linux/drivers/net/wan/dscc4.c
<<
>>
Prefs
   1/*
   2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
   3 *
   4 * This software may be used and distributed according to the terms of the
   5 * GNU General Public License.
   6 *
   7 * The author may be reached as romieu@cogenit.fr.
   8 * Specific bug reports/asian food will be welcome.
   9 *
  10 * Special thanks to the nice people at CS-Telecom for the hardware and the
  11 * access to the test/measure tools.
  12 *
  13 *
  14 *                             Theory of Operation
  15 *
  16 * I. Board Compatibility
  17 *
  18 * This device driver is designed for the Siemens PEB20534 4 ports serial
  19 * controller as found on Etinc PCISYNC cards. The documentation for the
  20 * chipset is available at http://www.infineon.com:
  21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
  22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
  23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
  24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
  25 * Jens David has built an adapter based on the same chipset. Take a look
  26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
  27 * driver.
  28 * Sample code (2 revisions) is available at Infineon.
  29 *
  30 * II. Board-specific settings
  31 *
  32 * Pcisync can transmit some clock signal to the outside world on the
  33 * *first two* ports provided you put a quartz and a line driver on it and
  34 * remove the jumpers. The operation is described on Etinc web site. If you
  35 * go DCE on these ports, don't forget to use an adequate cable.
  36 *
  37 * Sharing of the PCI interrupt line for this board is possible.
  38 *
  39 * III. Driver operation
  40 *
  41 * The rx/tx operations are based on a linked list of descriptors. The driver
  42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
  43 * I tried to fix it, the more it started to look like (convoluted) software
  44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
  45 * this a rfc2119 MUST.
  46 *
  47 * Tx direction
  48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
  49 * The device is supposed to be enabled again during an ALLS irq (we could
  50 * use HI but as it's easy to lose events, it's fscked).
  51 *
  52 * Rx direction
  53 * The received frames aren't supposed to span over multiple receiving areas.
  54 * I may implement it some day but it isn't the highest ranked item.
  55 *
  56 * IV. Notes
  57 * The current error (XDU, RFO) recovery code is untested.
  58 * So far, RDO takes his RX channel down and the right sequence to enable it
  59 * again is still a mystery. If RDO happens, plan a reboot. More details
  60 * in the code (NB: as this happens, TX still works).
  61 * Don't mess the cables during operation, especially on DTE ports. I don't
  62 * suggest it for DCE either but at least one can get some messages instead
  63 * of a complete instant freeze.
  64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
  65 * the documentation/chipset releases.
  66 *
  67 * TODO:
  68 * - test X25.
  69 * - use polling at high irq/s,
  70 * - performance analysis,
  71 * - endianness.
  72 *
  73 * 2001/12/10   Daniela Squassoni  <daniela@cyclades.com>
  74 * - Contribution to support the new generic HDLC layer.
  75 *
  76 * 2002/01      Ueimor
  77 * - old style interface removal
  78 * - dscc4_release_ring fix (related to DMA mapping)
  79 * - hard_start_xmit fix (hint: TxSizeMax)
  80 * - misc crapectomy.
  81 */
  82
  83#include <linux/module.h>
  84#include <linux/sched.h>
  85#include <linux/types.h>
  86#include <linux/errno.h>
  87#include <linux/list.h>
  88#include <linux/ioport.h>
  89#include <linux/pci.h>
  90#include <linux/kernel.h>
  91#include <linux/mm.h>
  92#include <linux/slab.h>
  93
  94#include <asm/system.h>
  95#include <asm/cache.h>
  96#include <asm/byteorder.h>
  97#include <asm/uaccess.h>
  98#include <asm/io.h>
  99#include <asm/irq.h>
 100
 101#include <linux/init.h>
 102#include <linux/string.h>
 103
 104#include <linux/if_arp.h>
 105#include <linux/netdevice.h>
 106#include <linux/skbuff.h>
 107#include <linux/delay.h>
 108#include <linux/hdlc.h>
 109#include <linux/mutex.h>
 110
 111/* Version */
 112static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
 113static int debug;
 114static int quartz;
 115
 116#ifdef CONFIG_DSCC4_PCI_RST
 117static DEFINE_MUTEX(dscc4_mutex);
 118static u32 dscc4_pci_config_store[16];
 119#endif
 120
 121#define DRV_NAME        "dscc4"
 122
 123#undef DSCC4_POLLING
 124
 125/* Module parameters */
 126
 127MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
 128MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
 129MODULE_LICENSE("GPL");
