linux/drivers/net/dl2k.c
<<
>>
Prefs
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME        "DL2000/TC902x-based linux driver"
  14#define DRV_VERSION     "v1.19"
  15#define DRV_RELDATE     "2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19static char version[] __devinitdata =
  20      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  21#define MAX_UNITS 8
  22static int mtu[MAX_UNITS];
  23static int vlan[MAX_UNITS];
  24static int jumbo[MAX_UNITS];
  25static char *media[MAX_UNITS];
  26static int tx_flow=-1;
  27static int rx_flow=-1;
  28static int copy_thresh;
  29static int rx_coalesce=10;      /* Rx frame count each interrupt */
  30static int rx_timeout=200;      /* Rx DMA wait time in 640ns increments */
  31static int tx_coalesce=16;      /* HW xmit count each TxDMAComplete */
  32
  33
  34MODULE_AUTHOR ("Edward Peng");
  35MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  36MODULE_LICENSE("GPL");
  37module_param_array(mtu, int, NULL, 0);
  38module_param_array(media, charp, NULL, 0);
  39module_param_array(vlan, int, NULL, 0);
  40module_param_array(jumbo, int, NULL, 0);
  41module_param(tx_flow, int, 0);
  42module_param(rx_flow, int, 0);
  43module_param(copy_thresh, int, 0);
  44module_param(rx_coalesce, int, 0);      /* Rx frame count each interrupt */
  45module_param(rx_timeout, int, 0);       /* Rx DMA wait time in 64ns increments */
  46module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  47
  48
  49/* Enable the default interrupts */
  50#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  51       UpdateStats | LinkEvent)
  52#define EnableInt() \
  53writew(DEFAULT_INTR, ioaddr + IntEnable)
  54
  55static const int max_intrloop = 50;
  56static const int multicast_filter_limit = 0x40;
  57
  58static int rio_open (struct net_device *dev);
  59static void rio_timer (unsigned long data);
  60static void rio_tx_timeout (struct net_device *dev);
  61static void alloc_list (struct net_device *dev);
  62static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  63static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  64static void rio_free_tx (struct net_device *dev, int irq);
  65static void tx_error (struct net_device *dev, int tx_status);
  66static int receive_packet (struct net_device *dev);
  67static void rio_error (struct net_device *dev, int int_status);
  68static int change_mtu (struct net_device *dev, int new_mtu);
  69static void set_multicast (struct net_device *dev);
  70static struct net_device_stats *get_stats (struct net_device *dev);
  71static int clear_stats (struct net_device *dev);
  72static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  73static int rio_close (struct net_device *dev);
  74static int find_miiphy (struct net_device *dev);
  75static int parse_eeprom (struct net_device *dev);
  76static int read_eeprom (long ioaddr, int eep_addr);
  77static int mii_wait_link (struct net_device *dev, int wait);
  78static int mii_set_media (struct net_device *dev);
  79static int mii_get_media (struct net_device *dev);
  80static int mii_set_media_pcs (struct net_device *dev);
  81static int mii_get_media_pcs (struct net_device *dev);
  82static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  83static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  84                      u16 data);
  85
  86static const struct ethtool_ops ethtool_ops;
  87
  88static const struct net_device_ops netdev_ops = {
  89        .ndo_open               = rio_open,
  90        .ndo_start_xmit = start_xmit,
  91        .ndo_stop               = rio_close,
  92        .ndo_get_stats          = get_stats,
  93        .ndo_validate_addr      = eth_validate_addr,
  94        .ndo_set_mac_address    = eth_mac_addr,
  95        .ndo_set_multicast_list = set_multicast,
  96        .ndo_do_ioctl           = rio_ioctl,
  97        .ndo_tx_timeout         = rio_tx_timeout,
  98        .ndo_change_mtu         = change_mtu,
  99};
 100
 101static int __devinit
 102rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 103{
 104        struct net_device *dev;
 105        struct netdev_private *np;
 106        static int card_idx;
 107        int chip_idx = ent->driver_data;
 108        int err, irq;
 109        long ioaddr;
 110        static int version_printed;
 111        void *ring_space;
 112        dma_addr_t ring_dma;
 113
 114        if (!version_printed++)
 115                printk ("%s", version);
 116
 117        err = pci_enable_device (pdev);
 118        if (err)
 119                return err;
 120
 121        irq = pdev->irq;
 122        err = pci_request_regions (pdev, "dl2k");
 123        if (err)
 124                goto err_out_disable;
 125
 126        pci_set_master (pdev);
 127        dev = alloc_etherdev (sizeof (*np));
 128        if (!dev) {
 129                err = -ENOMEM;
 130                goto err_out_res;
 131        }
 132        SET_NETDEV_DEV(dev, &pdev->dev);
 133
 134#ifdef MEM_MAPPING
 135        ioaddr = pci_resource_start (pdev, 1);
 136        ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
 137        if (!ioaddr) {
 138                err = -ENOMEM;
 139                goto err_out_dev;
 140        }
 141#else
 142        ioaddr = pci_resource_start (pdev, 0);
 143#endif
 144        dev->base_addr = ioaddr;
 145        dev->irq = irq;
 146        np = netdev_priv(dev);
 147        np->chip_id = chip_idx;
 148        np->pdev = pdev;
 149        spin_lock_init (&np->tx_lock);
 150        spin_lock_init (&np->rx_lock);
 151
 152        /* Parse manual configuration */
 153        np->an_enable = 1;
 154        np->tx_coalesce = 1;
 155        if (card_idx < MAX_UNITS) {
 156                if (media[card_idx] != NULL) {
 157                        np->an_enable = 0;
 158                        if (strcmp (media[card_idx], "auto") == 0 ||
 159                            strcmp (media[card_idx], "autosense") == 0 ||
 160                            strcmp (media[card_idx], "0") == 0 ) {
 161                                np->an_enable = 2;
 162                        } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 163                            strcmp (media[card_idx], "4") == 0) {
 164                                np->speed = 100;
 165                                np->full_duplex = 1;
 166                        } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 167                                   strcmp (media[card_idx], "3") == 0) {
 168                                np->speed = 100;
 169                                np->full_duplex = 0;
 170                        } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 171                                   strcmp (media[card_idx], "2") == 0) {
 172                                np->speed = 10;
 173                                np->full_duplex = 1;
 174                        } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 175                                   strcmp (media[card_idx], "1") == 0) {
 176                                np->speed = 10;
 177                                np->full_duplex = 0;
 178                        } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 179                                 strcmp (media[card_idx], "6") == 0) {
 180                                np->speed=1000;
 181                                np->full_duplex=1;
 182                        } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 183                                 strcmp (media[card_idx], "5") == 0) {
 184                                np->speed = 1000;
 185                                np->full_duplex = 0;
 186                        } else {
 187                                np->an_enable = 1;
 188                        }
 189                }
 190                if (jumbo[card_idx] != 0) {
 191                        np->jumbo = 1;
 192                        dev->mtu = MAX_JUMBO;
 193                } else {
 194                        np->jumbo = 0;
 195                        if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 196                                dev->mtu = mtu[card_idx];
 197                }
 198                np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 199                    vlan[card_idx] : 0;
 200                if (rx_coalesce > 0 && rx_timeout > 0) {
 201                        np->rx_coalesce = rx_coalesce;
 202                        np->rx_timeout = rx_timeout;
 203                        np->coalesce = 1;
 204                }
 205                np->tx_flow = (tx_flow == 0) ? 0 : 1;
 206                np->rx_flow = (rx_flow == 0) ? 0 : 1;
 207
 208                if (tx_coalesce < 1)
 209                        tx_coalesce = 1;
 210                else if (tx_coalesce > TX_RING_SIZE-1)
 211                        tx_coalesce = TX_RING_SIZE - 1;
 212        }
 213        dev->netdev_ops = &netdev_ops;
 214        dev->watchdog_timeo = TX_TIMEOUT;
 215        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 216#if 0
 217        dev->features = NETIF_F_IP_CSUM;
 218#endif
 219        pci_set_drvdata (pdev, dev);
 220
 221        ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 222        if (!ring_space)
 223                goto err_out_iounmap;
 224        np->tx_ring = (struct netdev_desc *) ring_space;
 225        np->tx_ring_dma = ring_dma;
 226
 227        ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 228        if (!ring_space)
 229                goto err_out_unmap_tx;
 230        np->rx_ring = (struct netdev_desc *) ring_space;
 231        np->rx_ring_dma = ring_dma;
 232
 233        /* Parse eeprom data */
 234        parse_eeprom (dev);
 235
 236        /* Find PHY address */
 237        err = find_miiphy (dev);
 238        if (err)
 239                goto err_out_unmap_rx;
 240
 241        /* Fiber device? */
 242        np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
