,
2010                               retdesc->flags);
2011                        goto error;
2012                }
2013
2014                skb = rip->skb;
2015                rip->skb = NULL;
2016                pci_unmap_page(ap->pdev,
2017                               dma_unmap_addr(rip, mapping),
2018                               mapsize,
2019                               PCI_DMA_FROMDEVICE);
2020                skb_put(skb, retdesc->size);
2021
2022                /*
2023                 * Fly baby, fly!
2024                 */
2025                csum = retdesc->tcp_udp_csum;
2026
2027                skb->protocol = eth_type_trans(skb, dev);
2028
2029                /*
2030                 * Instead of forcing the poor tigon mips cpu to calculate
2031                 * pseudo hdr checksum, we do this ourselves.
2032                 */
2033                if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2034                        skb->csum = htons(csum);
2035                        skb->ip_summed = CHECKSUM_COMPLETE;
2036                } else {
2037                        skb_checksum_none_assert(skb);
2038                }
2039
2040                /* send it up */
2041#if ACENIC_DO_VLAN
2042                if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2043                        vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2044                } else
2045#endif
2046                        netif_rx(skb);
2047
2048                dev->stats.rx_packets++;
2049                dev->stats.rx_bytes += retdesc->size;
2050
2051                idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2052        }
2053
2054        atomic_sub(std_count, &ap->cur_rx_bufs);
2055        if (!ACE_IS_TIGON_I(ap))
2056                atomic_sub(mini_count, &ap->cur_mini_bufs);
2057
2058 out:
2059        /*
2060         * According to the documentation RxRetCsm is obsolete with
2061         * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2062         */
2063        if (ACE_IS_TIGON_I(ap)) {
2064                writel(idx, &ap->regs->RxRetCsm);
2065        }
2066        ap->cur_rx = idx;
2067
2068        return;
2069 error:
2070        idx = rxretprd;
2071        goto out;
2072}
2073
2074
2075static inline void ace_tx_int(struct net_device *dev,
2076                              u32 txcsm, u32 idx)
2077{
2078        struct ace_private *ap = netdev_priv(dev);
2079
2080        do {
2081                struct sk_buff *skb;
2082                struct tx_ring_info *info;
2083
2084                info = ap->skb->tx_skbuff + idx;
2085                skb = info->skb;
2086
2087                if (dma_unmap_len(info, maplen)) {
2088                        pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2089                                       dma_unmap_len(info, maplen),
2090                                       PCI_DMA_TODEVICE);
2091                        dma_unmap_len_set(info, maplen, 0);
2092                }
2093
2094                if (skb) {
2095                        dev->stats.tx_packets++;
2096                        dev->stats.tx_bytes += skb->len;
2097                        dev_kfree_skb_irq(skb);
2098                        info->skb = NULL;
2099                }
2100
2101                idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2102        } while (idx != txcsm);
2103
2104        if (netif_queue_stopped(dev))
2105                netif_wake_queue(dev);
2106
2107        wmb();
2108        ap->tx_ret_csm = txcsm;
2109
2110        /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2111         *
2112         * We could try to make it before. In this case we would get
2113         * the following race condition: hard_start_xmit on other cpu
2114         * enters after we advanced tx_ret_csm and fills space,
2115         * which we have just freed, so that we make illegal device wakeup.
2116         * There is no good way to workaround this (at entry
2117         * to ace_start_xmit detects this condition and prevents
2118         * ring corruption, but it is not a good workaround.)
2119         *
2120         * When tx_ret_csm is advanced after, we wake up device _only_
2121         * if we really have some space in ring (though the core doing
2122         * hard_start_xmit can see full ring for some period and has to
2123         * synchronize.) Superb.
2124         * BUT! We get another subtle race condition. hard_start_xmit
2125         * may think that ring is full between wakeup and advancing
2126         * tx_ret_csm and will stop device instantly! It is not so bad.
2127         * We are guaranteed that there is something in ring, so that
2128         * the next irq will resume transmission. To speedup this we could
2129         * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2130         * (see ace_start_xmit).
2131         *
2132         * Well, this dilemma exists in all lock-free devices.
2133         * We, following scheme used in drivers by Donald Becker,
2134         * select the least dangerous.
2135         *                                                      --ANK
2136         */
2137}
2138
2139
2140static irqreturn_t ace_interrupt(int irq, void *dev_id)
2141{
2142        struct net_device *dev = (struct net_device *)dev_id;
2143        struct ace_private *ap = netdev_priv(dev);
2144        struct ace_regs __iomem *regs = ap->regs;
2145        u32 idx;
2146        u32 txcsm, rxretcsm, rxretprd;
2147        u32 evtcsm, evtprd;
2148
2149        /*
2150         * In case of PCI shared interrupts or spurious interrupts,
2151         * we want to make sure it is actually our interrupt before
2152         * spending any time in here.
2153         */
2154        if (!(readl(&regs->HostCtrl) & IN_INT))
2155                return IRQ_NONE;
2156
2157        /*
2158         * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2159         * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2160         * writel(0, &regs->Mb0Lo).
2161         *
2162         * "IRQ avoidance" recommended in docs applies to IRQs served
2163         * threads and it is wrong even for that case.