 130module_param(debug, int, 0);
 131MODULE_PARM_DESC(debug,"Enable/disable extra messages");
 132module_param(quartz, int, 0);
 133MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
 134
 135/* Structures */
 136
 137struct thingie {
 138        int define;
 139        u32 bits;
 140};
 141
 142struct TxFD {
 143        __le32 state;
 144        __le32 next;
 145        __le32 data;
 146        __le32 complete;
 147        u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
 148                     /* FWIW, datasheet calls that "dummy" and says that card
 149                      * never looks at it; neither does the driver */
 150};
 151
 152struct RxFD {
 153        __le32 state1;
 154        __le32 next;
 155        __le32 data;
 156        __le32 state2;
 157        __le32 end;
 158};
 159
 160#define DUMMY_SKB_SIZE          64
 161#define TX_LOW                  8
 162#define TX_RING_SIZE            32
 163#define RX_RING_SIZE            32
 164#define TX_TOTAL_SIZE           TX_RING_SIZE*sizeof(struct TxFD)
 165#define RX_TOTAL_SIZE           RX_RING_SIZE*sizeof(struct RxFD)
 166#define IRQ_RING_SIZE           64              /* Keep it a multiple of 32 */
 167#define TX_TIMEOUT              (HZ/10)
 168#define DSCC4_HZ_MAX            33000000
 169#define BRR_DIVIDER_MAX         64*0x00004000   /* Cf errata DS5 p.10 */
 170#define dev_per_card            4
 171#define SCC_REGISTERS_MAX       23              /* Cf errata DS5 p.4 */
 172
 173#define SOURCE_ID(flags)        (((flags) >> 28) & 0x03)
 174#define TO_SIZE(state)          (((state) >> 16) & 0x1fff)
 175
 176/*
 177 * Given the operating range of Linux HDLC, the 2 defines below could be
 178 * made simpler. However they are a fine reminder for the limitations of
 179 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
 180 */
 181#define TO_STATE_TX(len)        cpu_to_le32(((len) & TxSizeMax) << 16)
 182#define TO_STATE_RX(len)        cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
 183#define RX_MAX(len)             ((((len) >> 5) + 1) << 5)       /* Cf RLCR */
 184#define SCC_REG_START(dpriv)    (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
 185
 186struct dscc4_pci_priv {
 187        __le32 *iqcfg;
 188        int cfg_cur;
 189        spinlock_t lock;
 190        struct pci_dev *pdev;
 191
 192        struct dscc4_dev_priv *root;
 193        dma_addr_t iqcfg_dma;
 194        u32 xtal_hz;
 195};
 196
 197struct dscc4_dev_priv {
 198        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 199        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 200
 201        struct RxFD *rx_fd;
 202        struct TxFD *tx_fd;
 203        __le32 *iqrx;
 204        __le32 *iqtx;
 205
 206        /* FIXME: check all the volatile are required */
 207        volatile u32 tx_current;
 208        u32 rx_current;
 209        u32 iqtx_current;
 210        u32 iqrx_current;
 211
 212        volatile u32 tx_dirty;
 213        volatile u32 ltda;
 214        u32 rx_dirty;
 215        u32 lrda;
 216
 217        dma_addr_t tx_fd_dma;
 218        dma_addr_t rx_fd_dma;
 219        dma_addr_t iqtx_dma;
 220        dma_addr_t iqrx_dma;
 221
 222        u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
 223
 224        struct timer_list timer;
 225
 226        struct dscc4_pci_priv *pci_priv;
 227        spinlock_t lock;
 228
 229        int dev_id;
 230        volatile u32 flags;
 231        u32 timer_help;
 232
 233        unsigned short encoding;
 234        unsigned short parity;
 235        struct net_device *dev;
 236        sync_serial_settings settings;
 237        void __iomem *base_addr;
 238        u32 __pad __attribute__ ((aligned (4)));
 239};
 240
 241/* GLOBAL registers definitions */
 242#define GCMDR   0x00
 243#define GSTAR   0x04
 244#define GMODE   0x08
 245#define IQLENR0 0x0C
 246#define IQLENR1 0x10
 247#define IQRX0   0x14
 248#define IQTX0   0x24
 249#define IQCFG   0x3c
 250#define FIFOCR1 0x44
 251#define FIFOCR2 0x48
 252#define FIFOCR3 0x4c
 253#define FIFOCR4 0x34
 254#define CH0CFG  0x50
 255#define CH0BRDA 0x54
 256#define CH0BTDA 0x58
 257#define CH0FRDA 0x98
 258#define CH0FTDA 0xb0
 259#define CH0LRDA 0xc8
 260#define CH0LTDA 0xe0
 261
 262/* SCC registers definitions */
 263#define SCC_START       0x0100
 264#define SCC_OFFSET      0x80
 265#define CMDR    0x00
 266#define STAR    0x04
 267#define CCR0    0x08
 268#define CCR1    0x0c
 269#define CCR2    0x10
 270#define BRR     0x2C
 271#define RLCR    0x40
 272#define IMR     0x54
 273#define ISR     0x58
 274
 275#define GPDIR   0x0400
 276#define GPDATA  0x0404
 277#define GPIM    0x0408
 278
 279/* Bit masks */
 280#define EncodingMask    0x00700000
