linux/drivers/net/starfire.c
<<
>>
Prefs
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3        Written 1998-2000 by Donald Becker.
   4
   5        Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6        send all bug reports to me, and not to Donald Becker, as this code
   7        has been heavily modified from Donald's original version.
   8
   9        This software may be used and distributed according to the terms of
  10        the GNU General Public License (GPL), incorporated herein by reference.
  11        Drivers based on or derived from this code fall under the GPL and must
  12        retain the authorship, copyright and license notice.  This file is not
  13        a complete program and may only be used when the entire operating
  14        system is licensed under the GPL.
  15
  16        The information below comes from Donald Becker's original driver:
  17
  18        The author may be reached as becker@scyld.com, or C/O
  19        Scyld Computing Corporation
  20        410 Severn Ave., Suite 210
  21        Annapolis MD 21403
  22
  23        Support and updates available at
  24        http://www.scyld.com/network/starfire.html
  25        [link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME        "starfire"
  30#define DRV_VERSION     "2.1"
  31#define DRV_RELDATE     "July  6, 2008"
  32
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/pci.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/init.h>
  39#include <linux/delay.h>
  40#include <linux/crc32.h>
  41#include <linux/ethtool.h>
  42#include <linux/mii.h>
  43#include <linux/if_vlan.h>
  44#include <linux/mm.h>
  45#include <linux/firmware.h>
  46#include <asm/processor.h>              /* Processor type for cache alignment. */
  47#include <asm/uaccess.h>
  48#include <asm/io.h>
  49
  50/*
  51 * The current frame processor firmware fails to checksum a fragment
  52 * of length 1. If and when this is fixed, the #define below can be removed.
  53 */
  54#define HAS_BROKEN_FIRMWARE
  55
  56/*
  57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  58 */
  59#ifdef HAS_BROKEN_FIRMWARE
  60#define PADDING_MASK 3
  61#endif
  62
  63/*
  64 * Define this if using the driver with the zero-copy patch
  65 */
  66#define ZEROCOPY
  67
  68#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  69#define VLAN_SUPPORT
  70#endif
  71
  72/* The user-configurable values.
  73   These may be modified when a driver module is loaded.*/
  74
  75/* Used for tuning interrupt latency vs. overhead. */
  76static int intr_latency;
  77static int small_frames;
  78
  79static int debug = 1;                   /* 1 normal messages, 0 quiet .. 7 verbose. */
  80static int max_interrupt_work = 20;
  81static int mtu;
  82/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  83   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  84static const int multicast_filter_limit = 512;
  85/* Whether to do TCP/UDP checksums in hardware */
  86static int enable_hw_cksum = 1;
  87
  88#define PKT_BUF_SZ      1536            /* Size of each temporary Rx buffer.*/
  89/*
  90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  91 * Setting to > 1518 effectively disables this feature.
  92 *
  93 * NOTE:
  94 * The ia64 doesn't allow for unaligned loads even of integers being
  95 * misaligned on a 2 byte boundary. Thus always force copying of
  96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  97 * 23/10/2000 - Jes
  98 *
  99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
 100 * at least, having unaligned frames leads to a rather serious performance
 101 * penalty. -Ion
 102 */
 103#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 104static int rx_copybreak = PKT_BUF_SZ;
 105#else
 106static int rx_copybreak /* = 0 */;
 107#endif
 108
 109/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 110#ifdef __sparc__
 111#define DMA_BURST_SIZE 64
 112#else
 113#define DMA_BURST_SIZE 128
 114#endif
 115
 116/* Used to pass the media type, etc.
 117   Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
 118   The media type is usually passed in 'options[]'.
 119   These variables are deprecated, use ethtool instead. -Ion
 120*/
 121#define MAX_UNITS 8             /* More are supported, limit only on options */
 122static int options[MAX_UNITS] = {0, };
 123static int full_duplex[MAX_UNITS] = {0, };
 124
 125/* Operational parameters that are set at compile time. */
 126
 127/* The "native" ring sizes are either 256 or 2048.
 128   However in some modes a descriptor may be marked to wrap the ring earlier.
 129*/
 130#define RX_RING_SIZE    256
 131#define TX_RING_SIZE    32
 132/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 133#define DONE_Q_SIZE     1024
 134/* All queues must be aligned on a 256-byte boundary */
 135#define QUEUE_ALIGN     256
 136
 137#if RX_RING_SIZE > 256
 138#define RX_Q_ENTRIES Rx2048QEntries
 139#else
 140#define RX_Q_ENTRIES Rx256QEntries
 141#endif
 142
 143/* Operational parameters that usually are not changed. */
 144/* Time in jiffies before concluding the transmitter is hung. */
 145#define TX_TIMEOUT      (2 * HZ)
 146
 147#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 148/* 64-bit dma_addr_t */
 149#define ADDR_64BITS     /* This chip uses 64 bit addresses. */
 150#define netdrv_addr_t __le64
 151#define cpu_to_dma(x) cpu_to_le64(x)
 152#define dma_to_cpu(x) le64_to_cpu(x)
 153#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 154#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 155#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 156#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 157#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 158#else  /* 32-bit dma_addr_t */
 159#define netdrv_addr_t __le32
 160#define cpu_to_dma(x) cpu_to_le32(x)
 161#define dma_to_cpu(x) le32_to_cpu(x)
 162#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 163#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 164#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 165#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 166#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 167#endif
 168
 169#define skb_first_frag_len(skb) skb_headlen(skb)
 170#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 171
 172/* Firmware names */
 173#define FIRMWARE_RX     "adaptec/starfire_rx.bin"
 174#define FIRMWARE_TX     "adaptec/starfire_tx.bin"
 175
 176/* These identify the driver base version and may not be removed. */
 177static const char version[] __devinitconst =
 178KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
 179" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
 180
 181MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 182MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 183MODULE_LICENSE("GPL");
 184MODULE_VERSION(DRV_VERSION);
 185MODULE_FIRMWARE(FIRMWARE_RX);
 186MODULE_FIRMWARE(FIRMWARE_TX);
 187
 188module_param(max_interrupt_work, int, 0);
 189module_param(mtu, int, 0);
 190module_param(debug, int, 0);
 191module_param(rx_copybreak, int, 0);
 192module_param(intr_latency, int, 0);
 193module_param(small_frames, int, 0);
 194module_param_array(options, int, NULL, 0);
 195module_param_array(full_duplex, int, NULL, 0);
 196module_param(enable_hw_cksum, int, 0);
 197MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 198MODULE_PARM_DESC(mtu, "MTU (all boards)");
 199MODULE_PARM_DESC(debug, "Debug level (0-6)");
 200MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 201MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 202MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 203MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
 204MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
 205MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 206
 207/*
 208                                Theory of Operation
 209
 210I. Board Compatibility
 211
 212This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 213
 214II. Board-specific settings
 215
 216III. Driver operation
 217
 218IIIa. Ring buffers
 219
 220The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 221ring sizes are set fixed by the hardware, but may optionally be wrapped
 222earlier by the END bit in the descriptor.
 223This driver uses that hardware queue size for the Rx ring, where a large
 224number of entries has no ill effect beyond increases the potential backlog.
 225The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 226disables the queue layer priority ordering and we have no mechanism to
 227utilize the hardware two-level priority queue.  When modifying the
 228RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 229levels.
 230
 231IIIb/c. Transmit/Receive Structure
 232
 233See the Adaptec manual for the many possible structures, and options for
 234each structure.  There are far too many to document all of them here.
 235
 236For transmit this driver uses type 0/1 transmit descriptors (depending
 237on the 32/64 bitness of the architecture), and relies on automatic
 238minimum-length padding.  It does not use the completion queue
 239consumer index, but instead checks for non-zero status entries.
 240
 241For receive this driver uses type 2/3 receive descriptors.  The driver
 242allocates full frame size skbuffs for the Rx ring buffers, so all frames
 243should fit in a single descriptor.  The driver does not use the completion
 244queue consumer index, but instead checks for non-zero status entries.
 245
 246When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 247is allocated and the frame is copied to the new skbuff.  When the incoming
 248frame is larger, the skbuff is passed directly up the protocol stack.
 249Buffers consumed this way are replaced by newly allocated skbuffs in a later
 250phase of receive.
 251
 252A notable aspect of operation is that unaligned buffers are not permitted by
 253the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 254isn't longword aligned, which may cause problems on some machine
 255e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 256the frame into a new skbuff unconditionally. Copied frames are put into the
 257skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 258
 259IIId. Synchronization
 260
 261The driver runs as two independent, single-threaded flows of control.  One
 262is the send-packet routine, which enforces single-threaded use by the
 263dev->tbusy flag.  The other thread is the interrupt handler, which is single
 264threaded by the hardware and interrupt handling software.