 243        np->link_status = 0;
 244        /* Set media and reset PHY */
 245        if (np->phy_media) {
 246                /* default Auto-Negotiation for fiber deivices */
 247                if (np->an_enable == 2) {
 248                        np->an_enable = 1;
 249                }
 250                mii_set_media_pcs (dev);
 251        } else {
 252                /* Auto-Negotiation is mandatory for 1000BASE-T,
 253                   IEEE 802.3ab Annex 28D page 14 */
 254                if (np->speed == 1000)
 255                        np->an_enable = 1;
 256                mii_set_media (dev);
 257        }
 258
 259        err = register_netdev (dev);
 260        if (err)
 261                goto err_out_unmap_rx;
 262
 263        card_idx++;
 264
 265        printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 266                dev->name, np->name, dev->dev_addr, irq);
 267        if (tx_coalesce > 1)
 268                printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 269                                tx_coalesce);
 270        if (np->coalesce)
 271                printk(KERN_INFO
 272                       "rx_coalesce:\t%d packets\n"
 273                       "rx_timeout: \t%d ns\n",
 274                                np->rx_coalesce, np->rx_timeout*640);
 275        if (np->vlan)
 276                printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 277        return 0;
 278
 279      err_out_unmap_rx:
 280        pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 281      err_out_unmap_tx:
 282        pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 283      err_out_iounmap:
 284#ifdef MEM_MAPPING
 285        iounmap ((void *) ioaddr);
 286
 287      err_out_dev:
 288#endif
 289        free_netdev (dev);
 290
 291      err_out_res:
 292        pci_release_regions (pdev);
 293
 294      err_out_disable:
 295        pci_disable_device (pdev);
 296        return err;
 297}
 298
 299static int
 300find_miiphy (struct net_device *dev)
 301{
 302        int i, phy_found = 0;
 303        struct netdev_private *np;
 304        long ioaddr;
 305        np = netdev_priv(dev);
 306        ioaddr = dev->base_addr;
 307        np->phy_addr = 1;
 308
 309        for (i = 31; i >= 0; i--) {
 310                int mii_status = mii_read (dev, i, 1);
 311                if (mii_status != 0xffff && mii_status != 0x0000) {
 312                        np->phy_addr = i;
 313                        phy_found++;
 314                }
 315        }
 316        if (!phy_found) {
 317                printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 318                return -ENODEV;
 319        }
 320        return 0;
 321}
 322
 323static int
 324parse_eeprom (struct net_device *dev)
 325{
 326        int i, j;
 327        long ioaddr = dev->base_addr;
 328        u8 sromdata[256];
 329        u8 *psib;
 330        u32 crc;
 331        PSROM_t psrom = (PSROM_t) sromdata;
 332        struct netdev_private *np = netdev_priv(dev);
 333
 334        int cid, next;
 335
 336#ifdef  MEM_MAPPING
 337        ioaddr = pci_resource_start (np->pdev, 0);
 338#endif
 339        /* Read eeprom */
 340        for (i = 0; i < 128; i++) {
 341                ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
 342        }
 343#ifdef  MEM_MAPPING
 344        ioaddr = dev->base_addr;
 345#endif
 346        if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {  /* D-Link Only */
 347                /* Check CRC */
 348                crc = ~ether_crc_le (256 - 4, sromdata);
 349                if (psrom->crc != cpu_to_le32(crc)) {
 350                        printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 351                                        dev->name);
 352                        return -1;
 353                }
 354        }
 355
 356        /* Set MAC address */
 357        for (i = 0; i < 6; i++)
 358                dev->dev_addr[i] = psrom->mac_addr[i];
 359
 360        if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 361                return 0;
 362        }
 363
 364        /* Parse Software Information Block */
 365        i = 0x30;
 366        psib = (u8 *) sromdata;
 367        do {
 368                cid = psib[i++];
 369                next = psib[i++];
 370                if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 371                        printk (KERN_ERR "Cell data error\n");
 372                        return -1;
 373                }
 374                switch (cid) {
 375                case 0: /* Format version */
 376                        break;
 377                case 1: /* End of cell */
 378                        return 0;
 379                case 2: /* Duplex Polarity */
 380                        np->duplex_polarity = psib[i];
 381                        writeb (readb (ioaddr + PhyCtrl) | psib[i],
 382                                ioaddr + PhyCtrl);
 383                        break;
 384                case 3: /* Wake Polarity */
 385                        np->wake_polarity = psib[i];
 386                        break;
 387                case 9: /* Adapter description */
 388                        j = (next - i > 255) ? 255 : next - i;
 389                        memcpy (np->name, &(psib[i]), j);
 390                        break;
 391                case 4:
 392                case 5:
 393                case 6:
 394                case 7:
 395                case 8: /* Reversed */
 396                        break;
 397                default:        /* Unknown cell */
 398                        return -1;
 399                }
 400                i = next;
 401        } while (1);
 402
 403        return 0;
 404}
 405
 406static int
 407rio_open (struct net_device *dev)
 408{
 409        struct netdev_private *np = netdev_priv(dev);
 410        long ioaddr = dev->base_addr;
 411        int i;
 412        u16 macctrl;
 413
 414        i = request_irq (dev->irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 415        if (i)
 416                return i;
 417
 418        /* Reset all logic functions */
 419        writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
 420                ioaddr + ASICCtrl + 2);
 421        mdelay(10);
 422
 423        /* DebugCtrl bit 4, 5, 9 must set */
 424        writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
 425
 426        /* Jumbo frame */
 427        if (np->jumbo != 0)
 428                writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
 429
 430        alloc_list (dev);
 431
 432        /* Get station address */
 433        for (i = 0; i < 6; i++)
 434                writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
 435
 436        set_multicast (dev);
 437        if (np->coalesce) {
 438                writel (np->rx_coalesce | np->rx_timeout << 16,
 439                        ioaddr + RxDMAIntCtrl);
 440        }
 441        /* Set RIO to poll every N*320nsec. */
 442        writeb (0x20, ioaddr + RxDMAPollPeriod);
 443        writeb (0xff, ioaddr + TxDMAPollPeriod);
 444        writeb (0x30, ioaddr + RxDMABurstThresh);
 445        writeb (0x30, ioaddr + RxDMAUrgentThresh);
 446        writel (0x0007ffff, ioaddr + RmonStatMask);
 447        /* clear statistics */
 448        clear_stats (dev);
 449
 450        /* VLAN supported */
 451        if (np->vlan) {
 452                /* priority field in RxDMAIntCtrl  */
 453                writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
 454                        ioaddr + RxDMAIntCtrl);
 455                /* VLANId */
 456                writew (np->vlan, ioaddr + VLANId);
 457                /* Length/Type should be 0x8100 */
 458                writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
 459                /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 460                   VLAN information tagged by TFC' VID, CFI fields. */
 461                writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
 462                        ioaddr + MACCtrl);
 463        }
 464
 465        init_timer (&np->timer);
 466        np->timer.expires = jiffies + 1*HZ;
 467        np->timer.data = (unsigned long) dev;
 468        np->timer.function = rio_timer;
 469        add_timer (&np->timer);
 470
 471        /* Start Tx/Rx */
 472        writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
 473                        ioaddr + MACCtrl);
 474
 475        macctrl = 0;
 476        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 477        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 478        macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 479        macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 480        writew(macctrl, ioaddr + MACCtrl);
 481
 482        netif_start_queue (dev);
 483
 484        /* Enable default interrupts */
 485        EnableInt ();
 486        return 0;
 487}
 488
 489static void
 490rio_timer (unsigned long data)
 491{
 492        struct net_device *dev = (struct net_device *)data;
 493        struct netdev_private *np = netdev_priv(dev);
 494        unsigned int entry;
 495        int next_tick = 1*HZ;
 496        unsigned long flags;
 497
 498        spin_lock_irqsave(&np->rx_lock, flags);
 499        /* Recover rx ring exhausted error */
 500        if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 501                printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 502                /* Re-allocate skbuffs to fill the descriptor ring */
 503                for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 504                        struct sk_buff *skb;
 505                        entry = np->old_rx % RX_RING_SIZE;
 506                        /* Dropped packets don't need to re-allocate */
 507                        if (np->rx_skbuff[entry] == NULL) {