 281#define CrcMask         0x00000003
 282
 283#define IntRxScc0       0x10000000
 284#define IntTxScc0       0x01000000
 285
 286#define TxPollCmd       0x00000400
 287#define RxActivate      0x08000000
 288#define MTFi            0x04000000
 289#define Rdr             0x00400000
 290#define Rdt             0x00200000
 291#define Idr             0x00100000
 292#define Idt             0x00080000
 293#define TxSccRes        0x01000000
 294#define RxSccRes        0x00010000
 295#define TxSizeMax       0x1fff          /* Datasheet DS1 - 11.1.1.1 */
 296#define RxSizeMax       0x1ffc          /* Datasheet DS1 - 11.1.2.1 */
 297
 298#define Ccr0ClockMask   0x0000003f
 299#define Ccr1LoopMask    0x00000200
 300#define IsrMask         0x000fffff
 301#define BrrExpMask      0x00000f00
 302#define BrrMultMask     0x0000003f
 303#define EncodingMask    0x00700000
 304#define Hold            cpu_to_le32(0x40000000)
 305#define SccBusy         0x10000000
 306#define PowerUp         0x80000000
 307#define Vis             0x00001000
 308#define FrameOk         (FrameVfr | FrameCrc)
 309#define FrameVfr        0x80
 310#define FrameRdo        0x40
 311#define FrameCrc        0x20
 312#define FrameRab        0x10
 313#define FrameAborted    cpu_to_le32(0x00000200)
 314#define FrameEnd        cpu_to_le32(0x80000000)
 315#define DataComplete    cpu_to_le32(0x40000000)
 316#define LengthCheck     0x00008000
 317#define SccEvt          0x02000000
 318#define NoAck           0x00000200
 319#define Action          0x00000001
 320#define HiDesc          cpu_to_le32(0x20000000)
 321
 322/* SCC events */
 323#define RxEvt           0xf0000000
 324#define TxEvt           0x0f000000
 325#define Alls            0x00040000
 326#define Xdu             0x00010000
 327#define Cts             0x00004000
 328#define Xmr             0x00002000
 329#define Xpr             0x00001000
 330#define Rdo             0x00000080
 331#define Rfs             0x00000040
 332#define Cd              0x00000004
 333#define Rfo             0x00000002
 334#define Flex            0x00000001
 335
 336/* DMA core events */
 337#define Cfg             0x00200000
 338#define Hi              0x00040000
 339#define Fi              0x00020000
 340#define Err             0x00010000
 341#define Arf             0x00000002
 342#define ArAck           0x00000001
 343
 344/* State flags */
 345#define Ready           0x00000000
 346#define NeedIDR         0x00000001
 347#define NeedIDT         0x00000002
 348#define RdoSet          0x00000004
 349#define FakeReset       0x00000008
 350
 351/* Don't mask RDO. Ever. */
 352#ifdef DSCC4_POLLING
 353#define EventsMask      0xfffeef7f
 354#else
 355#define EventsMask      0xfffa8f7a
 356#endif
 357
 358/* Functions prototypes */
 359static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
 360static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
 361static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
 362static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
 363static int dscc4_open(struct net_device *);
 364static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
 365                                          struct net_device *);
 366static int dscc4_close(struct net_device *);
 367static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 368static int dscc4_init_ring(struct net_device *);
 369static void dscc4_release_ring(struct dscc4_dev_priv *);
 370static void dscc4_timer(unsigned long);
 371static void dscc4_tx_timeout(struct net_device *);
 372static irqreturn_t dscc4_irq(int irq, void *dev_id);
 373static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
 374static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
 375#ifdef DSCC4_POLLING
 376static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
 377#endif
 378
 379static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
 380{
 381        return dev_to_hdlc(dev)->priv;
 382}
 383
 384static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
 385{
 386        return p->dev;
 387}
 388
 389static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
 390                        struct net_device *dev, int offset)
 391{
 392        u32 state;
 393
 394        /* Cf scc_writel for concern regarding thread-safety */
 395        state = dpriv->scc_regs[offset >> 2];
 396        state &= ~mask;
 397        state |= value;
 398        dpriv->scc_regs[offset >> 2] = state;
 399        writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
 400}
 401
 402static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
 403                       struct net_device *dev, int offset)
 404{
 405        /*
 406         * Thread-UNsafe.