 265
 266The send packet thread has partial control over the Tx ring and the netif_queue
 267status. If the number of free Tx slots in the ring falls below a certain number
 268(currently hardcoded to 4), it signals the upper layer to stop the queue.
 269
 270The interrupt handler has exclusive control over the Rx ring and records stats
 271from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 272empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 273number of free Tx slow is above the threshold, it signals the upper layer to
 274restart the queue.
 275
 276IV. Notes
 277
 278IVb. References
 279
 280The Adaptec Starfire manuals, available only from Adaptec.
 281http://www.scyld.com/expert/100mbps.html
 282http://www.scyld.com/expert/NWay.html
 283
 284IVc. Errata
 285
 286- StopOnPerr is broken, don't enable
 287- Hardware ethernet padding exposes random data, perform software padding
 288  instead (unverified -- works correctly for all the hardware I have)
 289
 290*/
 291
 292
 293
 294enum chip_capability_flags {CanHaveMII=1, };
 295
 296enum chipset {
 297        CH_6915 = 0,
 298};
 299
 300static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
 301        { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 302        { 0, }
 303};
 304MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 305
 306/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 307static const struct chip_info {
 308        const char *name;
 309        int drv_flags;
 310} netdrv_tbl[] __devinitdata = {
 311        { "Adaptec Starfire 6915", CanHaveMII },
 312};
 313
 314
 315/* Offsets to the device registers.
 316   Unlike software-only systems, device drivers interact with complex hardware.
 317   It's not useful to define symbolic names for every register bit in the
 318   device.  The name can only partially document the semantics and make
 319   the driver longer and more difficult to read.
 320   In general, only the important configuration values or bits changed
 321   multiple times should be defined symbolically.
 322*/
 323enum register_offsets {
 324        PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 325        IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 326        MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 327        GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 328        TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 329        TxRingHiAddr=0x5009C,           /* 64 bit address extension. */
 330        TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 331        TxThreshold=0x500B0,
 332        CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 333        RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 334        CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 335        RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 336        RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 337        TxMode=0x55000, VlanType=0x55064,
 338        PerfFilterTable=0x56000, HashTable=0x56100,
 339        TxGfpMem=0x58000, RxGfpMem=0x5a000,
 340};
 341
 342/*
 343 * Bits in the interrupt status/mask registers.
 344 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 345 * enables all the interrupt sources that are or'ed into those status bits.
 346 */
 347enum intr_status_bits {
 348        IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 349        IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 350        IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 351        IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 352        IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 353        IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 354        IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 355        IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 356        IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 357        IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 358        IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 359        IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 360        IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 361        IntrTxGfp=0x02, IntrPCIPad=0x01,
 362        /* not quite bits */
 363        IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 364        IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 365        IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 366};
 367
 368/* Bits in the RxFilterMode register. */
 369enum rx_mode_bits {
 370        AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 371        AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 372        PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 373        WakeupOnGFP=0x0800,
 374};
 375
 376/* Bits in the TxMode register */
 377enum tx_mode_bits {
 378        MiiSoftReset=0x8000, MIILoopback=0x4000,
 379        TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 380        PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 381};
 382
 383/* Bits in the TxDescCtrl register. */
 384enum tx_ctrl_bits {
 385        TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 386        TxDescSpace128=0x30, TxDescSpace256=0x40,
 387        TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 388        TxDescType3=0x03, TxDescType4=0x04,
 389        TxNoDMACompletion=0x08,
 390        TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 391        TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 392        TxDMABurstSizeShift=8,
 393};
 394
 395/* Bits in the RxDescQCtrl register. */
 396enum rx_ctrl_bits {
 397        RxBufferLenShift=16, RxMinDescrThreshShift=0,
 398        RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 399        Rx2048QEntries=0x4000, Rx256QEntries=0,
 400        RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 401        RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 402        RxDescSpace4=0x000, RxDescSpace8=0x100,
 403        RxDescSpace16=0x200, RxDescSpace32=0x300,
 404        RxDescSpace64=0x400, RxDescSpace128=0x500,
 405        RxConsumerWrEn=0x80,
 406};
 407
 408/* Bits in the RxDMACtrl register. */
 409enum rx_dmactrl_bits {
 410        RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 411        RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 412        RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 413        RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 414        RxChecksumRejectTCPOnly=0x01000000,
 415        RxCompletionQ2Enable=0x800000,
 416        RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 417        RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 418        RxDMAQ2NonIP=0x400000,
 419        RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 420        RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 421        RxBurstSizeShift=0,
 422};
 423
 424/* Bits in the RxCompletionAddr register */
 425enum rx_compl_bits {
 426        RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 427        RxComplProducerWrEn=0x40,
 428        RxComplType0=0x00, RxComplType1=0x10,
 429        RxComplType2=0x20, RxComplType3=0x30,
 430        RxComplThreshShift=0,
 431};
 432
 433/* Bits in the TxCompletionAddr register */
 434enum tx_compl_bits {
 435        TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 436        TxComplProducerWrEn=0x40,
 437        TxComplIntrStatus=0x20,
 438        CommonQueueMode=0x10,
 439        TxComplThreshShift=0,
 440};
 441
 442/* Bits in the GenCtrl register */
 443enum gen_ctrl_bits {
 444        RxEnable=0x05, TxEnable=0x0a,
 445        RxGFPEnable=0x10, TxGFPEnable=0x20,
 446};
 447
 448/* Bits in the IntrTimerCtrl register */
 449enum intr_ctrl_bits {
 450        Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 451        SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 452        IntrLatencyMask=0x1f,
 453};
 454
 455/* The Rx and Tx buffer descriptors. */
 456struct starfire_rx_desc {
 457        netdrv_addr_t rxaddr;
 458};
 459enum rx_desc_bits {
 460        RxDescValid=1, RxDescEndRing=2,
 461};
 462
 463/* Completion queue entry. */
 464struct short_rx_done_desc {
 465        __le32 status;                  /* Low 16 bits is length. */
 466};
 467struct basic_rx_done_desc {
 468        __le32 status;                  /* Low 16 bits is length. */
 469        __le16 vlanid;
 470        __le16 status2;
 471};
 472struct csum_rx_done_desc {
 473        __le32 status;                  /* Low 16 bits is length. */
 474        __le16 csum;                    /* Partial checksum */
 475        __le16 status2;
 476};
 477struct full_rx_done_desc {
 478        __le32 status;                  /* Low 16 bits is length. */
 479        __le16 status3;
 480        __le16 status2;
 481        __le16 vlanid;
 482        __le16 csum;                    /* partial checksum */
 483        __le32 timestamp;
 484};
 485/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 486#ifdef VLAN_SUPPORT
 487typedef struct full_rx_done_desc rx_done_desc;
 488#define RxComplType RxComplType3
 489#else  /* not VLAN_SUPPORT */
 490typedef struct csum_rx_done_desc rx_done_desc;
 491#define RxComplType RxComplType2
 492#endif /* not VLAN_SUPPORT */
 493
 494enum rx_done_bits {
 495        RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 496};
 497
 498/* Type 1 Tx descriptor. */
 499struct starfire_tx_desc_1 {
 500        __le32 status;                  /* Upper bits are status, lower 16 length. */
 501        __le32 addr;
 502};
 503
 504/* Type 2 Tx descriptor. */
 505struct starfire_tx_desc_2 {
 506        __le32 status;                  /* Upper bits are status, lower 16 length. */
 507        __le32 reserved;
 508        __le64 addr;
 509};
 510
 511#ifdef ADDR_64BITS
 512typedef struct starfire_tx_desc_2 starfire_tx_desc;
 513#define TX_DESC_TYPE TxDescType2
