linux/drivers/net/e1000/e1000_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33
  34/* Intel Media SOC GbE MDIO physical base address */
  35static unsigned long ce4100_gbe_mdio_base_phy;
  36/* Intel Media SOC GbE MDIO virtual base address */
  37void __iomem *ce4100_gbe_mdio_base_virt;
  38
  39char e1000_driver_name[] = "e1000";
  40static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  41#define DRV_VERSION "7.3.21-k8-NAPI"
  42const char e1000_driver_version[] = DRV_VERSION;
  43static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  44
  45/* e1000_pci_tbl - PCI Device ID Table
  46 *
  47 * Last entry must be all 0s
  48 *
  49 * Macro expands to...
  50 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  51 */
  52static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  53        INTEL_E1000_ETHERNET_DEVICE(0x1000),
  54        INTEL_E1000_ETHERNET_DEVICE(0x1001),
  55        INTEL_E1000_ETHERNET_DEVICE(0x1004),
  56        INTEL_E1000_ETHERNET_DEVICE(0x1008),
  57        INTEL_E1000_ETHERNET_DEVICE(0x1009),
  58        INTEL_E1000_ETHERNET_DEVICE(0x100C),
  59        INTEL_E1000_ETHERNET_DEVICE(0x100D),
  60        INTEL_E1000_ETHERNET_DEVICE(0x100E),
  61        INTEL_E1000_ETHERNET_DEVICE(0x100F),
  62        INTEL_E1000_ETHERNET_DEVICE(0x1010),
  63        INTEL_E1000_ETHERNET_DEVICE(0x1011),
  64        INTEL_E1000_ETHERNET_DEVICE(0x1012),
  65        INTEL_E1000_ETHERNET_DEVICE(0x1013),
  66        INTEL_E1000_ETHERNET_DEVICE(0x1014),
  67        INTEL_E1000_ETHERNET_DEVICE(0x1015),
  68        INTEL_E1000_ETHERNET_DEVICE(0x1016),
  69        INTEL_E1000_ETHERNET_DEVICE(0x1017),
  70        INTEL_E1000_ETHERNET_DEVICE(0x1018),
  71        INTEL_E1000_ETHERNET_DEVICE(0x1019),
  72        INTEL_E1000_ETHERNET_DEVICE(0x101A),
  73        INTEL_E1000_ETHERNET_DEVICE(0x101D),
  74        INTEL_E1000_ETHERNET_DEVICE(0x101E),
  75        INTEL_E1000_ETHERNET_DEVICE(0x1026),
  76        INTEL_E1000_ETHERNET_DEVICE(0x1027),
  77        INTEL_E1000_ETHERNET_DEVICE(0x1028),
  78        INTEL_E1000_ETHERNET_DEVICE(0x1075),
  79        INTEL_E1000_ETHERNET_DEVICE(0x1076),
  80        INTEL_E1000_ETHERNET_DEVICE(0x1077),
  81        INTEL_E1000_ETHERNET_DEVICE(0x1078),
  82        INTEL_E1000_ETHERNET_DEVICE(0x1079),
  83        INTEL_E1000_ETHERNET_DEVICE(0x107A),
  84        INTEL_E1000_ETHERNET_DEVICE(0x107B),
  85        INTEL_E1000_ETHERNET_DEVICE(0x107C),
  86        INTEL_E1000_ETHERNET_DEVICE(0x108A),
  87        INTEL_E1000_ETHERNET_DEVICE(0x1099),
  88        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  89        INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  90        /* required last entry */
  91        {0,}
  92};
  93
  94MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  95
  96int e1000_up(struct e1000_adapter *adapter);
  97void e1000_down(struct e1000_adapter *adapter);
  98void e1000_reinit_locked(struct e1000_adapter *adapter);
  99void e1000_reset(struct e1000_adapter *adapter);
 100int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
 101int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
 102void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 103void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 104static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 105                             struct e1000_tx_ring *txdr);
 106static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 107                             struct e1000_rx_ring *rxdr);
 108static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 109                             struct e1000_tx_ring *tx_ring);
 110static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 111                             struct e1000_rx_ring *rx_ring);
 112void e1000_update_stats(struct e1000_adapter *adapter);
 113
 114static int e1000_init_module(void);
 115static void e1000_exit_module(void);
 116static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 117static void __devexit e1000_remove(struct pci_dev *pdev);
 118static int e1000_alloc_queues(struct e1000_adapter *adapter);
 119static int e1000_sw_init(struct e1000_adapter *adapter);
 120static int e1000_open(struct net_device *netdev);
 121static int e1000_close(struct net_device *netdev);
 122static void e1000_configure_tx(struct e1000_adapter *adapter);
 123static void e1000_configure_rx(struct e1000_adapter *adapter);
 124static void e1000_setup_rctl(struct e1000_adapter *adapter);
 125static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 126static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 127static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 128                                struct e1000_tx_ring *tx_ring);
 129static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 130                                struct e1000_rx_ring *rx_ring);
 131static void e1000_set_rx_mode(struct net_device *netdev);
 132static void e1000_update_phy_info(unsigned long data);
 133static void e1000_update_phy_info_task(struct work_struct *work);
 134static void e1000_watchdog(unsigned long data);
 135static void e1000_82547_tx_fifo_stall(unsigned long data);
 136static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 137static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 138                                    struct net_device *netdev);
 139static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 140static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 141static int e1000_set_mac(struct net_device *netdev, void *p);
 142static irqreturn_t e1000_intr(int irq, void *data);
 143static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 144                               struct e1000_tx_ring *tx_ring);
 145static int e1000_clean(struct napi_struct *napi, int budget);
 146static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 147                               struct e1000_rx_ring *rx_ring,
 148                               int *work_done, int work_to_do);
 149static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 150                                     struct e1000_rx_ring *rx_ring,
 151                                     int *work_done, int work_to_do);
 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 153                                   struct e1000_rx_ring *rx_ring,
 154                                   int cleaned_count);
 155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 156                                         struct e1000_rx_ring *rx_ring,
 157                                         int cleaned_count);
 158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 160                           int cmd);
 161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 163static void e1000_tx_timeout(struct net_device *dev);
 164static void e1000_reset_task(struct work_struct *work);
 165static void e1000_smartspeed(struct e1000_adapter *adapter);
 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 167                                       struct sk_buff *skb);
 168
 169static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
 170static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
 171static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
 172static void e1000_restore_vlan(struct e1000_adapter *adapter);
 173
 174#ifdef CONFIG_PM
 175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 176static int e1000_resume(struct pci_dev *pdev);
 177#endif
 178static void e1000_shutdown(struct pci_dev *pdev);
 179
 180#ifdef CONFIG_NET_POLL_CONTROLLER
 181/* for netdump / net console */
 182static void e1000_netpoll (struct net_device *netdev);
 183#endif
 184
 185#define COPYBREAK_DEFAULT 256
 186static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 187module_param(copybreak, uint, 0644);
 188MODULE_PARM_DESC(copybreak,
 189        "Maximum size of packet that is copied to a new buffer on receive");
 190
 191static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 192                     pci_channel_state_t state);
 193static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 194static void e1000_io_resume(struct pci_dev *pdev);
 195
 196static struct pci_error_handlers e1000_err_handler = {
 197        .error_detected = e1000_io_error_detected,
 198        .slot_reset = e1000_io_slot_reset,
 199        .resume = e1000_io_resume,
 200};
 201
 202static struct pci_driver e1000_driver = {
 203        .name     = e1000_driver_name,
 204        .id_table = e1000_pci_tbl,
 205        .probe    = e1000_probe,
 206        .remove   = __devexit_p(e1000_remove),
 207#ifdef CONFIG_PM
 208        /* Power Management Hooks */
 209        .suspend  = e1000_suspend,
 210        .resume   = e1000_resume,
 211#endif
 212        .shutdown = e1000_shutdown,
 213        .err_handler = &e1000_err_handler
 214};
 215
 216MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 217MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 218MODULE_LICENSE("GPL");
 219MODULE_VERSION(DRV_VERSION);
 220
 221static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
 222module_param(debug, int, 0);
 223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 224
 225/**
 226 * e1000_get_hw_dev - return device
 227 * used by hardware layer to print debugging information
 228 *
 229 **/
 230struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 231{
 232        struct e1000_adapter *adapter = hw->back;
 233        return adapter->netdev;
 234}
 235
 236/**
 237 * e1000_init_module - Driver Registration Routine
 238 *
 239 * e1000_init_module is the first routine called when the driver is
 240 * loaded. All it does is register with the PCI subsystem.
 241 **/
 242
 243static int __init e1000_init_module(void)
 244{
 245        int ret;
 246        pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 247
 248        pr_info("%s\n", e1000_copyright);
 249
 250        ret = pci_register_driver(&e1000_driver);
 251        if (copybreak != COPYBREAK_DEFAULT) {
 252                if (copybreak == 0)
 253                        pr_info("copybreak disabled\n");
 254                else
 255                        pr_info("copybreak enabled for "
 256                                   "packets <= %u bytes\n", copybreak);
 257        }
 258        return ret;
 259}
 260
 261module_init(e1000_init_module);
 262
 263/**
 264 * e1000_exit_module - Driver Exit Cleanup Routine
 265 *
 266 * e1000_exit_module is called just before the driver is removed
 267 * from memory.
 268 **/
 269
 270static void __exit e1000_exit_module(void)
 271{
 272        pci_unregister_driver(&e1000_driver);
 273}
 274
 275module_exit(e1000_exit_module);
 276
 277static int e1000_request_irq(struct e1000_adapter *adapter)
 278{
 279        struct net_device *netdev = adapter->netdev;
 280        irq_handler_t handler = e1000_intr;
 281        int irq_flags = IRQF_SHARED;
 282        int err;
 283
 284        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 285                          netdev);
 286        if (err) {
 287                e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 288        }
 289
 290        return err;
 291}
 292
 293static void e1000_free_irq(struct e1000_adapter *adapter)
 294{
 295        struct net_device *netdev = adapter->netdev;
 296
 297        free_irq(adapter->pdev->irq, netdev);
 298}
 299
 300/**
 301 * e1000_irq_disable - Mask off interrupt generation on the NIC
 302 * @adapter: board private structure
 303 **/
 304
 305static void e1000_irq_disable(struct e1000_adapter *adapter)
 306{
 307        struct e1000_hw *hw = &adapter->hw;
 308
 309        ew32(IMC, ~0);
 310        E1000_WRITE_FLUSH();
 311        synchronize_irq(adapter->pdev->irq);
 312}
 313
 314/**
 315 * e1000_irq_enable - Enable default interrupt generation settings
 316 * @adapter: board private structure
 317 **/
 318
 319static void e1000_irq_enable(struct e1000_adapter *adapter)
 320{
 321        struct e1000_hw *hw = &adapter->hw;
 322
 323        ew32(IMS, IMS_ENABLE_MASK);
 324        E1000_WRITE_FLUSH();
 325}
 326
 327static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 328{
 329        struct e1000_hw *hw = &adapter->hw;
 330        struct net_device *netdev = adapter->netdev;
 331        u16 vid = hw->mng_cookie.vlan_id;
 332        u16 old_vid = adapter->mng_vlan_id;
 333        if (adapter->vlgrp) {
 334                if (!vlan_group_get_device(adapter->vlgrp, vid)) {
 335                        if (hw->mng_cookie.status &
 336                                E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 337                                e1000_vlan_rx_add_vid(netdev, vid);
 338                                adapter->mng_vlan_id = vid;
 339                        } else
 340                                adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 341
 342                        if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 343                                        (vid != old_vid) &&
 344                            !vlan_group_get_device(adapter->vlgrp, old_vid))
 345                                e1000_vlan_rx_kill_vid(netdev, old_vid);
 346                } else
 347                        adapter->mng_vlan_id = vid;
 348        }
 349}
 350
 351static void e1000_init_manageability(struct e1000_adapter *adapter)
 352{
 353        struct e1000_hw *hw = &adapter->hw;
 354
 355        if (adapter->en_mng_pt) {
 356                u32 manc = er32(MANC);
 357
 358                /* disable hardware interception of ARP */
 359                manc &= ~(E1000_MANC_ARP_EN);
 360
 361                ew32(MANC, manc);
 362        }
 363}
 364
 365static void e1000_release_manageability(struct e1000_adapter *adapter)
 366{
 367        struct e1000_hw *hw = &adapter->hw;
 368
 369        if (adapter->en_mng_pt) {
 370                u32 manc = er32(MANC);
 371
 372                /* re-enable hardware interception of ARP */
 373                manc |= E1000_MANC_ARP_EN;
 374
 375                ew32(MANC, manc);
 376        }
 377}
 378
 379/**
 380 * e1000_configure - configure the hardware for RX and TX
 381 * @adapter = private board structure
 382 **/
 383static void e1000_configure(struct e1000_adapter *adapter)
 384{
 385        struct net_device *netdev = adapter->netdev;
 386        int i;
 387
 388        e1000_set_rx_mode(netdev);
 389
 390        e1000_restore_vlan(adapter);
 391        e1000_init_manageability(adapter);
 392
 393        e1000_configure_tx(adapter);
 394        e1000_setup_rctl(adapter);
 395        e1000_configure_rx(adapter);
 396        /* call E1000_DESC_UNUSED which always leaves
 397         * at least 1 descriptor unused to make sure
 398         * next_to_use != next_to_clean */
 399        for (i = 0; i < adapter->num_rx_queues; i++) {
 400                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 401                adapter->alloc_rx_buf(adapter, ring,
 402                                      E1000_DESC_UNUSED(ring));
 403        }
 404}
 405
 406int e1000_up(struct e1000_adapter *adapter)
 407{
 408        struct e1000_hw *hw = &adapter->hw;
 409
 410        /* hardware has been reset, we need to reload some things */
 411        e1000_configure(adapter);
 412
 413        clear_bit(__E1000_DOWN, &adapter->flags);
 414
 415        napi_enable(&adapter->napi);
 416
 417        e1000_irq_enable(adapter);
 418
 419        netif_wake_queue(adapter->netdev);
 420
 421        /* fire a link change interrupt to start the watchdog */
 422        ew32(ICS, E1000_ICS_LSC);
 423        return 0;
 424}
 425
 426/**
 427 * e1000_power_up_phy - restore link in case the phy was powered down
 428 * @adapter: address of board private structure
 429 *
 430 * The phy may be powered down to save power and turn off link when the
 431 * driver is unloaded and wake on lan is not enabled (among others)
 432 * *** this routine MUST be followed by a call to e1000_reset ***
 433 *
 434 **/
 435
 436void e1000_power_up_phy(struct e1000_adapter *adapter)
 437{
 438        struct e1000_hw *hw = &adapter->hw;
 439        u16 mii_reg = 0;
 440
 441        /* Just clear the power down bit to wake the phy back up */
 442        if (hw->media_type == e1000_media_type_copper) {
 443                /* according to the manual, the phy will retain its
 444                 * settings across a power-down/up cycle */
 445                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 446                mii_reg &= ~MII_CR_POWER_DOWN;
 447                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 448        }
 449}
 450
 451static void e1000_power_down_phy(struct e1000_adapter *adapter)
 452{
 453        struct e1000_hw *hw = &adapter->hw;
 454
 455        /* Power down the PHY so no link is implied when interface is down *
 456         * The PHY cannot be powered down if any of the following is true *
 457         * (a) WoL is enabled
 458         * (b) AMT is active
 459         * (c) SoL/IDER session is active */
 460        if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 461           hw->media_type == e1000_media_type_copper) {
 462                u16 mii_reg = 0;
 463
 464                switch (hw->mac_type) {
 465                case e1000_82540:
 466                case e1000_82545:
 467                case e1000_82545_rev_3:
 468                case e1000_82546:
 469                case e1000_ce4100:
 470                case e1000_82546_rev_3:
 471                case e1000_82541:
 472                case e1000_82541_rev_2:
 473                case e1000_82547:
 474                case e1000_82547_rev_2:
 475                        if (er32(MANC) & E1000_MANC_SMBUS_EN)
 476                                goto out;
 477                        break;
 478                default:
 479                        goto out;
 480                }
 481                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 482                mii_reg |= MII_CR_POWER_DOWN;
 483                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 484                mdelay(1);
 485        }
 486out:
 487        return;
 488}
 489
 490void e1000_down(struct e1000_adapter *adapter)
 491{
 492        struct e1000_hw *hw = &adapter->hw;
 493        struct net_device *netdev = adapter->netdev;
 494        u32 rctl, tctl;
 495
 496
 497        /* disable receives in the hardware */
 498        rctl = er32(RCTL);
 499        ew32(RCTL, rctl & ~E1000_RCTL_EN);
 500        /* flush and sleep below */
 501
 502        netif_tx_disable(netdev);
 503
 504        /* disable transmits in the hardware */
 505        tctl = er32(TCTL);
 506        tctl &= ~E1000_TCTL_EN;
 507        ew32(TCTL, tctl);
 508        /* flush both disables and wait for them to finish */
 509        E1000_WRITE_FLUSH();
 510        msleep(10);
 511
 512        napi_disable(&adapter->napi);
 513
 514        e1000_irq_disable(adapter);
 515
 516        /*
 517         * Setting DOWN must be after irq_disable to prevent
 518         * a screaming interrupt.  Setting DOWN also prevents
 519         * timers and tasks from rescheduling.
 520         */
 521        set_bit(__E1000_DOWN, &adapter->flags);
 522
 523        del_timer_sync(&adapter->tx_fifo_stall_timer);
 524        del_timer_sync(&adapter->watchdog_timer);
 525        del_timer_sync(&adapter->phy_info_timer);
 526
 527        adapter->link_speed = 0;
 528        adapter->link_duplex = 0;
 529        netif_carrier_off(netdev);
 530
 531        e1000_reset(adapter);
 532        e1000_clean_all_tx_rings(adapter);
 533        e1000_clean_all_rx_rings(adapter);
 534}
 535
 536static void e1000_reinit_safe(struct e1000_adapter *adapter)
 537{
 538        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539                msleep(1);
 540        rtnl_lock();
 541        e1000_down(adapter);
 542        e1000_up(adapter);
 543        rtnl_unlock();
 544        clear_bit(__E1000_RESETTING, &adapter->flags);
 545}
 546
 547void e1000_reinit_locked(struct e1000_adapter *adapter)
 548{
 549        /* if rtnl_lock is not held the call path is bogus */
 550        ASSERT_RTNL();
 551        WARN_ON(in_interrupt());
 552        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 553                msleep(1);
 554        e1000_down(adapter);
 555        e1000_up(adapter);
 556        clear_bit(__E1000_RESETTING, &adapter->flags);
 557}
 558
 559void e1000_reset(struct e1000_adapter *adapter)
 560{
 561        struct e1000_hw *hw = &adapter->hw;
 562        u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 563        bool legacy_pba_adjust = false;
 564        u16 hwm;
 565
 566        /* Repartition Pba for greater than 9k mtu
 567         * To take effect CTRL.RST is required.