2164         */
2165        writel(0, &regs->Mb0Lo);
2166        readl(&regs->Mb0Lo);
2167
2168        /*
2169         * There is no conflict between transmit handling in
2170         * start_xmit and receive processing, thus there is no reason
2171         * to take a spin lock for RX handling. Wait until we start
2172         * working on the other stuff - hey we don't need a spin lock
2173         * anymore.
2174         */
2175        rxretprd = *ap->rx_ret_prd;
2176        rxretcsm = ap->cur_rx;
2177
2178        if (rxretprd != rxretcsm)
2179                ace_rx_int(dev, rxretprd, rxretcsm);
2180
2181        txcsm = *ap->tx_csm;
2182        idx = ap->tx_ret_csm;
2183
2184        if (txcsm != idx) {
2185                /*
2186                 * If each skb takes only one descriptor this check degenerates
2187                 * to identity, because new space has just been opened.
2188                 * But if skbs are fragmented we must check that this index
2189                 * update releases enough of space, otherwise we just
2190                 * wait for device to make more work.
2191                 */
2192                if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2193                        ace_tx_int(dev, txcsm, idx);
2194        }
2195
2196        evtcsm = readl(&regs->EvtCsm);
2197        evtprd = *ap->evt_prd;
2198
2199        if (evtcsm != evtprd) {
2200                evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2201                writel(evtcsm, &regs->EvtCsm);
2202        }
2203
2204        /*
2205         * This has to go last in the interrupt handler and run with
2206         * the spin lock released ... what lock?
2207         */
2208        if (netif_running(dev)) {
2209                int cur_size;
2210                int run_tasklet = 0;
2211
2212                cur_size = atomic_read(&ap->cur_rx_bufs);
2213                if (cur_size < RX_LOW_STD_THRES) {
2214                        if ((cur_size < RX_PANIC_STD_THRES) &&
2215                            !test_and_set_bit(0, &ap->std_refill_busy)) {
2216#ifdef DEBUG
2217                                printk("low on std buffers %i\n", cur_size);
2218#endif
2219                                ace_load_std_rx_ring(ap,
2220                                                     RX_RING_SIZE - cur_size);
2221                        } else
2222                                run_tasklet = 1;
2223                }
2224
2225                if (!ACE_IS_TIGON_I(ap)) {
2226                        cur_size = atomic_read(&ap->cur_mini_bufs);
2227                        if (cur_size < RX_LOW_MINI_THRES) {
2228                                if ((cur_size < RX_PANIC_MINI_THRES) &&
2229                                    !test_and_set_bit(0,
2230                                                      &ap->mini_refill_busy)) {
2231#ifdef DEBUG
2232                                        printk("low on mini buffers %i\n",
2233                                               cur_size);
2234#endif
2235                                        ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2236                                } else
2237                                        run_tasklet = 1;
2238                        }
2239                }
2240
2241                if (ap->jumbo) {
2242                        cur_size = atomic_read(&ap->cur_jumbo_bufs);
2243                        if (cur_size < RX_LOW_JUMBO_THRES) {
2244                                if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2245                                    !test_and_set_bit(0,
2246                                                      &ap->jumbo_refill_busy)){
2247#ifdef DEBUG
2248                                        printk("low on jumbo buffers %i\n",
2249                                               cur_size);
2250#endif
2251                                        ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2252                                } else
2253                                        run_tasklet = 1;
2254                        }
2255                }
2256                if (run_tasklet && !ap->tasklet_pending) {
2257                        ap->tasklet_pending = 1;
2258                        tasklet_schedule(&ap->ace_tasklet);
2259                }
2260        }
2261
2262        return IRQ_HANDLED;
2263}
2264
2265
2266#if ACENIC_DO_VLAN
2267static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2268{
2269        struct ace_private *ap = netdev_priv(dev);
2270        unsigned long flags;
2271
2272        local_irq_save(flags);
2273        ace_mask_irq(dev);
2274
2275        ap->vlgrp = grp;
2276
2277        ace_unmask_irq(dev);
2278        local_irq_restore(flags);
2279}
2280#endif /* ACENIC_DO_VLAN */
2281
2282
2283static int ace_open(struct net_device *dev)
2284{
2285        struct ace_private *ap = netdev_priv(dev);
2286        struct ace_regs __iomem *regs = ap->regs;
2287        struct cmd cmd;
2288
2289        if (!(ap->fw_running)) {
2290                printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2291                return -EBUSY;
2292        }
2293
2294        writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2295
2296        cmd.evt = C_CLEAR_STATS;
2297        cmd.code = 0;
2298        cmd.idx = 0;
2299        ace_issue_cmd(regs, &cmd);
2300
2301        cmd.evt = C_HOST_STATE;
2302        cmd.code = C_C_STACK_UP;
2303        cmd.idx = 0;
2304        ace_issue_cmd(regs, &cmd);
2305
2306        if (ap->jumbo &&
2307            !test_and_set_bit(0, &ap->jumbo_refill_busy))
2308                ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2309
2310        if (dev->flags & IFF_PROMISC) {
2311                cmd.evt = C_SET_PROMISC_MODE;
2312                cmd.code = C_C_PROMISC_ENABLE;
2313                cmd.idx = 0;
2314                ace_issue_cmd(regs, &cmd);
2315
2316                ap->promisc = 1;
2317        }else
2318                ap->promisc = 0;
2319        ap->mcast_all = 0;
2320
2321#if 0
2322        cmd.evt = C_LNK_NEGOTIATION;
2323        cmd.code = 0;
2324        cmd.idx = 0;
2325        ace_issue_cmd(regs, &cmd);
2326#endif
2327
2328        netif_start_queue(dev);
2329
2330        /*
2331         * Setup the bottom half rx ring refill handler
2332         */
2333        tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2334        return 0;
2335}
2336
2337
2338static int ace_close(struct net_device *dev)
2339{
2340        struct ace_private *ap = netdev_priv(dev);
2341        struct ace_regs __iomem *regs = ap->regs;
2342        struct cmd cmd;
2343        unsigned long flags;
2344        short i;
2345
2346        /*
2347         * Without (or before) releasing irq and stopping hardware, this
2348         * is an absolute non-sense, by the way. It will be reset instantly
2349         * by the first irq.