 514#else  /* not ADDR_64BITS */
 515typedef struct starfire_tx_desc_1 starfire_tx_desc;
 516#define TX_DESC_TYPE TxDescType1
 517#endif /* not ADDR_64BITS */
 518#define TX_DESC_SPACING TxDescSpaceUnlim
 519
 520enum tx_desc_bits {
 521        TxDescID=0xB0000000,
 522        TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 523        TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 524};
 525struct tx_done_desc {
 526        __le32 status;                  /* timestamp, index. */
 527#if 0
 528        __le32 intrstatus;              /* interrupt status */
 529#endif
 530};
 531
 532struct rx_ring_info {
 533        struct sk_buff *skb;
 534        dma_addr_t mapping;
 535};
 536struct tx_ring_info {
 537        struct sk_buff *skb;
 538        dma_addr_t mapping;
 539        unsigned int used_slots;
 540};
 541
 542#define PHY_CNT         2
 543struct netdev_private {
 544        /* Descriptor rings first for alignment. */
 545        struct starfire_rx_desc *rx_ring;
 546        starfire_tx_desc *tx_ring;
 547        dma_addr_t rx_ring_dma;
 548        dma_addr_t tx_ring_dma;
 549        /* The addresses of rx/tx-in-place skbuffs. */
 550        struct rx_ring_info rx_info[RX_RING_SIZE];
 551        struct tx_ring_info tx_info[TX_RING_SIZE];
 552        /* Pointers to completion queues (full pages). */
 553        rx_done_desc *rx_done_q;
 554        dma_addr_t rx_done_q_dma;
 555        unsigned int rx_done;
 556        struct tx_done_desc *tx_done_q;
 557        dma_addr_t tx_done_q_dma;
 558        unsigned int tx_done;
 559        struct napi_struct napi;
 560        struct net_device *dev;
 561        struct pci_dev *pci_dev;
 562#ifdef VLAN_SUPPORT
 563        struct vlan_group *vlgrp;
 564#endif
 565        void *queue_mem;
 566        dma_addr_t queue_mem_dma;
 567        size_t queue_mem_size;
 568
 569        /* Frequently used values: keep some adjacent for cache effect. */
 570        spinlock_t lock;
 571        unsigned int cur_rx, dirty_rx;  /* Producer/consumer ring indices */
 572        unsigned int cur_tx, dirty_tx, reap_tx;
 573        unsigned int rx_buf_sz;         /* Based on MTU+slack. */
 574        /* These values keep track of the transceiver/media in use. */
 575        int speed100;                   /* Set if speed == 100MBit. */
 576        u32 tx_mode;
 577        u32 intr_timer_ctrl;
 578        u8 tx_threshold;
 579        /* MII transceiver section. */
 580        struct mii_if_info mii_if;              /* MII lib hooks/info */
 581        int phy_cnt;                    /* MII device addresses. */
 582        unsigned char phys[PHY_CNT];    /* MII device addresses. */
 583        void __iomem *base;
 584};
 585
 586
 587static int      mdio_read(struct net_device *dev, int phy_id, int location);
 588static void     mdio_write(struct net_device *dev, int phy_id, int location, int value);
 589static int      netdev_open(struct net_device *dev);
 590static void     check_duplex(struct net_device *dev);
 591static void     tx_timeout(struct net_device *dev);
 592static void     init_ring(struct net_device *dev);
 593static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 594static irqreturn_t intr_handler(int irq, void *dev_instance);
 595static void     netdev_error(struct net_device *dev, int intr_status);
 596static int      __netdev_rx(struct net_device *dev, int *quota);
 597static int      netdev_poll(struct napi_struct *napi, int budget);
 598static void     refill_rx_ring(struct net_device *dev);
 599static void     netdev_error(struct net_device *dev, int intr_status);
 600static void     set_rx_mode(struct net_device *dev);
 601static struct net_device_stats *get_stats(struct net_device *dev);
 602static int      netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 603static int      netdev_close(struct net_device *dev);
 604static void     netdev_media_change(struct net_device *dev);
 605static const struct ethtool_ops ethtool_ops;
 606
 607
 608#ifdef VLAN_SUPPORT
 609static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
 610{
 611        struct netdev_private *np = netdev_priv(dev);
 612
 613        spin_lock(&np->lock);
 614        if (debug > 2)
 615                printk("%s: Setting vlgrp to %p\n", dev->name, grp);
 616        np->vlgrp = grp;
 617        set_rx_mode(dev);
 618        spin_unlock(&np->lock);
 619}
 620
 621static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
 622{
 623        struct netdev_private *np = netdev_priv(dev);
 624
 625        spin_lock(&np->lock);
 626        if (debug > 1)
 627                printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 628        set_rx_mode(dev);
 629        spin_unlock(&np->lock);
 630}
 631
 632static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
 633{
 634        struct netdev_private *np = netdev_priv(dev);
 635
 636        spin_lock(&np->lock);
 637        if (debug > 1)
 638                printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 639        vlan_group_set_device(np->vlgrp, vid, NULL);
 640        set_rx_mode(dev);
 641        spin_unlock(&np->lock);
 642}
 643#endif /* VLAN_SUPPORT */
 644
 645
 646static const struct net_device_ops netdev_ops = {
 647        .ndo_open               = netdev_open,
 648        .ndo_stop               = netdev_close,
 649        .ndo_start_xmit         = start_tx,
 650        .ndo_tx_timeout         = tx_timeout,
 651        .ndo_get_stats          = get_stats,
 652        .ndo_set_multicast_list = &set_rx_mode,
 653        .ndo_do_ioctl           = netdev_ioctl,
 654        .ndo_change_mtu         = eth_change_mtu,
 655        .ndo_set_mac_address    = eth_mac_addr,
 656        .ndo_validate_addr      = eth_validate_addr,
 657#ifdef VLAN_SUPPORT
 658        .ndo_vlan_rx_register   = netdev_vlan_rx_register,
 659        .ndo_vlan_rx_add_vid    = netdev_vlan_rx_add_vid,
 660        .ndo_vlan_rx_kill_vid   = netdev_vlan_rx_kill_vid,
 661#endif
 662};
 663
 664static int __devinit starfire_init_one(struct pci_dev *pdev,
 665                                       const struct pci_device_id *ent)
 666{
 667        struct netdev_private *np;
 668        int i, irq, option, chip_idx = ent->driver_data;
 669        struct net_device *dev;
 670        static int card_idx = -1;
 671        long ioaddr;
 672        void __iomem *base;
 673        int drv_flags, io_size;
 674        int boguscnt;
 675
 676/* when built into the kernel, we only print version if device is found */
 677#ifndef MODULE
 678        static int printed_version;
 679        if (!printed_version++)
 680                printk(version);
 681#endif
 682
 683        card_idx++;
 684
 685        if (pci_enable_device (pdev))
 686                return -EIO;
 687
 688        ioaddr = pci_resource_start(pdev, 0);
 689        io_size = pci_resource_len(pdev, 0);
 690        if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 691                printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
 692                return -ENODEV;
 693        }
 694
 695        dev = alloc_etherdev(sizeof(*np));
 696        if (!dev) {
 697                printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
 698                return -ENOMEM;
 699        }
 700        SET_NETDEV_DEV(dev, &pdev->dev);
 701
 702        irq = pdev->irq;
 703
 704        if (pci_request_regions (pdev, DRV_NAME)) {
 705                printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
 706                goto err_out_free_netdev;
 707        }
 708
 709        base = ioremap(ioaddr, io_size);
 710        if (!base) {
 711                printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
 712                        card_idx, io_size, ioaddr);
 713                goto err_out_free_res;
 714        }
 715
 716        pci_set_master(pdev);
 717
 718        /* enable MWI -- it vastly improves Rx performance on sparc64 */
 719        pci_try_set_mwi(pdev);
 720
 721#ifdef ZEROCOPY
 722        /* Starfire can do TCP/UDP checksumming */
 723        if (enable_hw_cksum)
 724                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 725#endif /* ZEROCOPY */
 726
 727#ifdef VLAN_SUPPORT
 728        dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
 729#endif /* VLAN_RX_KILL_VID */
 730#ifdef ADDR_64BITS
 731        dev->features |= NETIF_F_HIGHDMA;
 732#endif /* ADDR_64BITS */
 733
 734        /* Serial EEPROM reads are hidden by the hardware. */
 735        for (i = 0; i < 6; i++)
 736                dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
 737
 738#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 739        if (debug > 4)
 740                for (i = 0; i < 0x20; i++)
 741                        printk("%2.2x%s",
 742                               (unsigned int)readb(base + EEPROMCtrl + i),
 743                               i % 16 != 15 ? " " : "\n");
 744#endif
 745
 746        /* Issue soft reset */
 747        writel(MiiSoftReset, base + TxMode);
 748        udelay(1000);
 749        writel(0, base + TxMode);
 750
 751        /* Reset the chip to erase previous misconfiguration. */
 752        writel(1, base + PCIDeviceConfig);
 753        boguscnt = 1000;
 754        while (--boguscnt > 0) {
 755                udelay(10);
 756                if ((readl(base + PCIDeviceConfig) & 1) == 0)
 757                        break;
 758        }
 759        if (boguscnt == 0)
 760                printk("%s: chipset reset never completed!\n", dev->name);
 761        /* wait a little longer */
 762        udelay(1000);
 763
 764        dev->base_addr = (unsigned long)base;
 765        dev->irq = irq;
 766
 767        np = netdev_priv(dev);
 768        np->dev = dev;
 769        np->base = base;
 770        spin_lock_init(&np->lock);
 771        pci_set_drvdata(pdev, dev);
 772
 773        np->pci_dev = pdev;
 774
 775        np->mii_if.dev = dev;