 407         * As of 2002/02/16, there are no thread racing for access.
 408         */
 409        dpriv->scc_regs[offset >> 2] = bits;
 410        writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
 411}
 412
 413static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
 414{
 415        return dpriv->scc_regs[offset >> 2];
 416}
 417
 418static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
 419{
 420        /* Cf errata DS5 p.4 */
 421        readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
 422        return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
 423}
 424
 425static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
 426                               struct net_device *dev)
 427{
 428        dpriv->ltda = dpriv->tx_fd_dma +
 429                      ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
 430        writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
 431        /* Flush posted writes *NOW* */
 432        readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
 433}
 434
 435static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
 436                                   struct net_device *dev)
 437{
 438        dpriv->lrda = dpriv->rx_fd_dma +
 439                      ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
 440        writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
 441}
 442
 443static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
 444{
 445        return dpriv->tx_current == dpriv->tx_dirty;
 446}
 447
 448static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
 449                                              struct net_device *dev)
 450{
 451        return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
 452}
 453
 454static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
 455                       struct net_device *dev, const char *msg)
 456{
 457        int ret = 0;
 458
 459        if (debug > 1) {
 460        if (SOURCE_ID(state) != dpriv->dev_id) {
 461                printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
 462                       dev->name, msg, SOURCE_ID(state), state );
 463                        ret = -1;
 464        }
 465        if (state & 0x0df80c00) {
 466                printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
 467                       dev->name, msg, state);
 468                        ret = -1;
 469        }
 470        }
 471        return ret;
 472}
 473
 474static void dscc4_tx_print(struct net_device *dev,
 475                           struct dscc4_dev_priv *dpriv,
 476                           char *msg)
 477{
 478        printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
 479               dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
 480}
 481
 482static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
 483{
 484        struct pci_dev *pdev = dpriv->pci_priv->pdev;
 485        struct TxFD *tx_fd = dpriv->tx_fd;
 486        struct RxFD *rx_fd = dpriv->rx_fd;
 487        struct sk_buff **skbuff;
 488        int i;
 489
 490        pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
 491        pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
 492
 493        skbuff = dpriv->tx_skbuff;
 494        for (i = 0; i < TX_RING_SIZE; i++) {
 495                if (*skbuff) {
 496                        pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
 497                                (*skbuff)->len, PCI_DMA_TODEVICE);
 498                        dev_kfree_skb(*skbuff);
 499                }
 500                skbuff++;
 501                tx_fd++;
 502        }
 503
 504        skbuff = dpriv->rx_skbuff;
 505        for (i = 0; i < RX_RING_SIZE; i++) {
 506                if (*skbuff) {
 507                        pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
 508                                RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
 509                        dev_kfree_skb(*skbuff);
 510                }
 511                skbuff++;
 512                rx_fd++;
 513        }
 514}
 515
 516static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
 517                                 struct net_device *dev)
 518{
 519        unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
 520        struct RxFD *rx_fd = dpriv->rx_fd + dirty;
 521        const int len = RX_MAX(HDLC_MAX_MRU);
 522        struct sk_buff *skb;
 523        int ret = 0;
 524
 525        skb = dev_alloc_skb(len);
 526        dpriv->rx_skbuff[dirty] = skb;
 527        if (skb) {
 528                skb->protocol = hdlc_type_trans(skb, dev);
 529                rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
 530                                          skb->data, len, PCI_DMA_FROMDEVICE));
 531        } else {
 532                rx_fd->data = 0;
 533                ret = -1;
 534        }
 535        return ret;
 536}
 537
 538/*
 539 * IRQ/thread/whatever safe
 540 */
 541static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
 542                              struct net_device *dev, char *msg)
 543{
 544        s8 i = 0;
 545
 546        do {
 547                if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
 548                        printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
 549                               msg, i);
 550                        goto done;
 551                }
 552                schedule_timeout_uninterruptible(10);
 553                rmb();
 554        } while (++i > 0);
 555        printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
 556done:
 557        return (i >= 0) ? i : -EAGAIN;
 558}
 559
 560static int dscc4_do_action(struct net_device *dev, char *msg)
 561{
 562        void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
 563        s16 i = 0;
 564
 565        writel(Action, ioaddr + GCMDR);