2350         */
2351        netif_stop_queue(dev);
2352
2353
2354        if (ap->promisc) {
2355                cmd.evt = C_SET_PROMISC_MODE;
2356                cmd.code = C_C_PROMISC_DISABLE;
2357                cmd.idx = 0;
2358                ace_issue_cmd(regs, &cmd);
2359                ap->promisc = 0;
2360        }
2361
2362        cmd.evt = C_HOST_STATE;
2363        cmd.code = C_C_STACK_DOWN;
2364        cmd.idx = 0;
2365        ace_issue_cmd(regs, &cmd);
2366
2367        tasklet_kill(&ap->ace_tasklet);
2368
2369        /*
2370         * Make sure one CPU is not processing packets while
2371         * buffers are being released by another.
2372         */
2373
2374        local_irq_save(flags);
2375        ace_mask_irq(dev);
2376
2377        for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2378                struct sk_buff *skb;
2379                struct tx_ring_info *info;
2380
2381                info = ap->skb->tx_skbuff + i;
2382                skb = info->skb;
2383
2384                if (dma_unmap_len(info, maplen)) {
2385                        if (ACE_IS_TIGON_I(ap)) {
2386                                /* NB: TIGON_1 is special, tx_ring is in io space */
2387                                struct tx_desc __iomem *tx;
2388                                tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2389                                writel(0, &tx->addr.addrhi);
2390                                writel(0, &tx->addr.addrlo);
2391                                writel(0, &tx->flagsize);
2392                        } else
2393                                memset(ap->tx_ring + i, 0,
2394                                       sizeof(struct tx_desc));
2395                        pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2396                                       dma_unmap_len(info, maplen),
2397                                       PCI_DMA_TODEVICE);
2398                        dma_unmap_len_set(info, maplen, 0);
2399                }
2400                if (skb) {
2401                        dev_kfree_skb(skb);
2402                        info->skb = NULL;
2403                }
2404        }
2405
2406        if (ap->jumbo) {
2407                cmd.evt = C_RESET_JUMBO_RNG;
2408                cmd.code = 0;
2409                cmd.idx = 0;
2410                ace_issue_cmd(regs, &cmd);
2411        }
2412
2413        ace_unmask_irq(dev);
2414        local_irq_restore(flags);
2415
2416        return 0;
2417}
2418
2419
2420static inline dma_addr_t
2421ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2422               struct sk_buff *tail, u32 idx)
2423{
2424        dma_addr_t mapping;
2425        struct tx_ring_info *info;
2426
2427        mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2428                               offset_in_page(skb->data),
2429                               skb->len, PCI_DMA_TODEVICE);
2430
2431        info = ap->skb->tx_skbuff + idx;
2432        info->skb = tail;
2433        dma_unmap_addr_set(info, mapping, mapping);
2434        dma_unmap_len_set(info, maplen, skb->len);
2435        return mapping;
2436}
2437
2438
2439static inline void
2440ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2441               u32 flagsize, u32 vlan_tag)
2442{
2443#if !USE_TX_COAL_NOW
2444        flagsize &= ~BD_FLG_COAL_NOW;
2445#endif
2446
2447        if (ACE_IS_TIGON_I(ap)) {
2448                struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2449                writel(addr >> 32, &io->addr.addrhi);
2450                writel(addr & 0xffffffff, &io->addr.addrlo);
2451                writel(flagsize, &io->flagsize);
2452#if ACENIC_DO_VLAN
2453                writel(vlan_tag, &io->vlanres);
2454#endif
2455        } else {
2456                desc->addr.addrhi = addr >> 32;
2457                desc->addr.addrlo = addr;
2458                desc->flagsize = flagsize;
2459#if ACENIC_DO_VLAN
2460                desc->vlanres = vlan_tag;
2461#endif
2462        }
2463}
2464
2465
2466static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2467                                  struct net_device *dev)
2468{
2469        struct ace_private *ap = netdev_priv(dev);
2470        struct ace_regs __iomem *regs = ap->regs;
2471        struct tx_desc *desc;
2472        u32 idx, flagsize;
2473        unsigned long maxjiff = jiffies + 3*HZ;
2474
2475restart:
2476        idx = ap->tx_prd;
2477
2478        if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2479                goto overflow;
2480
2481        if (!skb_shinfo(skb)->nr_frags) {
2482                dma_addr_t mapping;
2483                u32 vlan_tag = 0;
2484
2485                mapping = ace_map_tx_skb(ap, skb, skb, idx);
2486                flagsize = (skb->len << 16) | (BD_FLG_END);