 776        np->mii_if.mdio_read = mdio_read;
 777        np->mii_if.mdio_write = mdio_write;
 778        np->mii_if.phy_id_mask = 0x1f;
 779        np->mii_if.reg_num_mask = 0x1f;
 780
 781        drv_flags = netdrv_tbl[chip_idx].drv_flags;
 782
 783        option = card_idx < MAX_UNITS ? options[card_idx] : 0;
 784        if (dev->mem_start)
 785                option = dev->mem_start;
 786
 787        /* The lower four bits are the media type. */
 788        if (option & 0x200)
 789                np->mii_if.full_duplex = 1;
 790
 791        if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
 792                np->mii_if.full_duplex = 1;
 793
 794        if (np->mii_if.full_duplex)
 795                np->mii_if.force_media = 1;
 796        else
 797                np->mii_if.force_media = 0;
 798        np->speed100 = 1;
 799
 800        /* timer resolution is 128 * 0.8us */
 801        np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 802                Timer10X | EnableIntrMasking;
 803
 804        if (small_frames > 0) {
 805                np->intr_timer_ctrl |= SmallFrameBypass;
 806                switch (small_frames) {
 807                case 1 ... 64:
 808                        np->intr_timer_ctrl |= SmallFrame64;
 809                        break;
 810                case 65 ... 128:
 811                        np->intr_timer_ctrl |= SmallFrame128;
 812                        break;
 813                case 129 ... 256:
 814                        np->intr_timer_ctrl |= SmallFrame256;
 815                        break;
 816                default:
 817                        np->intr_timer_ctrl |= SmallFrame512;
 818                        if (small_frames > 512)
 819                                printk("Adjusting small_frames down to 512\n");
 820                        break;
 821                }
 822        }
 823
 824        dev->netdev_ops = &netdev_ops;
 825        dev->watchdog_timeo = TX_TIMEOUT;
 826        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 827
 828        netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
 829
 830        if (mtu)
 831                dev->mtu = mtu;
 832
 833        if (register_netdev(dev))
 834                goto err_out_cleardev;
 835
 836        printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 837               dev->name, netdrv_tbl[chip_idx].name, base,
 838               dev->dev_addr, irq);
 839
 840        if (drv_flags & CanHaveMII) {
 841                int phy, phy_idx = 0;
 842                int mii_status;
 843                for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 844                        mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 845                        mdelay(100);
 846                        boguscnt = 1000;
 847                        while (--boguscnt > 0)
 848                                if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 849                                        break;
 850                        if (boguscnt == 0) {
 851                                printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 852                                continue;
 853                        }
 854                        mii_status = mdio_read(dev, phy, MII_BMSR);
 855                        if (mii_status != 0) {
 856                                np->phys[phy_idx++] = phy;
 857                                np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 858                                printk(KERN_INFO "%s: MII PHY found at address %d, status "
 859                                           "%#4.4x advertising %#4.4x.\n",
 860                                           dev->name, phy, mii_status, np->mii_if.advertising);
 861                                /* there can be only one PHY on-board */
 862                                break;
 863                        }
 864                }
 865                np->phy_cnt = phy_idx;
 866                if (np->phy_cnt > 0)
 867                        np->mii_if.phy_id = np->phys[0];
 868                else
 869                        memset(&np->mii_if, 0, sizeof(np->mii_if));
 870        }
 871
 872        printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 873               dev->name, enable_hw_cksum ? "enabled" : "disabled");
 874        return 0;
 875
 876err_out_cleardev:
 877        pci_set_drvdata(pdev, NULL);
 878        iounmap(base);
 879err_out_free_res:
 880        pci_release_regions (pdev);
 881err_out_free_netdev:
 882        free_netdev(dev);
 883        return -ENODEV;
 884}
 885
 886
 887/* Read the MII Management Data I/O (MDIO) interfaces. */
 888static int mdio_read(struct net_device *dev, int phy_id, int location)
 889{
 890        struct netdev_private *np = netdev_priv(dev);
 891        void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 892        int result, boguscnt=1000;
 893        /* ??? Should we add a busy-wait here? */
 894        do {
 895                result = readl(mdio_addr);
 896        } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 897        if (boguscnt == 0)
 898                return 0;
 899        if ((result & 0xffff) == 0xffff)
 900                return 0;
 901        return result & 0xffff;
 902}
 903
 904
 905static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 906{
 907        struct netdev_private *np = netdev_priv(dev);
 908        void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 909        writel(value, mdio_addr);
 910        /* The busy-wait will occur before a read. */
 911}
 912
 913
 914static int netdev_open(struct net_device *dev)
 915{
 916        const struct firmware *fw_rx, *fw_tx;
 917        const __be32 *fw_rx_data, *fw_tx_data;
 918        struct netdev_private *np = netdev_priv(dev);
 919        void __iomem *ioaddr = np->base;
 920        int i, retval;
 921        size_t tx_size, rx_size;
 922        size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 923
 924        /* Do we ever need to reset the chip??? */
 925
 926        retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
 927        if (retval)
 928                return retval;
 929
 930        /* Disable the Rx and Tx, and reset the chip. */
 931        writel(0, ioaddr + GenCtrl);
 932        writel(1, ioaddr + PCIDeviceConfig);
 933        if (debug > 1)
 934                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 935                       dev->name, dev->irq);
 936
 937        /* Allocate the various queues. */
 938        if (!np->queue_mem) {
 939                tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 940                rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 941                tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 942                rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 943                np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 944                np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
 945                if (np->queue_mem == NULL) {
 946                        free_irq(dev->irq, dev);
 947                        return -ENOMEM;
 948                }
 949
 950                np->tx_done_q     = np->queue_mem;
 951                np->tx_done_q_dma = np->queue_mem_dma;
 952                np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 953                np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 954                np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 955                np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 956                np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 957                np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 958        }
 959
 960        /* Start with no carrier, it gets adjusted later */
 961        netif_carrier_off(dev);
 962        init_ring(dev);
 963        /* Set the size of the Rx buffers. */
 964        writel((np->rx_buf_sz << RxBufferLenShift) |
 965               (0 << RxMinDescrThreshShift) |
 966               RxPrefetchMode | RxVariableQ |
 967               RX_Q_ENTRIES |
 968               RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 969               RxDescSpace4,
 970               ioaddr + RxDescQCtrl);
 971
 972        /* Set up the Rx DMA controller. */
 973        writel(RxChecksumIgnore |
 974               (0 << RxEarlyIntThreshShift) |
 975               (6 << RxHighPrioThreshShift) |
 976               ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 977               ioaddr + RxDMACtrl);
 978
 979        /* Set Tx descriptor */
 980        writel((2 << TxHiPriFIFOThreshShift) |
 981               (0 << TxPadLenShift) |
 982               ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 983               TX_DESC_Q_ADDR_SIZE |
 984               TX_DESC_SPACING | TX_DESC_TYPE,
 985               ioaddr + TxDescCtrl);
 986
 987        writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 988        writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 989        writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 990        writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 991        writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 992
 993        writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 994        writel(np->rx_done_q_dma |
 995               RxComplType |
 996               (0 << RxComplThreshShift),
 997               ioaddr + RxCompletionAddr);
 998
 999        if (debug > 1)
1000                printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1001
1002        /* Fill both the Tx SA register and the Rx perfect filter. */
1003        for (i = 0; i < 6; i++)
1004                writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1005        /* The first entry is special because it bypasses the VLAN filter.