 508                                skb = netdev_alloc_skb_ip_align(dev,
 509                                                                np->rx_buf_sz);
 510                                if (skb == NULL) {
 511                                        np->rx_ring[entry].fraginfo = 0;
 512                                        printk (KERN_INFO
 513                                                "%s: Still unable to re-allocate Rx skbuff.#%d\n",
 514                                                dev->name, entry);
 515                                        break;
 516                                }
 517                                np->rx_skbuff[entry] = skb;
 518                                np->rx_ring[entry].fraginfo =
 519                                    cpu_to_le64 (pci_map_single
 520                                         (np->pdev, skb->data, np->rx_buf_sz,
 521                                          PCI_DMA_FROMDEVICE));
 522                        }
 523                        np->rx_ring[entry].fraginfo |=
 524                            cpu_to_le64((u64)np->rx_buf_sz << 48);
 525                        np->rx_ring[entry].status = 0;
 526                } /* end for */
 527        } /* end if */
 528        spin_unlock_irqrestore (&np->rx_lock, flags);
 529        np->timer.expires = jiffies + next_tick;
 530        add_timer(&np->timer);
 531}
 532
 533static void
 534rio_tx_timeout (struct net_device *dev)
 535{
 536        long ioaddr = dev->base_addr;
 537
 538        printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 539                dev->name, readl (ioaddr + TxStatus));
 540        rio_free_tx(dev, 0);
 541        dev->if_port = 0;
 542        dev->trans_start = jiffies; /* prevent tx timeout */
 543}
 544
 545 /* allocate and initialize Tx and Rx descriptors */
 546static void
 547alloc_list (struct net_device *dev)
 548{
 549        struct netdev_private *np = netdev_priv(dev);
 550        int i;
 551
 552        np->cur_rx = np->cur_tx = 0;
 553        np->old_rx = np->old_tx = 0;
 554        np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 555
 556        /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 557        for (i = 0; i < TX_RING_SIZE; i++) {
 558                np->tx_skbuff[i] = NULL;
 559                np->tx_ring[i].status = cpu_to_le64 (TFDDone);
 560                np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
 561                                              ((i+1)%TX_RING_SIZE) *
 562                                              sizeof (struct netdev_desc));
 563        }
 564
 565        /* Initialize Rx descriptors */
 566        for (i = 0; i < RX_RING_SIZE; i++) {
 567                np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
 568                                                ((i + 1) % RX_RING_SIZE) *
 569                                                sizeof (struct netdev_desc));
 570                np->rx_ring[i].status = 0;
 571                np->rx_ring[i].fraginfo = 0;
 572                np->rx_skbuff[i] = NULL;
 573        }
 574
 575        /* Allocate the rx buffers */
 576        for (i = 0; i < RX_RING_SIZE; i++) {
 577                /* Allocated fixed size of skbuff */
 578                struct sk_buff *skb;
 579
 580                skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 581                np->rx_skbuff[i] = skb;
 582                if (skb == NULL) {
 583                        printk (KERN_ERR
 584                                "%s: alloc_list: allocate Rx buffer error! ",
 585                                dev->name);
 586                        break;
 587                }
 588                /* Rubicon now supports 40 bits of addressing space. */
 589                np->rx_ring[i].fraginfo =
 590                    cpu_to_le64 ( pci_map_single (
 591                                  np->pdev, skb->data, np->rx_buf_sz,
 592                                  PCI_DMA_FROMDEVICE));
 593                np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 594        }
 595
 596        /* Set RFDListPtr */
 597        writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
 598        writel (0, dev->base_addr + RFDListPtr1);
 599}
 600
 601static netdev_tx_t
 602start_xmit (struct sk_buff *skb, struct net_device *dev)
 603{
 604        struct netdev_private *np = netdev_priv(dev);
 605        struct netdev_desc *txdesc;
 606        unsigned entry;
 607        u32 ioaddr;
 608        u64 tfc_vlan_tag = 0;
 609
 610        if (np->link_status == 0) {     /* Link Down */
 611                dev_kfree_skb(skb);
 612                return NETDEV_TX_OK;
 613        }
 614        ioaddr = dev->base_addr;
 615        entry = np->cur_tx % TX_RING_SIZE;
 616        np->tx_skbuff[entry] = skb;
 617        txdesc = &np->tx_ring[entry];
 618
 619#if 0
 620        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 621                txdesc->status |=
 622                    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 623                                 IPChecksumEnable);
 624        }
 625#endif
 626        if (np->vlan) {
 627                tfc_vlan_tag = VLANTagInsert |
 628                    ((u64)np->vlan << 32) |
 629                    ((u64)skb->priority << 45);
 630        }
 631        txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 632                                                        skb->len,
 633                                                        PCI_DMA_TODEVICE));
 634        txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 635
 636        /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 637         * Work around: Always use 1 descriptor in 10Mbps mode */
 638        if (entry % np->tx_coalesce == 0 || np->speed == 10)
 639                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 640                                              WordAlignDisable |
 641                                              TxDMAIndicate |
 642                                              (1 << FragCountShift));
 643        else
 644                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 645                                              WordAlignDisable |
 646                                              (1 << FragCountShift));
 647
 648        /* TxDMAPollNow */
 649        writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
 650        /* Schedule ISR */
 651        writel(10000, ioaddr + CountDown);
 652        np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 653        if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 654                        < TX_QUEUE_LEN - 1 && np->speed != 10) {
 655                /* do nothing */
 656        } else if (!netif_queue_stopped(dev)) {
 657                netif_stop_queue (dev);
 658        }
 659
 660        /* The first TFDListPtr */
 661        if (readl (dev->base_addr + TFDListPtr0) == 0) {
 662                writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
 663                        dev->base_addr + TFDListPtr0);
 664                writel (0, dev->base_addr + TFDListPtr1);
 665        }
 666
 667        return NETDEV_TX_OK;
 668}
 669
 670static irqreturn_t
 671rio_interrupt (int irq, void *dev_instance)
 672{
 673        struct net_device *dev = dev_instance;
 674        struct netdev_private *np;
 675        unsigned int_status;
 676        long ioaddr;
 677        int cnt = max_intrloop;
 678        int handled = 0;
 679
 680        ioaddr = dev->base_addr;
 681        np = netdev_priv(dev);
 682        while (1) {
 683                int_status = readw (ioaddr + IntStatus);
 684                writew (int_status, ioaddr + IntStatus);
 685                int_status &= DEFAULT_INTR;
 686                if (int_status == 0 || --cnt < 0)
 687                        break;
 688                handled = 1;
 689                /* Processing received packets */
 690                if (int_status & RxDMAComplete)
 691                        receive_packet (dev);
 692                /* TxDMAComplete interrupt */
 693                if ((int_status & (TxDMAComplete|IntRequested))) {
 694                        int tx_status;
 695                        tx_status = readl (ioaddr + TxStatus);
 696                        if (tx_status & 0x01)
 697                                tx_error (dev, tx_status);
 698                        /* Free used tx skbuffs */
 699                        rio_free_tx (dev, 1);
 700                }
 701
 702                /* Handle uncommon events */
 703                if (int_status &
 704                    (HostError | LinkEvent | UpdateStats))
 705                        rio_error (dev, int_status);
 706        }
 707        if (np->cur_tx != np->old_tx)
 708                writel (100, ioaddr + CountDown);
 709        return IRQ_RETVAL(handled);
 710}
 711
 712static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 713{
 714        return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 715}
 716
 717static void
 718rio_free_tx (struct net_device *dev, int irq)
 719{
 720        struct netdev_private *np = netdev_priv(dev);
 721        int entry = np->old_tx % TX_RING_SIZE;
 722        int tx_use = 0;
 723        unsigned long flag = 0;
 724
 725        if (irq)
 726                spin_lock(&np->tx_lock);
 727        else
 728                spin_lock_irqsave(&np->tx_lock, flag);
 729
 730        /* Free used tx skbuffs */
 731        while (entry != np->cur_tx) {
 732                struct sk_buff *skb;
 733
 734                if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 735                        break;
 736                skb = np->tx_skbuff[entry];
 737                pci_unmap_single (np->pdev,
 738                                  desc_to_dma(&np->tx_ring[entry]),
 739                                  skb->len, PCI_DMA_TODEVICE);