2487                if (skb->ip_summed == CHECKSUM_PARTIAL)
2488                        flagsize |= BD_FLG_TCP_UDP_SUM;
2489#if ACENIC_DO_VLAN
2490                if (vlan_tx_tag_present(skb)) {
2491                        flagsize |= BD_FLG_VLAN_TAG;
2492                        vlan_tag = vlan_tx_tag_get(skb);
2493                }
2494#endif
2495                desc = ap->tx_ring + idx;
2496                idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2497
2498                /* Look at ace_tx_int for explanations. */
2499                if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2500                        flagsize |= BD_FLG_COAL_NOW;
2501
2502                ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2503        } else {
2504                dma_addr_t mapping;
2505                u32 vlan_tag = 0;
2506                int i, len = 0;
2507
2508                mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2509                flagsize = (skb_headlen(skb) << 16);
2510                if (skb->ip_summed == CHECKSUM_PARTIAL)
2511                        flagsize |= BD_FLG_TCP_UDP_SUM;
2512#if ACENIC_DO_VLAN
2513                if (vlan_tx_tag_present(skb)) {
2514                        flagsize |= BD_FLG_VLAN_TAG;
2515                        vlan_tag = vlan_tx_tag_get(skb);
2516                }
2517#endif
2518
2519                ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2520
2521                idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2522
2523                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2525                        struct tx_ring_info *info;
2526
2527                        len += frag->size;
2528                        info = ap->skb->tx_skbuff + idx;
2529                        desc = ap->tx_ring + idx;
2530
2531                        mapping = pci_map_page(ap->pdev, frag->page,
2532                                               frag->page_offset, frag->size,
2533                                               PCI_DMA_TODEVICE);
2534
2535                        flagsize = (frag->size << 16);
2536                        if (skb->ip_summed == CHECKSUM_PARTIAL)
2537                                flagsize |= BD_FLG_TCP_UDP_SUM;
2538                        idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2539
2540                        if (i == skb_shinfo(skb)->nr_frags - 1) {
2541                                flagsize |= BD_FLG_END;
2542                                if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2543                                        flagsize |= BD_FLG_COAL_NOW;
2544
2545                                /*
2546                                 * Only the last fragment frees
2547                                 * the skb!
2548                                 */
2549                                info->skb = skb;
2550                        } else {
2551                                info->skb = NULL;
2552                        }
2553                        dma_unmap_addr_set(info, mapping, mapping);
2554                        dma_unmap_len_set(info, maplen, frag->size);
2555                        ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2556                }
2557        }
2558
2559        wmb();
2560        ap->tx_prd = idx;
2561        ace_set_txprd(regs, ap, idx);
2562
2563        if (flagsize & BD_FLG_COAL_NOW) {
2564                netif_stop_queue(dev);
2565
2566                /*
2567                 * A TX-descriptor producer (an IRQ) might have gotten
2568                 * between, making the ring free again. Since xmit is
2569                 * serialized, this is the only situation we have to
2570                 * re-test.
2571                 */
2572                if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2573                        netif_wake_queue(dev);
2574        }
2575
2576        return NETDEV_TX_OK;
2577
2578overflow:
2579        /*
2580         * This race condition is unavoidable with lock-free drivers.
2581         * We wake up the queue _before_ tx_prd is advanced, so that we can
2582         * enter hard_start_xmit too early, while tx ring still looks closed.
2583         * This happens ~1-4 times per 100000 packets, so that we can allow
2584         * to loop syncing to other CPU. Probably, we need an additional
2585         * wmb() in ace_tx_intr as well.
2586         *
2587         * Note that this race is relieved by reserving one more entry
2588         * in tx ring than it is necessary (see original non-SG driver).
2589         * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2590         * is already overkill.
2591         *
2592         * Alternative is to return with 1 not throttling queue. In this
2593         * case loop becomes longer, no more useful effects.