1006           Don't use it. */
1007        writew(0, ioaddr + PerfFilterTable);
1008        writew(0, ioaddr + PerfFilterTable + 4);
1009        writew(0, ioaddr + PerfFilterTable + 8);
1010        for (i = 1; i < 16; i++) {
1011                __be16 *eaddrs = (__be16 *)dev->dev_addr;
1012                void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1013                writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1014                writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1015                writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1016        }
1017
1018        /* Initialize other registers. */
1019        /* Configure the PCI bus bursts and FIFO thresholds. */
1020        np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;      /* modified when link is up. */
1021        writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1022        udelay(1000);
1023        writel(np->tx_mode, ioaddr + TxMode);
1024        np->tx_threshold = 4;
1025        writel(np->tx_threshold, ioaddr + TxThreshold);
1026
1027        writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1028
1029        napi_enable(&np->napi);
1030
1031        netif_start_queue(dev);
1032
1033        if (debug > 1)
1034                printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1035        set_rx_mode(dev);
1036
1037        np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1038        check_duplex(dev);
1039
1040        /* Enable GPIO interrupts on link change */
1041        writel(0x0f00ff00, ioaddr + GPIOCtrl);
1042
1043        /* Set the interrupt mask */
1044        writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1045               IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1046               IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1047               ioaddr + IntrEnable);
1048        /* Enable PCI interrupts. */
1049        writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1050               ioaddr + PCIDeviceConfig);
1051
1052#ifdef VLAN_SUPPORT
1053        /* Set VLAN type to 802.1q */
1054        writel(ETH_P_8021Q, ioaddr + VlanType);
1055#endif /* VLAN_SUPPORT */
1056
1057        retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1058        if (retval) {
1059                printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1060                       FIRMWARE_RX);
1061                goto out_init;
1062        }
1063        if (fw_rx->size % 4) {
1064                printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1065                       fw_rx->size, FIRMWARE_RX);
1066                retval = -EINVAL;
1067                goto out_rx;
1068        }
1069        retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1070        if (retval) {
1071                printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1072                       FIRMWARE_TX);
1073                goto out_rx;
1074        }
1075        if (fw_tx->size % 4) {
1076                printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1077                       fw_tx->size, FIRMWARE_TX);
1078                retval = -EINVAL;
1079                goto out_tx;
1080        }
1081        fw_rx_data = (const __be32 *)&fw_rx->data[0];
1082        fw_tx_data = (const __be32 *)&fw_tx->data[0];
1083        rx_size = fw_rx->size / 4;
1084        tx_size = fw_tx->size / 4;
1085
1086        /* Load Rx/Tx firmware into the frame processors */
1087        for (i = 0; i < rx_size; i++)
1088                writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1089        for (i = 0; i < tx_size; i++)
1090                writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1091        if (enable_hw_cksum)
1092                /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1093                writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1094        else
1095                /* Enable the Rx and Tx units only. */
1096                writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1097
1098        if (debug > 1)
1099                printk(KERN_DEBUG "%s: Done netdev_open().\n",
1100                       dev->name);
1101
1102out_tx:
1103        release_firmware(fw_tx);
1104out_rx:
1105        release_firmware(fw_rx);
1106out_init:
1107        if (retval)
1108                netdev_close(dev);
1109        return retval;
1110}
1111
1112
1113static void check_duplex(struct net_device *dev)
1114{
1115        struct netdev_private *np = netdev_priv(dev);
1116        u16 reg0;
1117        int silly_count = 1000;
1118
1119        mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1120        mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1121        udelay(500);
1122        while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1123                /* do nothing */;
1124        if (!silly_count) {
1125                printk("%s: MII reset failed!\n", dev->name);
1126                return;
1127        }
1128
1129        reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1130
1131        if (!np->mii_if.force_media) {
1132                reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1133        } else {
1134                reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1135                if (np->speed100)
1136                        reg0 |= BMCR_SPEED100;
1137                if (np->mii_if.full_duplex)
1138                        reg0 |= BMCR_FULLDPLX;
1139                printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1140                       dev->name,
1141                       np->speed100 ? "100" : "10",
1142                       np->mii_if.full_duplex ? "full" : "half");
1143        }
1144        mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1145}
1146
1147
1148static void tx_timeout(struct net_device *dev)
1149{
1150        struct netdev_private *np = netdev_priv(dev);
1151        void __iomem *ioaddr = np->base;
1152        int old_debug;
1153
1154        printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1155               "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1156
1157        /* Perhaps we should reinitialize the hardware here. */
1158
1159        /*
1160         * Stop and restart the interface.
1161         * Cheat and increase the debug level temporarily.
1162         */
1163        old_debug = debug;
1164        debug = 2;
1165        netdev_close(dev);
1166        netdev_open(dev);
1167        debug = old_debug;
1168
1169        /* Trigger an immediate transmit demand. */
1170
1171        dev->trans_start = jiffies; /* prevent tx timeout */
1172        dev->stats.tx_errors++;
1173        netif_wake_queue(dev);
1174}
1175
1176
1177/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1178static void init_ring(struct net_device *dev)
1179{
1180        struct netdev_private *np = netdev_priv(dev);
1181        int i;
1182
1183        np->cur_rx = np->cur_tx = np->reap_tx = 0;
1184        np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1185
1186        np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1187
1188        /* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1189        for (i = 0; i < RX_RING_SIZE; i++) {
1190                struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1191                np->rx_info[i].skb = skb;
1192                if (skb == NULL)
1193                        break;
1194                np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1195                skb->dev = dev;                 /* Mark as being used by this device. */
1196                /* Grrr, we cannot offset to correctly align the IP header. */
1197                np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1198        }
1199        writew(i - 1, np->base + RxDescQIdx);
1200        np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1201
1202        /* Clear the remainder of the Rx buffer ring. */
1203        for (  ; i < RX_RING_SIZE; i++) {
1204                np->rx_ring[i].rxaddr = 0;
1205                np->rx_info[i].skb = NULL;
1206                np->rx_info[i].mapping = 0;
1207        }
1208        /* Mark the last entry as wrapping the ring. */
1209        np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1210
1211        /* Clear the completion rings. */
1212        for (i = 0; i < DONE_Q_SIZE; i++) {
1213                np->rx_done_q[i].status = 0;
1214                np->tx_done_q[i].status = 0;
1215        }
1216
1217        for (i = 0; i < TX_RING_SIZE; i++)
1218                memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1219}
1220
1221
1222static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1223{
1224        struct netdev_private *np = netdev_priv(dev);
1225        unsigned int entry;
1226        u32 status;
1227        int i;
1228
1229        /*
1230         * be cautious here, wrapping the queue has weird semantics
1231         * and we may not have enough slots even when it seems we do.
1232         */
1233        if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1234                netif_stop_queue(dev);
1235                return NETDEV_TX_BUSY;
1236        }
1237
1238#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1239        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1240                if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1241                        return NETDEV_TX_OK;
1242        }
1243#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1244
1245        entry = np->cur_tx % TX_RING_SIZE;
1246        for (i = 0; i < skb_num_frags(skb); i++) {
1247                int wrap_ring = 0;
1248                status = TxDescID;
1249
1250                if (i == 0) {
1251                        np->tx_info[entry].skb = skb;
1252                        status |= TxCRCEn;
1253                        if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1254                                status |= TxRingWrap;
1255                                wrap_ring = 1;
1256                        }
1257                        if (np->reap_tx) {
1258                                status |= TxDescIntr;
1259                                np->reap_tx = 0;
1260                        }
1261                        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1262                                status |= TxCalTCP;
1263                                dev->stats.tx_compressed++;
1264                        }
1265                        status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1266
1267                        np->tx_info[entry].mapping =
1268                                pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1269                } else {
1270                        skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1271                        status |= this_frag->size;
1272                        np->tx_info[entry].mapping =
1273                                pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1274                }
1275
1276                np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1277                np->tx_ring[entry].status = cpu_to_le32(status);
1278                if (debug > 3)
1279                        printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1280                               dev->name, np->cur_tx, np->dirty_tx,
1281                               entry, status);
1282                if (wrap_ring) {
1283                        np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1284                        np->cur_tx += np->tx_info[entry].used_slots;
1285                        entry = 0;
1286                } else {
1287                        np->tx_info[entry].used_slots = 1;
1288                        np->cur_tx += np->tx_info[entry].used_slots;
1289                        entry++;
1290                }
1291                /* scavenge the tx descriptors twice per TX_RING_SIZE */
1292                if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1293                        np->reap_tx = 1;
1294        }
1295
1296        /* Non-x86: explicitly flush descriptor cache lines here. */
1297        /* Ensure all descriptors are written back before the transmit is
1298           initiated. - Jes */
1299        wmb();
1300
1301        /* Update the producer index. */
1302        writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1303
1304        /* 4 is arbitrary, but should be ok */
1305        if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1306                netif_stop_queue(dev);
1307
1308        return NETDEV_TX_OK;
1309}
1310
1311
1312/* The interrupt handler does all of the Rx thread work and cleans up
1313   after the Tx thread. */
1314static irqreturn_t intr_handler(int irq, void *dev_instance)
1315{
1316        struct net_device *dev = dev_instance;
1317        struct netdev_private *np = netdev_priv(dev);
1318        void __iomem *ioaddr = np->base;
1319        int boguscnt = max_interrupt_work;
1320        int consumer;
1321        int tx_status;
1322        int handled = 0;
1323
1324        do {
1325                u32 intr_status = readl(ioaddr + IntrClear);
1326
1327                if (debug > 4)
1328                        printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1329                               dev->name, intr_status);
1330
1331                if (intr_status == 0 || intr_status == (u32) -1)
1332                        break;
1333
1334                handled = 1;
1335
1336                if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1337                        u32 enable;
1338
1339                        if (likely(napi_schedule_prep(&np->napi))) {
1340                                __napi_schedule(&np->napi);
1341                                enable = readl(ioaddr + IntrEnable);
1342                                enable &= ~(IntrRxDone | IntrRxEmpty);
1343                                writel(enable, ioaddr + IntrEnable);
1344                                /* flush PCI posting buffers */
1345                                readl(ioaddr + IntrEnable);
1346                        } else {
1347                                /* Paranoia check */
1348                                enable = readl(ioaddr + IntrEnable);
1349                                if (enable & (IntrRxDone | IntrRxEmpty)) {
1350                                        printk(KERN_INFO
1351                                               "%s: interrupt while in poll!\n",
1352                                               dev->name);
1353                                        enable &= ~(IntrRxDone | IntrRxEmpty);
1354                                        writel(enable, ioaddr + IntrEnable);
1355                                }
1356                        }
1357                }
1358
1359                /* Scavenge the skbuff list based on the Tx-done queue.