 566        ioaddr += GSTAR;
 567        do {
 568                u32 state = readl(ioaddr);
 569
 570                if (state & ArAck) {
 571                        printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
 572                        writel(ArAck, ioaddr);
 573                        goto done;
 574                } else if (state & Arf) {
 575                        printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
 576                        writel(Arf, ioaddr);
 577                        i = -1;
 578                        goto done;
 579        }
 580                rmb();
 581        } while (++i > 0);
 582        printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
 583done:
 584        return i;
 585}
 586
 587static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
 588{
 589        int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
 590        s8 i = 0;
 591
 592        do {
 593                if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
 594                    (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
 595                        break;
 596                smp_rmb();
 597                schedule_timeout_uninterruptible(10);
 598        } while (++i > 0);
 599
 600        return (i >= 0 ) ? i : -EAGAIN;
 601}
 602
 603#if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
 604static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
 605{
 606        unsigned long flags;
 607
 608        spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
 609        /* Cf errata DS5 p.6 */
 610        writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
 611        scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
 612        readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
 613        writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
 614        writel(Action, dpriv->base_addr + GCMDR);
 615        spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
 616}
 617
 618#endif
 619
 620#if 0
 621static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
 622{
 623        u16 i = 0;
 624
 625        /* Cf errata DS5 p.7 */
 626        scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
 627        scc_writel(0x00050000, dpriv, dev, CCR2);
 628        /*
 629         * Must be longer than the time required to fill the fifo.
 630         */
 631        while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
 632                udelay(1);
 633                wmb();
 634        }
 635
 636        writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
 637        if (dscc4_do_action(dev, "Rdt") < 0)
 638                printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
 639}
 640#endif
 641
 642/* TODO: (ab)use this function to refill a completely depleted RX ring. */
 643static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
 644                                struct net_device *dev)
 645{
 646        struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
 647        struct pci_dev *pdev = dpriv->pci_priv->pdev;
 648        struct sk_buff *skb;
 649        int pkt_len;
 650
 651        skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
 652        if (!skb) {
 653                printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
 654                goto refill;
 655        }
 656        pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
 657        pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
 658                         RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
 659        if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
 660                dev->stats.rx_packets++;
 661                dev->stats.rx_bytes += pkt_len;
 662                skb_put(skb, pkt_len);
 663                if (netif_running(dev))
 664                        skb->protocol = hdlc_type_trans(skb, dev);
 665                netif_rx(skb);
 666        } else {
 667                if (skb->data[pkt_len] & FrameRdo)
 668                        dev->stats.rx_fifo_errors++;
 669                else if (!(skb->data[pkt_len] & FrameCrc))
 670                        dev->stats.rx_crc_errors++;
 671                else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
 672                         (FrameVfr | FrameRab))
 673                        dev->stats.rx_length_errors++;
 674                dev->stats.rx_errors++;
 675                dev_kfree_skb_irq(skb);
 676        }
 677refill:
 678        while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
 679                if (try_get_rx_skb(dpriv, dev) < 0)
 680                        break;
 681                dpriv->rx_dirty++;
 682        }
 683        dscc4_rx_update(dpriv, dev);
 684        rx_fd->state2 = 0x00000000;
 685        rx_fd->end = cpu_to_le32(0xbabeface);
 686}
 687
 688static void dscc4_free1(struct pci_dev *pdev)
 689{
 690        struct dscc4_pci_priv *ppriv;
 691        struct dscc4_dev_priv *root;
 692        int i;
 693
 694        ppriv = pci_get_drvdata(pdev);
 695        root = ppriv->root;
 696
 697        for (i = 0; i < dev_per_card; i++)
 698                unregister_hdlc_device(dscc4_to_dev(root + i));
 699
 700        pci_set_drvdata(pdev, NULL);
 701
 702        for (i = 0; i < dev_per_card; i++)
 703                free_netdev(root[i].dev);
 704        kfree(root);
 705        kfree(ppriv);
 706}
 707
 708static int __devinit dscc4_init_one(struct pci_dev *pdev,
 709                                  const struct pci_device_id *ent)
 710{
 711        struct dscc4_pci_priv *priv;
 712        struct dscc4_dev_priv *dpriv;
 713        void __iomem *ioaddr;
 714        int i, rc;
 715
 716        printk(KERN_DEBUG "%s", version);
 717
 718        rc = pci_enable_device(pdev);
 719        if (rc < 0)
 720                goto out;
 721
 722        rc = pci_request_region(pdev, 0, "registers");