 568         */
 569
 570        switch (hw->mac_type) {
 571        case e1000_82542_rev2_0:
 572        case e1000_82542_rev2_1:
 573        case e1000_82543:
 574        case e1000_82544:
 575        case e1000_82540:
 576        case e1000_82541:
 577        case e1000_82541_rev_2:
 578                legacy_pba_adjust = true;
 579                pba = E1000_PBA_48K;
 580                break;
 581        case e1000_82545:
 582        case e1000_82545_rev_3:
 583        case e1000_82546:
 584        case e1000_ce4100:
 585        case e1000_82546_rev_3:
 586                pba = E1000_PBA_48K;
 587                break;
 588        case e1000_82547:
 589        case e1000_82547_rev_2:
 590                legacy_pba_adjust = true;
 591                pba = E1000_PBA_30K;
 592                break;
 593        case e1000_undefined:
 594        case e1000_num_macs:
 595                break;
 596        }
 597
 598        if (legacy_pba_adjust) {
 599                if (hw->max_frame_size > E1000_RXBUFFER_8192)
 600                        pba -= 8; /* allocate more FIFO for Tx */
 601
 602                if (hw->mac_type == e1000_82547) {
 603                        adapter->tx_fifo_head = 0;
 604                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 605                        adapter->tx_fifo_size =
 606                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 607                        atomic_set(&adapter->tx_fifo_stall, 0);
 608                }
 609        } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 610                /* adjust PBA for jumbo frames */
 611                ew32(PBA, pba);
 612
 613                /* To maintain wire speed transmits, the Tx FIFO should be
 614                 * large enough to accommodate two full transmit packets,
 615                 * rounded up to the next 1KB and expressed in KB.  Likewise,
 616                 * the Rx FIFO should be large enough to accommodate at least
 617                 * one full receive packet and is similarly rounded up and
 618                 * expressed in KB. */
 619                pba = er32(PBA);
 620                /* upper 16 bits has Tx packet buffer allocation size in KB */
 621                tx_space = pba >> 16;
 622                /* lower 16 bits has Rx packet buffer allocation size in KB */
 623                pba &= 0xffff;
 624                /*
 625                 * the tx fifo also stores 16 bytes of information about the tx
 626                 * but don't include ethernet FCS because hardware appends it
 627                 */
 628                min_tx_space = (hw->max_frame_size +
 629                                sizeof(struct e1000_tx_desc) -
 630                                ETH_FCS_LEN) * 2;
 631                min_tx_space = ALIGN(min_tx_space, 1024);
 632                min_tx_space >>= 10;
 633                /* software strips receive CRC, so leave room for it */
 634                min_rx_space = hw->max_frame_size;
 635                min_rx_space = ALIGN(min_rx_space, 1024);
 636                min_rx_space >>= 10;
 637
 638                /* If current Tx allocation is less than the min Tx FIFO size,
 639                 * and the min Tx FIFO size is less than the current Rx FIFO
 640                 * allocation, take space away from current Rx allocation */
 641                if (tx_space < min_tx_space &&
 642                    ((min_tx_space - tx_space) < pba)) {
 643                        pba = pba - (min_tx_space - tx_space);
 644
 645                        /* PCI/PCIx hardware has PBA alignment constraints */
 646                        switch (hw->mac_type) {
 647                        case e1000_82545 ... e1000_82546_rev_3:
 648                                pba &= ~(E1000_PBA_8K - 1);
 649                                break;
 650                        default:
 651                                break;
 652                        }
 653
 654                        /* if short on rx space, rx wins and must trump tx
 655                         * adjustment or use Early Receive if available */
 656                        if (pba < min_rx_space)
 657                                pba = min_rx_space;
 658                }
 659        }
 660
 661        ew32(PBA, pba);
 662
 663        /*
 664         * flow control settings:
 665         * The high water mark must be low enough to fit one full frame
 666         * (or the size used for early receive) above it in the Rx FIFO.
 667         * Set it to the lower of:
 668         * - 90% of the Rx FIFO size, and
 669         * - the full Rx FIFO size minus the early receive size (for parts
 670         *   with ERT support assuming ERT set to E1000_ERT_2048), or
 671         * - the full Rx FIFO size minus one full frame
 672         */
 673        hwm = min(((pba << 10) * 9 / 10),
 674                  ((pba << 10) - hw->max_frame_size));
 675
 676        hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
 677        hw->fc_low_water = hw->fc_high_water - 8;
 678        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 679        hw->fc_send_xon = 1;
 680        hw->fc = hw->original_fc;
 681
 682        /* Allow time for pending master requests to run */
 683        e1000_reset_hw(hw);
 684        if (hw->mac_type >= e1000_82544)
 685                ew32(WUC, 0);
 686
 687        if (e1000_init_hw(hw))
 688                e_dev_err("Hardware Error\n");
 689        e1000_update_mng_vlan(adapter);
 690
 691        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 692        if (hw->mac_type >= e1000_82544 &&
 693            hw->autoneg == 1 &&
 694            hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 695                u32 ctrl = er32(CTRL);
 696                /* clear phy power management bit if we are in gig only mode,
 697                 * which if enabled will attempt negotiation to 100Mb, which
 698                 * can cause a loss of link at power off or driver unload */
 699                ctrl &= ~E1000_CTRL_SWDPIN3;
 700                ew32(CTRL, ctrl);
 701        }
 702
 703        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 704        ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 705
 706        e1000_reset_adaptive(hw);
 707        e1000_phy_get_info(hw, &adapter->phy_info);
 708
 709        e1000_release_manageability(adapter);
 710}
 711
 712/**
 713 *  Dump the eeprom for users having checksum issues
 714 **/
 715static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 716{
 717        struct net_device *netdev = adapter->netdev;
 718        struct ethtool_eeprom eeprom;
 719        const struct ethtool_ops *ops = netdev->ethtool_ops;
 720        u8 *data;
 721        int i;
 722        u16 csum_old, csum_new = 0;
 723
 724        eeprom.len = ops->get_eeprom_len(netdev);
 725        eeprom.offset = 0;
 726
 727        data = kmalloc(eeprom.len, GFP_KERNEL);
 728        if (!data) {
 729                pr_err("Unable to allocate memory to dump EEPROM data\n");
 730                return;
 731        }
 732
 733        ops->get_eeprom(netdev, &eeprom, data);
 734
 735        csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 736                   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 737        for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 738                csum_new += data[i] + (data[i + 1] << 8);
 739        csum_new = EEPROM_SUM - csum_new;
 740
 741        pr_err("/*********************/\n");
 742        pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 743        pr_err("Calculated              : 0x%04x\n", csum_new);
 744
 745        pr_err("Offset    Values\n");
 746        pr_err("========  ======\n");
 747        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 748
 749        pr_err("Include this output when contacting your support provider.\n");
 750        pr_err("This is not a software error! Something bad happened to\n");
 751        pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 752        pr_err("result in further problems, possibly loss of data,\n");
 753        pr_err("corruption or system hangs!\n");
 754        pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 755        pr_err("which is invalid and requires you to set the proper MAC\n");
 756        pr_err("address manually before continuing to enable this network\n");
 757        pr_err("device. Please inspect the EEPROM dump and report the\n");
 758        pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 759        pr_err("/*********************/\n");
 760
 761        kfree(data);
 762}
 763
 764/**
 765 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 766 * @pdev: PCI device information struct
 767 *
 768 * Return true if an adapter needs ioport resources
 769 **/
 770static int e1000_is_need_ioport(struct pci_dev *pdev)
 771{
 772        switch (pdev->device) {
 773        case E1000_DEV_ID_82540EM:
 774        case E1000_DEV_ID_82540EM_LOM:
 775        case E1000_DEV_ID_82540EP:
 776        case E1000_DEV_ID_82540EP_LOM:
 777        case E1000_DEV_ID_82540EP_LP:
 778        case E1000_DEV_ID_82541EI:
 779        case E1000_DEV_ID_82541EI_MOBILE:
 780        case E1000_DEV_ID_82541ER:
 781        case E1000_DEV_ID_82541ER_LOM:
 782        case E1000_DEV_ID_82541GI:
 783        case E1000_DEV_ID_82541GI_LF:
 784        case E1000_DEV_ID_82541GI_MOBILE:
 785        case E1000_DEV_ID_82544EI_COPPER:
 786        case E1000_DEV_ID_82544EI_FIBER:
 787        case E1000_DEV_ID_82544GC_COPPER:
 788        case E1000_DEV_ID_82544GC_LOM:
 789        case E1000_DEV_ID_82545EM_COPPER:
 790        case E1000_DEV_ID_82545EM_FIBER:
 791        case E1000_DEV_ID_82546EB_COPPER:
 792        case E1000_DEV_ID_82546EB_FIBER:
 793        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 794                return true;
 795        default:
 796                return false;
 797        }
 798}
 799
 800static const struct net_device_ops e1000_netdev_ops = {
 801        .ndo_open               = e1000_open,
 802        .ndo_stop               = e1000_close,
 803        .ndo_start_xmit         = e1000_xmit_frame,
 804        .ndo_get_stats          = e1000_get_stats,
 805        .ndo_set_rx_mode        = e1000_set_rx_mode,
 806        .ndo_set_mac_address    = e1000_set_mac,
 807        .ndo_tx_timeout         = e1000_tx_timeout,
 808        .ndo_change_mtu         = e1000_change_mtu,
 809        .ndo_do_ioctl           = e1000_ioctl,
 810        .ndo_validate_addr      = eth_validate_addr,
 811
 812        .ndo_vlan_rx_register   = e1000_vlan_rx_register,
 813        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
 814        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
 815#ifdef CONFIG_NET_POLL_CONTROLLER
 816        .ndo_poll_controller    = e1000_netpoll,
 817#endif
 818};
 819
 820/**
 821 * e1000_init_hw_struct - initialize members of hw struct
 822 * @adapter: board private struct
 823 * @hw: structure used by e1000_hw.c
 824 *
 825 * Factors out initialization of the e1000_hw struct to its own function
 826 * that can be called very early at init (just after struct allocation).
 827 * Fields are initialized based on PCI device information and
 828 * OS network device settings (MTU size).
 829 * Returns negative error codes if MAC type setup fails.
 830 */
 831static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 832                                struct e1000_hw *hw)
 833{
 834        struct pci_dev *pdev = adapter->pdev;
 835
 836        /* PCI config space info */
 837        hw->vendor_id = pdev->vendor;
 838        hw->device_id = pdev->device;
 839        hw->subsystem_vendor_id = pdev->subsystem_vendor;
 840        hw->subsystem_id = pdev->subsystem_device;
 841        hw->revision_id = pdev->revision;
 842
 843        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 844
 845        hw->max_frame_size = adapter->netdev->mtu +
 846                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 847        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 848
 849        /* identify the MAC */
 850        if (e1000_set_mac_type(hw)) {
 851                e_err(probe, "Unknown MAC Type\n");
 852                return -EIO;
 853        }
 854
 855        switch (hw->mac_type) {
 856        default:
 857                break;
 858        case e1000_82541:
 859        case e1000_82547:
 860        case e1000_82541_rev_2:
 861        case e1000_82547_rev_2:
 862                hw->phy_init_script = 1;
 863                break;
 864        }
 865
 866        e1000_set_media_type(hw);
 867        e1000_get_bus_info(hw);
 868
 869        hw->wait_autoneg_complete = false;
 870        hw->tbi_compatibility_en = true;
 871        hw->adaptive_ifs = true;
 872
 873        /* Copper options */
 874
 875        if (hw->media_type == e1000_media_type_copper) {
 876                hw->mdix = AUTO_ALL_MODES;
 877                hw->disable_polarity_correction = false;
 878                hw->master_slave = E1000_MASTER_SLAVE;
 879        }
 880
 881        return 0;
 882}
 883
 884/**
 885 * e1000_probe - Device Initialization Routine
 886 * @pdev: PCI device information struct
 887 * @ent: entry in e1000_pci_tbl
 888 *
 889 * Returns 0 on success, negative on failure
 890 *
 891 * e1000_probe initializes an adapter identified by a pci_dev structure.
 892 * The OS initialization, configuring of the adapter private structure,
 893 * and a hardware reset occur.
 894 **/
 895static int __devinit e1000_probe(struct pci_dev *pdev,
 896                                 const struct pci_device_id *ent)
 897{
 898        struct net_device *netdev;
 899        struct e1000_adapter *adapter;
 900        struct e1000_hw *hw;
 901
 902        static int cards_found = 0;
 903        static int global_quad_port_a = 0; /* global ksp3 port a indication */
 904        int i, err, pci_using_dac;
 905        u16 eeprom_data = 0;
 906        u16 tmp = 0;
 907        u16 eeprom_apme_mask = E1000_EEPROM_APME;
 908        int bars, need_ioport;
 909
 910        /* do not allocate ioport bars when not needed */
 911        need_ioport = e1000_is_need_ioport(pdev);
 912        if (need_ioport) {
 913                bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 914                err = pci_enable_device(pdev);
 915        } else {
 916                bars = pci_select_bars(pdev, IORESOURCE_MEM);
 917                err = pci_enable_device_mem(pdev);
 918        }
 919        if (err)
 920                return err;
 921
 922        err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 923        if (err)
 924                goto err_pci_reg;
 925
 926        pci_set_master(pdev);
 927        err = pci_save_state(pdev);
 928        if (err)
 929                goto err_alloc_etherdev;
 930
 931        err = -ENOMEM;
 932        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 933        if (!netdev)
 934                goto err_alloc_etherdev;
 935
 936        SET_NETDEV_DEV(netdev, &pdev->dev);
 937
 938        pci_set_drvdata(pdev, netdev);
 939        adapter = netdev_priv(netdev);
 940        adapter->netdev = netdev;
 941        adapter->pdev = pdev;
 942        adapter->msg_enable = (1 << debug) - 1;
 943        adapter->bars = bars;
 944        adapter->need_ioport = need_ioport;
 945
 946        hw = &adapter->hw;
 947        hw->back = adapter;
 948
 949        err = -EIO;
 950        hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 951        if (!hw->hw_addr)
 952                goto err_ioremap;
 953
 954        if (adapter->need_ioport) {
 955                for (i = BAR_1; i <= BAR_5; i++) {
 956                        if (pci_resource_len(pdev, i) == 0)
 957                                continue;
 958                        if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 959                                hw->io_base = pci_resource_start(pdev, i);
 960                                break;
 961                        }
 962                }
 963        }
 964
 965        /* make ready for any if (hw->...) below */
 966        err = e1000_init_hw_struct(adapter, hw);
 967        if (err)
 968                goto err_sw_init;
 969
 970        /*
 971         * there is a workaround being applied below that limits
 972         * 64-bit DMA addresses to 64-bit hardware.  There are some
 973         * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 974         */
 975        pci_using_dac = 0;
 976        if ((hw->bus_type == e1000_bus_type_pcix) &&
 977            !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
 978                /*
 979                 * according to DMA-API-HOWTO, coherent calls will always
 980                 * succeed if the set call did
 981                 */
 982                dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
 983                pci_using_dac = 1;
 984        } else {
 985                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
 986                if (err) {
 987                        pr_err("No usable DMA config, aborting\n");
 988                        goto err_dma;
 989                }
 990                dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 991        }
 992
 993        netdev->netdev_ops = &e1000_netdev_ops;
 994        e1000_set_ethtool_ops(netdev);
 995        netdev->watchdog_timeo = 5 * HZ;
 996        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
 997
 998        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
 999
1000        adapter->bd_number = cards_found;
1001
1002        /* setup the private structure */
1003
1004        err = e1000_sw_init(adapter);
1005        if (err)
1006                goto err_sw_init;
1007
1008        err = -EIO;
1009        if (hw->mac_type == e1000_ce4100) {
1010                ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1011                ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1012                                                pci_resource_len(pdev, BAR_1));
1013
1014                if (!ce4100_gbe_mdio_base_virt)
1015                        goto err_mdio_ioremap;
1016        }
1017
1018        if (hw->mac_type >= e1000_82543) {
1019                netdev->features = NETIF_F_SG |
1020                                   NETIF_F_HW_CSUM |
1021                                   NETIF_F_HW_VLAN_TX |
1022                                   NETIF_F_HW_VLAN_RX |
1023                                   NETIF_F_HW_VLAN_FILTER;
1024        }
1025
1026        if ((hw->mac_type >= e1000_82544) &&
1027           (hw->mac_type != e1000_82547))
1028                netdev->features |= NETIF_F_TSO;
1029
1030        if (pci_using_dac) {
1031                netdev->features |= NETIF_F_HIGHDMA;
1032                netdev->vlan_features |= NETIF_F_HIGHDMA;
1033        }
1034
1035        netdev->vlan_features |= NETIF_F_TSO;
1036        netdev->vlan_features |= NETIF_F_HW_CSUM;
1037        netdev->vlan_features |= NETIF_F_SG;
1038
1039        adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1040
1041        /* initialize eeprom parameters */
1042        if (e1000_init_eeprom_params(hw)) {
1043                e_err(probe, "EEPROM initialization failed\n");
1044                goto err_eeprom;
1045        }
1046
1047        /* before reading the EEPROM, reset the controller to
1048         * put the device in a known good starting state */
1049
1050        e1000_reset_hw(hw);
1051
1052        /* make sure the EEPROM is good */
1053        if (e1000_validate_eeprom_checksum(hw) < 0) {
1054                e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1055                e1000_dump_eeprom(adapter);
1056                /*
1057                 * set MAC address to all zeroes to invalidate and temporary
1058                 * disable this device for the user. This blocks regular
1059                 * traffic while still permitting ethtool ioctls from reaching
1060                 * the hardware as well as allowing the user to run the
1061                 * interface after manually setting a hw addr using
1062                 * `ip set address`
1063                 */
1064                memset(hw->mac_addr, 0, netdev->addr_len);
1065        } else {
1066                /* copy the MAC address out of the EEPROM */
1067                if (e1000_read_mac_addr(hw))
1068                        e_err(probe, "EEPROM Read Error\n");
1069        }
1070        /* don't block initalization here due to bad MAC address */
1071        memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1072        memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1073
1074        if (!is_valid_ether_addr(netdev->perm_addr))
1075                e_err(probe, "Invalid MAC Address\n");
1076
1077        init_timer(&adapter->tx_fifo_stall_timer);
1078        adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1079        adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1080
1081        init_timer(&adapter->watchdog_timer);
1082        adapter->watchdog_timer.function = e1000_watchdog;
1083        adapter->watchdog_timer.data = (unsigned long) adapter;
1084
1085        init_timer(&adapter->phy_info_timer);
1086        adapter->phy_info_timer.function = e1000_update_phy_info;
1087        adapter->phy_info_timer.data = (unsigned long)adapter;
1088
1089        INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1090        INIT_WORK(&adapter->reset_task, e1000_reset_task);
1091        INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1092
1093        e1000_check_options(adapter);
1094
1095        /* Initial Wake on LAN setting
1096         * If APM wake is enabled in the EEPROM,
1097         * enable the ACPI Magic Packet filter
1098         */
1099
1100        switch (hw->mac_type) {
1101        case e1000_82542_rev2_0:
1102        case e1000_82542_rev2_1:
1103        case e1000_82543:
1104                break;
1105        case e1000_82544:
1106                e1000_read_eeprom(hw,
1107                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1108                eeprom_apme_mask = E1000_EEPROM_82544_APM;
1109                break;
1110        case e1000_82546:
1111        case e1000_82546_rev_3:
1112                if (er32(STATUS) & E1000_STATUS_FUNC_1){
1113                        e1000_read_eeprom(hw,
1114                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1115                        break;
1116                }
1117                /* Fall Through */
1118        default:
1119                e1000_read_eeprom(hw,
1120                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1121                break;
1122        }
1123        if (eeprom_data & eeprom_apme_mask)
1124                adapter->eeprom_wol |= E1000_WUFC_MAG;
1125
1126        /* now that we have the eeprom settings, apply the special cases
1127         * where the eeprom may be wrong or the board simply won't support
1128         * wake on lan on a particular port */
1129        switch (pdev->device) {
1130        case E1000_DEV_ID_82546GB_PCIE:
1131                adapter->eeprom_wol = 0;
1132                break;
1133        case E1000_DEV_ID_82546EB_FIBER:
1134        case E1000_DEV_ID_82546GB_FIBER:
1135                /* Wake events only supported on port A for dual fiber
1136                 * regardless of eeprom setting */
1137                if (er32(STATUS) & E1000_STATUS_FUNC_1)
1138                        adapter->eeprom_wol = 0;
1139                break;
1140        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1141                /* if quad port adapter, disable WoL on all but port A */
1142                if (global_quad_port_a != 0)
1143                        adapter->eeprom_wol = 0;
1144                else
1145                        adapter->quad_port_a = 1;
1146                /* Reset for multiple quad port adapters */
1147                if (++global_quad_port_a == 4)
1148                        global_quad_port_a = 0;
1149                break;
1150        }
1151
1152        /* initialize the wol settings based on the eeprom settings */
1153        adapter->wol = adapter->eeprom_wol;
1154        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1155
1156        /* Auto detect PHY address */
1157        if (hw->mac_type == e1000_ce4100) {
1158                for (i = 0; i < 32; i++) {
1159                        hw->phy_addr = i;
1160                        e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1161                        if (tmp == 0 || tmp == 0xFF) {
1162                                if (i == 31)
1163                                        goto err_eeprom;
1164                                continue;
1165                        } else
1166                                break;
1167                }
1168        }
1169
1170        /* reset the hardware with the new settings */
1171        e1000_reset(adapter);
1172
1173        strcpy(netdev->name, "eth%d");
1174        err = register_netdev(netdev);
1175        if (err)
1176                goto err_register;
1177
1178        /* print bus type/speed/width info */
1179        e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1180               ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1181               ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1182                (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1183                (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1184                (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1185               ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1186               netdev->dev_addr);
1187
1188        /* carrier off reporting is important to ethtool even BEFORE open */
1189        netif_carrier_off(netdev);
1190
1191        e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1192
1193        cards_found++;
1194        return 0;
1195
1196err_register:
1197err_eeprom:
1198        e1000_phy_hw_reset(hw);
1199
1200        if (hw->flash_address)
1201                iounmap(hw->flash_address);
1202        kfree(adapter->tx_ring);
1203        kfree(adapter->rx_ring);
1204err_dma:
1205err_sw_init:
1206err_mdio_ioremap:
1207        iounmap(ce4100_gbe_mdio_base_virt);
1208        iounmap(hw->hw_addr);
1209err_ioremap:
1210        free_netdev(netdev);
1211err_alloc_etherdev:
1212        pci_release_selected_regions(pdev, bars);
1213err_pci_reg:
1214        pci_disable_device(pdev);
1215        return err;
1216}
1217
1218/**
1219 * e1000_remove - Device Removal Routine
1220 * @pdev: PCI device information struct
1221 *
1222 * e1000_remove is called by the PCI subsystem to alert the driver
1223 * that it should release a PCI device.  The could be caused by a
1224 * Hot-Plug event, or because the driver is going to be removed from
1225 * memory.