2594         */
2595        if (time_before(jiffies, maxjiff)) {
2596                barrier();
2597                cpu_relax();
2598                goto restart;
2599        }
2600
2601        /* The ring is stuck full. */
2602        printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2603        return NETDEV_TX_BUSY;
2604}
2605
2606
2607static int ace_change_mtu(struct net_device *dev, int new_mtu)
2608{
2609        struct ace_private *ap = netdev_priv(dev);
2610        struct ace_regs __iomem *regs = ap->regs;
2611
2612        if (new_mtu > ACE_JUMBO_MTU)
2613                return -EINVAL;
2614
2615        writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2616        dev->mtu = new_mtu;
2617
2618        if (new_mtu > ACE_STD_MTU) {
2619                if (!(ap->jumbo)) {
2620                        printk(KERN_INFO "%s: Enabling Jumbo frame "
2621                               "support\n", dev->name);
2622                        ap->jumbo = 1;
2623                        if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2624                                ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2625                        ace_set_rxtx_parms(dev, 1);
2626                }
2627        } else {
2628                while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2629                ace_sync_irq(dev->irq);
2630                ace_set_rxtx_parms(dev, 0);
2631                if (ap->jumbo) {
2632                        struct cmd cmd;
2633
2634                        cmd.evt = C_RESET_JUMBO_RNG;
2635                        cmd.code = 0;
2636                        cmd.idx = 0;
2637                        ace_issue_cmd(regs, &cmd);
2638                }
2639        }
2640
2641        return 0;
2642}
2643
2644static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2645{
2646        struct ace_private *ap = netdev_priv(dev);
2647        struct ace_regs __iomem *regs = ap->regs;
2648        u32 link;
2649
2650        memset(ecmd, 0, sizeof(struct ethtool_cmd));
2651        ecmd->supported =
2652                (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2653                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2654                 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2655                 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2656
2657        ecmd->port = PORT_FIBRE;
2658        ecmd->transceiver = XCVR_INTERNAL;
2659
2660        link = readl(&regs->GigLnkState);
2661        if (link & LNK_1000MB)
2662                ethtool_cmd_speed_set(ecmd, SPEED_1000);
2663        else {
2664                link = readl(&regs->FastLnkState);
2665                if (link & LNK_100MB)
2666                        ethtool_cmd_speed_set(ecmd, SPEED_100);
2667                else if (link & LNK_10MB)
2668                        ethtool_cmd_speed_set(ecmd, SPEED_10);
2669                else
2670                        ethtool_cmd_speed_set(ecmd, 0);
2671        }
2672        if (link & LNK_FULL_DUPLEX)
2673                ecmd->duplex = DUPLEX_FULL;
2674        else
2675                ecmd->duplex = DUPLEX_HALF;
2676
2677        if (link & LNK_NEGOTIATE)
2678                ecmd->autoneg = AUTONEG_ENABLE;
2679        else
2680                ecmd->autoneg = AUTONEG_DISABLE;
2681
2682#if 0
2683        /*
2684         * Current struct ethtool_cmd is insufficient
2685         */
2686        ecmd->trace = readl(&regs->TuneTrace);
2687
2688        ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2689        ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2690#endif
2691        ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2692        ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2693
2694        return 0;
2695}
2696
2697static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2698{
2699        struct ace_private *ap = netdev_priv(dev);
2700        struct ace_regs __iomem *regs = ap->regs;
2701        u32 link, speed;
2702
2703        link = readl(&regs->GigLnkState);
2704        if (link & LNK_1000MB)
2705                speed = SPEED_1000;
2706        else {
2707                link = readl(&regs->FastLnkState);
2708                if (link & LNK_100MB)
2709                        speed = SPEED_100;
2710                else if (link & LNK_10MB)
2711                        speed = SPEED_10;
2712                else
2713                        speed = SPEED_100;
2714        }
2715
2716        link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2717                LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2718        if (!ACE_IS_TIGON_I(ap))
2719                link |= LNK_TX_FLOW_CTL_Y;
2720        if (ecmd->autoneg == AUTONEG_ENABLE)
2721                link |= LNK_NEGOTIATE;
2722        if (ethtool_cmd_speed(ecmd) != speed) {
2723                link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2724                switch (ethtool_cmd_speed(ecmd)) {
2725                case SPEED_1000:
2726                        link |= LNK_1000MB;
2727                        break;
2728                case SPEED_100:
2729                        link |= LNK_100MB;
2730                        break;
2731                case SPEED_10:
2732                        link |= LNK_10MB;
2733                        break;
2734                }
2735        }
2736
2737        if (ecmd->duplex == DUPLEX_FULL)
2738                link |= LNK_FULL_DUPLEX;
2739
2740        if (link != ap->link) {
2741                struct cmd cmd;
2742                printk(KERN_INFO "%s: Renegotiating link state\n",
2743                       dev->name);
2744
2745                ap->link = link;
2746                writel(link, &regs->TuneLink);
2747                if (!ACE_IS_TIGON_I(ap))
2748                        writel(link, &regs->TuneFastLink);
2749                wmb();
2750
2751                cmd.evt = C_LNK_NEGOTIATION;
2752                cmd.code = 0;
2753                cmd.idx = 0;
2754                ace_issue_cmd(regs, &cmd);
2755        }
2756        return 0;
2757}
2758
2759static void ace_get_drvinfo(struct net_device *dev,
2760                            struct ethtool_drvinfo *info)
2761{
2762        struct ace_private *ap = netdev_priv(dev);
2763
2764        strlcpy(info->driver, "acenic", sizeof(info->driver));
2765        snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2766                 ap->firmware_major, ap->firmware_minor,
2767                 ap->firmware_fix);
2768
2769        if (ap->pdev)
2770                strlcpy(info->bus_info, pci_name(ap->pdev),
2771                        sizeof(info->bus_info));
2772
2773}
2774
2775/*
2776 * Set the hardware MAC address.