 740                if (irq)
 741                        dev_kfree_skb_irq (skb);
 742                else
 743                        dev_kfree_skb (skb);
 744
 745                np->tx_skbuff[entry] = NULL;
 746                entry = (entry + 1) % TX_RING_SIZE;
 747                tx_use++;
 748        }
 749        if (irq)
 750                spin_unlock(&np->tx_lock);
 751        else
 752                spin_unlock_irqrestore(&np->tx_lock, flag);
 753        np->old_tx = entry;
 754
 755        /* If the ring is no longer full, clear tx_full and
 756           call netif_wake_queue() */
 757
 758        if (netif_queue_stopped(dev) &&
 759            ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 760            < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 761                netif_wake_queue (dev);
 762        }
 763}
 764
 765static void
 766tx_error (struct net_device *dev, int tx_status)
 767{
 768        struct netdev_private *np;
 769        long ioaddr = dev->base_addr;
 770        int frame_id;
 771        int i;
 772
 773        np = netdev_priv(dev);
 774
 775        frame_id = (tx_status & 0xffff0000);
 776        printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 777                dev->name, tx_status, frame_id);
 778        np->stats.tx_errors++;
 779        /* Ttransmit Underrun */
 780        if (tx_status & 0x10) {
 781                np->stats.tx_fifo_errors++;
 782                writew (readw (ioaddr + TxStartThresh) + 0x10,
 783                        ioaddr + TxStartThresh);
 784                /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 785                writew (TxReset | DMAReset | FIFOReset | NetworkReset,
 786                        ioaddr + ASICCtrl + 2);
 787                /* Wait for ResetBusy bit clear */
 788                for (i = 50; i > 0; i--) {
 789                        if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 790                                break;
 791                        mdelay (1);
 792                }
 793                rio_free_tx (dev, 1);
 794                /* Reset TFDListPtr */
 795                writel (np->tx_ring_dma +
 796                        np->old_tx * sizeof (struct netdev_desc),
 797                        dev->base_addr + TFDListPtr0);
 798                writel (0, dev->base_addr + TFDListPtr1);
 799
 800                /* Let TxStartThresh stay default value */
 801        }
 802        /* Late Collision */
 803        if (tx_status & 0x04) {
 804                np->stats.tx_fifo_errors++;
 805                /* TxReset and clear FIFO */
 806                writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
 807                /* Wait reset done */
 808                for (i = 50; i > 0; i--) {
 809                        if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 810                                break;
 811                        mdelay (1);
 812                }
 813                /* Let TxStartThresh stay default value */
 814        }
 815        /* Maximum Collisions */
 816#ifdef ETHER_STATS
 817        if (tx_status & 0x08)
 818                np->stats.collisions16++;
 819#else
 820        if (tx_status & 0x08)
 821                np->stats.collisions++;
 822#endif
 823        /* Restart the Tx */
 824        writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
 825}
 826
 827static int
 828receive_packet (struct net_device *dev)
 829{
 830        struct netdev_private *np = netdev_priv(dev);
 831        int entry = np->cur_rx % RX_RING_SIZE;
 832        int cnt = 30;
 833
 834        /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 835        while (1) {
 836                struct netdev_desc *desc = &np->rx_ring[entry];
 837                int pkt_len;
 838                u64 frame_status;
 839
 840                if (!(desc->status & cpu_to_le64(RFDDone)) ||
 841                    !(desc->status & cpu_to_le64(FrameStart)) ||
 842                    !(desc->status & cpu_to_le64(FrameEnd)))
 843                        break;
 844
 845                /* Chip omits the CRC. */
 846                frame_status = le64_to_cpu(desc->status);
 847                pkt_len = frame_status & 0xffff;
 848                if (--cnt < 0)
 849                        break;
 850                /* Update rx error statistics, drop packet. */
 851                if (frame_status & RFS_Errors) {
 852                        np->stats.rx_errors++;
 853                        if (frame_status & (RxRuntFrame | RxLengthError))
 854                                np->stats.rx_length_errors++;
 855                        if (frame_status & RxFCSError)
 856                                np->stats.rx_crc_errors++;
 857                        if (frame_status & RxAlignmentError && np->speed != 1000)
 858                                np->stats.rx_frame_errors++;
 859                        if (frame_status & RxFIFOOverrun)
 860                                np->stats.rx_fifo_errors++;
 861                } else {
 862                        struct sk_buff *skb;
 863
 864                        /* Small skbuffs for short packets */
 865                        if (pkt_len > copy_thresh) {
 866                                pci_unmap_single (np->pdev,
 867                                                  desc_to_dma(desc),
 868                                                  np->rx_buf_sz,
 869                                                  PCI_DMA_FROMDEVICE);
 870                                skb_put (skb = np->rx_skbuff[entry], pkt_len);
 871                                np->rx_skbuff[entry] = NULL;
 872                        } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 873                                pci_dma_sync_single_for_cpu(np->pdev,
 874                                                            desc_to_dma(desc),
 875                                                            np->rx_buf_sz,
 876                                                            PCI_DMA_FROMDEVICE);
 877                                skb_copy_to_linear_data (skb,
 878                                                  np->rx_skbuff[entry]->data,
 879                                                  pkt_len);
 880                                skb_put (skb, pkt_len);
 881                                pci_dma_sync_single_for_device(np->pdev,
 882                                                               desc_to_dma(desc),
 883                                                               np->rx_buf_sz,
 884                                                               PCI_DMA_FROMDEVICE);
 885                        }
 886                        skb->protocol = eth_type_trans (skb, dev);
 887#if 0
 888                        /* Checksum done by hw, but csum value unavailable. */
 889                        if (np->pdev->pci_rev_id >= 0x0c &&
 890                                !(frame_status & (TCPError | UDPError | IPError))) {
 891                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 892                        }
 893#endif
 894                        netif_rx (skb);
 895                }
 896                entry = (entry + 1) % RX_RING_SIZE;
 897        }
 898        spin_lock(&np->rx_lock);
 899        np->cur_rx = entry;
 900        /* Re-allocate skbuffs to fill the descriptor ring */
 901        entry = np->old_rx;
 902        while (entry != np->cur_rx) {
 903                struct sk_buff *skb;
 904                /* Dropped packets don't need to re-allocate */
 905                if (np->rx_skbuff[entry] == NULL) {
 906                        skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 907                        if (skb == NULL) {
 908                                np->rx_ring[entry].fraginfo = 0;
 909                                printk (KERN_INFO
 910                                        "%s: receive_packet: "
 911                                        "Unable to re-allocate Rx skbuff.#%d\n",
 912                                        dev->name, entry);
 913                                break;
 914                        }
 915                        np->rx_skbuff[entry] = skb;
 916                        np->rx_ring[entry].fraginfo =
 917                            cpu_to_le64 (pci_map_single
 918                                         (np->pdev, skb->data, np->rx_buf_sz,
 919                                          PCI_DMA_FROMDEVICE));
 920                }
 921                np->rx_ring[entry].fraginfo |=
 922                    cpu_to_le64((u64)np->rx_buf_sz << 48);
 923                np->rx_ring[entry].status = 0;
 924                entry = (entry + 1) % RX_RING_SIZE;
 925        }
 926        np->old_rx = entry;
 927        spin_unlock(&np->rx_lock);
 928        return 0;
 929}
 930
 931static void
 932rio_error (struct net_device *dev, int int_status)
 933{
 934        long ioaddr = dev->base_addr;
 935        struct netdev_private *np = netdev_priv(dev);
 936        u16 macctrl;
 937
 938        /* Link change event */
 939        if (int_status & LinkEvent) {
 940                if (mii_wait_link (dev, 10) == 0) {
 941                        printk (KERN_INFO "%s: Link up\n", dev->name);
 942                        if (np->phy_media)
 943                                mii_get_media_pcs (dev);
 944                        else
 945                                mii_get_media (dev);
 946                        if (np->speed == 1000)
 947                                np->tx_coalesce = tx_coalesce;
 948                        else
 949                                np->tx_coalesce = 1;
 950                        macctrl = 0;
 951                        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 952                        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 953                        macctrl |= (np->tx_flow) ?