1226 **/
1227
1228static void __devexit e1000_remove(struct pci_dev *pdev)
1229{
1230        struct net_device *netdev = pci_get_drvdata(pdev);
1231        struct e1000_adapter *adapter = netdev_priv(netdev);
1232        struct e1000_hw *hw = &adapter->hw;
1233
1234        set_bit(__E1000_DOWN, &adapter->flags);
1235        del_timer_sync(&adapter->tx_fifo_stall_timer);
1236        del_timer_sync(&adapter->watchdog_timer);
1237        del_timer_sync(&adapter->phy_info_timer);
1238
1239        cancel_work_sync(&adapter->reset_task);
1240
1241        e1000_release_manageability(adapter);
1242
1243        unregister_netdev(netdev);
1244
1245        e1000_phy_hw_reset(hw);
1246
1247        kfree(adapter->tx_ring);
1248        kfree(adapter->rx_ring);
1249
1250        iounmap(hw->hw_addr);
1251        if (hw->flash_address)
1252                iounmap(hw->flash_address);
1253        pci_release_selected_regions(pdev, adapter->bars);
1254
1255        free_netdev(netdev);
1256
1257        pci_disable_device(pdev);
1258}
1259
1260/**
1261 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1262 * @adapter: board private structure to initialize
1263 *
1264 * e1000_sw_init initializes the Adapter private data structure.
1265 * e1000_init_hw_struct MUST be called before this function
1266 **/
1267
1268static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1269{
1270        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1271
1272        adapter->num_tx_queues = 1;
1273        adapter->num_rx_queues = 1;
1274
1275        if (e1000_alloc_queues(adapter)) {
1276                e_err(probe, "Unable to allocate memory for queues\n");
1277                return -ENOMEM;
1278        }
1279
1280        /* Explicitly disable IRQ since the NIC can be in any state. */
1281        e1000_irq_disable(adapter);
1282
1283        spin_lock_init(&adapter->stats_lock);
1284
1285        set_bit(__E1000_DOWN, &adapter->flags);
1286
1287        return 0;
1288}
1289
1290/**
1291 * e1000_alloc_queues - Allocate memory for all rings
1292 * @adapter: board private structure to initialize
1293 *
1294 * We allocate one ring per queue at run-time since we don't know the
1295 * number of queues at compile-time.
1296 **/
1297
1298static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1299{
1300        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1301                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1302        if (!adapter->tx_ring)
1303                return -ENOMEM;
1304
1305        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1306                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1307        if (!adapter->rx_ring) {
1308                kfree(adapter->tx_ring);
1309                return -ENOMEM;
1310        }
1311
1312        return E1000_SUCCESS;
1313}
1314
1315/**
1316 * e1000_open - Called when a network interface is made active
1317 * @netdev: network interface device structure
1318 *
1319 * Returns 0 on success, negative value on failure
1320 *
1321 * The open entry point is called when a network interface is made
1322 * active by the system (IFF_UP).  At this point all resources needed
1323 * for transmit and receive operations are allocated, the interrupt
1324 * handler is registered with the OS, the watchdog timer is started,
1325 * and the stack is notified that the interface is ready.
1326 **/
1327
1328static int e1000_open(struct net_device *netdev)
1329{
1330        struct e1000_adapter *adapter = netdev_priv(netdev);
1331        struct e1000_hw *hw = &adapter->hw;
1332        int err;
1333
1334        /* disallow open during test */
1335        if (test_bit(__E1000_TESTING, &adapter->flags))
1336                return -EBUSY;
1337
1338        netif_carrier_off(netdev);
1339
1340        /* allocate transmit descriptors */
1341        err = e1000_setup_all_tx_resources(adapter);
1342        if (err)
1343                goto err_setup_tx;
1344
1345        /* allocate receive descriptors */
1346        err = e1000_setup_all_rx_resources(adapter);
1347        if (err)
1348                goto err_setup_rx;
1349
1350        e1000_power_up_phy(adapter);
1351
1352        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1353        if ((hw->mng_cookie.status &
1354                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1355                e1000_update_mng_vlan(adapter);
1356        }
1357
1358        /* before we allocate an interrupt, we must be ready to handle it.
1359         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1360         * as soon as we call pci_request_irq, so we have to setup our
1361         * clean_rx handler before we do so.  */
1362        e1000_configure(adapter);
1363
1364        err = e1000_request_irq(adapter);
1365        if (err)
1366                goto err_req_irq;
1367
1368        /* From here on the code is the same as e1000_up() */
1369        clear_bit(__E1000_DOWN, &adapter->flags);
1370
1371        napi_enable(&adapter->napi);
1372
1373        e1000_irq_enable(adapter);
1374
1375        netif_start_queue(netdev);
1376
1377        /* fire a link status change interrupt to start the watchdog */
1378        ew32(ICS, E1000_ICS_LSC);
1379
1380        return E1000_SUCCESS;
1381
1382err_req_irq:
1383        e1000_power_down_phy(adapter);
1384        e1000_free_all_rx_resources(adapter);
1385err_setup_rx:
1386        e1000_free_all_tx_resources(adapter);
1387err_setup_tx:
1388        e1000_reset(adapter);
1389
1390        return err;
1391}
1392
1393/**
1394 * e1000_close - Disables a network interface
1395 * @netdev: network interface device structure
1396 *
1397 * Returns 0, this is not allowed to fail
1398 *
1399 * The close entry point is called when an interface is de-activated
1400 * by the OS.  The hardware is still under the drivers control, but
1401 * needs to be disabled.  A global MAC reset is issued to stop the
1402 * hardware, and all transmit and receive resources are freed.
1403 **/
1404
1405static int e1000_close(struct net_device *netdev)
1406{
1407        struct e1000_adapter *adapter = netdev_priv(netdev);
1408        struct e1000_hw *hw = &adapter->hw;
1409
1410        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1411        e1000_down(adapter);
1412        e1000_power_down_phy(adapter);
1413        e1000_free_irq(adapter);
1414
1415        e1000_free_all_tx_resources(adapter);
1416        e1000_free_all_rx_resources(adapter);
1417
1418        /* kill manageability vlan ID if supported, but not if a vlan with
1419         * the same ID is registered on the host OS (let 8021q kill it) */
1420        if ((hw->mng_cookie.status &
1421                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1422             !(adapter->vlgrp &&
1423               vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1424                e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1425        }
1426
1427        return 0;
1428}
1429
1430/**
1431 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1432 * @adapter: address of board private structure
1433 * @start: address of beginning of memory
1434 * @len: length of memory
1435 **/
1436static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1437                                  unsigned long len)
1438{
1439        struct e1000_hw *hw = &adapter->hw;
1440        unsigned long begin = (unsigned long)start;
1441        unsigned long end = begin + len;
1442
1443        /* First rev 82545 and 82546 need to not allow any memory
1444         * write location to cross 64k boundary due to errata 23 */
1445        if (hw->mac_type == e1000_82545 ||
1446            hw->mac_type == e1000_ce4100 ||
1447            hw->mac_type == e1000_82546) {
1448                return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1449        }
1450
1451        return true;
1452}
1453
1454/**
1455 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1456 * @adapter: board private structure
1457 * @txdr:    tx descriptor ring (for a specific queue) to setup
1458 *
1459 * Return 0 on success, negative on failure
1460 **/
1461
1462static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1463                                    struct e1000_tx_ring *txdr)
1464{
1465        struct pci_dev *pdev = adapter->pdev;
1466        int size;
1467
1468        size = sizeof(struct e1000_buffer) * txdr->count;
1469        txdr->buffer_info = vzalloc(size);
1470        if (!txdr->buffer_info) {
1471                e_err(probe, "Unable to allocate memory for the Tx descriptor "
1472                      "ring\n");
1473                return -ENOMEM;
1474        }
1475
1476        /* round up to nearest 4K */
1477
1478        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1479        txdr->size = ALIGN(txdr->size, 4096);
1480
1481        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1482                                        GFP_KERNEL);
1483        if (!txdr->desc) {
1484setup_tx_desc_die:
1485                vfree(txdr->buffer_info);
1486                e_err(probe, "Unable to allocate memory for the Tx descriptor "
1487                      "ring\n");
1488                return -ENOMEM;
1489        }
1490
1491        /* Fix for errata 23, can't cross 64kB boundary */
1492        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1493                void *olddesc = txdr->desc;
1494                dma_addr_t olddma = txdr->dma;
1495                e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1496                      txdr->size, txdr->desc);
1497                /* Try again, without freeing the previous */
1498                txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1499                                                &txdr->dma, GFP_KERNEL);
1500                /* Failed allocation, critical failure */
1501                if (!txdr->desc) {
1502                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1503                                          olddma);
1504                        goto setup_tx_desc_die;
1505                }
1506
1507                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1508                        /* give up */
1509                        dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1510                                          txdr->dma);
1511                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1512                                          olddma);
1513                        e_err(probe, "Unable to allocate aligned memory "
1514                              "for the transmit descriptor ring\n");
1515                        vfree(txdr->buffer_info);
1516                        return -ENOMEM;
1517                } else {
1518                        /* Free old allocation, new allocation was successful */
1519                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1520                                          olddma);
1521                }
1522        }
1523        memset(txdr->desc, 0, txdr->size);
1524
1525        txdr->next_to_use = 0;
1526        txdr->next_to_clean = 0;
1527
1528        return 0;
1529}
1530
1531/**
1532 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1533 *                                (Descriptors) for all queues
1534 * @adapter: board private structure
1535 *
1536 * Return 0 on success, negative on failure
1537 **/
1538
1539int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1540{
1541        int i, err = 0;
1542
1543        for (i = 0; i < adapter->num_tx_queues; i++) {
1544                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1545                if (err) {
1546                        e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1547                        for (i-- ; i >= 0; i--)
1548                                e1000_free_tx_resources(adapter,
1549                                                        &adapter->tx_ring[i]);
1550                        break;
1551                }
1552        }
1553
1554        return err;
1555}
1556
1557/**
1558 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1559 * @adapter: board private structure
1560 *
1561 * Configure the Tx unit of the MAC after a reset.
1562 **/
1563
1564static void e1000_configure_tx(struct e1000_adapter *adapter)
1565{
1566        u64 tdba;
1567        struct e1000_hw *hw = &adapter->hw;
1568        u32 tdlen, tctl, tipg;
1569        u32 ipgr1, ipgr2;
1570
1571        /* Setup the HW Tx Head and Tail descriptor pointers */
1572
1573        switch (adapter->num_tx_queues) {
1574        case 1:
1575        default:
1576                tdba = adapter->tx_ring[0].dma;
1577                tdlen = adapter->tx_ring[0].count *
1578                        sizeof(struct e1000_tx_desc);
1579                ew32(TDLEN, tdlen);
1580                ew32(TDBAH, (tdba >> 32));
1581                ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1582                ew32(TDT, 0);
1583                ew32(TDH, 0);
1584                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1585                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1586                break;
1587        }
1588
1589        /* Set the default values for the Tx Inter Packet Gap timer */
1590        if ((hw->media_type == e1000_media_type_fiber ||
1591             hw->media_type == e1000_media_type_internal_serdes))
1592                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1593        else
1594                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1595
1596        switch (hw->mac_type) {
1597        case e1000_82542_rev2_0:
1598        case e1000_82542_rev2_1:
1599                tipg = DEFAULT_82542_TIPG_IPGT;
1600                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1601                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1602                break;
1603        default:
1604                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1605                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1606                break;
1607        }
1608        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1609        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1610        ew32(TIPG, tipg);
1611
1612        /* Set the Tx Interrupt Delay register */
1613
1614        ew32(TIDV, adapter->tx_int_delay);
1615        if (hw->mac_type >= e1000_82540)
1616                ew32(TADV, adapter->tx_abs_int_delay);
1617
1618        /* Program the Transmit Control Register */
1619
1620        tctl = er32(TCTL);
1621        tctl &= ~E1000_TCTL_CT;
1622        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1623                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1624
1625        e1000_config_collision_dist(hw);
1626
1627        /* Setup Transmit Descriptor Settings for eop descriptor */
1628        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1629
1630        /* only set IDE if we are delaying interrupts using the timers */
1631        if (adapter->tx_int_delay)
1632                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1633
1634        if (hw->mac_type < e1000_82543)
1635                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1636        else
1637                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1638
1639        /* Cache if we're 82544 running in PCI-X because we'll
1640         * need this to apply a workaround later in the send path. */
1641        if (hw->mac_type == e1000_82544 &&
1642            hw->bus_type == e1000_bus_type_pcix)
1643                adapter->pcix_82544 = 1;
1644
1645        ew32(TCTL, tctl);
1646
1647}
1648
1649/**
1650 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1651 * @adapter: board private structure
1652 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1653 *
1654 * Returns 0 on success, negative on failure
1655 **/
1656
1657static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1658                                    struct e1000_rx_ring *rxdr)
1659{
1660        struct pci_dev *pdev = adapter->pdev;
1661        int size, desc_len;
1662
1663        size = sizeof(struct e1000_buffer) * rxdr->count;
1664        rxdr->buffer_info = vzalloc(size);
1665        if (!rxdr->buffer_info) {
1666                e_err(probe, "Unable to allocate memory for the Rx descriptor "
1667                      "ring\n");
1668                return -ENOMEM;
1669        }
1670
1671        desc_len = sizeof(struct e1000_rx_desc);
1672
1673        /* Round up to nearest 4K */
1674
1675        rxdr->size = rxdr->count * desc_len;
1676        rxdr->size = ALIGN(rxdr->size, 4096);
1677
1678        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1679                                        GFP_KERNEL);
1680
1681        if (!rxdr->desc) {
1682                e_err(probe, "Unable to allocate memory for the Rx descriptor "
1683                      "ring\n");
1684setup_rx_desc_die:
1685                vfree(rxdr->buffer_info);
1686                return -ENOMEM;
1687        }
1688
1689        /* Fix for errata 23, can't cross 64kB boundary */
1690        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1691                void *olddesc = rxdr->desc;
1692                dma_addr_t olddma = rxdr->dma;
1693                e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1694                      rxdr->size, rxdr->desc);
1695                /* Try again, without freeing the previous */
1696                rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1697                                                &rxdr->dma, GFP_KERNEL);
1698                /* Failed allocation, critical failure */
1699                if (!rxdr->desc) {
1700                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1701                                          olddma);
1702                        e_err(probe, "Unable to allocate memory for the Rx "
1703                              "descriptor ring\n");
1704                        goto setup_rx_desc_die;
1705                }
1706
1707                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1708                        /* give up */
1709                        dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1710                                          rxdr->dma);
1711                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1712                                          olddma);
1713                        e_err(probe, "Unable to allocate aligned memory for "
1714                              "the Rx descriptor ring\n");
1715                        goto setup_rx_desc_die;
1716                } else {
1717                        /* Free old allocation, new allocation was successful */
1718                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1719                                          olddma);
1720                }
1721        }
1722        memset(rxdr->desc, 0, rxdr->size);
1723
1724        rxdr->next_to_clean = 0;
1725        rxdr->next_to_use = 0;
1726        rxdr->rx_skb_top = NULL;
1727
1728        return 0;
1729}
1730
1731/**
1732 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1733 *                                (Descriptors) for all queues
1734 * @adapter: board private structure
1735 *
1736 * Return 0 on success, negative on failure
1737 **/
1738
1739int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1740{
1741        int i, err = 0;
1742
1743        for (i = 0; i < adapter->num_rx_queues; i++) {
1744                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1745                if (err) {
1746                        e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1747                        for (i-- ; i >= 0; i--)
1748                                e1000_free_rx_resources(adapter,
1749                                                        &adapter->rx_ring[i]);
1750                        break;
1751                }
1752        }
1753
1754        return err;
1755}
1756
1757/**
1758 * e1000_setup_rctl - configure the receive control registers
1759 * @adapter: Board private structure
1760 **/
1761static void e1000_setup_rctl(struct e1000_adapter *adapter)
1762{
1763        struct e1000_hw *hw = &adapter->hw;
1764        u32 rctl;
1765
1766        rctl = er32(RCTL);
1767
1768        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1769
1770        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1771                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1772                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1773
1774        if (hw->tbi_compatibility_on == 1)
1775                rctl |= E1000_RCTL_SBP;
1776        else
1777                rctl &= ~E1000_RCTL_SBP;
1778
1779        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1780                rctl &= ~E1000_RCTL_LPE;
1781        else
1782                rctl |= E1000_RCTL_LPE;
1783
1784        /* Setup buffer sizes */
1785        rctl &= ~E1000_RCTL_SZ_4096;
1786        rctl |= E1000_RCTL_BSEX;
1787        switch (adapter->rx_buffer_len) {
1788                case E1000_RXBUFFER_2048:
1789                default:
1790                        rctl |= E1000_RCTL_SZ_2048;
1791                        rctl &= ~E1000_RCTL_BSEX;
1792                        break;
1793                case E1000_RXBUFFER_4096:
1794                        rctl |= E1000_RCTL_SZ_4096;
1795                        break;
1796                case E1000_RXBUFFER_8192:
1797                        rctl |= E1000_RCTL_SZ_8192;
1798                        break;
1799                case E1000_RXBUFFER_16384:
1800                        rctl |= E1000_RCTL_SZ_16384;
1801                        break;
1802        }
1803
1804        ew32(RCTL, rctl);
1805}
1806
1807/**
1808 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1809 * @adapter: board private structure
1810 *
1811 * Configure the Rx unit of the MAC after a reset.