 723        if (rc < 0) {
 724                printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
 725                        DRV_NAME);
 726                goto err_disable_0;
 727        }
 728        rc = pci_request_region(pdev, 1, "LBI interface");
 729        if (rc < 0) {
 730                printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
 731                        DRV_NAME);
 732                goto err_free_mmio_region_1;
 733        }
 734
 735        ioaddr = pci_ioremap_bar(pdev, 0);
 736        if (!ioaddr) {
 737                printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
 738                        DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
 739                        (unsigned long long)pci_resource_start(pdev, 0));
 740                rc = -EIO;
 741                goto err_free_mmio_regions_2;
 742        }
 743        printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
 744                (unsigned long long)pci_resource_start(pdev, 0),
 745                (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
 746
 747        /* Cf errata DS5 p.2 */
 748        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
 749        pci_set_master(pdev);
 750
 751        rc = dscc4_found1(pdev, ioaddr);
 752        if (rc < 0)
 753                goto err_iounmap_3;
 754
 755        priv = pci_get_drvdata(pdev);
 756
 757        rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
 758        if (rc < 0) {
 759                printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
 760                goto err_release_4;
 761        }
 762
 763        /* power up/little endian/dma core controlled via lrda/ltda */
 764        writel(0x00000001, ioaddr + GMODE);
 765        /* Shared interrupt queue */
 766        {
 767                u32 bits;
 768
 769                bits = (IRQ_RING_SIZE >> 5) - 1;
 770                bits |= bits << 4;
 771                bits |= bits << 8;
 772                bits |= bits << 16;
 773                writel(bits, ioaddr + IQLENR0);
 774        }
 775        /* Global interrupt queue */
 776        writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
 777        priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
 778                IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
 779        if (!priv->iqcfg)
 780                goto err_free_irq_5;
 781        writel(priv->iqcfg_dma, ioaddr + IQCFG);
 782
 783        rc = -ENOMEM;
 784
 785        /*
 786         * SCC 0-3 private rx/tx irq structures
 787         * IQRX/TXi needs to be set soon. Learned it the hard way...
 788         */
 789        for (i = 0; i < dev_per_card; i++) {
 790                dpriv = priv->root + i;
 791                dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
 792                        IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
 793                if (!dpriv->iqtx)
 794                        goto err_free_iqtx_6;
 795                writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
 796        }
 797        for (i = 0; i < dev_per_card; i++) {
 798                dpriv = priv->root + i;
 799                dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
 800                        IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
 801                if (!dpriv->iqrx)
 802                        goto err_free_iqrx_7;
 803                writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
 804        }
 805
 806        /* Cf application hint. Beware of hard-lock condition on threshold. */
 807        writel(0x42104000, ioaddr + FIFOCR1);
 808        //writel(0x9ce69800, ioaddr + FIFOCR2);
 809        writel(0xdef6d800, ioaddr + FIFOCR2);
 810        //writel(0x11111111, ioaddr + FIFOCR4);
 811        writel(0x18181818, ioaddr + FIFOCR4);
 812        // FIXME: should depend on the chipset revision
 813        writel(0x0000000e, ioaddr + FIFOCR3);
 814
 815        writel(0xff200001, ioaddr + GCMDR);
 816
 817        rc = 0;
 818out:
 819        return rc;
 820
 821err_free_iqrx_7:
 822        while (--i >= 0) {
 823                dpriv = priv->root + i;
 824                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
 825                                    dpriv->iqrx, dpriv->iqrx_dma);
 826        }
 827        i = dev_per_card;
 828err_free_iqtx_6:
 829        while (--i >= 0) {
 830                dpriv = priv->root + i;
 831                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
 832                                    dpriv->iqtx, dpriv->iqtx_dma);
 833        }
 834        pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
 835                            priv->iqcfg_dma);
 836err_free_irq_5:
 837        free_irq(pdev->irq, priv->root);
 838err_release_4:
 839        dscc4_free1(pdev);
 840err_iounmap_3:
 841        iounmap (ioaddr);
 842err_free_mmio_regions_2:
 843        pci_release_region(pdev, 1);
 844err_free_mmio_region_1:
 845        pci_release_region(pdev, 0);
 846err_disable_0:
 847        pci_disable_device(pdev);
 848        goto out;
 849};
 850
 851/*
 852 * Let's hope the default values are decent enough to protect my
 853 * feet from the user's gun - Ueimor
 854 */
 855static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
 856                                 struct net_device *dev)
 857{
 858        /* No interrupts, SCC core disabled. Let's relax */
 859        scc_writel(0x00000000, dpriv, dev, CCR0);
 860
 861        scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
 862
 863        /*
 864         * No address recognition/crc-CCITT/cts enabled
 865         * Shared flags transmission disabled - cf errata DS5 p.11
 866         * Carrier detect disabled - cf errata p.14
 867         * FIXME: carrier detection/polarity may be handled more gracefully.