 954                                TxFlowControlEnable : 0;
 955                        macctrl |= (np->rx_flow) ?
 956                                RxFlowControlEnable : 0;
 957                        writew(macctrl, ioaddr + MACCtrl);
 958                        np->link_status = 1;
 959                        netif_carrier_on(dev);
 960                } else {
 961                        printk (KERN_INFO "%s: Link off\n", dev->name);
 962                        np->link_status = 0;
 963                        netif_carrier_off(dev);
 964                }
 965        }
 966
 967        /* UpdateStats statistics registers */
 968        if (int_status & UpdateStats) {
 969                get_stats (dev);
 970        }
 971
 972        /* PCI Error, a catastronphic error related to the bus interface
 973           occurs, set GlobalReset and HostReset to reset. */
 974        if (int_status & HostError) {
 975                printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
 976                        dev->name, int_status);
 977                writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
 978                mdelay (500);
 979        }
 980}
 981
 982static struct net_device_stats *
 983get_stats (struct net_device *dev)
 984{
 985        long ioaddr = dev->base_addr;
 986        struct netdev_private *np = netdev_priv(dev);
 987#ifdef MEM_MAPPING
 988        int i;
 989#endif
 990        unsigned int stat_reg;
 991
 992        /* All statistics registers need to be acknowledged,
 993           else statistic overflow could cause problems */
 994
 995        np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
 996        np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
 997        np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
 998        np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
 999
1000        np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1001        np->stats.collisions += readl (ioaddr + SingleColFrames)
1002                             +  readl (ioaddr + MultiColFrames);
1003
1004        /* detailed tx errors */
1005        stat_reg = readw (ioaddr + FramesAbortXSColls);
1006        np->stats.tx_aborted_errors += stat_reg;
1007        np->stats.tx_errors += stat_reg;
1008
1009        stat_reg = readw (ioaddr + CarrierSenseErrors);
1010        np->stats.tx_carrier_errors += stat_reg;
1011        np->stats.tx_errors += stat_reg;
1012
1013        /* Clear all other statistic register. */
1014        readl (ioaddr + McstOctetXmtOk);
1015        readw (ioaddr + BcstFramesXmtdOk);
1016        readl (ioaddr + McstFramesXmtdOk);
1017        readw (ioaddr + BcstFramesRcvdOk);
1018        readw (ioaddr + MacControlFramesRcvd);
1019        readw (ioaddr + FrameTooLongErrors);
1020        readw (ioaddr + InRangeLengthErrors);
1021        readw (ioaddr + FramesCheckSeqErrors);
1022        readw (ioaddr + FramesLostRxErrors);
1023        readl (ioaddr + McstOctetXmtOk);
1024        readl (ioaddr + BcstOctetXmtOk);
1025        readl (ioaddr + McstFramesXmtdOk);
1026        readl (ioaddr + FramesWDeferredXmt);
1027        readl (ioaddr + LateCollisions);
1028        readw (ioaddr + BcstFramesXmtdOk);
1029        readw (ioaddr + MacControlFramesXmtd);
1030        readw (ioaddr + FramesWEXDeferal);
1031
1032#ifdef MEM_MAPPING
1033        for (i = 0x100; i <= 0x150; i += 4)
1034                readl (ioaddr + i);
1035#endif
1036        readw (ioaddr + TxJumboFrames);
1037        readw (ioaddr + RxJumboFrames);
1038        readw (ioaddr + TCPCheckSumErrors);
1039        readw (ioaddr + UDPCheckSumErrors);
1040        readw (ioaddr + IPCheckSumErrors);
1041        return &np->stats;
1042}
1043
1044static int
1045clear_stats (struct net_device *dev)
1046{
1047        long ioaddr = dev->base_addr;
1048#ifdef MEM_MAPPING
1049        int i;
1050#endif
1051
1052        /* All statistics registers need to be acknowledged,
1053           else statistic overflow could cause problems */
1054        readl (ioaddr + FramesRcvOk);
1055        readl (ioaddr + FramesXmtOk);
1056        readl (ioaddr + OctetRcvOk);
1057        readl (ioaddr + OctetXmtOk);
1058
1059        readl (ioaddr + McstFramesRcvdOk);
1060        readl (ioaddr + SingleColFrames);
1061        readl (ioaddr + MultiColFrames);
1062        readl (ioaddr + LateCollisions);
1063        /* detailed rx errors */
1064        readw (ioaddr + FrameTooLongErrors);
1065        readw (ioaddr + InRangeLengthErrors);
1066        readw (ioaddr + FramesCheckSeqErrors);
1067        readw (ioaddr + FramesLostRxErrors);
1068
1069        /* detailed tx errors */
1070        readw (ioaddr + FramesAbortXSColls);
1071        readw (ioaddr + CarrierSenseErrors);
1072
1073        /* Clear all other statistic register. */
1074        readl (ioaddr + McstOctetXmtOk);
1075        readw (ioaddr + BcstFramesXmtdOk);
1076        readl (ioaddr + McstFramesXmtdOk);
1077        readw (ioaddr + BcstFramesRcvdOk);
1078        readw (ioaddr + MacControlFramesRcvd);
1079        readl (ioaddr + McstOctetXmtOk);
1080        readl (ioaddr + BcstOctetXmtOk);
1081        readl (ioaddr + McstFramesXmtdOk);
1082        readl (ioaddr + FramesWDeferredXmt);
1083        readw (ioaddr + BcstFramesXmtdOk);
1084        readw (ioaddr + MacControlFramesXmtd);
1085        readw (ioaddr + FramesWEXDeferal);
1086#ifdef MEM_MAPPING
1087        for (i = 0x100; i <= 0x150; i += 4)
1088                readl (ioaddr + i);
1089#endif
1090        readw (ioaddr + TxJumboFrames);
1091        readw (ioaddr + RxJumboFrames);
1092        readw (ioaddr + TCPCheckSumErrors);
1093        readw (ioaddr + UDPCheckSumErrors);
1094        readw (ioaddr + IPCheckSumErrors);
1095        return 0;
1096}
1097
1098
1099static int
1100change_mtu (struct net_device *dev, int new_mtu)
1101{
1102        struct netdev_private *np = netdev_priv(dev);
1103        int max = (np->jumbo) ? MAX_JUMBO : 1536;
1104
1105        if ((new_mtu < 68) || (new_mtu > max)) {
1106                return -EINVAL;
1107        }
1108
1109        dev->mtu = new_mtu;
1110
1111        return 0;
1112}
1113
1114static void
1115set_multicast (struct net_device *dev)
1116{
1117        long ioaddr = dev->base_addr;
1118        u32 hash_table[2];
1119        u16 rx_mode = 0;
1120        struct netdev_private *np = netdev_priv(dev);
1121
1122        hash_table[0] = hash_table[1] = 0;
1123        /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124        hash_table[1] |= 0x02000000;
1125        if (dev->flags & IFF_PROMISC) {
1126                /* Receive all frames promiscuously. */
1127                rx_mode = ReceiveAllFrames;
1128        } else if ((dev->flags & IFF_ALLMULTI) ||
1129                        (netdev_mc_count(dev) > multicast_filter_limit)) {
1130                /* Receive broadcast and multicast frames */
1131                rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1132        } else if (!netdev_mc_empty(dev)) {
1133                struct netdev_hw_addr *ha;
1134                /* Receive broadcast frames and multicast frames filtering
1135                   by Hashtable */
1136                rx_mode =
1137                    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1138                netdev_for_each_mc_addr(ha, dev) {
1139                        int bit, index = 0;
1140                        int crc = ether_crc_le(ETH_ALEN, ha->addr);
1141                        /* The inverted high significant 6 bits of CRC are
1142                           used as an index to hashtable */
1143                        for (bit = 0; bit < 6; bit++)
1144                                if (crc & (1 << (31 - bit)))
1145                                        index |= (1 << bit);
1146                        hash_table[index / 32] |= (1 << (index % 32));
1147                }
1148        } else {
1149                rx_mode = ReceiveBroadcast | ReceiveUnicast;
1150        }
1151        if (np->vlan) {
1152                /* ReceiveVLANMatch field in ReceiveMode */
1153                rx_mode |= ReceiveVLANMatch;
1154        }
1155
1156        writel (hash_table[0], ioaddr + HashTable0);
1157        writel (hash_table[1], ioaddr + HashTable1);
1158        writew (rx_mode, ioaddr + ReceiveMode);
1159}
1160
1161static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1162{
1163        struct netdev_private *np = netdev_priv(dev);
1164        strcpy(info->driver, "dl2k");