1812 **/
1813
1814static void e1000_configure_rx(struct e1000_adapter *adapter)
1815{
1816        u64 rdba;
1817        struct e1000_hw *hw = &adapter->hw;
1818        u32 rdlen, rctl, rxcsum;
1819
1820        if (adapter->netdev->mtu > ETH_DATA_LEN) {
1821                rdlen = adapter->rx_ring[0].count *
1822                        sizeof(struct e1000_rx_desc);
1823                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1824                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1825        } else {
1826                rdlen = adapter->rx_ring[0].count *
1827                        sizeof(struct e1000_rx_desc);
1828                adapter->clean_rx = e1000_clean_rx_irq;
1829                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1830        }
1831
1832        /* disable receives while setting up the descriptors */
1833        rctl = er32(RCTL);
1834        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1835
1836        /* set the Receive Delay Timer Register */
1837        ew32(RDTR, adapter->rx_int_delay);
1838
1839        if (hw->mac_type >= e1000_82540) {
1840                ew32(RADV, adapter->rx_abs_int_delay);
1841                if (adapter->itr_setting != 0)
1842                        ew32(ITR, 1000000000 / (adapter->itr * 256));
1843        }
1844
1845        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1846         * the Base and Length of the Rx Descriptor Ring */
1847        switch (adapter->num_rx_queues) {
1848        case 1:
1849        default:
1850                rdba = adapter->rx_ring[0].dma;
1851                ew32(RDLEN, rdlen);
1852                ew32(RDBAH, (rdba >> 32));
1853                ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1854                ew32(RDT, 0);
1855                ew32(RDH, 0);
1856                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1857                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1858                break;
1859        }
1860
1861        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1862        if (hw->mac_type >= e1000_82543) {
1863                rxcsum = er32(RXCSUM);
1864                if (adapter->rx_csum)
1865                        rxcsum |= E1000_RXCSUM_TUOFL;
1866                else
1867                        /* don't need to clear IPPCSE as it defaults to 0 */
1868                        rxcsum &= ~E1000_RXCSUM_TUOFL;
1869                ew32(RXCSUM, rxcsum);
1870        }
1871
1872        /* Enable Receives */
1873        ew32(RCTL, rctl);
1874}
1875
1876/**
1877 * e1000_free_tx_resources - Free Tx Resources per Queue
1878 * @adapter: board private structure
1879 * @tx_ring: Tx descriptor ring for a specific queue
1880 *
1881 * Free all transmit software resources
1882 **/
1883
1884static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1885                                    struct e1000_tx_ring *tx_ring)
1886{
1887        struct pci_dev *pdev = adapter->pdev;
1888
1889        e1000_clean_tx_ring(adapter, tx_ring);
1890
1891        vfree(tx_ring->buffer_info);
1892        tx_ring->buffer_info = NULL;
1893
1894        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1895                          tx_ring->dma);
1896
1897        tx_ring->desc = NULL;
1898}
1899
1900/**
1901 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1902 * @adapter: board private structure
1903 *
1904 * Free all transmit software resources
1905 **/
1906
1907void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1908{
1909        int i;
1910
1911        for (i = 0; i < adapter->num_tx_queues; i++)
1912                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1913}
1914
1915static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1916                                             struct e1000_buffer *buffer_info)
1917{
1918        if (buffer_info->dma) {
1919                if (buffer_info->mapped_as_page)
1920                        dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1921                                       buffer_info->length, DMA_TO_DEVICE);
1922                else
1923                        dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1924                                         buffer_info->length,
1925                                         DMA_TO_DEVICE);
1926                buffer_info->dma = 0;
1927        }
1928        if (buffer_info->skb) {
1929                dev_kfree_skb_any(buffer_info->skb);
1930                buffer_info->skb = NULL;
1931        }
1932        buffer_info->time_stamp = 0;
1933        /* buffer_info must be completely set up in the transmit path */
1934}
1935
1936/**
1937 * e1000_clean_tx_ring - Free Tx Buffers
1938 * @adapter: board private structure
1939 * @tx_ring: ring to be cleaned
1940 **/
1941
1942static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1943                                struct e1000_tx_ring *tx_ring)
1944{
1945        struct e1000_hw *hw = &adapter->hw;
1946        struct e1000_buffer *buffer_info;
1947        unsigned long size;
1948        unsigned int i;
1949
1950        /* Free all the Tx ring sk_buffs */
1951
1952        for (i = 0; i < tx_ring->count; i++) {
1953                buffer_info = &tx_ring->buffer_info[i];
1954                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1955        }
1956
1957        size = sizeof(struct e1000_buffer) * tx_ring->count;
1958        memset(tx_ring->buffer_info, 0, size);
1959
1960        /* Zero out the descriptor ring */
1961
1962        memset(tx_ring->desc, 0, tx_ring->size);
1963
1964        tx_ring->next_to_use = 0;
1965        tx_ring->next_to_clean = 0;
1966        tx_ring->last_tx_tso = 0;
1967
1968        writel(0, hw->hw_addr + tx_ring->tdh);
1969        writel(0, hw->hw_addr + tx_ring->tdt);
1970}
1971
1972/**
1973 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1974 * @adapter: board private structure
1975 **/
1976
1977static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1978{
1979        int i;
1980
1981        for (i = 0; i < adapter->num_tx_queues; i++)
1982                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1983}
1984
1985/**
1986 * e1000_free_rx_resources - Free Rx Resources
1987 * @adapter: board private structure
1988 * @rx_ring: ring to clean the resources from
1989 *
1990 * Free all receive software resources
1991 **/
1992
1993static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1994                                    struct e1000_rx_ring *rx_ring)
1995{
1996        struct pci_dev *pdev = adapter->pdev;
1997
1998        e1000_clean_rx_ring(adapter, rx_ring);
1999
2000        vfree(rx_ring->buffer_info);
2001        rx_ring->buffer_info = NULL;
2002
2003        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2004                          rx_ring->dma);
2005
2006        rx_ring->desc = NULL;
2007}
2008
2009/**
2010 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2011 * @adapter: board private structure
2012 *
2013 * Free all receive software resources
2014 **/
2015
2016void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2017{
2018        int i;
2019
2020        for (i = 0; i < adapter->num_rx_queues; i++)
2021                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2022}
2023
2024/**
2025 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2026 * @adapter: board private structure
2027 * @rx_ring: ring to free buffers from
2028 **/
2029
2030static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2031                                struct e1000_rx_ring *rx_ring)
2032{
2033        struct e1000_hw *hw = &adapter->hw;
2034        struct e1000_buffer *buffer_info;
2035        struct pci_dev *pdev = adapter->pdev;
2036        unsigned long size;
2037        unsigned int i;
2038
2039        /* Free all the Rx ring sk_buffs */
2040        for (i = 0; i < rx_ring->count; i++) {
2041                buffer_info = &rx_ring->buffer_info[i];
2042                if (buffer_info->dma &&
2043                    adapter->clean_rx == e1000_clean_rx_irq) {
2044                        dma_unmap_single(&pdev->dev, buffer_info->dma,
2045                                         buffer_info->length,
2046                                         DMA_FROM_DEVICE);
2047                } else if (buffer_info->dma &&
2048                           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2049                        dma_unmap_page(&pdev->dev, buffer_info->dma,
2050                                       buffer_info->length,
2051                                       DMA_FROM_DEVICE);
2052                }
2053
2054                buffer_info->dma = 0;
2055                if (buffer_info->page) {
2056                        put_page(buffer_info->page);
2057                        buffer_info->page = NULL;
2058                }
2059                if (buffer_info->skb) {
2060                        dev_kfree_skb(buffer_info->skb);
2061                        buffer_info->skb = NULL;
2062                }
2063        }
2064
2065        /* there also may be some cached data from a chained receive */
2066        if (rx_ring->rx_skb_top) {
2067                dev_kfree_skb(rx_ring->rx_skb_top);
2068                rx_ring->rx_skb_top = NULL;
2069        }
2070
2071        size = sizeof(struct e1000_buffer) * rx_ring->count;
2072        memset(rx_ring->buffer_info, 0, size);
2073
2074        /* Zero out the descriptor ring */
2075        memset(rx_ring->desc, 0, rx_ring->size);
2076
2077        rx_ring->next_to_clean = 0;
2078        rx_ring->next_to_use = 0;
2079
2080        writel(0, hw->hw_addr + rx_ring->rdh);
2081        writel(0, hw->hw_addr + rx_ring->rdt);
2082}
2083
2084/**
2085 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2086 * @adapter: board private structure
2087 **/
2088
2089static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2090{
2091        int i;
2092
2093        for (i = 0; i < adapter->num_rx_queues; i++)
2094                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2095}
2096
2097/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2098 * and memory write and invalidate disabled for certain operations
2099 */
2100static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2101{
2102        struct e1000_hw *hw = &adapter->hw;
2103        struct net_device *netdev = adapter->netdev;
2104        u32 rctl;
2105
2106        e1000_pci_clear_mwi(hw);
2107
2108        rctl = er32(RCTL);
2109        rctl |= E1000_RCTL_RST;
2110        ew32(RCTL, rctl);
2111        E1000_WRITE_FLUSH();
2112        mdelay(5);
2113
2114        if (netif_running(netdev))
2115                e1000_clean_all_rx_rings(adapter);
2116}
2117
2118static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2119{
2120        struct e1000_hw *hw = &adapter->hw;
2121        struct net_device *netdev = adapter->netdev;
2122        u32 rctl;
2123
2124        rctl = er32(RCTL);
2125        rctl &= ~E1000_RCTL_RST;
2126        ew32(RCTL, rctl);
2127        E1000_WRITE_FLUSH();
2128        mdelay(5);
2129
2130        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2131                e1000_pci_set_mwi(hw);
2132
2133        if (netif_running(netdev)) {
2134                /* No need to loop, because 82542 supports only 1 queue */
2135                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2136                e1000_configure_rx(adapter);
2137                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2138        }
2139}
2140
2141/**
2142 * e1000_set_mac - Change the Ethernet Address of the NIC
2143 * @netdev: network interface device structure
2144 * @p: pointer to an address structure
2145 *
2146 * Returns 0 on success, negative on failure
2147 **/
2148
2149static int e1000_set_mac(struct net_device *netdev, void *p)
2150{
2151        struct e1000_adapter *adapter = netdev_priv(netdev);
2152        struct e1000_hw *hw = &adapter->hw;
2153        struct sockaddr *addr = p;
2154
2155        if (!is_valid_ether_addr(addr->sa_data))
2156                return -EADDRNOTAVAIL;
2157
2158        /* 82542 2.0 needs to be in reset to write receive address registers */
2159
2160        if (hw->mac_type == e1000_82542_rev2_0)
2161                e1000_enter_82542_rst(adapter);
2162
2163        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2164        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2165
2166        e1000_rar_set(hw, hw->mac_addr, 0);
2167
2168        if (hw->mac_type == e1000_82542_rev2_0)
2169                e1000_leave_82542_rst(adapter);
2170
2171        return 0;
2172}
2173
2174/**
2175 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2176 * @netdev: network interface device structure
2177 *
2178 * The set_rx_mode entry point is called whenever the unicast or multicast
2179 * address lists or the network interface flags are updated. This routine is
2180 * responsible for configuring the hardware for proper unicast, multicast,
2181 * promiscuous mode, and all-multi behavior.
2182 **/
2183
2184static void e1000_set_rx_mode(struct net_device *netdev)
2185{
2186        struct e1000_adapter *adapter = netdev_priv(netdev);
2187        struct e1000_hw *hw = &adapter->hw;
2188        struct netdev_hw_addr *ha;
2189        bool use_uc = false;
2190        u32 rctl;
2191        u32 hash_value;
2192        int i, rar_entries = E1000_RAR_ENTRIES;
2193        int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2194        u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2195
2196        if (!mcarray) {
2197                e_err(probe, "memory allocation failed\n");
2198                return;
2199        }
2200
2201        /* Check for Promiscuous and All Multicast modes */
2202
2203        rctl = er32(RCTL);
2204
2205        if (netdev->flags & IFF_PROMISC) {
2206                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2207                rctl &= ~E1000_RCTL_VFE;
2208        } else {
2209                if (netdev->flags & IFF_ALLMULTI)
2210                        rctl |= E1000_RCTL_MPE;
2211                else
2212                        rctl &= ~E1000_RCTL_MPE;
2213                /* Enable VLAN filter if there is a VLAN */
2214                if (adapter->vlgrp)
2215                        rctl |= E1000_RCTL_VFE;
2216        }
2217
2218        if (netdev_uc_count(netdev) > rar_entries - 1) {
2219                rctl |= E1000_RCTL_UPE;
2220        } else if (!(netdev->flags & IFF_PROMISC)) {
2221                rctl &= ~E1000_RCTL_UPE;
2222                use_uc = true;
2223        }
2224
2225        ew32(RCTL, rctl);
2226
2227        /* 82542 2.0 needs to be in reset to write receive address registers */
2228
2229        if (hw->mac_type == e1000_82542_rev2_0)
2230                e1000_enter_82542_rst(adapter);
2231
2232        /* load the first 14 addresses into the exact filters 1-14. Unicast
2233         * addresses take precedence to avoid disabling unicast filtering
2234         * when possible.
2235         *
2236         * RAR 0 is used for the station MAC address
2237         * if there are not 14 addresses, go ahead and clear the filters
2238         */
2239        i = 1;
2240        if (use_uc)
2241                netdev_for_each_uc_addr(ha, netdev) {
2242                        if (i == rar_entries)
2243                                break;
2244                        e1000_rar_set(hw, ha->addr, i++);
2245                }
2246
2247        netdev_for_each_mc_addr(ha, netdev) {
2248                if (i == rar_entries) {
2249                        /* load any remaining addresses into the hash table */
2250                        u32 hash_reg, hash_bit, mta;
2251                        hash_value = e1000_hash_mc_addr(hw, ha->addr);
2252                        hash_reg = (hash_value >> 5) & 0x7F;
2253                        hash_bit = hash_value & 0x1F;
2254                        mta = (1 << hash_bit);
2255                        mcarray[hash_reg] |= mta;
2256                } else {
2257                        e1000_rar_set(hw, ha->addr, i++);
2258                }
2259        }
2260
2261        for (; i < rar_entries; i++) {
2262                E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2263                E1000_WRITE_FLUSH();
2264                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2265                E1000_WRITE_FLUSH();
2266        }
2267
2268        /* write the hash table completely, write from bottom to avoid
2269         * both stupid write combining chipsets, and flushing each write */
2270        for (i = mta_reg_count - 1; i >= 0 ; i--) {
2271                /*
2272                 * If we are on an 82544 has an errata where writing odd
2273                 * offsets overwrites the previous even offset, but writing
2274                 * backwards over the range solves the issue by always
2275                 * writing the odd offset first
2276                 */
2277                E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2278        }
2279        E1000_WRITE_FLUSH();
2280
2281        if (hw->mac_type == e1000_82542_rev2_0)
2282                e1000_leave_82542_rst(adapter);
2283
2284        kfree(mcarray);
2285}
2286
2287/* Need to wait a few seconds after link up to get diagnostic information from
2288 * the phy */
2289
2290static void e1000_update_phy_info(unsigned long data)
2291{
2292        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2293        schedule_work(&adapter->phy_info_task);
2294}
2295
2296static void e1000_update_phy_info_task(struct work_struct *work)
2297{
2298        struct e1000_adapter *adapter = container_of(work,
2299                                                     struct e1000_adapter,
2300                                                     phy_info_task);
2301        struct e1000_hw *hw = &adapter->hw;
2302
2303        rtnl_lock();
2304        e1000_phy_get_info(hw, &adapter->phy_info);
2305        rtnl_unlock();
2306}
2307
2308/**
2309 * e1000_82547_tx_fifo_stall - Timer Call-back
2310 * @data: pointer to adapter cast into an unsigned long
2311 **/
2312static void e1000_82547_tx_fifo_stall(unsigned long data)
2313{
2314        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2315        schedule_work(&adapter->fifo_stall_task);
2316}
2317
2318/**
2319 * e1000_82547_tx_fifo_stall_task - task to complete work
2320 * @work: work struct contained inside adapter struct
2321 **/
2322static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2323{
2324        struct e1000_adapter *adapter = container_of(work,
2325                                                     struct e1000_adapter,
2326                                                     fifo_stall_task);
2327        struct e1000_hw *hw = &adapter->hw;
2328        struct net_device *netdev = adapter->netdev;
2329        u32 tctl;
2330
2331        rtnl_lock();
2332        if (atomic_read(&adapter->tx_fifo_stall)) {
2333                if ((er32(TDT) == er32(TDH)) &&
2334                   (er32(TDFT) == er32(TDFH)) &&
2335                   (er32(TDFTS) == er32(TDFHS))) {
2336                        tctl = er32(TCTL);
2337                        ew32(TCTL, tctl & ~E1000_TCTL_EN);
2338                        ew32(TDFT, adapter->tx_head_addr);
2339                        ew32(TDFH, adapter->tx_head_addr);
2340                        ew32(TDFTS, adapter->tx_head_addr);
2341                        ew32(TDFHS, adapter->tx_head_addr);
2342                        ew32(TCTL, tctl);
2343                        E1000_WRITE_FLUSH();
2344
2345                        adapter->tx_fifo_head = 0;
2346                        atomic_set(&adapter->tx_fifo_stall, 0);
2347                        netif_wake_queue(netdev);
2348                } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2349                        mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2350                }
2351        }
2352        rtnl_unlock();
2353}
2354
2355bool e1000_has_link(struct e1000_adapter *adapter)
2356{
2357        struct e1000_hw *hw = &adapter->hw;
2358        bool link_active = false;
2359
2360        /* get_link_status is set on LSC (link status) interrupt or
2361         * rx sequence error interrupt.  get_link_status will stay
2362         * false until the e1000_check_for_link establishes link
2363         * for copper adapters ONLY
2364         */
2365        switch (hw->media_type) {
2366        case e1000_media_type_copper:
2367                if (hw->get_link_status) {
2368                        e1000_check_for_link(hw);
2369                        link_active = !hw->get_link_status;
2370                } else {
2371                        link_active = true;
2372                }
2373                break;
2374        case e1000_media_type_fiber:
2375                e1000_check_for_link(hw);
2376                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2377                break;
2378        case e1000_media_type_internal_serdes:
2379                e1000_check_for_link(hw);
2380                link_active = hw->serdes_has_link;
2381                break;
2382        default:
2383                break;
2384        }
2385
2386        return link_active;
2387}
2388
2389/**
2390 * e1000_watchdog - Timer Call-back
2391 * @data: pointer to adapter cast into an unsigned long
2392 **/
2393static void e1000_watchdog(unsigned long data)
2394{
2395        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2396        struct e1000_hw *hw = &adapter->hw;
2397        struct net_device *netdev = adapter->netdev;
2398        struct e1000_tx_ring *txdr = adapter->tx_ring;
2399        u32 link, tctl;
2400
2401        link = e1000_has_link(adapter);
2402        if ((netif_carrier_ok(netdev)) && link)
2403                goto link_up;
2404
2405        if (link) {
2406                if (!netif_carrier_ok(netdev)) {
2407                        u32 ctrl;
2408                        bool txb2b = true;
2409                        /* update snapshot of PHY registers on LSC */
2410                        e1000_get_speed_and_duplex(hw,
2411                                                   &adapter->link_speed,
2412                                                   &adapter->link_duplex);
2413
2414                        ctrl = er32(CTRL);
2415                        pr_info("%s NIC Link is Up %d Mbps %s, "
2416                                "Flow Control: %s\n",
2417                                netdev->name,
2418                                adapter->link_speed,
2419                                adapter->link_duplex == FULL_DUPLEX ?
2420                                "Full Duplex" : "Half Duplex",
2421                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2422                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2423                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2424                                E1000_CTRL_TFCE) ? "TX" : "None")));
2425
2426                        /* adjust timeout factor according to speed/duplex */
2427                        adapter->tx_timeout_factor = 1;
2428                        switch (adapter->link_speed) {
2429                        case SPEED_10:
2430                                txb2b = false;
2431                                adapter->tx_timeout_factor = 16;
2432                                break;
2433                        case SPEED_100:
2434                                txb2b = false;
2435                                /* maybe add some timeout factor ? */
2436                                break;
2437                        }
2438
2439                        /* enable transmits in the hardware */
2440                        tctl = er32(TCTL);
2441                        tctl |= E1000_TCTL_EN;
2442                        ew32(TCTL, tctl);
2443
2444                        netif_carrier_on(netdev);
2445                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2446                                mod_timer(&adapter->phy_info_timer,
2447                                          round_jiffies(jiffies + 2 * HZ));
2448                        adapter->smartspeed = 0;
2449                }
2450        } else {
2451                if (netif_carrier_ok(netdev)) {
2452                        adapter->link_speed = 0;
2453                        adapter->link_duplex = 0;
2454                        pr_info("%s NIC Link is Down\n",
2455                                netdev->name);
2456                        netif_carrier_off(netdev);
2457
2458                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2459                                mod_timer(&adapter->phy_info_timer,
2460                                          round_jiffies(jiffies + 2 * HZ));
2461                }
2462
2463                e1000_smartspeed(adapter);
2464        }
2465
2466link_up:
2467        e1000_update_stats(adapter);
2468
2469        hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2470        adapter->tpt_old = adapter->stats.tpt;
2471        hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2472        adapter->colc_old = adapter->stats.colc;
2473
2474        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2475        adapter->gorcl_old = adapter->stats.gorcl;
2476        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2477        adapter->gotcl_old = adapter->stats.gotcl;
2478
2479        e1000_update_adaptive(hw);
2480
2481        if (!netif_carrier_ok(netdev)) {
2482                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2483                        /* We've lost link, so the controller stops DMA,
2484                         * but we've got queued Tx work that's never going
2485                         * to get done, so reset controller to flush Tx.
2486                         * (Do the reset outside of interrupt context). */
2487                        adapter->tx_timeout_count++;
2488                        schedule_work(&adapter->reset_task);
2489                        /* return immediately since reset is imminent */
2490                        return;
2491                }
2492        }
2493
2494        /* Simple mode for Interrupt Throttle Rate (ITR) */
2495        if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2496                /*
2497                 * Symmetric Tx/Rx gets a reduced ITR=2000;
2498                 * Total asymmetrical Tx or Rx gets ITR=8000;
2499                 * everyone else is between 2000-8000.
2500                 */
2501                u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2502                u32 dif = (adapter->gotcl > adapter->gorcl ?