2777 */
2778static int ace_set_mac_addr(struct net_device *dev, void *p)
2779{
2780        struct ace_private *ap = netdev_priv(dev);
2781        struct ace_regs __iomem *regs = ap->regs;
2782        struct sockaddr *addr=p;
2783        u8 *da;
2784        struct cmd cmd;
2785
2786        if(netif_running(dev))
2787                return -EBUSY;
2788
2789        memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2790
2791        da = (u8 *)dev->dev_addr;
2792
2793        writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2794        writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2795               &regs->MacAddrLo);
2796
2797        cmd.evt = C_SET_MAC_ADDR;
2798        cmd.code = 0;
2799        cmd.idx = 0;
2800        ace_issue_cmd(regs, &cmd);
2801
2802        return 0;
2803}
2804
2805
2806static void ace_set_multicast_list(struct net_device *dev)
2807{
2808        struct ace_private *ap = netdev_priv(dev);
2809        struct ace_regs __iomem *regs = ap->regs;
2810        struct cmd cmd;
2811
2812        if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2813                cmd.evt = C_SET_MULTICAST_MODE;
2814                cmd.code = C_C_MCAST_ENABLE;
2815                cmd.idx = 0;
2816                ace_issue_cmd(regs, &cmd);
2817                ap->mcast_all = 1;
2818        } else if (ap->mcast_all) {
2819                cmd.evt = C_SET_MULTICAST_MODE;
2820                cmd.code = C_C_MCAST_DISABLE;
2821                cmd.idx = 0;
2822                ace_issue_cmd(regs, &cmd);
2823                ap->mcast_all = 0;
2824        }
2825
2826        if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2827                cmd.evt = C_SET_PROMISC_MODE;
2828                cmd.code = C_C_PROMISC_ENABLE;
2829                cmd.idx = 0;
2830                ace_issue_cmd(regs, &cmd);
2831                ap->promisc = 1;
2832        }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2833                cmd.evt = C_SET_PROMISC_MODE;
2834                cmd.code = C_C_PROMISC_DISABLE;
2835                cmd.idx = 0;
2836                ace_issue_cmd(regs, &cmd);
2837                ap->promisc = 0;
2838        }
2839
2840        /*
2841         * For the time being multicast relies on the upper layers
2842         * filtering it properly. The Firmware does not allow one to
2843         * set the entire multicast list at a time and keeping track of
2844         * it here is going to be messy.
2845         */
2846        if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2847                cmd.evt = C_SET_MULTICAST_MODE;
2848                cmd.code = C_C_MCAST_ENABLE;
2849                cmd.idx = 0;
2850                ace_issue_cmd(regs, &cmd);
2851        }else if (!ap->mcast_all) {
2852                cmd.evt = C_SET_MULTICAST_MODE;
2853                cmd.code = C_C_MCAST_DISABLE;
2854                cmd.idx = 0;
2855                ace_issue_cmd(regs, &cmd);
2856        }
2857}
2858
2859
2860static struct net_device_stats *ace_get_stats(struct net_device *dev)
2861{
2862        struct ace_private *ap = netdev_priv(dev);
2863        struct ace_mac_stats __iomem *mac_stats =
2864                (struct ace_mac_stats __iomem *)ap->regs->Stats;
2865
2866        dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2867        dev->stats.multicast = readl(&mac_stats->kept_mc);
2868        dev->stats.collisions = readl(&mac_stats->coll);
2869
2870        return &dev->stats;
2871}
2872
2873
2874static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2875                               u32 dest, int size)
2876{
2877        void __iomem *tdest;
2878        short tsize, i;
2879
2880        if (size <= 0)
2881                return;
2882
2883        while (size > 0) {
2884                tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2885                            min_t(u32, size, ACE_WINDOW_SIZE));
2886                tdest = (void __iomem *) &regs->Window +
2887                        (dest & (ACE_WINDOW_SIZE - 1));
2888                writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2889                for (i = 0; i < (tsize / 4); i++) {
2890                        /* Firmware is big-endian */
2891                        writel(be32_to_cpup(src), tdest);
2892                        src++;
2893                        tdest += 4;
2894                        dest += 4;
2895                        size -= 4;
2896                }
2897        }
2898}
2899
2900
2901static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2902{
2903        void __iomem *tdest;
2904        short tsize = 0, i;
2905
2906        if (size <= 0)
2907                return;
2908
2909        while (size > 0) {
2910                tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2911                                min_t(u32, size, ACE_WINDOW_SIZE));
2912                tdest = (void __iomem *) &regs->Window +
2913                        (dest & (ACE_WINDOW_SIZE - 1));
2914                writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2915
2916                for (i = 0; i < (tsize / 4); i++) {
2917                        writel(0, tdest + i*4);
2918                }
2919
2920                dest += tsize;
2921                size -= tsize;
2922        }
2923}
2924
2925
2926/*
2927 * Download the firmware into the SRAM on the NIC
2928 *
2929 * This operation requires the NIC to be halted and is performed with
2930 * interrupts disabled and with the spinlock hold.