1165        strcpy(info->version, DRV_VERSION);
1166        strcpy(info->bus_info, pci_name(np->pdev));
1167}
1168
1169static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1170{
1171        struct netdev_private *np = netdev_priv(dev);
1172        if (np->phy_media) {
1173                /* fiber device */
1174                cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1175                cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1176                cmd->port = PORT_FIBRE;
1177                cmd->transceiver = XCVR_INTERNAL;
1178        } else {
1179                /* copper device */
1180                cmd->supported = SUPPORTED_10baseT_Half |
1181                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1182                        | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1183                        SUPPORTED_Autoneg | SUPPORTED_MII;
1184                cmd->advertising = ADVERTISED_10baseT_Half |
1185                        ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1186                        ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1187                        ADVERTISED_Autoneg | ADVERTISED_MII;
1188                cmd->port = PORT_MII;
1189                cmd->transceiver = XCVR_INTERNAL;
1190        }
1191        if ( np->link_status ) {
1192                ethtool_cmd_speed_set(cmd, np->speed);
1193                cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1194        } else {
1195                ethtool_cmd_speed_set(cmd, -1);
1196                cmd->duplex = -1;
1197        }
1198        if ( np->an_enable)
1199                cmd->autoneg = AUTONEG_ENABLE;
1200        else
1201                cmd->autoneg = AUTONEG_DISABLE;
1202
1203        cmd->phy_address = np->phy_addr;
1204        return 0;
1205}
1206
1207static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1208{
1209        struct netdev_private *np = netdev_priv(dev);
1210        netif_carrier_off(dev);
1211        if (cmd->autoneg == AUTONEG_ENABLE) {
1212                if (np->an_enable)
1213                        return 0;
1214                else {
1215                        np->an_enable = 1;
1216                        mii_set_media(dev);
1217                        return 0;
1218                }
1219        } else {
1220                np->an_enable = 0;
1221                if (np->speed == 1000) {
1222                        ethtool_cmd_speed_set(cmd, SPEED_100);
1223                        cmd->duplex = DUPLEX_FULL;
1224                        printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1225                }
1226                switch (ethtool_cmd_speed(cmd)) {
1227                case SPEED_10:
1228                        np->speed = 10;
1229                        np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1230                        break;
1231                case SPEED_100:
1232                        np->speed = 100;
1233                        np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1234                        break;
1235                case SPEED_1000: /* not supported */
1236                default:
1237                        return -EINVAL;
1238                }
1239                mii_set_media(dev);
1240        }
1241        return 0;
1242}
1243
1244static u32 rio_get_link(struct net_device *dev)
1245{
1246        struct netdev_private *np = netdev_priv(dev);
1247        return np->link_status;
1248}
1249
1250static const struct ethtool_ops ethtool_ops = {
1251        .get_drvinfo = rio_get_drvinfo,
1252        .get_settings = rio_get_settings,
1253        .set_settings = rio_set_settings,
1254        .get_link = rio_get_link,
1255};
1256
1257static int
1258rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1259{
1260        int phy_addr;
1261        struct netdev_private *np = netdev_priv(dev);
1262        struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1263
1264        struct netdev_desc *desc;
1265        int i;
1266
1267        phy_addr = np->phy_addr;
1268        switch (cmd) {
1269        case SIOCDEVPRIVATE:
1270                break;
1271
1272        case SIOCDEVPRIVATE + 1:
1273                miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1274                break;
1275        case SIOCDEVPRIVATE + 2:
1276                mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1277                break;
1278        case SIOCDEVPRIVATE + 3:
1279                break;
1280        case SIOCDEVPRIVATE + 4:
1281                break;
1282        case SIOCDEVPRIVATE + 5:
1283                netif_stop_queue (dev);
1284                break;
1285        case SIOCDEVPRIVATE + 6:
1286                netif_wake_queue (dev);
1287                break;
1288        case SIOCDEVPRIVATE + 7:
1289                printk
1290                    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1291                     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1292                     np->old_rx);
1293                break;
1294        case SIOCDEVPRIVATE + 8:
1295                printk("TX ring:\n");
1296                for (i = 0; i < TX_RING_SIZE; i++) {
1297                        desc = &np->tx_ring[i];
1298                        printk
1299                            ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1300                             i,
1301                             (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1302                             (u32)le64_to_cpu(desc->next_desc),
1303                             (u32)le64_to_cpu(desc->status),
1304                             (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1305                             (u32)le64_to_cpu(desc->fraginfo));
1306                        printk ("\n");
1307                }
1308                printk ("\n");
1309                break;
1310
1311        default:
1312                return -EOPNOTSUPP;
1313        }
1314        return 0;
1315}
1316
1317#define EEP_READ 0x0200
1318#define EEP_BUSY 0x8000
1319/* Read the EEPROM word */
1320/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1321static int
1322read_eeprom (long ioaddr, int eep_addr)
1323{
1324        int i = 1000;
1325        outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1326        while (i-- > 0) {
1327                if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1328                        return inw (ioaddr + EepromData);
1329                }
1330        }
1331        return 0;
1332}
1333
1334enum phy_ctrl_bits {
1335        MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1336        MII_DUPLEX = 0x08,
1337};
1338
1339#define mii_delay() readb(ioaddr)
1340static void
1341mii_sendbit (struct net_device *dev, u32 data)
1342{
1343        long ioaddr = dev->base_addr + PhyCtrl;
1344        data = (data) ? MII_DATA1 : 0;
1345        data |= MII_WRITE;
1346        data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1347        writeb (data, ioaddr);
1348        mii_delay ();
1349        writeb (data | MII_CLK, ioaddr);
1350        mii_delay ();
1351}
1352
1353static int
1354mii_getbit (struct net_device *dev)
1355{
1356        long ioaddr = dev->base_addr + PhyCtrl;
1357        u8 data;
1358
1359        data = (readb (ioaddr) & 0xf8) | MII_READ;
1360        writeb (data, ioaddr);
1361        mii_delay ();
1362        writeb (data | MII_CLK, ioaddr);
1363        mii_delay ();
1364        return ((readb (ioaddr) >> 1) & 1);
1365}
1366
1367static void
1368mii_send_bits (struct net_device *dev, u32 data, int len)
1369{
1370        int i;
1371        for (i = len - 1; i >= 0; i--) {
1372                mii_sendbit (dev, data & (1 << i));
1373        }
1374}
1375
1376static int
1377mii_read (struct net_device *dev, int phy_addr, int reg_num)
1378{
1379        u32 cmd;
1380        int i;
1381        u32 retval = 0;
1382
1383        /* Preamble */
1384        mii_send_bits (dev, 0xffffffff, 32);
1385        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1386        /* ST,OP = 0110'b for read operation */
1387        cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1388        mii_send_bits (dev, cmd, 14);
1389        /* Turnaround */
1390        if (mii_getbit (dev))
1391                goto err_out;
1392        /* Read data */
1393        for (i = 0; i < 16; i++) {
1394                retval |= mii_getbit (dev);
1395                retval <<= 1;
1396        }