2503                            adapter->gotcl - adapter->gorcl :
2504                            adapter->gorcl - adapter->gotcl) / 10000;
2505                u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2506
2507                ew32(ITR, 1000000000 / (itr * 256));
2508        }
2509
2510        /* Cause software interrupt to ensure rx ring is cleaned */
2511        ew32(ICS, E1000_ICS_RXDMT0);
2512
2513        /* Force detection of hung controller every watchdog period */
2514        adapter->detect_tx_hung = true;
2515
2516        /* Reset the timer */
2517        if (!test_bit(__E1000_DOWN, &adapter->flags))
2518                mod_timer(&adapter->watchdog_timer,
2519                          round_jiffies(jiffies + 2 * HZ));
2520}
2521
2522enum latency_range {
2523        lowest_latency = 0,
2524        low_latency = 1,
2525        bulk_latency = 2,
2526        latency_invalid = 255
2527};
2528
2529/**
2530 * e1000_update_itr - update the dynamic ITR value based on statistics
2531 * @adapter: pointer to adapter
2532 * @itr_setting: current adapter->itr
2533 * @packets: the number of packets during this measurement interval
2534 * @bytes: the number of bytes during this measurement interval
2535 *
2536 *      Stores a new ITR value based on packets and byte
2537 *      counts during the last interrupt.  The advantage of per interrupt
2538 *      computation is faster updates and more accurate ITR for the current
2539 *      traffic pattern.  Constants in this function were computed
2540 *      based on theoretical maximum wire speed and thresholds were set based
2541 *      on testing data as well as attempting to minimize response time
2542 *      while increasing bulk throughput.
2543 *      this functionality is controlled by the InterruptThrottleRate module
2544 *      parameter (see e1000_param.c)
2545 **/
2546static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2547                                     u16 itr_setting, int packets, int bytes)
2548{
2549        unsigned int retval = itr_setting;
2550        struct e1000_hw *hw = &adapter->hw;
2551
2552        if (unlikely(hw->mac_type < e1000_82540))
2553                goto update_itr_done;
2554
2555        if (packets == 0)
2556                goto update_itr_done;
2557
2558        switch (itr_setting) {
2559        case lowest_latency:
2560                /* jumbo frames get bulk treatment*/
2561                if (bytes/packets > 8000)
2562                        retval = bulk_latency;
2563                else if ((packets < 5) && (bytes > 512))
2564                        retval = low_latency;
2565                break;
2566        case low_latency:  /* 50 usec aka 20000 ints/s */
2567                if (bytes > 10000) {
2568                        /* jumbo frames need bulk latency setting */
2569                        if (bytes/packets > 8000)
2570                                retval = bulk_latency;
2571                        else if ((packets < 10) || ((bytes/packets) > 1200))
2572                                retval = bulk_latency;
2573                        else if ((packets > 35))
2574                                retval = lowest_latency;
2575                } else if (bytes/packets > 2000)
2576                        retval = bulk_latency;
2577                else if (packets <= 2 && bytes < 512)
2578                        retval = lowest_latency;
2579                break;
2580        case bulk_latency: /* 250 usec aka 4000 ints/s */
2581                if (bytes > 25000) {
2582                        if (packets > 35)
2583                                retval = low_latency;
2584                } else if (bytes < 6000) {
2585                        retval = low_latency;
2586                }
2587                break;
2588        }
2589
2590update_itr_done:
2591        return retval;
2592}
2593
2594static void e1000_set_itr(struct e1000_adapter *adapter)
2595{
2596        struct e1000_hw *hw = &adapter->hw;
2597        u16 current_itr;
2598        u32 new_itr = adapter->itr;
2599
2600        if (unlikely(hw->mac_type < e1000_82540))
2601                return;
2602
2603        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2604        if (unlikely(adapter->link_speed != SPEED_1000)) {
2605                current_itr = 0;
2606                new_itr = 4000;
2607                goto set_itr_now;
2608        }
2609
2610        adapter->tx_itr = e1000_update_itr(adapter,
2611                                    adapter->tx_itr,
2612                                    adapter->total_tx_packets,
2613                                    adapter->total_tx_bytes);
2614        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2615        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2616                adapter->tx_itr = low_latency;
2617
2618        adapter->rx_itr = e1000_update_itr(adapter,
2619                                    adapter->rx_itr,
2620                                    adapter->total_rx_packets,
2621                                    adapter->total_rx_bytes);
2622        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2623        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2624                adapter->rx_itr = low_latency;
2625
2626        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2627
2628        switch (current_itr) {
2629        /* counts and packets in update_itr are dependent on these numbers */
2630        case lowest_latency:
2631                new_itr = 70000;
2632                break;
2633        case low_latency:
2634                new_itr = 20000; /* aka hwitr = ~200 */
2635                break;
2636        case bulk_latency:
2637                new_itr = 4000;
2638                break;
2639        default:
2640                break;
2641        }
2642
2643set_itr_now:
2644        if (new_itr != adapter->itr) {
2645                /* this attempts to bias the interrupt rate towards Bulk
2646                 * by adding intermediate steps when interrupt rate is
2647                 * increasing */
2648                new_itr = new_itr > adapter->itr ?
2649                             min(adapter->itr + (new_itr >> 2), new_itr) :
2650                             new_itr;
2651                adapter->itr = new_itr;
2652                ew32(ITR, 1000000000 / (new_itr * 256));
2653        }
2654}
2655
2656#define E1000_TX_FLAGS_CSUM             0x00000001
2657#define E1000_TX_FLAGS_VLAN             0x00000002
2658#define E1000_TX_FLAGS_TSO              0x00000004
2659#define E1000_TX_FLAGS_IPV4             0x00000008
2660#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2661#define E1000_TX_FLAGS_VLAN_SHIFT       16
2662
2663static int e1000_tso(struct e1000_adapter *adapter,
2664                     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2665{
2666        struct e1000_context_desc *context_desc;
2667        struct e1000_buffer *buffer_info;
2668        unsigned int i;
2669        u32 cmd_length = 0;
2670        u16 ipcse = 0, tucse, mss;
2671        u8 ipcss, ipcso, tucss, tucso, hdr_len;
2672        int err;
2673
2674        if (skb_is_gso(skb)) {
2675                if (skb_header_cloned(skb)) {
2676                        err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2677                        if (err)
2678                                return err;
2679                }
2680
2681                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2682                mss = skb_shinfo(skb)->gso_size;
2683                if (skb->protocol == htons(ETH_P_IP)) {
2684                        struct iphdr *iph = ip_hdr(skb);
2685                        iph->tot_len = 0;
2686                        iph->check = 0;
2687                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2688                                                                 iph->daddr, 0,
2689                                                                 IPPROTO_TCP,
2690                                                                 0);
2691                        cmd_length = E1000_TXD_CMD_IP;
2692                        ipcse = skb_transport_offset(skb) - 1;
2693                } else if (skb->protocol == htons(ETH_P_IPV6)) {
2694                        ipv6_hdr(skb)->payload_len = 0;
2695                        tcp_hdr(skb)->check =
2696                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2697                                                 &ipv6_hdr(skb)->daddr,
2698                                                 0, IPPROTO_TCP, 0);
2699                        ipcse = 0;
2700                }
2701                ipcss = skb_network_offset(skb);
2702                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2703                tucss = skb_transport_offset(skb);
2704                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2705                tucse = 0;
2706
2707                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2708                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2709
2710                i = tx_ring->next_to_use;
2711                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2712                buffer_info = &tx_ring->buffer_info[i];
2713
2714                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2715                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2716                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2717                context_desc->upper_setup.tcp_fields.tucss = tucss;
2718                context_desc->upper_setup.tcp_fields.tucso = tucso;
2719                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2720                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2721                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2722                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2723
2724                buffer_info->time_stamp = jiffies;
2725                buffer_info->next_to_watch = i;
2726
2727                if (++i == tx_ring->count) i = 0;
2728                tx_ring->next_to_use = i;
2729
2730                return true;
2731        }
2732        return false;
2733}
2734
2735static bool e1000_tx_csum(struct e1000_adapter *adapter,
2736                          struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2737{
2738        struct e1000_context_desc *context_desc;
2739        struct e1000_buffer *buffer_info;
2740        unsigned int i;
2741        u8 css;
2742        u32 cmd_len = E1000_TXD_CMD_DEXT;
2743
2744        if (skb->ip_summed != CHECKSUM_PARTIAL)
2745                return false;
2746
2747        switch (skb->protocol) {
2748        case cpu_to_be16(ETH_P_IP):
2749                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2750                        cmd_len |= E1000_TXD_CMD_TCP;
2751                break;
2752        case cpu_to_be16(ETH_P_IPV6):
2753                /* XXX not handling all IPV6 headers */
2754                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2755                        cmd_len |= E1000_TXD_CMD_TCP;
2756                break;
2757        default:
2758                if (unlikely(net_ratelimit()))
2759                        e_warn(drv, "checksum_partial proto=%x!\n",
2760                               skb->protocol);
2761                break;
2762        }
2763
2764        css = skb_checksum_start_offset(skb);
2765
2766        i = tx_ring->next_to_use;
2767        buffer_info = &tx_ring->buffer_info[i];
2768        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2769
2770        context_desc->lower_setup.ip_config = 0;
2771        context_desc->upper_setup.tcp_fields.tucss = css;
2772        context_desc->upper_setup.tcp_fields.tucso =
2773                css + skb->csum_offset;
2774        context_desc->upper_setup.tcp_fields.tucse = 0;
2775        context_desc->tcp_seg_setup.data = 0;
2776        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2777
2778        buffer_info->time_stamp = jiffies;
2779        buffer_info->next_to_watch = i;
2780
2781        if (unlikely(++i == tx_ring->count)) i = 0;
2782        tx_ring->next_to_use = i;
2783
2784        return true;
2785}
2786
2787#define E1000_MAX_TXD_PWR       12
2788#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2789
2790static int e1000_tx_map(struct e1000_adapter *adapter,
2791                        struct e1000_tx_ring *tx_ring,
2792                        struct sk_buff *skb, unsigned int first,
2793                        unsigned int max_per_txd, unsigned int nr_frags,
2794                        unsigned int mss)
2795{
2796        struct e1000_hw *hw = &adapter->hw;
2797        struct pci_dev *pdev = adapter->pdev;
2798        struct e1000_buffer *buffer_info;
2799        unsigned int len = skb_headlen(skb);
2800        unsigned int offset = 0, size, count = 0, i;
2801        unsigned int f;
2802
2803        i = tx_ring->next_to_use;
2804
2805        while (len) {
2806                buffer_info = &tx_ring->buffer_info[i];
2807                size = min(len, max_per_txd);
2808                /* Workaround for Controller erratum --
2809                 * descriptor for non-tso packet in a linear SKB that follows a
2810                 * tso gets written back prematurely before the data is fully
2811                 * DMA'd to the controller */
2812                if (!skb->data_len && tx_ring->last_tx_tso &&
2813                    !skb_is_gso(skb)) {
2814                        tx_ring->last_tx_tso = 0;
2815                        size -= 4;
2816                }
2817
2818                /* Workaround for premature desc write-backs
2819                 * in TSO mode.  Append 4-byte sentinel desc */
2820                if (unlikely(mss && !nr_frags && size == len && size > 8))
2821                        size -= 4;
2822                /* work-around for errata 10 and it applies
2823                 * to all controllers in PCI-X mode
2824                 * The fix is to make sure that the first descriptor of a
2825                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2826                 */
2827                if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2828                                (size > 2015) && count == 0))
2829                        size = 2015;
2830
2831                /* Workaround for potential 82544 hang in PCI-X.  Avoid
2832                 * terminating buffers within evenly-aligned dwords. */
2833                if (unlikely(adapter->pcix_82544 &&
2834                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2835                   size > 4))
2836                        size -= 4;
2837
2838                buffer_info->length = size;
2839                /* set time_stamp *before* dma to help avoid a possible race */
2840                buffer_info->time_stamp = jiffies;
2841                buffer_info->mapped_as_page = false;
2842                buffer_info->dma = dma_map_single(&pdev->dev,
2843                                                  skb->data + offset,
2844                                                  size, DMA_TO_DEVICE);
2845                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2846                        goto dma_error;
2847                buffer_info->next_to_watch = i;
2848
2849                len -= size;
2850                offset += size;
2851                count++;
2852                if (len) {
2853                        i++;
2854                        if (unlikely(i == tx_ring->count))
2855                                i = 0;
2856                }
2857        }
2858
2859        for (f = 0; f < nr_frags; f++) {
2860                struct skb_frag_struct *frag;
2861
2862                frag = &skb_shinfo(skb)->frags[f];
2863                len = frag->size;
2864                offset = frag->page_offset;
2865
2866                while (len) {
2867                        i++;
2868                        if (unlikely(i == tx_ring->count))
2869                                i = 0;
2870
2871                        buffer_info = &tx_ring->buffer_info[i];
2872                        size = min(len, max_per_txd);
2873                        /* Workaround for premature desc write-backs
2874                         * in TSO mode.  Append 4-byte sentinel desc */
2875                        if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2876                                size -= 4;
2877                        /* Workaround for potential 82544 hang in PCI-X.
2878                         * Avoid terminating buffers within evenly-aligned
2879                         * dwords. */
2880                        if (unlikely(adapter->pcix_82544 &&
2881                            !((unsigned long)(page_to_phys(frag->page) + offset
2882                                              + size - 1) & 4) &&
2883                            size > 4))
2884                                size -= 4;
2885
2886                        buffer_info->length = size;
2887                        buffer_info->time_stamp = jiffies;
2888                        buffer_info->mapped_as_page = true;
2889                        buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2890                                                        offset, size,
2891                                                        DMA_TO_DEVICE);
2892                        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2893                                goto dma_error;
2894                        buffer_info->next_to_watch = i;
2895
2896                        len -= size;
2897                        offset += size;
2898                        count++;
2899                }
2900        }
2901
2902        tx_ring->buffer_info[i].skb = skb;
2903        tx_ring->buffer_info[first].next_to_watch = i;
2904
2905        return count;
2906
2907dma_error:
2908        dev_err(&pdev->dev, "TX DMA map failed\n");
2909        buffer_info->dma = 0;
2910        if (count)
2911                count--;
2912
2913        while (count--) {
2914                if (i==0)
2915                        i += tx_ring->count;
2916                i--;
2917                buffer_info = &tx_ring->buffer_info[i];
2918                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2919        }
2920
2921        return 0;
2922}
2923
2924static void e1000_tx_queue(struct e1000_adapter *adapter,
2925                           struct e1000_tx_ring *tx_ring, int tx_flags,
2926                           int count)
2927{
2928        struct e1000_hw *hw = &adapter->hw;
2929        struct e1000_tx_desc *tx_desc = NULL;
2930        struct e1000_buffer *buffer_info;
2931        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2932        unsigned int i;
2933
2934        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2935                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2936                             E1000_TXD_CMD_TSE;
2937                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2938
2939                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2940                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2941        }
2942
2943        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2944                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2945                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2946        }
2947
2948        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2949                txd_lower |= E1000_TXD_CMD_VLE;
2950                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2951        }
2952
2953        i = tx_ring->next_to_use;
2954
2955        while (count--) {
2956                buffer_info = &tx_ring->buffer_info[i];
2957                tx_desc = E1000_TX_DESC(*tx_ring, i);
2958                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2959                tx_desc->lower.data =
2960                        cpu_to_le32(txd_lower | buffer_info->length);
2961                tx_desc->upper.data = cpu_to_le32(txd_upper);
2962                if (unlikely(++i == tx_ring->count)) i = 0;
2963        }
2964
2965        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2966
2967        /* Force memory writes to complete before letting h/w
2968         * know there are new descriptors to fetch.  (Only
2969         * applicable for weak-ordered memory model archs,
2970         * such as IA-64). */
2971        wmb();
2972
2973        tx_ring->next_to_use = i;
2974        writel(i, hw->hw_addr + tx_ring->tdt);
2975        /* we need this if more than one processor can write to our tail
2976         * at a time, it syncronizes IO on IA64/Altix systems */
2977        mmiowb();
2978}
2979
2980/**
2981 * 82547 workaround to avoid controller hang in half-duplex environment.
2982 * The workaround is to avoid queuing a large packet that would span
2983 * the internal Tx FIFO ring boundary by notifying the stack to resend
2984 * the packet at a later time.  This gives the Tx FIFO an opportunity to
2985 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2986 * to the beginning of the Tx FIFO.
2987 **/
2988
2989#define E1000_FIFO_HDR                  0x10
2990#define E1000_82547_PAD_LEN             0x3E0
2991
2992static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2993                                       struct sk_buff *skb)
2994{
2995        u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2996        u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2997
2998        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2999
3000        if (adapter->link_duplex != HALF_DUPLEX)
3001                goto no_fifo_stall_required;
3002
3003        if (atomic_read(&adapter->tx_fifo_stall))
3004                return 1;
3005
3006        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3007                atomic_set(&adapter->tx_fifo_stall, 1);
3008                return 1;
3009        }
3010
3011no_fifo_stall_required:
3012        adapter->tx_fifo_head += skb_fifo_len;
3013        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3014                adapter->tx_fifo_head -= adapter->tx_fifo_size;
3015        return 0;
3016}
3017
3018static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3019{
3020        struct e1000_adapter *adapter = netdev_priv(netdev);
3021        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3022
3023        netif_stop_queue(netdev);
3024        /* Herbert's original patch had:
3025         *  smp_mb__after_netif_stop_queue();
3026         * but since that doesn't exist yet, just open code it. */
3027        smp_mb();
3028
3029        /* We need to check again in a case another CPU has just
3030         * made room available. */
3031        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3032                return -EBUSY;
3033
3034        /* A reprieve! */
3035        netif_start_queue(netdev);
3036        ++adapter->restart_queue;
3037        return 0;
3038}
3039
3040static int e1000_maybe_stop_tx(struct net_device *netdev,
3041                               struct e1000_tx_ring *tx_ring, int size)
3042{
3043        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3044                return 0;
3045        return __e1000_maybe_stop_tx(netdev, size);
3046}
3047
3048#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3049static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3050                                    struct net_device *netdev)
3051{
3052        struct e1000_adapter *adapter = netdev_priv(netdev);
3053        struct e1000_hw *hw = &adapter->hw;
3054        struct e1000_tx_ring *tx_ring;
3055        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3056        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3057        unsigned int tx_flags = 0;
3058        unsigned int len = skb_headlen(skb);
3059        unsigned int nr_frags;
3060        unsigned int mss;
3061        int count = 0;
3062        int tso;
3063        unsigned int f;
3064
3065        /* This goes back to the question of how to logically map a tx queue
3066         * to a flow.  Right now, performance is impacted slightly negatively
3067         * if using multiple tx queues.  If the stack breaks away from a
3068         * single qdisc implementation, we can look at this again. */
3069        tx_ring = adapter->tx_ring;
3070
3071        if (unlikely(skb->len <= 0)) {
3072                dev_kfree_skb_any(skb);
3073                return NETDEV_TX_OK;
3074        }
3075
3076        mss = skb_shinfo(skb)->gso_size;
3077        /* The controller does a simple calculation to
3078         * make sure there is enough room in the FIFO before
3079         * initiating the DMA for each buffer.  The calc is:
3080         * 4 = ceil(buffer len/mss).  To make sure we don't
3081         * overrun the FIFO, adjust the max buffer len if mss
3082         * drops. */
3083        if (mss) {
3084                u8 hdr_len;
3085                max_per_txd = min(mss << 2, max_per_txd);
3086                max_txd_pwr = fls(max_per_txd) - 1;
3087
3088                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3089                if (skb->data_len && hdr_len == len) {
3090                        switch (hw->mac_type) {
3091                                unsigned int pull_size;
3092                        case e1000_82544:
3093                                /* Make sure we have room to chop off 4 bytes,
3094                                 * and that the end alignment will work out to
3095                                 * this hardware's requirements
3096                                 * NOTE: this is a TSO only workaround
3097                                 * if end byte alignment not correct move us
3098                                 * into the next dword */
3099                                if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3100                                        break;
3101                                /* fall through */
3102                                pull_size = min((unsigned int)4, skb->data_len);
3103                                if (!__pskb_pull_tail(skb, pull_size)) {
3104                                        e_err(drv, "__pskb_pull_tail "
3105                                              "failed.\n");
3106                                        dev_kfree_skb_any(skb);
3107                                        return NETDEV_TX_OK;
3108                                }
3109                                len = skb_headlen(skb);
3110                                break;
3111                        default:
3112                                /* do nothing */
3113                                break;
3114                        }
3115                }
3116        }
3117
3118        /* reserve a descriptor for the offload context */
3119        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3120                count++;
3121        count++;
3122
3123        /* Controller Erratum workaround */
3124        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3125                count++;
3126
3127        count += TXD_USE_COUNT(len, max_txd_pwr);
3128
3129        if (adapter->pcix_82544)
3130                count++;
3131
3132        /* work-around for errata 10 and it applies to all controllers
3133         * in PCI-X mode, so add one more descriptor to the count
3134         */
3135        if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3136                        (len > 2015)))
3137                count++;
3138
3139        nr_frags = skb_shinfo(skb)->nr_frags;
3140        for (f = 0; f < nr_frags; f++)
3141                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3142                                       max_txd_pwr);
3143        if (adapter->pcix_82544)
3144                count += nr_frags;
3145
3146        /* need: count + 2 desc gap to keep tail from touching
3147         * head, otherwise try next time */
3148        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3149                return NETDEV_TX_BUSY;
3150
3151        if (unlikely(hw->mac_type == e1000_82547)) {
3152                if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3153                        netif_stop_queue(netdev);
3154                        if (!test_bit(__E1000_DOWN, &adapter->flags))
3155                                mod_timer(&adapter->tx_fifo_stall_timer,
3156                                          jiffies + 1);
3157                        return NETDEV_TX_BUSY;
3158                }
3159        }
3160
3161        if (unlikely(vlan_tx_tag_present(skb))) {
3162                tx_flags |= E1000_TX_FLAGS_VLAN;
3163                tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3164        }
3165
3166        first = tx_ring->next_to_use;
3167
3168        tso = e1000_tso(adapter, tx_ring, skb);
3169        if (tso < 0) {
3170                dev_kfree_skb_any(skb);
3171                return NETDEV_TX_OK;
3172        }
3173
3174        if (likely(tso)) {
3175                if (likely(hw->mac_type != e1000_82544))
3176                        tx_ring->last_tx_tso = 1;
3177                tx_flags |= E1000_TX_FLAGS_TSO;
3178        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3179                tx_flags |= E1000_TX_FLAGS_CSUM;
3180
3181        if (likely(skb->protocol == htons(ETH_P_IP)))
3182                tx_flags |= E1000_TX_FLAGS_IPV4;
3183
3184        count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3185                             nr_frags, mss);
3186
3187        if (count) {
3188                e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3189                /* Make sure there is space in the ring for the next send. */
3190                e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3191
3192        } else {
3193                dev_kfree_skb_any(skb);
3194                tx_ring->buffer_info[first].time_stamp = 0;
3195                tx_ring->next_to_use = first;
3196        }
3197
3198        return NETDEV_TX_OK;
3199}
3200
3201/**
3202 * e1000_tx_timeout - Respond to a Tx Hang
3203 * @netdev: network interface device structure
3204 **/
3205
3206static void e1000_tx_timeout(struct net_device *netdev)
3207{
3208        struct e1000_adapter *adapter = netdev_priv(netdev);
3209
3210        /* Do the reset outside of interrupt context */
3211        adapter->tx_timeout_count++;
3212        schedule_work(&adapter->reset_task);
3213}
3214
3215static void e1000_reset_task(struct work_struct *work)
3216{
3217        struct e1000_adapter *adapter =
3218                container_of(work, struct e1000_adapter, reset_task);
3219
3220        e1000_reinit_safe(adapter);
3221}
3222
3223/**
3224 * e1000_get_stats - Get System Network Statistics
3225 * @netdev: network interface device structure
3226 *
3227 * Returns the address of the device statistics structure.