1360                   There are redundant checks here that may be cleaned up
1361                   after the driver has proven to be reliable. */
1362                consumer = readl(ioaddr + TxConsumerIdx);
1363                if (debug > 3)
1364                        printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1365                               dev->name, consumer);
1366
1367                while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1368                        if (debug > 3)
1369                                printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1370                                       dev->name, np->dirty_tx, np->tx_done, tx_status);
1371                        if ((tx_status & 0xe0000000) == 0xa0000000) {
1372                                dev->stats.tx_packets++;
1373                        } else if ((tx_status & 0xe0000000) == 0x80000000) {
1374                                u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1375                                struct sk_buff *skb = np->tx_info[entry].skb;
1376                                np->tx_info[entry].skb = NULL;
1377                                pci_unmap_single(np->pci_dev,
1378                                                 np->tx_info[entry].mapping,
1379                                                 skb_first_frag_len(skb),
1380                                                 PCI_DMA_TODEVICE);
1381                                np->tx_info[entry].mapping = 0;
1382                                np->dirty_tx += np->tx_info[entry].used_slots;
1383                                entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1384                                {
1385                                        int i;
1386                                        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1387                                                pci_unmap_single(np->pci_dev,
1388                                                                 np->tx_info[entry].mapping,
1389                                                                 skb_shinfo(skb)->frags[i].size,
1390                                                                 PCI_DMA_TODEVICE);
1391                                                np->dirty_tx++;
1392                                                entry++;
1393                                        }
1394                                }
1395
1396                                dev_kfree_skb_irq(skb);
1397                        }
1398                        np->tx_done_q[np->tx_done].status = 0;
1399                        np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1400                }
1401                writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1402
1403                if (netif_queue_stopped(dev) &&
1404                    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1405                        /* The ring is no longer full, wake the queue. */
1406                        netif_wake_queue(dev);
1407                }
1408
1409                /* Stats overflow */
1410                if (intr_status & IntrStatsMax)
1411                        get_stats(dev);
1412
1413                /* Media change interrupt. */
1414                if (intr_status & IntrLinkChange)
1415                        netdev_media_change(dev);
1416
1417                /* Abnormal error summary/uncommon events handlers. */
1418                if (intr_status & IntrAbnormalSummary)
1419                        netdev_error(dev, intr_status);
1420
1421                if (--boguscnt < 0) {
1422                        if (debug > 1)
1423                                printk(KERN_WARNING "%s: Too much work at interrupt, "
1424                                       "status=%#8.8x.\n",
1425                                       dev->name, intr_status);
1426                        break;
1427                }
1428        } while (1);
1429
1430        if (debug > 4)
1431                printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1432                       dev->name, (int) readl(ioaddr + IntrStatus));
1433        return IRQ_RETVAL(handled);
1434}
1435
1436
1437/*
1438 * This routine is logically part of the interrupt/poll handler, but separated
1439 * for clarity and better register allocation.
1440 */
1441static int __netdev_rx(struct net_device *dev, int *quota)
1442{
1443        struct netdev_private *np = netdev_priv(dev);
1444        u32 desc_status;
1445        int retcode = 0;
1446
1447        /* If EOP is set on the next entry, it's a new packet. Send it up. */
1448        while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1449                struct sk_buff *skb;
1450                u16 pkt_len;
1451                int entry;
1452                rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1453
1454                if (debug > 4)
1455                        printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1456                if (!(desc_status & RxOK)) {
1457                        /* There was an error. */
1458                        if (debug > 2)
1459                                printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1460                        dev->stats.rx_errors++;
1461                        if (desc_status & RxFIFOErr)
1462                                dev->stats.rx_fifo_errors++;
1463                        goto next_rx;
1464                }
1465
1466                if (*quota <= 0) {      /* out of rx quota */
1467                        retcode = 1;
1468                        goto out;
1469                }
1470                (*quota)--;
1471
1472                pkt_len = desc_status;  /* Implicitly Truncate */
1473                entry = (desc_status >> 16) & 0x7ff;
1474
1475                if (debug > 4)
1476                        printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1477                /* Check if the packet is long enough to accept without copying
1478                   to a minimally-sized skbuff. */
1479                if (pkt_len < rx_copybreak &&
1480                    (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1481                        skb_reserve(skb, 2);    /* 16 byte align the IP header */
1482                        pci_dma_sync_single_for_cpu(np->pci_dev,
1483                                                    np->rx_info[entry].mapping,
1484                                                    pkt_len, PCI_DMA_FROMDEVICE);
1485                        skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1486                        pci_dma_sync_single_for_device(np->pci_dev,
1487                                                       np->rx_info[entry].mapping,
1488                                                       pkt_len, PCI_DMA_FROMDEVICE);
1489                        skb_put(skb, pkt_len);
1490                } else {
1491                        pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1492                        skb = np->rx_info[entry].skb;
1493                        skb_put(skb, pkt_len);
1494                        np->rx_info[entry].skb = NULL;
1495                        np->rx_info[entry].mapping = 0;
1496                }
1497#ifndef final_version                   /* Remove after testing. */
1498                /* You will want this info for the initial debug. */
1499                if (debug > 5) {
1500                        printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1501                               skb->data, skb->data + 6,
1502                               skb->data[12], skb->data[13]);
1503                }
1504#endif
1505
1506                skb->protocol = eth_type_trans(skb, dev);
1507#ifdef VLAN_SUPPORT
1508                if (debug > 4)
1509                        printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1510#endif
1511                if (le16_to_cpu(desc->status2) & 0x0100) {
1512                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1513                        dev->stats.rx_compressed++;
1514                }
1515                /*
1516                 * This feature doesn't seem to be working, at least
1517                 * with the two firmware versions I have. If the GFP sees
1518                 * an IP fragment, it either ignores it completely, or reports
1519                 * "bad checksum" on it.
1520                 *
1521                 * Maybe I missed something -- corrections are welcome.
1522                 * Until then, the printk stays. :-) -Ion
1523                 */
1524                else if (le16_to_cpu(desc->status2) & 0x0040) {
1525                        skb->ip_summed = CHECKSUM_COMPLETE;
1526                        skb->csum = le16_to_cpu(desc->csum);
1527                        printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1528                }
1529#ifdef VLAN_SUPPORT
1530                if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1531                        u16 vlid = le16_to_cpu(desc->vlanid);
1532
1533                        if (debug > 4) {
1534                                printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1535                                       vlid);
1536                        }
1537                        /*
1538                         * vlan_hwaccel_rx expects a packet with the VLAN tag
1539                         * stripped out.