1397        /* End cycle */
1398        mii_getbit (dev);
1399        return (retval >> 1) & 0xffff;
1400
1401      err_out:
1402        return 0;
1403}
1404static int
1405mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1406{
1407        u32 cmd;
1408
1409        /* Preamble */
1410        mii_send_bits (dev, 0xffffffff, 32);
1411        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1412        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1413        cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1414        mii_send_bits (dev, cmd, 32);
1415        /* End cycle */
1416        mii_getbit (dev);
1417        return 0;
1418}
1419static int
1420mii_wait_link (struct net_device *dev, int wait)
1421{
1422        __u16 bmsr;
1423        int phy_addr;
1424        struct netdev_private *np;
1425
1426        np = netdev_priv(dev);
1427        phy_addr = np->phy_addr;
1428
1429        do {
1430                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1431                if (bmsr & MII_BMSR_LINK_STATUS)
1432                        return 0;
1433                mdelay (1);
1434        } while (--wait > 0);
1435        return -1;
1436}
1437static int
1438mii_get_media (struct net_device *dev)
1439{
1440        __u16 negotiate;
1441        __u16 bmsr;
1442        __u16 mscr;
1443        __u16 mssr;
1444        int phy_addr;
1445        struct netdev_private *np;
1446
1447        np = netdev_priv(dev);
1448        phy_addr = np->phy_addr;
1449
1450        bmsr = mii_read (dev, phy_addr, MII_BMSR);
1451        if (np->an_enable) {
1452                if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1453                        /* Auto-Negotiation not completed */
1454                        return -1;
1455                }
1456                negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1457                        mii_read (dev, phy_addr, MII_ANLPAR);
1458                mscr = mii_read (dev, phy_addr, MII_MSCR);
1459                mssr = mii_read (dev, phy_addr, MII_MSSR);
1460                if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1461                        np->speed = 1000;
1462                        np->full_duplex = 1;
1463                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1464                } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1465                        np->speed = 1000;
1466                        np->full_duplex = 0;
1467                        printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1468                } else if (negotiate & MII_ANAR_100BX_FD) {
1469                        np->speed = 100;
1470                        np->full_duplex = 1;
1471                        printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1472                } else if (negotiate & MII_ANAR_100BX_HD) {
1473                        np->speed = 100;
1474                        np->full_duplex = 0;
1475                        printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1476                } else if (negotiate & MII_ANAR_10BT_FD) {
1477                        np->speed = 10;
1478                        np->full_duplex = 1;
1479                        printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1480                } else if (negotiate & MII_ANAR_10BT_HD) {
1481                        np->speed = 10;
1482                        np->full_duplex = 0;
1483                        printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1484                }
1485                if (negotiate & MII_ANAR_PAUSE) {
1486                        np->tx_flow &= 1;
1487                        np->rx_flow &= 1;
1488                } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1489                        np->tx_flow = 0;
1490                        np->rx_flow &= 1;
1491                }
1492                /* else tx_flow, rx_flow = user select  */
1493        } else {
1494                __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1495                switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1496                case MII_BMCR_SPEED_1000:
1497                        printk (KERN_INFO "Operating at 1000 Mbps, ");
1498                        break;
1499                case MII_BMCR_SPEED_100:
1500                        printk (KERN_INFO "Operating at 100 Mbps, ");
1501                        break;
1502                case 0:
1503                        printk (KERN_INFO "Operating at 10 Mbps, ");
1504                }
1505                if (bmcr & MII_BMCR_DUPLEX_MODE) {
1506                        printk (KERN_CONT "Full duplex\n");
1507                } else {
1508                        printk (KERN_CONT "Half duplex\n");
1509                }
1510        }
1511        if (np->tx_flow)
1512                printk(KERN_INFO "Enable Tx Flow Control\n");
1513        else
1514                printk(KERN_INFO "Disable Tx Flow Control\n");
1515        if (np->rx_flow)
1516                printk(KERN_INFO "Enable Rx Flow Control\n");
1517        else
1518                printk(KERN_INFO "Disable Rx Flow Control\n");
1519
1520        return 0;
1521}
1522
1523static int
1524mii_set_media (struct net_device *dev)
1525{
1526        __u16 pscr;
1527        __u16 bmcr;
1528        __u16 bmsr;
1529        __u16 anar;
1530        int phy_addr;
1531        struct netdev_private *np;
1532        np = netdev_priv(dev);
1533        phy_addr = np->phy_addr;
1534
1535        /* Does user set speed? */
1536        if (np->an_enable) {
1537                /* Advertise capabilities */
1538                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1539                anar = mii_read (dev, phy_addr, MII_ANAR) &
1540                             ~MII_ANAR_100BX_FD &
1541                             ~MII_ANAR_100BX_HD &
1542                             ~MII_ANAR_100BT4 &
1543                             ~MII_ANAR_10BT_FD &
1544                             ~MII_ANAR_10BT_HD;
1545                if (bmsr & MII_BMSR_100BX_FD)
1546                        anar |= MII_ANAR_100BX_FD;
1547                if (bmsr & MII_BMSR_100BX_HD)
1548                        anar |= MII_ANAR_100BX_HD;
1549                if (bmsr & MII_BMSR_100BT4)
1550                        anar |= MII_ANAR_100BT4;
1551                if (bmsr & MII_BMSR_10BT_FD)
1552                        anar |= MII_ANAR_10BT_FD;
1553                if (bmsr & MII_BMSR_10BT_HD)
1554                        anar |= MII_ANAR_10BT_HD;
1555                anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1556                mii_write (dev, phy_addr, MII_ANAR, anar);
1557
1558                /* Enable Auto crossover */
1559                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1560                pscr |= 3 << 5; /* 11'b */
1561                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1562
1563                /* Soft reset PHY */
1564                mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1565                bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1566                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1567                mdelay(1);
1568        } else {
1569                /* Force speed setting */
1570                /* 1) Disable Auto crossover */
1571                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1572                pscr &= ~(3 << 5);
1573                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1574
1575                /* 2) PHY Reset */
1576                bmcr = mii_read (dev, phy_addr, MII_BMCR);
1577                bmcr |= MII_BMCR_RESET;
1578                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1579
1580                /* 3) Power Down */
1581                bmcr = 0x1940;  /* must be 0x1940 */
1582                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1583                mdelay (100);   /* wait a certain time */
1584
1585                /* 4) Advertise nothing */
1586                mii_write (dev, phy_addr, MII_ANAR, 0);
1587
1588                /* 5) Set media and Power Up */
1589                bmcr = MII_BMCR_POWER_DOWN;
1590                if (np->speed == 100) {
1591                        bmcr |= MII_BMCR_SPEED_100;
1592                        printk (KERN_INFO "Manual 100 Mbps, ");
1593                } else if (np->speed == 10) {
1594                        printk (KERN_INFO "Manual 10 Mbps, ");