3228 * The statistics are actually updated from the timer callback.
3229 **/
3230
3231static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3232{
3233        /* only return the current stats */
3234        return &netdev->stats;
3235}
3236
3237/**
3238 * e1000_change_mtu - Change the Maximum Transfer Unit
3239 * @netdev: network interface device structure
3240 * @new_mtu: new value for maximum frame size
3241 *
3242 * Returns 0 on success, negative on failure
3243 **/
3244
3245static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3246{
3247        struct e1000_adapter *adapter = netdev_priv(netdev);
3248        struct e1000_hw *hw = &adapter->hw;
3249        int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3250
3251        if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3252            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3253                e_err(probe, "Invalid MTU setting\n");
3254                return -EINVAL;
3255        }
3256
3257        /* Adapter-specific max frame size limits. */
3258        switch (hw->mac_type) {
3259        case e1000_undefined ... e1000_82542_rev2_1:
3260                if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3261                        e_err(probe, "Jumbo Frames not supported.\n");
3262                        return -EINVAL;
3263                }
3264                break;
3265        default:
3266                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3267                break;
3268        }
3269
3270        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3271                msleep(1);
3272        /* e1000_down has a dependency on max_frame_size */
3273        hw->max_frame_size = max_frame;
3274        if (netif_running(netdev))
3275                e1000_down(adapter);
3276
3277        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3278         * means we reserve 2 more, this pushes us to allocate from the next
3279         * larger slab size.
3280         * i.e. RXBUFFER_2048 --> size-4096 slab
3281         *  however with the new *_jumbo_rx* routines, jumbo receives will use
3282         *  fragmented skbs */
3283
3284        if (max_frame <= E1000_RXBUFFER_2048)
3285                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3286        else
3287#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3288                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3289#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3290                adapter->rx_buffer_len = PAGE_SIZE;
3291#endif
3292
3293        /* adjust allocation if LPE protects us, and we aren't using SBP */
3294        if (!hw->tbi_compatibility_on &&
3295            ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3296             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3297                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3298
3299        pr_info("%s changing MTU from %d to %d\n",
3300                netdev->name, netdev->mtu, new_mtu);
3301        netdev->mtu = new_mtu;
3302
3303        if (netif_running(netdev))
3304                e1000_up(adapter);
3305        else
3306                e1000_reset(adapter);
3307
3308        clear_bit(__E1000_RESETTING, &adapter->flags);
3309
3310        return 0;
3311}
3312
3313/**
3314 * e1000_update_stats - Update the board statistics counters
3315 * @adapter: board private structure
3316 **/
3317
3318void e1000_update_stats(struct e1000_adapter *adapter)
3319{
3320        struct net_device *netdev = adapter->netdev;
3321        struct e1000_hw *hw = &adapter->hw;
3322        struct pci_dev *pdev = adapter->pdev;
3323        unsigned long flags;
3324        u16 phy_tmp;
3325
3326#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3327
3328        /*
3329         * Prevent stats update while adapter is being reset, or if the pci
3330         * connection is down.
3331         */
3332        if (adapter->link_speed == 0)
3333                return;
3334        if (pci_channel_offline(pdev))
3335                return;
3336
3337        spin_lock_irqsave(&adapter->stats_lock, flags);
3338
3339        /* these counters are modified from e1000_tbi_adjust_stats,
3340         * called from the interrupt context, so they must only
3341         * be written while holding adapter->stats_lock
3342         */
3343
3344        adapter->stats.crcerrs += er32(CRCERRS);
3345        adapter->stats.gprc += er32(GPRC);
3346        adapter->stats.gorcl += er32(GORCL);
3347        adapter->stats.gorch += er32(GORCH);
3348        adapter->stats.bprc += er32(BPRC);
3349        adapter->stats.mprc += er32(MPRC);
3350        adapter->stats.roc += er32(ROC);
3351
3352        adapter->stats.prc64 += er32(PRC64);
3353        adapter->stats.prc127 += er32(PRC127);
3354        adapter->stats.prc255 += er32(PRC255);
3355        adapter->stats.prc511 += er32(PRC511);
3356        adapter->stats.prc1023 += er32(PRC1023);
3357        adapter->stats.prc1522 += er32(PRC1522);
3358
3359        adapter->stats.symerrs += er32(SYMERRS);
3360        adapter->stats.mpc += er32(MPC);
3361        adapter->stats.scc += er32(SCC);
3362        adapter->stats.ecol += er32(ECOL);
3363        adapter->stats.mcc += er32(MCC);
3364        adapter->stats.latecol += er32(LATECOL);
3365        adapter->stats.dc += er32(DC);
3366        adapter->stats.sec += er32(SEC);
3367        adapter->stats.rlec += er32(RLEC);
3368        adapter->stats.xonrxc += er32(XONRXC);
3369        adapter->stats.xontxc += er32(XONTXC);
3370        adapter->stats.xoffrxc += er32(XOFFRXC);
3371        adapter->stats.xofftxc += er32(XOFFTXC);
3372        adapter->stats.fcruc += er32(FCRUC);
3373        adapter->stats.gptc += er32(GPTC);
3374        adapter->stats.gotcl += er32(GOTCL);
3375        adapter->stats.gotch += er32(GOTCH);
3376        adapter->stats.rnbc += er32(RNBC);
3377        adapter->stats.ruc += er32(RUC);
3378        adapter->stats.rfc += er32(RFC);
3379        adapter->stats.rjc += er32(RJC);
3380        adapter->stats.torl += er32(TORL);
3381        adapter->stats.torh += er32(TORH);
3382        adapter->stats.totl += er32(TOTL);
3383        adapter->stats.toth += er32(TOTH);
3384        adapter->stats.tpr += er32(TPR);
3385
3386        adapter->stats.ptc64 += er32(PTC64);
3387        adapter->stats.ptc127 += er32(PTC127);
3388        adapter->stats.ptc255 += er32(PTC255);
3389        adapter->stats.ptc511 += er32(PTC511);
3390        adapter->stats.ptc1023 += er32(PTC1023);
3391        adapter->stats.ptc1522 += er32(PTC1522);
3392
3393        adapter->stats.mptc += er32(MPTC);
3394        adapter->stats.bptc += er32(BPTC);
3395
3396        /* used for adaptive IFS */
3397
3398        hw->tx_packet_delta = er32(TPT);
3399        adapter->stats.tpt += hw->tx_packet_delta;
3400        hw->collision_delta = er32(COLC);
3401        adapter->stats.colc += hw->collision_delta;
3402
3403        if (hw->mac_type >= e1000_82543) {
3404                adapter->stats.algnerrc += er32(ALGNERRC);
3405                adapter->stats.rxerrc += er32(RXERRC);
3406                adapter->stats.tncrs += er32(TNCRS);
3407                adapter->stats.cexterr += er32(CEXTERR);
3408                adapter->stats.tsctc += er32(TSCTC);
3409                adapter->stats.tsctfc += er32(TSCTFC);
3410        }
3411
3412        /* Fill out the OS statistics structure */
3413        netdev->stats.multicast = adapter->stats.mprc;
3414        netdev->stats.collisions = adapter->stats.colc;
3415
3416        /* Rx Errors */
3417
3418        /* RLEC on some newer hardware can be incorrect so build
3419        * our own version based on RUC and ROC */
3420        netdev->stats.rx_errors = adapter->stats.rxerrc +
3421                adapter->stats.crcerrs + adapter->stats.algnerrc +
3422                adapter->stats.ruc + adapter->stats.roc +
3423                adapter->stats.cexterr;
3424        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3425        netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3426        netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3427        netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3428        netdev->stats.rx_missed_errors = adapter->stats.mpc;
3429
3430        /* Tx Errors */
3431        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3432        netdev->stats.tx_errors = adapter->stats.txerrc;
3433        netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3434        netdev->stats.tx_window_errors = adapter->stats.latecol;
3435        netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3436        if (hw->bad_tx_carr_stats_fd &&
3437            adapter->link_duplex == FULL_DUPLEX) {
3438                netdev->stats.tx_carrier_errors = 0;
3439                adapter->stats.tncrs = 0;
3440        }
3441
3442        /* Tx Dropped needs to be maintained elsewhere */
3443
3444        /* Phy Stats */
3445        if (hw->media_type == e1000_media_type_copper) {
3446                if ((adapter->link_speed == SPEED_1000) &&
3447                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3448                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3449                        adapter->phy_stats.idle_errors += phy_tmp;
3450                }
3451
3452                if ((hw->mac_type <= e1000_82546) &&
3453                   (hw->phy_type == e1000_phy_m88) &&
3454                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3455                        adapter->phy_stats.receive_errors += phy_tmp;
3456        }
3457
3458        /* Management Stats */
3459        if (hw->has_smbus) {
3460                adapter->stats.mgptc += er32(MGTPTC);
3461                adapter->stats.mgprc += er32(MGTPRC);
3462                adapter->stats.mgpdc += er32(MGTPDC);
3463        }
3464
3465        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3466}
3467
3468/**
3469 * e1000_intr - Interrupt Handler
3470 * @irq: interrupt number
3471 * @data: pointer to a network interface device structure
3472 **/
3473
3474static irqreturn_t e1000_intr(int irq, void *data)
3475{
3476        struct net_device *netdev = data;
3477        struct e1000_adapter *adapter = netdev_priv(netdev);
3478        struct e1000_hw *hw = &adapter->hw;
3479        u32 icr = er32(ICR);
3480
3481        if (unlikely((!icr)))
3482                return IRQ_NONE;  /* Not our interrupt */
3483
3484        /*
3485         * we might have caused the interrupt, but the above
3486         * read cleared it, and just in case the driver is
3487         * down there is nothing to do so return handled
3488         */
3489        if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3490                return IRQ_HANDLED;
3491
3492        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3493                hw->get_link_status = 1;
3494                /* guard against interrupt when we're going down */
3495                if (!test_bit(__E1000_DOWN, &adapter->flags))
3496                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
3497        }
3498
3499        /* disable interrupts, without the synchronize_irq bit */
3500        ew32(IMC, ~0);
3501        E1000_WRITE_FLUSH();
3502
3503        if (likely(napi_schedule_prep(&adapter->napi))) {
3504                adapter->total_tx_bytes = 0;
3505                adapter->total_tx_packets = 0;
3506                adapter->total_rx_bytes = 0;
3507                adapter->total_rx_packets = 0;
3508                __napi_schedule(&adapter->napi);
3509        } else {
3510                /* this really should not happen! if it does it is basically a
3511                 * bug, but not a hard error, so enable ints and continue */
3512                if (!test_bit(__E1000_DOWN, &adapter->flags))
3513                        e1000_irq_enable(adapter);
3514        }
3515
3516        return IRQ_HANDLED;
3517}
3518
3519/**
3520 * e1000_clean - NAPI Rx polling callback
3521 * @adapter: board private structure
3522 **/
3523static int e1000_clean(struct napi_struct *napi, int budget)
3524{
3525        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3526        int tx_clean_complete = 0, work_done = 0;
3527
3528        tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3529
3530        adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3531
3532        if (!tx_clean_complete)
3533                work_done = budget;
3534
3535        /* If budget not fully consumed, exit the polling mode */
3536        if (work_done < budget) {
3537                if (likely(adapter->itr_setting & 3))
3538                        e1000_set_itr(adapter);
3539                napi_complete(napi);
3540                if (!test_bit(__E1000_DOWN, &adapter->flags))
3541                        e1000_irq_enable(adapter);
3542        }
3543
3544        return work_done;
3545}
3546
3547/**
3548 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3549 * @adapter: board private structure
3550 **/
3551static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3552                               struct e1000_tx_ring *tx_ring)
3553{
3554        struct e1000_hw *hw = &adapter->hw;
3555        struct net_device *netdev = adapter->netdev;
3556        struct e1000_tx_desc *tx_desc, *eop_desc;
3557        struct e1000_buffer *buffer_info;
3558        unsigned int i, eop;
3559        unsigned int count = 0;
3560        unsigned int total_tx_bytes=0, total_tx_packets=0;
3561
3562        i = tx_ring->next_to_clean;
3563        eop = tx_ring->buffer_info[i].next_to_watch;
3564        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3565
3566        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3567               (count < tx_ring->count)) {
3568                bool cleaned = false;
3569                rmb();  /* read buffer_info after eop_desc */
3570                for ( ; !cleaned; count++) {
3571                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3572                        buffer_info = &tx_ring->buffer_info[i];
3573                        cleaned = (i == eop);
3574
3575                        if (cleaned) {
3576                                struct sk_buff *skb = buffer_info->skb;
3577                                unsigned int segs, bytecount;
3578                                segs = skb_shinfo(skb)->gso_segs ?: 1;
3579                                /* multiply data chunks by size of headers */
3580                                bytecount = ((segs - 1) * skb_headlen(skb)) +
3581                                            skb->len;
3582                                total_tx_packets += segs;
3583                                total_tx_bytes += bytecount;
3584                        }
3585                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3586                        tx_desc->upper.data = 0;
3587
3588                        if (unlikely(++i == tx_ring->count)) i = 0;
3589                }
3590
3591                eop = tx_ring->buffer_info[i].next_to_watch;
3592                eop_desc = E1000_TX_DESC(*tx_ring, eop);
3593        }
3594
3595        tx_ring->next_to_clean = i;
3596
3597#define TX_WAKE_THRESHOLD 32
3598        if (unlikely(count && netif_carrier_ok(netdev) &&
3599                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3600                /* Make sure that anybody stopping the queue after this
3601                 * sees the new next_to_clean.