2931 */
2932static int __devinit ace_load_firmware(struct net_device *dev)
2933{
2934        const struct firmware *fw;
2935        const char *fw_name = "acenic/tg2.bin";
2936        struct ace_private *ap = netdev_priv(dev);
2937        struct ace_regs __iomem *regs = ap->regs;
2938        const __be32 *fw_data;
2939        u32 load_addr;
2940        int ret;
2941
2942        if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2943                printk(KERN_ERR "%s: trying to download firmware while the "
2944                       "CPU is running!\n", ap->name);
2945                return -EFAULT;
2946        }
2947
2948        if (ACE_IS_TIGON_I(ap))
2949                fw_name = "acenic/tg1.bin";
2950
2951        ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2952        if (ret) {
2953                printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2954                       ap->name, fw_name);
2955                return ret;
2956        }
2957
2958        fw_data = (void *)fw->data;
2959
2960        /* Firmware blob starts with version numbers, followed by
2961           load and start address. Remainder is the blob to be loaded
2962           contiguously from load address. We don't bother to represent
2963           the BSS/SBSS sections any more, since we were clearing the
2964           whole thing anyway. */
2965        ap->firmware_major = fw->data[0];
2966        ap->firmware_minor = fw->data[1];
2967        ap->firmware_fix = fw->data[2];
2968
2969        ap->firmware_start = be32_to_cpu(fw_data[1]);
2970        if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2971                printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2972                       ap->name, ap->firmware_start, fw_name);
2973                ret = -EINVAL;
2974                goto out;
2975        }
2976
2977        load_addr = be32_to_cpu(fw_data[2]);
2978        if (load_addr < 0x4000 || load_addr >= 0x80000) {
2979                printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2980                       ap->name, load_addr, fw_name);
2981                ret = -EINVAL;
2982                goto out;
2983        }
2984
2985        /*
2986         * Do not try to clear more than 512KiB or we end up seeing
2987         * funny things on NICs with only 512KiB SRAM
2988         */
2989        ace_clear(regs, 0x2000, 0x80000-0x2000);
2990        ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2991 out:
2992        release_firmware(fw);
2993        return ret;
2994}
2995
2996
2997/*
2998 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2999 *
3000 * Accessing the EEPROM is `interesting' to say the least - don't read
3001 * this code right after dinner.
3002 *
3003 * This is all about black magic and bit-banging the device .... I
3004 * wonder in what hospital they have put the guy who designed the i2c
3005 * specs.
3006 *
3007 * Oh yes, this is only the beginning!
3008 *
3009 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3010 * code i2c readout code by beta testing all my hacks.
3011 */
3012static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3013{
3014        u32 local;
3015
3016        readl(&regs->LocalCtrl);
3017        udelay(ACE_SHORT_DELAY);
3018        local = readl(&regs->LocalCtrl);
3019        local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3020        writel(local, &regs->LocalCtrl);
3021        readl(&regs->LocalCtrl);
3022        mb();
3023        udelay(ACE_SHORT_DELAY);
3024        local |= EEPROM_CLK_OUT;
3025        writel(local, &regs->LocalCtrl);
3026        readl(&regs->LocalCtrl);
3027        mb();
3028        udelay(ACE_SHORT_DELAY);
3029        local &= ~EEPROM_DATA_OUT;
3030        writel(local, &regs->LocalCtrl);
3031        readl(&regs->LocalCtrl);
3032        mb();
3033        udelay(ACE_SHORT_DELAY);
3034        local &= ~EEPROM_CLK_OUT;
3035        writel(local, &regs->LocalCtrl);
3036        readl(&regs->LocalCtrl);
3037        mb();
3038}
3039
3040
3041static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3042{
3043        short i;
3044        u32 local;
3045
3046        udelay(ACE_SHORT_DELAY);
3047        local = readl(&regs->LocalCtrl);
3048        local &= ~EEPROM_DATA_OUT;
3049        local |= EEPROM_WRITE_ENABLE;
3050        writel(local, &regs->LocalCtrl);
3051        readl(&regs->LocalCtrl);
3052        mb();
3053
3054        for (i = 0; i < 8; i++, magic <<= 1) {
3055                udelay(ACE_SHORT_DELAY);
3056                if (magic & 0x80)
3057                        local |= EEPROM_DATA_OUT;
3058                else
3059                        local &= ~EEPROM_DATA_OUT;
3060                writel(local, &regs->LocalCtrl);
3061                readl(&regs->LocalCtrl);
3062                mb();
3063
3064                udelay(ACE_SHORT_DELAY);
3065                local |= EEPROM_CLK_OUT;
3066                writel(local, &regs->LocalCtrl);
3067                readl(&regs->LocalCtrl);
3068                mb();
3069                udelay(ACE_SHORT_DELAY);
3070                local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3071                writel(local, &regs->LocalCtrl);
3072                readl(&regs->LocalCtrl);
3073                mb();
3074        }
3075}
3076
3077
3078static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3079{
3080        int state;
3081        u32 local;
3082
3083        local = readl(&regs->LocalCtrl);
3084        local &= ~EEPROM_WRITE_ENABLE;
3085        writel(local, &regs->LocalCtrl);
3086        readl(&regs->LocalCtrl);
3087        mb();
3088        udelay(ACE_LONG_DELAY);
3089        local |= EEPROM_CLK_OUT;
3090        writel(local, &regs->LocalCtrl);
3091        readl(&regs->LocalCtrl);
3092        mb();
3093        udelay(ACE_SHORT_DELAY);
3094        /* sample data in middle of high clk */
3095        state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3096        udelay(ACE_SHORT_DELAY);
3097        mb();
3098        writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3099        readl(&regs->LocalCtrl);
3100        mb();
3101
3102        return state;
3103}
3104
3105
3106static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3107{
3108        u32 local;
3109
3110        udelay(ACE_SHORT_DELAY);
3111        local = readl(&regs->LocalCtrl);
3112        local |= EEPROM_WRITE_ENABLE;
3113        writel(local, &regs->LocalCtrl);
3114        readl(&regs->LocalCtrl);
3115        mb();
3116        udelay(ACE_SHORT_DELAY);
3117        local &= ~EEPROM_DATA_OUT;
3118        writel(local, &regs->LocalCtrl);
3119        readl(&regs->LocalCtrl);
3120        mb();
3121        udelay(ACE_SHORT_DELAY);
3122        local |= EEPROM_CLK_OUT;
3123        writel(local, &regs->LocalCtrl);
3124        readl(&regs->LocalCtrl);
3125        mb();
3126        udelay(ACE_SHORT_DELAY);
3127        local |= EEPROM_DATA_OUT;
3128        writel(local, &regs->LocalCtrl);
3129        readl(&regs->LocalCtrl);
3130        mb();
3131        udelay(ACE_LONG_DELAY);
3132        local &= ~EEPROM_CLK_OUT;
3133        writel(local, &regs->LocalCtrl);
3134        mb();
3135}
3136
3137
3138/*
3139 * Read a whole byte from the EEPROM.