 868         */
 869        scc_writel(0x02408000, dpriv, dev, CCR1);
 870
 871        /* crc not forwarded - Cf errata DS5 p.11 */
 872        scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
 873        // crc forwarded
 874        //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
 875}
 876
 877static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
 878{
 879        int ret = 0;
 880
 881        if ((hz < 0) || (hz > DSCC4_HZ_MAX))
 882                ret = -EOPNOTSUPP;
 883        else
 884                dpriv->pci_priv->xtal_hz = hz;
 885
 886        return ret;
 887}
 888
 889static const struct net_device_ops dscc4_ops = {
 890        .ndo_open       = dscc4_open,
 891        .ndo_stop       = dscc4_close,
 892        .ndo_change_mtu = hdlc_change_mtu,
 893        .ndo_start_xmit = hdlc_start_xmit,
 894        .ndo_do_ioctl   = dscc4_ioctl,
 895        .ndo_tx_timeout = dscc4_tx_timeout,
 896};
 897
 898static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
 899{
 900        struct dscc4_pci_priv *ppriv;
 901        struct dscc4_dev_priv *root;
 902        int i, ret = -ENOMEM;
 903
 904        root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
 905        if (!root) {
 906                printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
 907                goto err_out;
 908        }
 909
 910        for (i = 0; i < dev_per_card; i++) {
 911                root[i].dev = alloc_hdlcdev(root + i);
 912                if (!root[i].dev)
 913                        goto err_free_dev;
 914        }
 915
 916        ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
 917        if (!ppriv) {
 918                printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
 919                goto err_free_dev;
 920        }
 921
 922        ppriv->root = root;
 923        spin_lock_init(&ppriv->lock);
 924
 925        for (i = 0; i < dev_per_card; i++) {
 926                struct dscc4_dev_priv *dpriv = root + i;
 927                struct net_device *d = dscc4_to_dev(dpriv);
 928                hdlc_device *hdlc = dev_to_hdlc(d);
 929
 930                d->base_addr = (unsigned long)ioaddr;
 931                d->irq = pdev->irq;
 932                d->netdev_ops = &dscc4_ops;
 933                d->watchdog_timeo = TX_TIMEOUT;
 934                SET_NETDEV_DEV(d, &pdev->dev);
 935
 936                dpriv->dev_id = i;
 937                dpriv->pci_priv = ppriv;
 938                dpriv->base_addr = ioaddr;
 939                spin_lock_init(&dpriv->lock);
 940
 941                hdlc->xmit = dscc4_start_xmit;
 942                hdlc->attach = dscc4_hdlc_attach;
 943
 944                dscc4_init_registers(dpriv, d);
 945                dpriv->parity = PARITY_CRC16_PR0_CCITT;
 946                dpriv->encoding = ENCODING_NRZ;
 947        
 948                ret = dscc4_init_ring(d);
 949                if (ret < 0)
 950                        goto err_unregister;
 951
 952                ret = register_hdlc_device(d);
 953                if (ret < 0) {
 954                        printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
 955                        dscc4_release_ring(dpriv);
 956                        goto err_unregister;
 957                }
 958        }
 959
 960        ret = dscc4_set_quartz(root, quartz);
 961        if (ret < 0)
 962                goto err_unregister;
 963
 964        pci_set_drvdata(pdev, ppriv);
 965        return ret;
 966
 967err_unregister:
 968        while (i-- > 0) {
 969                dscc4_release_ring(root + i);
 970                unregister_hdlc_device(dscc4_to_dev(root + i));
 971        }
 972        kfree(ppriv);
 973        i = dev_per_card;
 974err_free_dev:
 975        while (i-- > 0)
 976                free_netdev(root[i].dev);
 977        kfree(root);
 978err_out:
 979        return ret;
 980};
 981
 982/* FIXME: get rid of the unneeded code */
 983static void dscc4_timer(unsigned long data)
 984{
 985        struct net_device *dev = (struct net_device *)data;
 986        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
 987//      struct dscc4_pci_priv *ppriv;
 988
 989        goto done;
 990done:
 991        dpriv->timer.expires = jiffies + TX_TIMEOUT;
 992        add_timer(&dpriv->timer);
 993}
 994
 995static void dscc4_tx_timeout(struct net_device *dev)
 996{
 997        /* FIXME: something is missing there */
 998}
 999
1000static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
1001{
1002        sync_serial_settings *settings = &dpriv->settings;
1003
1004        if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1005                struct net_device *dev = dscc4_to_dev(dpriv);
1006
1007                printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1008                return -1;
1009        }
1010        return 0;
1011}
1012
1013#ifdef CONFIG_DSCC4_PCI_RST
1014/*
1015 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1016 * so as to provide a safe way to reset the asic while not the whole machine
1017 * rebooting.