3602                 */
3603                smp_mb();
3604
3605                if (netif_queue_stopped(netdev) &&
3606                    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3607                        netif_wake_queue(netdev);
3608                        ++adapter->restart_queue;
3609                }
3610        }
3611
3612        if (adapter->detect_tx_hung) {
3613                /* Detect a transmit hang in hardware, this serializes the
3614                 * check with the clearing of time_stamp and movement of i */
3615                adapter->detect_tx_hung = false;
3616                if (tx_ring->buffer_info[eop].time_stamp &&
3617                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3618                               (adapter->tx_timeout_factor * HZ)) &&
3619                    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3620
3621                        /* detected Tx unit hang */
3622                        e_err(drv, "Detected Tx Unit Hang\n"
3623                              "  Tx Queue             <%lu>\n"
3624                              "  TDH                  <%x>\n"
3625                              "  TDT                  <%x>\n"
3626                              "  next_to_use          <%x>\n"
3627                              "  next_to_clean        <%x>\n"
3628                              "buffer_info[next_to_clean]\n"
3629                              "  time_stamp           <%lx>\n"
3630                              "  next_to_watch        <%x>\n"
3631                              "  jiffies              <%lx>\n"
3632                              "  next_to_watch.status <%x>\n",
3633                                (unsigned long)((tx_ring - adapter->tx_ring) /
3634                                        sizeof(struct e1000_tx_ring)),
3635                                readl(hw->hw_addr + tx_ring->tdh),
3636                                readl(hw->hw_addr + tx_ring->tdt),
3637                                tx_ring->next_to_use,
3638                                tx_ring->next_to_clean,
3639                                tx_ring->buffer_info[eop].time_stamp,
3640                                eop,
3641                                jiffies,
3642                                eop_desc->upper.fields.status);
3643                        netif_stop_queue(netdev);
3644                }
3645        }
3646        adapter->total_tx_bytes += total_tx_bytes;
3647        adapter->total_tx_packets += total_tx_packets;
3648        netdev->stats.tx_bytes += total_tx_bytes;
3649        netdev->stats.tx_packets += total_tx_packets;
3650        return count < tx_ring->count;
3651}
3652
3653/**
3654 * e1000_rx_checksum - Receive Checksum Offload for 82543
3655 * @adapter:     board private structure
3656 * @status_err:  receive descriptor status and error fields
3657 * @csum:        receive descriptor csum field
3658 * @sk_buff:     socket buffer with received data
3659 **/
3660
3661static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3662                              u32 csum, struct sk_buff *skb)
3663{
3664        struct e1000_hw *hw = &adapter->hw;
3665        u16 status = (u16)status_err;
3666        u8 errors = (u8)(status_err >> 24);
3667
3668        skb_checksum_none_assert(skb);
3669
3670        /* 82543 or newer only */
3671        if (unlikely(hw->mac_type < e1000_82543)) return;
3672        /* Ignore Checksum bit is set */
3673        if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3674        /* TCP/UDP checksum error bit is set */
3675        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3676                /* let the stack verify checksum errors */
3677                adapter->hw_csum_err++;
3678                return;
3679        }
3680        /* TCP/UDP Checksum has not been calculated */
3681        if (!(status & E1000_RXD_STAT_TCPCS))
3682                return;
3683
3684        /* It must be a TCP or UDP packet with a valid checksum */
3685        if (likely(status & E1000_RXD_STAT_TCPCS)) {
3686                /* TCP checksum is good */
3687                skb->ip_summed = CHECKSUM_UNNECESSARY;
3688        }
3689        adapter->hw_csum_good++;
3690}
3691
3692/**
3693 * e1000_consume_page - helper function
3694 **/
3695static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3696                               u16 length)
3697{
3698        bi->page = NULL;
3699        skb->len += length;
3700        skb->data_len += length;
3701        skb->truesize += length;
3702}
3703
3704/**
3705 * e1000_receive_skb - helper function to handle rx indications
3706 * @adapter: board private structure
3707 * @status: descriptor status field as written by hardware
3708 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3709 * @skb: pointer to sk_buff to be indicated to stack
3710 */
3711static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3712                              __le16 vlan, struct sk_buff *skb)
3713{
3714        skb->protocol = eth_type_trans(skb, adapter->netdev);
3715
3716        if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3717                vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3718                                 le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3719                                 skb);
3720        else
3721                napi_gro_receive(&adapter->napi, skb);
3722}
3723
3724/**
3725 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3726 * @adapter: board private structure
3727 * @rx_ring: ring to clean
3728 * @work_done: amount of napi work completed this call
3729 * @work_to_do: max amount of work allowed for this call to do
3730 *
3731 * the return value indicates whether actual cleaning was done, there
3732 * is no guarantee that everything was cleaned
3733 */
3734static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3735                                     struct e1000_rx_ring *rx_ring,
3736                                     int *work_done, int work_to_do)
3737{
3738        struct e1000_hw *hw = &adapter->hw;
3739        struct net_device *netdev = adapter->netdev;
3740        struct pci_dev *pdev = adapter->pdev;
3741        struct e1000_rx_desc *rx_desc, *next_rxd;
3742        struct e1000_buffer *buffer_info, *next_buffer;
3743        unsigned long irq_flags;
3744        u32 length;
3745        unsigned int i;
3746        int cleaned_count = 0;
3747        bool cleaned = false;
3748        unsigned int total_rx_bytes=0, total_rx_packets=0;
3749
3750        i = rx_ring->next_to_clean;
3751        rx_desc = E1000_RX_DESC(*rx_ring, i);
3752        buffer_info = &rx_ring->buffer_info[i];
3753
3754        while (rx_desc->status & E1000_RXD_STAT_DD) {
3755                struct sk_buff *skb;
3756                u8 status;
3757
3758                if (*work_done >= work_to_do)
3759                        break;
3760                (*work_done)++;
3761                rmb(); /* read descriptor and rx_buffer_info after status DD */
3762
3763                status = rx_desc->status;
3764                skb = buffer_info->skb;
3765                buffer_info->skb = NULL;
3766
3767                if (++i == rx_ring->count) i = 0;
3768                next_rxd = E1000_RX_DESC(*rx_ring, i);
3769                prefetch(next_rxd);
3770
3771                next_buffer = &rx_ring->buffer_info[i];
3772
3773                cleaned = true;
3774                cleaned_count++;
3775                dma_unmap_page(&pdev->dev, buffer_info->dma,
3776                               buffer_info->length, DMA_FROM_DEVICE);
3777                buffer_info->dma = 0;
3778
3779                length = le16_to_cpu(rx_desc->length);
3780
3781                /* errors is only valid for DD + EOP descriptors */
3782                if (unlikely((status & E1000_RXD_STAT_EOP) &&
3783                    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3784                        u8 last_byte = *(skb->data + length - 1);
3785                        if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3786                                       last_byte)) {
3787                                spin_lock_irqsave(&adapter->stats_lock,
3788                                                  irq_flags);
3789                                e1000_tbi_adjust_stats(hw, &adapter->stats,
3790                                                       length, skb->data);
3791                                spin_unlock_irqrestore(&adapter->stats_lock,
3792                                                       irq_flags);
3793                                length--;
3794                        } else {
3795                                /* recycle both page and skb */
3796                                buffer_info->skb = skb;
3797                                /* an error means any chain goes out the window
3798                                 * too */
3799                                if (rx_ring->rx_skb_top)
3800                                        dev_kfree_skb(rx_ring->rx_skb_top);
3801                                rx_ring->rx_skb_top = NULL;
3802                                goto next_desc;
3803                        }
3804                }
3805
3806#define rxtop rx_ring->rx_skb_top
3807                if (!(status & E1000_RXD_STAT_EOP)) {
3808                        /* this descriptor is only the beginning (or middle) */
3809                        if (!rxtop) {
3810                                /* this is the beginning of a chain */
3811                                rxtop = skb;
3812                                skb_fill_page_desc(rxtop, 0, buffer_info->page,
3813                                                   0, length);
3814                        } else {
3815                                /* this is the middle of a chain */
3816                                skb_fill_page_desc(rxtop,
3817                                    skb_shinfo(rxtop)->nr_frags,
3818                                    buffer_info->page, 0, length);
3819                                /* re-use the skb, only consumed the page */
3820                                buffer_info->skb = skb;
3821                        }
3822                        e1000_consume_page(buffer_info, rxtop, length);
3823                        goto next_desc;
3824                } else {
3825                        if (rxtop) {
3826                                /* end of the chain */
3827                                skb_fill_page_desc(rxtop,
3828                                    skb_shinfo(rxtop)->nr_frags,
3829                                    buffer_info->page, 0, length);
3830                                /* re-use the current skb, we only consumed the
3831                                 * page */
3832                                buffer_info->skb = skb;
3833                                skb = rxtop;
3834                                rxtop = NULL;
3835                                e1000_consume_page(buffer_info, skb, length);
3836                        } else {
3837                                /* no chain, got EOP, this buf is the packet
3838                                 * copybreak to save the put_page/alloc_page */
3839                                if (length <= copybreak &&
3840                                    skb_tailroom(skb) >= length) {
3841                                        u8 *vaddr;
3842                                        vaddr = kmap_atomic(buffer_info->page,
3843                                                            KM_SKB_DATA_SOFTIRQ);
3844                                        memcpy(skb_tail_pointer(skb), vaddr, length);
3845                                        kunmap_atomic(vaddr,
3846                                                      KM_SKB_DATA_SOFTIRQ);
3847                                        /* re-use the page, so don't erase
3848                                         * buffer_info->page */
3849                                        skb_put(skb, length);
3850                                } else {
3851                                        skb_fill_page_desc(skb, 0,
3852                                                           buffer_info->page, 0,
3853                                                           length);
3854                                        e1000_consume_page(buffer_info, skb,
3855                                                           length);
3856                                }
3857                        }
3858                }
3859
3860                /* Receive Checksum Offload XXX recompute due to CRC strip? */
3861                e1000_rx_checksum(adapter,
3862                                  (u32)(status) |
3863                                  ((u32)(rx_desc->errors) << 24),
3864                                  le16_to_cpu(rx_desc->csum), skb);
3865
3866                pskb_trim(skb, skb->len - 4);
3867
3868                /* probably a little skewed due to removing CRC */
3869                total_rx_bytes += skb->len;
3870                total_rx_packets++;
3871
3872                /* eth type trans needs skb->data to point to something */
3873                if (!pskb_may_pull(skb, ETH_HLEN)) {
3874                        e_err(drv, "pskb_may_pull failed.\n");
3875                        dev_kfree_skb(skb);
3876                        goto next_desc;
3877                }
3878
3879                e1000_receive_skb(adapter, status, rx_desc->special, skb);
3880
3881next_desc:
3882                rx_desc->status = 0;
3883
3884                /* return some buffers to hardware, one at a time is too slow */
3885                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3886                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3887                        cleaned_count = 0;
3888                }
3889
3890                /* use prefetched values */
3891                rx_desc = next_rxd;
3892                buffer_info = next_buffer;
3893        }
3894        rx_ring->next_to_clean = i;
3895
3896        cleaned_count = E1000_DESC_UNUSED(rx_ring);
3897        if (cleaned_count)
3898                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3899
3900        adapter->total_rx_packets += total_rx_packets;
3901        adapter->total_rx_bytes += total_rx_bytes;
3902        netdev->stats.rx_bytes += total_rx_bytes;
3903        netdev->stats.rx_packets += total_rx_packets;
3904        return cleaned;
3905}
3906
3907/*
3908 * this should improve performance for small packets with large amounts
3909 * of reassembly being done in the stack
3910 */
3911static void e1000_check_copybreak(struct net_device *netdev,
3912                                 struct e1000_buffer *buffer_info,
3913                                 u32 length, struct sk_buff **skb)
3914{
3915        struct sk_buff *new_skb;
3916
3917        if (length > copybreak)
3918                return;
3919
3920        new_skb = netdev_alloc_skb_ip_align(netdev, length);
3921        if (!new_skb)
3922                return;
3923
3924        skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3925                                       (*skb)->data - NET_IP_ALIGN,
3926                                       length + NET_IP_ALIGN);
3927        /* save the skb in buffer_info as good */
3928        buffer_info->skb = *skb;
3929        *skb = new_skb;
3930}
3931
3932/**
3933 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3934 * @adapter: board private structure
3935 * @rx_ring: ring to clean
3936 * @work_done: amount of napi work completed this call
3937 * @work_to_do: max amount of work allowed for this call to do
3938 */
3939static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3940                               struct e1000_rx_ring *rx_ring,
3941                               int *work_done, int work_to_do)
3942{
3943        struct e1000_hw *hw = &adapter->hw;
3944        struct net_device *netdev = adapter->netdev;
3945        struct pci_dev *pdev = adapter->pdev;
3946        struct e1000_rx_desc *rx_desc, *next_rxd;
3947        struct e1000_buffer *buffer_info, *next_buffer;
3948        unsigned long flags;
3949        u32 length;
3950        unsigned int i;
3951        int cleaned_count = 0;
3952        bool cleaned = false;
3953        unsigned int total_rx_bytes=0, total_rx_packets=0;
3954
3955        i = rx_ring->next_to_clean;
3956        rx_desc = E1000_RX_DESC(*rx_ring, i);
3957        buffer_info = &rx_ring->buffer_info[i];
3958
3959        while (rx_desc->status & E1000_RXD_STAT_DD) {
3960                struct sk_buff *skb;
3961                u8 status;
3962
3963                if (*work_done >= work_to_do)
3964                        break;
3965                (*work_done)++;
3966                rmb(); /* read descriptor and rx_buffer_info after status DD */
3967
3968                status = rx_desc->status;
3969                skb = buffer_info->skb;
3970                buffer_info->skb = NULL;
3971
3972                prefetch(skb->data - NET_IP_ALIGN);
3973
3974                if (++i == rx_ring->count) i = 0;
3975                next_rxd = E1000_RX_DESC(*rx_ring, i);
3976                prefetch(next_rxd);
3977
3978                next_buffer = &rx_ring->buffer_info[i];
3979
3980                cleaned = true;
3981                cleaned_count++;
3982                dma_unmap_single(&pdev->dev, buffer_info->dma,
3983                                 buffer_info->length, DMA_FROM_DEVICE);
3984                buffer_info->dma = 0;
3985
3986                length = le16_to_cpu(rx_desc->length);
3987                /* !EOP means multiple descriptors were used to store a single
3988                 * packet, if thats the case we need to toss it.  In fact, we
3989                 * to toss every packet with the EOP bit clear and the next
3990                 * frame that _does_ have the EOP bit set, as it is by
3991                 * definition only a frame fragment
3992                 */
3993                if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3994                        adapter->discarding = true;
3995
3996                if (adapter->discarding) {
3997                        /* All receives must fit into a single buffer */
3998                        e_dbg("Receive packet consumed multiple buffers\n");
3999                        /* recycle */
4000                        buffer_info->skb = skb;
4001                        if (status & E1000_RXD_STAT_EOP)
4002                                adapter->discarding = false;
4003                        goto next_desc;
4004                }
4005
4006                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4007                        u8 last_byte = *(skb->data + length - 1);
4008                        if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4009                                       last_byte)) {
4010                                spin_lock_irqsave(&adapter->stats_lock, flags);
4011                                e1000_tbi_adjust_stats(hw, &adapter->stats,
4012                                                       length, skb->data);
4013                                spin_unlock_irqrestore(&adapter->stats_lock,
4014                                                       flags);
4015                                length--;
4016                        } else {
4017                                /* recycle */
4018                                buffer_info->skb = skb;
4019                                goto next_desc;
4020                        }
4021                }
4022
4023                /* adjust length to remove Ethernet CRC, this must be
4024                 * done after the TBI_ACCEPT workaround above */
4025                length -= 4;
4026
4027                /* probably a little skewed due to removing CRC */
4028                total_rx_bytes += length;
4029                total_rx_packets++;
4030
4031                e1000_check_copybreak(netdev, buffer_info, length, &skb);
4032
4033                skb_put(skb, length);
4034
4035                /* Receive Checksum Offload */
4036                e1000_rx_checksum(adapter,
4037                                  (u32)(status) |
4038                                  ((u32)(rx_desc->errors) << 24),
4039                                  le16_to_cpu(rx_desc->csum), skb);
4040
4041                e1000_receive_skb(adapter, status, rx_desc->special, skb);
4042
4043next_desc:
4044                rx_desc->status = 0;
4045
4046                /* return some buffers to hardware, one at a time is too slow */
4047                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4048                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4049                        cleaned_count = 0;
4050                }
4051
4052                /* use prefetched values */
4053                rx_desc = next_rxd;
4054                buffer_info = next_buffer;
4055        }
4056        rx_ring->next_to_clean = i;
4057
4058        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4059        if (cleaned_count)
4060                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4061
4062        adapter->total_rx_packets += total_rx_packets;
4063        adapter->total_rx_bytes += total_rx_bytes;
4064        netdev->stats.rx_bytes += total_rx_bytes;
4065        netdev->stats.rx_packets += total_rx_packets;
4066        return cleaned;
4067}
4068
4069/**
4070 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4071 * @adapter: address of board private structure
4072 * @rx_ring: pointer to receive ring structure
4073 * @cleaned_count: number of buffers to allocate this pass
4074 **/
4075
4076static void
4077e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4078                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4079{
4080        struct net_device *netdev = adapter->netdev;
4081        struct pci_dev *pdev = adapter->pdev;
4082        struct e1000_rx_desc *rx_desc;
4083        struct e1000_buffer *buffer_info;
4084        struct sk_buff *skb;
4085        unsigned int i;
4086        unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4087
4088        i = rx_ring->next_to_use;
4089        buffer_info = &rx_ring->buffer_info[i];
4090
4091        while (cleaned_count--) {
4092                skb = buffer_info->skb;
4093                if (skb) {
4094                        skb_trim(skb, 0);
4095                        goto check_page;
4096                }
4097
4098                skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4099                if (unlikely(!skb)) {
4100                        /* Better luck next round */
4101                        adapter->alloc_rx_buff_failed++;
4102                        break;
4103                }
4104
4105                /* Fix for errata 23, can't cross 64kB boundary */
4106                if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4107                        struct sk_buff *oldskb = skb;
4108                        e_err(rx_err, "skb align check failed: %u bytes at "
4109                              "%p\n", bufsz, skb->data);
4110                        /* Try again, without freeing the previous */
4111                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4112                        /* Failed allocation, critical failure */
4113                        if (!skb) {
4114                                dev_kfree_skb(oldskb);
4115                                adapter->alloc_rx_buff_failed++;
4116                                break;
4117                        }
4118
4119                        if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4120                                /* give up */
4121                                dev_kfree_skb(skb);
4122                                dev_kfree_skb(oldskb);
4123                                break; /* while (cleaned_count--) */
4124                        }
4125
4126                        /* Use new allocation */
4127                        dev_kfree_skb(oldskb);
4128                }
4129                buffer_info->skb = skb;
4130                buffer_info->length = adapter->rx_buffer_len;
4131check_page:
4132                /* allocate a new page if necessary */
4133                if (!buffer_info->page) {
4134                        buffer_info->page = alloc_page(GFP_ATOMIC);
4135                        if (unlikely(!buffer_info->page)) {
4136                                adapter->alloc_rx_buff_failed++;
4137                                break;
4138                        }
4139                }
4140
4141                if (!buffer_info->dma) {
4142                        buffer_info->dma = dma_map_page(&pdev->dev,
4143                                                        buffer_info->page, 0,
4144                                                        buffer_info->length,
4145                                                        DMA_FROM_DEVICE);
4146                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4147                                put_page(buffer_info->page);
4148                                dev_kfree_skb(skb);
4149                                buffer_info->page = NULL;
4150                                buffer_info->skb = NULL;
4151                                buffer_info->dma = 0;
4152                                adapter->alloc_rx_buff_failed++;
4153                                break; /* while !buffer_info->skb */
4154                        }
4155                }
4156
4157                rx_desc = E1000_RX_DESC(*rx_ring, i);
4158                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4159
4160                if (unlikely(++i == rx_ring->count))
4161                        i = 0;
4162                buffer_info = &rx_ring->buffer_info[i];
4163        }
4164
4165        if (likely(rx_ring->next_to_use != i)) {
4166                rx_ring->next_to_use = i;
4167                if (unlikely(i-- == 0))
4168                        i = (rx_ring->count - 1);
4169
4170                /* Force memory writes to complete before letting h/w
4171                 * know there are new descriptors to fetch.  (Only
4172                 * applicable for weak-ordered memory model archs,
4173                 * such as IA-64). */
4174                wmb();
4175                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4176        }
4177}
4178
4179/**
4180 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4181 * @adapter: address of board private structure
4182 **/
4183
4184static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4185                                   struct e1000_rx_ring *rx_ring,
4186                                   int cleaned_count)
4187{
4188        struct e1000_hw *hw = &adapter->hw;
4189        struct net_device *netdev = adapter->netdev;
4190        struct pci_dev *pdev = adapter->pdev;
4191        struct e1000_rx_desc *rx_desc;
4192        struct e1000_buffer *buffer_info;
4193        struct sk_buff *skb;
4194        unsigned int i;
4195        unsigned int bufsz = adapter->rx_buffer_len;
4196
4197        i = rx_ring->next_to_use;