1540                         */
1541                        vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1542                } else
1543#endif /* VLAN_SUPPORT */
1544                        netif_receive_skb(skb);
1545                dev->stats.rx_packets++;
1546
1547        next_rx:
1548                np->cur_rx++;
1549                desc->status = 0;
1550                np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1551        }
1552
1553        if (*quota == 0) {      /* out of rx quota */
1554                retcode = 1;
1555                goto out;
1556        }
1557        writew(np->rx_done, np->base + CompletionQConsumerIdx);
1558
1559 out:
1560        refill_rx_ring(dev);
1561        if (debug > 5)
1562                printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1563                       retcode, np->rx_done, desc_status);
1564        return retcode;
1565}
1566
1567static int netdev_poll(struct napi_struct *napi, int budget)
1568{
1569        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1570        struct net_device *dev = np->dev;
1571        u32 intr_status;
1572        void __iomem *ioaddr = np->base;
1573        int quota = budget;
1574
1575        do {
1576                writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1577
1578                if (__netdev_rx(dev, &quota))
1579                        goto out;
1580
1581                intr_status = readl(ioaddr + IntrStatus);
1582        } while (intr_status & (IntrRxDone | IntrRxEmpty));
1583
1584        napi_complete(napi);
1585        intr_status = readl(ioaddr + IntrEnable);
1586        intr_status |= IntrRxDone | IntrRxEmpty;
1587        writel(intr_status, ioaddr + IntrEnable);
1588
1589 out:
1590        if (debug > 5)
1591                printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1592                       budget - quota);
1593
1594        /* Restart Rx engine if stopped. */
1595        return budget - quota;
1596}
1597
1598static void refill_rx_ring(struct net_device *dev)
1599{
1600        struct netdev_private *np = netdev_priv(dev);
1601        struct sk_buff *skb;
1602        int entry = -1;
1603
1604        /* Refill the Rx ring buffers. */
1605        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1606                entry = np->dirty_rx % RX_RING_SIZE;
1607                if (np->rx_info[entry].skb == NULL) {
1608                        skb = dev_alloc_skb(np->rx_buf_sz);
1609                        np->rx_info[entry].skb = skb;
1610                        if (skb == NULL)
1611                                break;  /* Better luck next round. */
1612                        np->rx_info[entry].mapping =
1613                                pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1614                        skb->dev = dev; /* Mark as being used by this device. */
1615                        np->rx_ring[entry].rxaddr =
1616                                cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1617                }
1618                if (entry == RX_RING_SIZE - 1)
1619                        np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1620        }
1621        if (entry >= 0)
1622                writew(entry, np->base + RxDescQIdx);
1623}
1624
1625
1626static void netdev_media_change(struct net_device *dev)
1627{
1628        struct netdev_private *np = netdev_priv(dev);
1629        void __iomem *ioaddr = np->base;
1630        u16 reg0, reg1, reg4, reg5;
1631        u32 new_tx_mode;
1632        u32 new_intr_timer_ctrl;
1633
1634        /* reset status first */
1635        mdio_read(dev, np->phys[0], MII_BMCR);
1636        mdio_read(dev, np->phys[0], MII_BMSR);
1637
1638        reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1639        reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1640
1641        if (reg1 & BMSR_LSTATUS) {
1642                /* link is up */
1643                if (reg0 & BMCR_ANENABLE) {
1644                        /* autonegotiation is enabled */
1645                        reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1646                        reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1647                        if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1648                                np->speed100 = 1;
1649                                np->mii_if.full_duplex = 1;
1650                        } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1651                                np->speed100 = 1;
1652                                np->mii_if.full_duplex = 0;
1653                        } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1654                                np->speed100 = 0;
1655                                np->mii_if.full_duplex = 1;
1656                        } else {
1657                                np->speed100 = 0;
1658                                np->mii_if.full_duplex = 0;
1659                        }
1660                } else {
1661                        /* autonegotiation is disabled */
1662                        if (reg0 & BMCR_SPEED100)
1663                                np->speed100 = 1;
1664                        else
1665                                np->speed100 = 0;
1666                        if (reg0 & BMCR_FULLDPLX)
1667                                np->mii_if.full_duplex = 1;
1668                        else
1669                                np->mii_if.full_duplex = 0;
1670                }
1671                netif_carrier_on(dev);
1672                printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1673                       dev->name,
1674                       np->speed100 ? "100" : "10",
1675                       np->mii_if.full_duplex ? "full" : "half");
1676
1677                new_tx_mode = np->tx_mode & ~FullDuplex;        /* duplex setting */
1678                if (np->mii_if.full_duplex)
1679                        new_tx_mode |= FullDuplex;
1680                if (np->tx_mode != new_tx_mode) {
1681                        np->tx_mode = new_tx_mode;
1682                        writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1683                        udelay(1000);
1684                        writel(np->tx_mode, ioaddr + TxMode);
1685                }
1686
1687                new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1688                if (np->speed100)
1689                        new_intr_timer_ctrl |= Timer10X;
1690                if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1691                        np->intr_timer_ctrl = new_intr_timer_ctrl;
1692                        writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1693                }
1694        } else {
1695                netif_carrier_off(dev);
1696                printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1697        }
1698}
1699
1700
1701static void netdev_error(struct net_device *dev, int intr_status)
1702{
1703        struct netdev_private *np = netdev_priv(dev);
1704
1705        /* Came close to underrunning the Tx FIFO, increase threshold. */
1706        if (intr_status & IntrTxDataLow) {
1707                if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1708                        writel(++np->tx_threshold, np->base + TxThreshold);
1709                        printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1710                               dev->name, np->tx_threshold * 16);
1711                } else
1712                        printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1713        }
1714        if (intr_status & IntrRxGFPDead) {
1715                dev->stats.rx_fifo_errors++;
1716                dev->stats.rx_errors++;
1717        }
1718        if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1719                dev->stats.tx_fifo_errors++;
1720                dev->stats.tx_errors++;
1721        }
1722        if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1723                printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1724                       dev->name, intr_status);
1725}
1726
1727
1728static struct net_device_stats *get_stats(struct net_device *dev)
1729{
1730        struct netdev_private *np = netdev_priv(dev);
1731        void __iomem *ioaddr = np->base;
1732
1733        /* This adapter architecture needs no SMP locks. */
1734        dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1735        dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1736        dev->stats.tx_packets = readl(ioaddr + 0x57000);
1737        dev->stats.tx_aborted_errors =
1738                readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1739        dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1740        dev->stats.collisions =
1741                readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1742
1743        /* The chip only need report frame silently dropped. */
1744        dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1745        writew(0, ioaddr + RxDMAStatus);
1746        dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1747        dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1748        dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1749        dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1750
1751        return &dev->stats;
1752}
1753
1754
1755static void set_rx_mode(struct net_device *dev)
1756{
1757        struct netdev_private *np = netdev_priv(dev);
1758        void __iomem *ioaddr = np->base;
1759        u32 rx_mode = MinVLANPrio;
1760        struct netdev_hw_addr *ha;
1761        int i;
1762#ifdef VLAN_SUPPORT
1763
1764        rx_mode |= VlanMode;
1765        if (np->vlgrp) {
1766                int vlan_count = 0;
1767                void __iomem *filter_addr = ioaddr + HashTable + 8;
1768                for (i = 0; i < VLAN_VID_MASK; i++) {
1769                        if (vlan_group_get_device(np->vlgrp, i)) {
1770                                if (vlan_count >= 32)
1771                                        break;
1772                                writew(i, filter_addr);
1773                                filter_addr += 16;
1774                                vlan_count++;
1775                        }
1776                }
1777                if (i == VLAN_VID_MASK) {
1778                        rx_mode |= PerfectFilterVlan;
1779                        while (vlan_count < 32) {
1780                                writew(0, filter_addr);
1781                                filter_addr += 16;
1782                                vlan_count++;
1783                        }
1784                }
1785        }
1786#endif /* VLAN_SUPPORT */
1787
1788        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1789                rx_mode |= AcceptAll;
1790        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1791                   (dev->flags & IFF_ALLMULTI)) {
1792                /* Too many to match, or accept all multicasts. */
1793                rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1794        } else if (netdev_mc_count(dev) <= 14) {