1595                }
1596                if (np->full_duplex) {
1597                        bmcr |= MII_BMCR_DUPLEX_MODE;
1598                        printk (KERN_CONT "Full duplex\n");
1599                } else {
1600                        printk (KERN_CONT "Half duplex\n");
1601                }
1602#if 0
1603                /* Set 1000BaseT Master/Slave setting */
1604                mscr = mii_read (dev, phy_addr, MII_MSCR);
1605                mscr |= MII_MSCR_CFG_ENABLE;
1606                mscr &= ~MII_MSCR_CFG_VALUE = 0;
1607#endif
1608                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1609                mdelay(10);
1610        }
1611        return 0;
1612}
1613
1614static int
1615mii_get_media_pcs (struct net_device *dev)
1616{
1617        __u16 negotiate;
1618        __u16 bmsr;
1619        int phy_addr;
1620        struct netdev_private *np;
1621
1622        np = netdev_priv(dev);
1623        phy_addr = np->phy_addr;
1624
1625        bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1626        if (np->an_enable) {
1627                if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1628                        /* Auto-Negotiation not completed */
1629                        return -1;
1630                }
1631                negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1632                        mii_read (dev, phy_addr, PCS_ANLPAR);
1633                np->speed = 1000;
1634                if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1635                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1636                        np->full_duplex = 1;
1637                } else {
1638                        printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1639                        np->full_duplex = 0;
1640                }
1641                if (negotiate & PCS_ANAR_PAUSE) {
1642                        np->tx_flow &= 1;
1643                        np->rx_flow &= 1;
1644                } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1645                        np->tx_flow = 0;
1646                        np->rx_flow &= 1;
1647                }
1648                /* else tx_flow, rx_flow = user select  */
1649        } else {
1650                __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1651                printk (KERN_INFO "Operating at 1000 Mbps, ");
1652                if (bmcr & MII_BMCR_DUPLEX_MODE) {
1653                        printk (KERN_CONT "Full duplex\n");
1654                } else {
1655                        printk (KERN_CONT "Half duplex\n");
1656                }
1657        }
1658        if (np->tx_flow)
1659                printk(KERN_INFO "Enable Tx Flow Control\n");
1660        else
1661                printk(KERN_INFO "Disable Tx Flow Control\n");
1662        if (np->rx_flow)
1663                printk(KERN_INFO "Enable Rx Flow Control\n");
1664        else
1665                printk(KERN_INFO "Disable Rx Flow Control\n");
1666
1667        return 0;
1668}
1669
1670static int
1671mii_set_media_pcs (struct net_device *dev)
1672{
1673        __u16 bmcr;
1674        __u16 esr;
1675        __u16 anar;
1676        int phy_addr;
1677        struct netdev_private *np;
1678        np = netdev_priv(dev);
1679        phy_addr = np->phy_addr;
1680
1681        /* Auto-Negotiation? */
1682        if (np->an_enable) {
1683                /* Advertise capabilities */
1684                esr = mii_read (dev, phy_addr, PCS_ESR);
1685                anar = mii_read (dev, phy_addr, MII_ANAR) &
1686                        ~PCS_ANAR_HALF_DUPLEX &
1687                        ~PCS_ANAR_FULL_DUPLEX;
1688                if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1689                        anar |= PCS_ANAR_HALF_DUPLEX;
1690                if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1691                        anar |= PCS_ANAR_FULL_DUPLEX;
1692                anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1693                mii_write (dev, phy_addr, MII_ANAR, anar);
1694
1695                /* Soft reset PHY */
1696                mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1697                bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1698                       MII_BMCR_RESET;
1699                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1700                mdelay(1);
1701        } else {
1702                /* Force speed setting */
1703                /* PHY Reset */
1704                bmcr = MII_BMCR_RESET;
1705                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1706                mdelay(10);
1707                if (np->full_duplex) {
1708                        bmcr = MII_BMCR_DUPLEX_MODE;
1709                        printk (KERN_INFO "Manual full duplex\n");
1710                } else {
1711                        bmcr = 0;
1712                        printk (KERN_INFO "Manual half duplex\n");
1713                }
1714                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1715                mdelay(10);
1716
1717                /*  Advertise nothing */
1718                mii_write (dev, phy_addr, MII_ANAR, 0);
1719        }
1720        return 0;
1721}
1722
1723
1724static int
1725rio_close (struct net_device *dev)
1726{
1727        long ioaddr = dev->base_addr;
1728        struct netdev_private *np = netdev_priv(dev);
1729        struct sk_buff *skb;
1730        int i;
1731
1732        netif_stop_queue (dev);
1733
1734        /* Disable interrupts */
1735        writew (0, ioaddr + IntEnable);
1736
1737        /* Stop Tx and Rx logics */
1738        writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1739
1740        free_irq (dev->irq, dev);
1741        del_timer_sync (&np->timer);
1742
1743        /* Free all the skbuffs in the queue. */
1744        for (i = 0; i < RX_RING_SIZE; i++) {
1745                skb = np->rx_skbuff[i];
1746                if (skb) {
1747                        pci_unmap_single(np->pdev,
1748                                         desc_to_dma(&np->rx_ring[i]),
1749                                         skb->len, PCI_DMA_FROMDEVICE);
1750                        dev_kfree_skb (skb);
1751                        np->rx_skbuff[i] = NULL;
1752                }
1753                np->rx_ring[i].status = 0;
1754                np->rx_ring[i].fraginfo = 0;
1755        }
1756        for (i = 0; i < TX_RING_SIZE; i++) {
1757                skb = np->tx_skbuff[i];
1758                if (skb) {
1759                        pci_unmap_single(np->pdev,
1760                                         desc_to_dma(&np->tx_ring[i]),
1761                                         skb->len, PCI_DMA_TODEVICE);
1762                        dev_kfree_skb (skb);
1763                        np->tx_skbuff[i] = NULL;
1764                }
1765        }
1766
1767        return 0;
1768}
1769
1770static void __devexit
1771rio_remove1 (struct pci_dev *pdev)
1772{
1773        struct net_device *dev = pci_get_drvdata (pdev);
1774
1775        if (dev) {
1776                struct netdev_private *np = netdev_priv(dev);
1777
1778                unregister_netdev (dev);
1779                pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1780                                     np->rx_ring_dma);
1781                pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1782                                     np->tx_ring_dma);
1783#ifdef MEM_MAPPING
1784                iounmap ((char *) (dev->base_addr));
1785#endif
1786                free_netdev (dev);
1787                pci_release_regions (pdev);
1788                pci_disable_device (pdev);
1789        }
1790        pci_set_drvdata (pdev, NULL);
1791}
1792
1793static struct pci_driver rio_driver = {
1794        .name           = "dl2k",
1795        .id_table       = rio_pci_tbl,
1796        .probe          = rio_probe1,
1797        .remove         = __devexit_p(rio_remove1),
1798};
1799
1800static int __init
1801rio_init (void)
1802{
1803        return pci_register_driver(&rio_driver);
1804}
1805
1806static void __exit
1807rio_exit (void)
1808{
1809        pci_unregister_driver (&rio_driver);
1810}
1811
1812module_init (rio_init);
1813module_exit (rio_exit);
1814
1815/*
1816
1817Compile command:
1818
1819gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1820
1821Read Documentation/networking/dl2k.txt for details.
1822
1823*/
1824
1825