4198        buffer_info = &rx_ring->buffer_info[i];
4199
4200        while (cleaned_count--) {
4201                skb = buffer_info->skb;
4202                if (skb) {
4203                        skb_trim(skb, 0);
4204                        goto map_skb;
4205                }
4206
4207                skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4208                if (unlikely(!skb)) {
4209                        /* Better luck next round */
4210                        adapter->alloc_rx_buff_failed++;
4211                        break;
4212                }
4213
4214                /* Fix for errata 23, can't cross 64kB boundary */
4215                if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4216                        struct sk_buff *oldskb = skb;
4217                        e_err(rx_err, "skb align check failed: %u bytes at "
4218                              "%p\n", bufsz, skb->data);
4219                        /* Try again, without freeing the previous */
4220                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4221                        /* Failed allocation, critical failure */
4222                        if (!skb) {
4223                                dev_kfree_skb(oldskb);
4224                                adapter->alloc_rx_buff_failed++;
4225                                break;
4226                        }
4227
4228                        if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4229                                /* give up */
4230                                dev_kfree_skb(skb);
4231                                dev_kfree_skb(oldskb);
4232                                adapter->alloc_rx_buff_failed++;
4233                                break; /* while !buffer_info->skb */
4234                        }
4235
4236                        /* Use new allocation */
4237                        dev_kfree_skb(oldskb);
4238                }
4239                buffer_info->skb = skb;
4240                buffer_info->length = adapter->rx_buffer_len;
4241map_skb:
4242                buffer_info->dma = dma_map_single(&pdev->dev,
4243                                                  skb->data,
4244                                                  buffer_info->length,
4245                                                  DMA_FROM_DEVICE);
4246                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4247                        dev_kfree_skb(skb);
4248                        buffer_info->skb = NULL;
4249                        buffer_info->dma = 0;
4250                        adapter->alloc_rx_buff_failed++;
4251                        break; /* while !buffer_info->skb */
4252                }
4253
4254                /*
4255                 * XXX if it was allocated cleanly it will never map to a
4256                 * boundary crossing
4257                 */
4258
4259                /* Fix for errata 23, can't cross 64kB boundary */
4260                if (!e1000_check_64k_bound(adapter,
4261                                        (void *)(unsigned long)buffer_info->dma,
4262                                        adapter->rx_buffer_len)) {
4263                        e_err(rx_err, "dma align check failed: %u bytes at "
4264                              "%p\n", adapter->rx_buffer_len,
4265                              (void *)(unsigned long)buffer_info->dma);
4266                        dev_kfree_skb(skb);
4267                        buffer_info->skb = NULL;
4268
4269                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4270                                         adapter->rx_buffer_len,
4271                                         DMA_FROM_DEVICE);
4272                        buffer_info->dma = 0;
4273
4274                        adapter->alloc_rx_buff_failed++;
4275                        break; /* while !buffer_info->skb */
4276                }
4277                rx_desc = E1000_RX_DESC(*rx_ring, i);
4278                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4279
4280                if (unlikely(++i == rx_ring->count))
4281                        i = 0;
4282                buffer_info = &rx_ring->buffer_info[i];
4283        }
4284
4285        if (likely(rx_ring->next_to_use != i)) {
4286                rx_ring->next_to_use = i;
4287                if (unlikely(i-- == 0))
4288                        i = (rx_ring->count - 1);
4289
4290                /* Force memory writes to complete before letting h/w
4291                 * know there are new descriptors to fetch.  (Only
4292                 * applicable for weak-ordered memory model archs,
4293                 * such as IA-64). */
4294                wmb();
4295                writel(i, hw->hw_addr + rx_ring->rdt);
4296        }
4297}
4298
4299/**
4300 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4301 * @adapter:
4302 **/
4303
4304static void e1000_smartspeed(struct e1000_adapter *adapter)
4305{
4306        struct e1000_hw *hw = &adapter->hw;
4307        u16 phy_status;
4308        u16 phy_ctrl;
4309
4310        if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4311           !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4312                return;
4313
4314        if (adapter->smartspeed == 0) {
4315                /* If Master/Slave config fault is asserted twice,
4316                 * we assume back-to-back */
4317                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4318                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4319                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4320                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4321                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4322                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4323                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4324                        e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4325                                            phy_ctrl);
4326                        adapter->smartspeed++;
4327                        if (!e1000_phy_setup_autoneg(hw) &&
4328                           !e1000_read_phy_reg(hw, PHY_CTRL,
4329                                               &phy_ctrl)) {
4330                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4331                                             MII_CR_RESTART_AUTO_NEG);
4332                                e1000_write_phy_reg(hw, PHY_CTRL,
4333                                                    phy_ctrl);
4334                        }
4335                }
4336                return;
4337        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4338                /* If still no link, perhaps using 2/3 pair cable */
4339                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4340                phy_ctrl |= CR_1000T_MS_ENABLE;
4341                e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4342                if (!e1000_phy_setup_autoneg(hw) &&
4343                   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4344                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4345                                     MII_CR_RESTART_AUTO_NEG);
4346                        e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4347                }
4348        }
4349        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4350        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4351                adapter->smartspeed = 0;
4352}
4353
4354/**
4355 * e1000_ioctl -
4356 * @netdev:
4357 * @ifreq:
4358 * @cmd:
4359 **/
4360
4361static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4362{
4363        switch (cmd) {
4364        case SIOCGMIIPHY:
4365        case SIOCGMIIREG:
4366        case SIOCSMIIREG:
4367                return e1000_mii_ioctl(netdev, ifr, cmd);
4368        default:
4369                return -EOPNOTSUPP;
4370        }
4371}
4372
4373/**
4374 * e1000_mii_ioctl -
4375 * @netdev:
4376 * @ifreq:
4377 * @cmd:
4378 **/
4379
4380static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4381                           int cmd)
4382{
4383        struct e1000_adapter *adapter = netdev_priv(netdev);
4384        struct e1000_hw *hw = &adapter->hw;
4385        struct mii_ioctl_data *data = if_mii(ifr);
4386        int retval;
4387        u16 mii_reg;
4388        unsigned long flags;
4389
4390        if (hw->media_type != e1000_media_type_copper)
4391                return -EOPNOTSUPP;
4392
4393        switch (cmd) {
4394        case SIOCGMIIPHY:
4395                data->phy_id = hw->phy_addr;
4396                break;
4397        case SIOCGMIIREG:
4398                spin_lock_irqsave(&adapter->stats_lock, flags);
4399                if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4400                                   &data->val_out)) {
4401                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4402                        return -EIO;
4403                }
4404                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4405                break;
4406        case SIOCSMIIREG:
4407                if (data->reg_num & ~(0x1F))
4408                        return -EFAULT;
4409                mii_reg = data->val_in;
4410                spin_lock_irqsave(&adapter->stats_lock, flags);
4411                if (e1000_write_phy_reg(hw, data->reg_num,
4412                                        mii_reg)) {
4413                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4414                        return -EIO;
4415                }
4416                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4417                if (hw->media_type == e1000_media_type_copper) {
4418                        switch (data->reg_num) {
4419                        case PHY_CTRL:
4420                                if (mii_reg & MII_CR_POWER_DOWN)
4421                                        break;
4422                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4423                                        hw->autoneg = 1;
4424                                        hw->autoneg_advertised = 0x2F;
4425                                } else {
4426                                        u32 speed;
4427                                        if (mii_reg & 0x40)
4428                                                speed = SPEED_1000;
4429                                        else if (mii_reg & 0x2000)
4430                                                speed = SPEED_100;
4431                                        else
4432                                                speed = SPEED_10;
4433                                        retval = e1000_set_spd_dplx(
4434                                                adapter, speed,
4435                                                ((mii_reg & 0x100)
4436                                                 ? DUPLEX_FULL :
4437                                                 DUPLEX_HALF));
4438                                        if (retval)
4439                                                return retval;
4440                                }
4441                                if (netif_running(adapter->netdev))
4442                                        e1000_reinit_locked(adapter);
4443                                else
4444                                        e1000_reset(adapter);
4445                                break;
4446                        case M88E1000_PHY_SPEC_CTRL:
4447                        case M88E1000_EXT_PHY_SPEC_CTRL:
4448                                if (e1000_phy_reset(hw))
4449                                        return -EIO;
4450                                break;
4451                        }
4452                } else {
4453                        switch (data->reg_num) {
4454                        case PHY_CTRL:
4455                                if (mii_reg & MII_CR_POWER_DOWN)
4456                                        break;
4457                                if (netif_running(adapter->netdev))
4458                                        e1000_reinit_locked(adapter);
4459                                else
4460                                        e1000_reset(adapter);
4461                                break;
4462                        }
4463                }
4464                break;
4465        default:
4466                return -EOPNOTSUPP;
4467        }
4468        return E1000_SUCCESS;
4469}
4470
4471void e1000_pci_set_mwi(struct e1000_hw *hw)
4472{
4473        struct e1000_adapter *adapter = hw->back;
4474        int ret_val = pci_set_mwi(adapter->pdev);
4475
4476        if (ret_val)
4477                e_err(probe, "Error in setting MWI\n");
4478}
4479
4480void e1000_pci_clear_mwi(struct e1000_hw *hw)
4481{
4482        struct e1000_adapter *adapter = hw->back;
4483
4484        pci_clear_mwi(adapter->pdev);
4485}
4486
4487int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4488{
4489        struct e1000_adapter *adapter = hw->back;
4490        return pcix_get_mmrbc(adapter->pdev);
4491}
4492
4493void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4494{
4495        struct e1000_adapter *adapter = hw->back;
4496        pcix_set_mmrbc(adapter->pdev, mmrbc);
4497}
4498
4499void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4500{
4501        outl(value, port);
4502}
4503
4504static void e1000_vlan_rx_register(struct net_device *netdev,
4505                                   struct vlan_group *grp)
4506{
4507        struct e1000_adapter *adapter = netdev_priv(netdev);
4508        struct e1000_hw *hw = &adapter->hw;
4509        u32 ctrl, rctl;
4510
4511        if (!test_bit(__E1000_DOWN, &adapter->flags))
4512                e1000_irq_disable(adapter);
4513        adapter->vlgrp = grp;
4514
4515        if (grp) {
4516                /* enable VLAN tag insert/strip */
4517                ctrl = er32(CTRL);
4518                ctrl |= E1000_CTRL_VME;
4519                ew32(CTRL, ctrl);
4520
4521                /* enable VLAN receive filtering */
4522                rctl = er32(RCTL);
4523                rctl &= ~E1000_RCTL_CFIEN;
4524                if (!(netdev->flags & IFF_PROMISC))
4525                        rctl |= E1000_RCTL_VFE;
4526                ew32(RCTL, rctl);
4527                e1000_update_mng_vlan(adapter);
4528        } else {
4529                /* disable VLAN tag insert/strip */
4530                ctrl = er32(CTRL);
4531                ctrl &= ~E1000_CTRL_VME;
4532                ew32(CTRL, ctrl);
4533
4534                /* disable VLAN receive filtering */
4535                rctl = er32(RCTL);
4536                rctl &= ~E1000_RCTL_VFE;
4537                ew32(RCTL, rctl);
4538
4539                if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4540                        e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4541                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4542                }
4543        }
4544
4545        if (!test_bit(__E1000_DOWN, &adapter->flags))
4546                e1000_irq_enable(adapter);
4547}
4548
4549static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4550{
4551        struct e1000_adapter *adapter = netdev_priv(netdev);
4552        struct e1000_hw *hw = &adapter->hw;
4553        u32 vfta, index;
4554
4555        if ((hw->mng_cookie.status &
4556             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4557            (vid == adapter->mng_vlan_id))
4558                return;
4559        /* add VID to filter table */
4560        index = (vid >> 5) & 0x7F;
4561        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4562        vfta |= (1 << (vid & 0x1F));
4563        e1000_write_vfta(hw, index, vfta);
4564}
4565
4566static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4567{
4568        struct e1000_adapter *adapter = netdev_priv(netdev);
4569        struct e1000_hw *hw = &adapter->hw;
4570        u32 vfta, index;
4571
4572        if (!test_bit(__E1000_DOWN, &adapter->flags))
4573                e1000_irq_disable(adapter);
4574        vlan_group_set_device(adapter->vlgrp, vid, NULL);
4575        if (!test_bit(__E1000_DOWN, &adapter->flags))
4576                e1000_irq_enable(adapter);
4577
4578        /* remove VID from filter table */
4579        index = (vid >> 5) & 0x7F;
4580        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4581        vfta &= ~(1 << (vid & 0x1F));
4582        e1000_write_vfta(hw, index, vfta);
4583}
4584
4585static void e1000_restore_vlan(struct e1000_adapter *adapter)
4586{
4587        e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4588
4589        if (adapter->vlgrp) {
4590                u16 vid;
4591                for (vid = 0; vid < VLAN_N_VID; vid++) {
4592                        if (!vlan_group_get_device(adapter->vlgrp, vid))
4593                                continue;
4594                        e1000_vlan_rx_add_vid(adapter->netdev, vid);
4595                }
4596        }
4597}
4598
4599int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4600{
4601        struct e1000_hw *hw = &adapter->hw;
4602
4603        hw->autoneg = 0;
4604
4605        /* Make sure dplx is at most 1 bit and lsb of speed is not set
4606         * for the switch() below to work */
4607        if ((spd & 1) || (dplx & ~1))
4608                goto err_inval;
4609
4610        /* Fiber NICs only allow 1000 gbps Full duplex */
4611        if ((hw->media_type == e1000_media_type_fiber) &&
4612            spd != SPEED_1000 &&
4613            dplx != DUPLEX_FULL)
4614                goto err_inval;
4615
4616        switch (spd + dplx) {
4617        case SPEED_10 + DUPLEX_HALF:
4618                hw->forced_speed_duplex = e1000_10_half;
4619                break;
4620        case SPEED_10 + DUPLEX_FULL:
4621                hw->forced_speed_duplex = e1000_10_full;
4622                break;
4623        case SPEED_100 + DUPLEX_HALF:
4624                hw->forced_speed_duplex = e1000_100_half;
4625                break;
4626        case SPEED_100 + DUPLEX_FULL:
4627                hw->forced_speed_duplex = e1000_100_full;
4628                break;
4629        case SPEED_1000 + DUPLEX_FULL:
4630                hw->autoneg = 1;
4631                hw->autoneg_advertised = ADVERTISE_1000_FULL;
4632                break;
4633        case SPEED_1000 + DUPLEX_HALF: /* not supported */
4634        default:
4635                goto err_inval;
4636        }
4637        return 0;
4638
4639err_inval:
4640        e_err(probe, "Unsupported Speed/Duplex configuration\n");
4641        return -EINVAL;
4642}
4643
4644static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4645{
4646        struct net_device *netdev = pci_get_drvdata(pdev);
4647        struct e1000_adapter *adapter = netdev_priv(netdev);
4648        struct e1000_hw *hw = &adapter->hw;
4649        u32 ctrl, ctrl_ext, rctl, status;
4650        u32 wufc = adapter->wol;
4651#ifdef CONFIG_PM
4652        int retval = 0;
4653#endif
4654
4655        netif_device_detach(netdev);
4656
4657        if (netif_running(netdev)) {
4658                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4659                e1000_down(adapter);
4660        }
4661
4662#ifdef CONFIG_PM
4663        retval = pci_save_state(pdev);
4664        if (retval)
4665                return retval;
4666#endif
4667
4668        status = er32(STATUS);
4669        if (status & E1000_STATUS_LU)
4670                wufc &= ~E1000_WUFC_LNKC;
4671
4672        if (wufc) {
4673                e1000_setup_rctl(adapter);
4674                e1000_set_rx_mode(netdev);
4675
4676                /* turn on all-multi mode if wake on multicast is enabled */
4677                if (wufc & E1000_WUFC_MC) {
4678                        rctl = er32(RCTL);
4679                        rctl |= E1000_RCTL_MPE;
4680                        ew32(RCTL, rctl);
4681                }
4682
4683                if (hw->mac_type >= e1000_82540) {
4684                        ctrl = er32(CTRL);
4685                        /* advertise wake from D3Cold */
4686                        #define E1000_CTRL_ADVD3WUC 0x00100000
4687                        /* phy power management enable */
4688                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4689                        ctrl |= E1000_CTRL_ADVD3WUC |
4690                                E1000_CTRL_EN_PHY_PWR_MGMT;
4691                        ew32(CTRL, ctrl);
4692                }
4693
4694                if (hw->media_type == e1000_media_type_fiber ||
4695                    hw->media_type == e1000_media_type_internal_serdes) {
4696                        /* keep the laser running in D3 */
4697                        ctrl_ext = er32(CTRL_EXT);
4698                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4699                        ew32(CTRL_EXT, ctrl_ext);
4700                }
4701
4702                ew32(WUC, E1000_WUC_PME_EN);
4703                ew32(WUFC, wufc);
4704        } else {
4705                ew32(WUC, 0);
4706                ew32(WUFC, 0);
4707        }
4708
4709        e1000_release_manageability(adapter);
4710
4711        *enable_wake = !!wufc;
4712
4713        /* make sure adapter isn't asleep if manageability is enabled */
4714        if (adapter->en_mng_pt)
4715                *enable_wake = true;
4716
4717        if (netif_running(netdev))
4718                e1000_free_irq(adapter);
4719
4720        pci_disable_device(pdev);
4721
4722        return 0;
4723}
4724
4725#ifdef CONFIG_PM
4726static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4727{
4728        int retval;
4729        bool wake;
4730
4731        retval = __e1000_shutdown(pdev, &wake);
4732        if (retval)
4733                return retval;
4734
4735        if (wake) {
4736                pci_prepare_to_sleep(pdev);
4737        } else {
4738                pci_wake_from_d3(pdev, false);
4739                pci_set_power_state(pdev, PCI_D3hot);
4740        }
4741
4742        return 0;
4743}
4744
4745static int e1000_resume(struct pci_dev *pdev)
4746{
4747        struct net_device *netdev = pci_get_drvdata(pdev);
4748        struct e1000_adapter *adapter = netdev_priv(netdev);
4749        struct e1000_hw *hw = &adapter->hw;
4750        u32 err;
4751
4752        pci_set_power_state(pdev, PCI_D0);
4753        pci_restore_state(pdev);
4754        pci_save_state(pdev);
4755
4756        if (adapter->need_ioport)
4757                err = pci_enable_device(pdev);
4758        else
4759                err = pci_enable_device_mem(pdev);
4760        if (err) {
4761                pr_err("Cannot enable PCI device from suspend\n");
4762                return err;
4763        }
4764        pci_set_master(pdev);
4765
4766        pci_enable_wake(pdev, PCI_D3hot, 0);
4767        pci_enable_wake(pdev, PCI_D3cold, 0);
4768
4769        if (netif_running(netdev)) {
4770                err = e1000_request_irq(adapter);
4771                if (err)
4772                        return err;
4773        }
4774
4775        e1000_power_up_phy(adapter);
4776        e1000_reset(adapter);
4777        ew32(WUS, ~0);
4778
4779        e1000_init_manageability(adapter);
4780
4781        if (netif_running(netdev))
4782                e1000_up(adapter);
4783
4784        netif_device_attach(netdev);
4785
4786        return 0;
4787}
4788#endif
4789
4790static void e1000_shutdown(struct pci_dev *pdev)
4791{
4792        bool wake;
4793
4794        __e1000_shutdown(pdev, &wake);
4795
4796        if (system_state == SYSTEM_POWER_OFF) {
4797                pci_wake_from_d3(pdev, wake);
4798                pci_set_power_state(pdev, PCI_D3hot);
4799        }
4800}
4801
4802#ifdef CONFIG_NET_POLL_CONTROLLER
4803/*
4804 * Polling 'interrupt' - used by things like netconsole to send skbs
4805 * without having to re-enable interrupts. It's not called while
4806 * the interrupt routine is executing.
4807 */
4808static void e1000_netpoll(struct net_device *netdev)
4809{
4810        struct e1000_adapter *adapter = netdev_priv(netdev);
4811
4812        disable_irq(adapter->pdev->irq);
4813        e1000_intr(adapter->pdev->irq, netdev);
4814        enable_irq(adapter->pdev->irq);
4815}
4816#endif
4817
4818/**
4819 * e1000_io_error_detected - called when PCI error is detected
4820 * @pdev: Pointer to PCI device
4821 * @state: The current pci connection state
4822 *
4823 * This function is called after a PCI bus error affecting
4824 * this device has been detected.
4825 */
4826static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4827                                                pci_channel_state_t state)
4828{
4829        struct net_device *netdev = pci_get_drvdata(pdev);
4830        struct e1000_adapter *adapter = netdev_priv(netdev);
4831
4832        netif_device_detach(netdev);
4833
4834        if (state == pci_channel_io_perm_failure)
4835                return PCI_ERS_RESULT_DISCONNECT;
4836
4837        if (netif_running(netdev))
4838                e1000_down(adapter);
4839        pci_disable_device(pdev);
4840
4841        /* Request a slot slot reset. */
4842        return PCI_ERS_RESULT_NEED_RESET;
4843}
4844
4845/**
4846 * e1000_io_slot_reset - called after the pci bus has been reset.
4847 * @pdev: Pointer to PCI device
4848 *
4849 * Restart the card from scratch, as if from a cold-boot. Implementation
4850 * resembles the first-half of the e1000_resume routine.
4851 */
4852static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4853{
4854        struct net_device *netdev = pci_get_drvdata(pdev);
4855        struct e1000_adapter *adapter = netdev_priv(netdev);
4856        struct e1000_hw *hw = &adapter->hw;
4857        int err;
4858
4859        if (adapter->need_ioport)
4860                err = pci_enable_device(pdev);
4861        else
4862                err = pci_enable_device_mem(pdev);
4863        if (err) {
4864                pr_err("Cannot re-enable PCI device after reset.\n");
4865                return PCI_ERS_RESULT_DISCONNECT;
4866        }
4867        pci_set_master(pdev);
4868
4869        pci_enable_wake(pdev, PCI_D3hot, 0);
4870        pci_enable_wake(pdev, PCI_D3cold, 0);
4871
4872        e1000_reset(adapter);
4873        ew32(WUS, ~0);
4874
4875        return PCI_ERS_RESULT_RECOVERED;
4876}
4877
4878/**
4879 * e1000_io_resume - called when traffic can start flowing again.
4880 * @pdev: Pointer to PCI device
4881 *
4882 * This callback is called when the error recovery driver tells us that
4883 * its OK to resume normal operation. Implementation resembles the
4884 * second-half of the e1000_resume routine.
4885 */
4886static void e1000_io_resume(struct pci_dev *pdev)
4887{
4888        struct net_device *netdev = pci_get_drvdata(pdev);
4889        struct e1000_adapter *adapter = netdev_priv(netdev);
4890
4891        e1000_init_manageability(adapter);
4892
4893        if (netif_running(netdev)) {
4894                if (e1000_up(adapter)) {
4895                        pr_info("can't bring device back up after reset\n");
4896                        return;
4897                }
4898        }
4899
4900        netif_device_attach(netdev);
4901}
4902
4903/* e1000_main.c */
4904