1795                /* Use the 16 element perfect filter, skip first two entries. */
1796                void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1797                __be16 *eaddrs;
1798                netdev_for_each_mc_addr(ha, dev) {
1799                        eaddrs = (__be16 *) ha->addr;
1800                        writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1801                        writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1802                        writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1803                }
1804                eaddrs = (__be16 *)dev->dev_addr;
1805                i = netdev_mc_count(dev) + 2;
1806                while (i++ < 16) {
1807                        writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1808                        writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1809                        writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1810                }
1811                rx_mode |= AcceptBroadcast|PerfectFilter;
1812        } else {
1813                /* Must use a multicast hash table. */
1814                void __iomem *filter_addr;
1815                __be16 *eaddrs;
1816                __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));   /* Multicast hash filter */
1817
1818                memset(mc_filter, 0, sizeof(mc_filter));
1819                netdev_for_each_mc_addr(ha, dev) {
1820                        /* The chip uses the upper 9 CRC bits
1821                           as index into the hash table */
1822                        int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1823                        __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1824
1825                        *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1826                }
1827                /* Clear the perfect filter list, skip first two entries. */
1828                filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1829                eaddrs = (__be16 *)dev->dev_addr;
1830                for (i = 2; i < 16; i++) {
1831                        writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1832                        writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1833                        writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1834                }
1835                for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1836                        writew(mc_filter[i], filter_addr);
1837                rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1838        }
1839        writel(rx_mode, ioaddr + RxFilterMode);
1840}
1841
1842static int check_if_running(struct net_device *dev)
1843{
1844        if (!netif_running(dev))
1845                return -EINVAL;
1846        return 0;
1847}
1848
1849static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1850{
1851        struct netdev_private *np = netdev_priv(dev);
1852        strcpy(info->driver, DRV_NAME);
1853        strcpy(info->version, DRV_VERSION);
1854        strcpy(info->bus_info, pci_name(np->pci_dev));
1855}
1856
1857static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1858{
1859        struct netdev_private *np = netdev_priv(dev);
1860        spin_lock_irq(&np->lock);
1861        mii_ethtool_gset(&np->mii_if, ecmd);
1862        spin_unlock_irq(&np->lock);
1863        return 0;
1864}
1865
1866static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1867{
1868        struct netdev_private *np = netdev_priv(dev);
1869        int res;
1870        spin_lock_irq(&np->lock);
1871        res = mii_ethtool_sset(&np->mii_if, ecmd);
1872        spin_unlock_irq(&np->lock);
1873        check_duplex(dev);
1874        return res;
1875}
1876
1877static int nway_reset(struct net_device *dev)
1878{
1879        struct netdev_private *np = netdev_priv(dev);
1880        return mii_nway_restart(&np->mii_if);
1881}
1882
1883static u32 get_link(struct net_device *dev)
1884{
1885        struct netdev_private *np = netdev_priv(dev);
1886        return mii_link_ok(&np->mii_if);
1887}
1888
1889static u32 get_msglevel(struct net_device *dev)
1890{
1891        return debug;
1892}
1893
1894static void set_msglevel(struct net_device *dev, u32 val)
1895{
1896        debug = val;
1897}
1898
1899static const struct ethtool_ops ethtool_ops = {
1900        .begin = check_if_running,
1901        .get_drvinfo = get_drvinfo,
1902        .get_settings = get_settings,
1903        .set_settings = set_settings,
1904        .nway_reset = nway_reset,
1905        .get_link = get_link,
1906        .get_msglevel = get_msglevel,
1907        .set_msglevel = set_msglevel,
1908};
1909
1910static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1911{
1912        struct netdev_private *np = netdev_priv(dev);
1913        struct mii_ioctl_data *data = if_mii(rq);
1914        int rc;
1915
1916        if (!netif_running(dev))
1917                return -EINVAL;
1918
1919        spin_lock_irq(&np->lock);
1920        rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1921        spin_unlock_irq(&np->lock);
1922
1923        if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1924                check_duplex(dev);
1925
1926        return rc;
1927}
1928
1929static int netdev_close(struct net_device *dev)
1930{
1931        struct netdev_private *np = netdev_priv(dev);
1932        void __iomem *ioaddr = np->base;
1933        int i;
1934
1935        netif_stop_queue(dev);
1936
1937        napi_disable(&np->napi);
1938
1939        if (debug > 1) {
1940                printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1941                           dev->name, (int) readl(ioaddr + IntrStatus));
1942                printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1943                       dev->name, np->cur_tx, np->dirty_tx,
1944                       np->cur_rx, np->dirty_rx);
1945        }
1946
1947        /* Disable interrupts by clearing the interrupt mask. */
1948        writel(0, ioaddr + IntrEnable);
1949
1950        /* Stop the chip's Tx and Rx processes. */
1951        writel(0, ioaddr + GenCtrl);
1952        readl(ioaddr + GenCtrl);
1953
1954        if (debug > 5) {
1955                printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1956                       (long long) np->tx_ring_dma);
1957                for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1958                        printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1959                               i, le32_to_cpu(np->tx_ring[i].status),
1960                               (long long) dma_to_cpu(np->tx_ring[i].addr),
1961                               le32_to_cpu(np->tx_done_q[i].status));
1962                printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1963                       (long long) np->rx_ring_dma, np->rx_done_q);
1964                if (np->rx_done_q)
1965                        for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1966                                printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1967                                       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1968                }
1969        }
1970
1971        free_irq(dev->irq, dev);
1972
1973        /* Free all the skbuffs in the Rx queue. */
1974        for (i = 0; i < RX_RING_SIZE; i++) {
1975                np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1976                if (np->rx_info[i].skb != NULL) {
1977                        pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1978                        dev_kfree_skb(np->rx_info[i].skb);
1979                }
1980                np->rx_info[i].skb = NULL;
1981                np->rx_info[i].mapping = 0;
1982        }
1983        for (i = 0; i < TX_RING_SIZE; i++) {
1984                struct sk_buff *skb = np->tx_info[i].skb;
1985                if (skb == NULL)
1986                        continue;
1987                pci_unmap_single(np->pci_dev,
1988                                 np->tx_info[i].mapping,
1989                                 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1990                np->tx_info[i].mapping = 0;
1991                dev_kfree_skb(skb);
1992                np->tx_info[i].skb = NULL;
1993        }
1994
1995        return 0;
1996}
1997
1998#ifdef CONFIG_PM
1999static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2000{
2001        struct net_device *dev = pci_get_drvdata(pdev);
2002
2003        if (netif_running(dev)) {
2004                netif_device_detach(dev);
2005                netdev_close(dev);
2006        }
2007
2008        pci_save_state(pdev);
2009        pci_set_power_state(pdev, pci_choose_state(pdev,state));
2010
2011        return 0;
2012}
2013
2014static int starfire_resume(struct pci_dev *pdev)
2015{
2016        struct net_device *dev = pci_get_drvdata(pdev);
2017
2018        pci_set_power_state(pdev, PCI_D0);
2019        pci_restore_state(pdev);
2020
2021        if (netif_running(dev)) {
2022                netdev_open(dev);
2023                netif_device_attach(dev);
2024        }
2025
2026        return 0;
2027}
2028#endif /* CONFIG_PM */
2029
2030
2031static void __devexit starfire_remove_one (struct pci_dev *pdev)
2032{
2033        struct net_device *dev = pci_get_drvdata(pdev);
2034        struct netdev_private *np = netdev_priv(dev);
2035
2036        BUG_ON(!dev);
2037
2038        unregister_netdev(dev);
2039
2040        if (np->queue_mem)
2041                pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2042
2043
2044        /* XXX: add wakeup code -- requires firmware for MagicPacket */
2045        pci_set_power_state(pdev, PCI_D3hot);   /* go to sleep in D3 mode */
2046        pci_disable_device(pdev);
2047
2048        iounmap(np->base);
2049        pci_release_regions(pdev);
2050
2051        pci_set_drvdata(pdev, NULL);
2052        free_netdev(dev);                       /* Will also free np!! */
2053}
2054
2055
2056static struct pci_driver starfire_driver = {
2057        .name           = DRV_NAME,
2058        .probe          = starfire_init_one,
2059        .remove         = __devexit_p(starfire_remove_one),
2060#ifdef CONFIG_PM
2061        .suspend        = starfire_suspend,
2062        .resume         = starfire_resume,
2063#endif /* CONFIG_PM */
2064        .id_table       = starfire_pci_tbl,
2065};
2066
2067
2068static int __init starfire_init (void)
2069{
2070/* when a module, this is printed whether or not devices are found in probe */
2071#ifdef MODULE
2072        printk(version);
2073
2074        printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2075#endif
2076
2077        BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2078
2079        return pci_register_driver(&starfire_driver);
2080}
2081
2082
2083static void __exit starfire_cleanup (void)
2084{
2085        pci_unregister_driver (&starfire_driver);
2086}
2087
2088
2089module_init(starfire_init);
2090module_exit(starfire_cleanup);
2091
2092
2093/*
2094 * Local variables:
2095 *  c-basic-offset: 8
2096 *  tab-width: 8
2097 * End:
2098 */
2099