3140 */
3141static int __devinit read_eeprom_byte(struct net_device *dev,
3142                                   unsigned long offset)
3143{
3144        struct ace_private *ap = netdev_priv(dev);
3145        struct ace_regs __iomem *regs = ap->regs;
3146        unsigned long flags;
3147        u32 local;
3148        int result = 0;
3149        short i;
3150
3151        /*
3152         * Don't take interrupts on this CPU will bit banging
3153         * the %#%#@$ I2C device
3154         */
3155        local_irq_save(flags);
3156
3157        eeprom_start(regs);
3158
3159        eeprom_prep(regs, EEPROM_WRITE_SELECT);
3160        if (eeprom_check_ack(regs)) {
3161                local_irq_restore(flags);
3162                printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3163                result = -EIO;
3164                goto eeprom_read_error;
3165        }
3166
3167        eeprom_prep(regs, (offset >> 8) & 0xff);
3168        if (eeprom_check_ack(regs)) {
3169                local_irq_restore(flags);
3170                printk(KERN_ERR "%s: Unable to set address byte 0\n",
3171                       ap->name);
3172                result = -EIO;
3173                goto eeprom_read_error;
3174        }
3175
3176        eeprom_prep(regs, offset & 0xff);
3177        if (eeprom_check_ack(regs)) {
3178                local_irq_restore(flags);
3179                printk(KERN_ERR "%s: Unable to set address byte 1\n",
3180                       ap->name);
3181                result = -EIO;
3182                goto eeprom_read_error;
3183        }
3184
3185        eeprom_start(regs);
3186        eeprom_prep(regs, EEPROM_READ_SELECT);
3187        if (eeprom_check_ack(regs)) {
3188                local_irq_restore(flags);
3189                printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3190                       ap->name);
3191                result = -EIO;
3192                goto eeprom_read_error;
3193        }
3194
3195        for (i = 0; i < 8; i++) {
3196                local = readl(&regs->LocalCtrl);
3197                local &= ~EEPROM_WRITE_ENABLE;
3198                writel(local, &regs->LocalCtrl);
3199                readl(&regs->LocalCtrl);
3200                udelay(ACE_LONG_DELAY);
3201                mb();
3202                local |= EEPROM_CLK_OUT;
3203                writel(local, &regs->LocalCtrl);
3204                readl(&regs->LocalCtrl);
3205                mb();
3206                udelay(ACE_SHORT_DELAY);
3207                /* sample data mid high clk */
3208                result = (result << 1) |
3209                        ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3210                udelay(ACE_SHORT_DELAY);
3211                mb();
3212                local = readl(&regs->LocalCtrl);
3213                local &= ~EEPROM_CLK_OUT;
3214                writel(local, &regs->LocalCtrl);
3215                readl(&regs->LocalCtrl);
3216                udelay(ACE_SHORT_DELAY);
3217                mb();
3218                if (i == 7) {
3219                        local |= EEPROM_WRITE_ENABLE;
3220                        writel(local, &regs->LocalCtrl);
3221                        readl(&regs->LocalCtrl);
3222                        mb();
3223                        udelay(ACE_SHORT_DELAY);
3224                }
3225        }
3226
3227        local |= EEPROM_DATA_OUT;
3228        writel(local, &regs->LocalCtrl);
3229        readl(&regs->LocalCtrl);
3230        mb();
3231        udelay(ACE_SHORT_DELAY);
3232        writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3233        readl(&regs->LocalCtrl);
3234        udelay(ACE_LONG_DELAY);
3235        writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3236        readl(&regs->LocalCtrl);
3237        mb();
3238        udelay(ACE_SHORT_DELAY);
3239        eeprom_stop(regs);
3240
3241        local_irq_restore(flags);
3242 out:
3243        return result;
3244
3245 eeprom_read_error:
3246        printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3247               ap->name, offset);
3248        goto out;
3249}
3250