1018 *
1019 * This code doesn't need to be efficient. Keep It Simple
1020 */
1021static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1022{
1023        int i;
1024
1025        mutex_lock(&dscc4_mutex);
1026        for (i = 0; i < 16; i++)
1027                pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1028
1029        /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1030        writel(0x001c0000, ioaddr + GMODE);
1031        /* Configure GPIO port as output */
1032        writel(0x0000ffff, ioaddr + GPDIR);
1033        /* Disable interruption */
1034        writel(0x0000ffff, ioaddr + GPIM);
1035
1036        writel(0x0000ffff, ioaddr + GPDATA);
1037        writel(0x00000000, ioaddr + GPDATA);
1038
1039        /* Flush posted writes */
1040        readl(ioaddr + GSTAR);
1041
1042        schedule_timeout_uninterruptible(10);
1043
1044        for (i = 0; i < 16; i++)
1045                pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1046        mutex_unlock(&dscc4_mutex);
1047}
1048#else
1049#define dscc4_pci_reset(pdev,ioaddr)    do {} while (0)
1050#endif /* CONFIG_DSCC4_PCI_RST */
1051
1052static int dscc4_open(struct net_device *dev)
1053{
1054        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1055        struct dscc4_pci_priv *ppriv;
1056        int ret = -EAGAIN;
1057
1058        if ((dscc4_loopback_check(dpriv) < 0))
1059                goto err;
1060
1061        if ((ret = hdlc_open(dev)))
1062                goto err;
1063
1064        ppriv = dpriv->pci_priv;
1065
1066        /*
1067         * Due to various bugs, there is no way to reliably reset a
1068         * specific port (manufacturer's dependent special PCI #RST wiring
1069         * apart: it affects all ports). Thus the device goes in the best
1070         * silent mode possible at dscc4_close() time and simply claims to
1071         * be up if it's opened again. It still isn't possible to change
1072         * the HDLC configuration without rebooting but at least the ports
1073         * can be up/down ifconfig'ed without killing the host.
1074         */
1075        if (dpriv->flags & FakeReset) {
1076                dpriv->flags &= ~FakeReset;
1077                scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1078                scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1079                scc_writel(EventsMask, dpriv, dev, IMR);
1080                printk(KERN_INFO "%s: up again.\n", dev->name);
1081                goto done;
1082        }
1083
1084        /* IDT+IDR during XPR */
1085        dpriv->flags = NeedIDR | NeedIDT;
1086
1087        scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1088
1089        /*
1090         * The following is a bit paranoid...
1091         *
1092         * NB: the datasheet "...CEC will stay active if the SCC is in
1093         * power-down mode or..." and CCR2.RAC = 1 are two different
1094         * situations.
1095         */
1096        if (scc_readl_star(dpriv, dev) & SccBusy) {
1097                printk(KERN_ERR "%s busy. Try later\n", dev->name);
1098                ret = -EAGAIN;
1099                goto err_out;
1100        } else
1101                printk(KERN_INFO "%s: available. Good\n", dev->name);
1102
1103        scc_writel(EventsMask, dpriv, dev, IMR);
1104
1105        /* Posted write is flushed in the wait_ack loop */
1106        scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1107
1108        if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1109                goto err_disable_scc_events;
1110
1111        /*
1112         * I would expect XPR near CE completion (before ? after ?).
1113         * At worst, this code won't see a late XPR and people
1114         * will have to re-issue an ifconfig (this is harmless).
1115         * WARNING, a really missing XPR usually means a hardware
1116         * reset is needed. Suggestions anyone ?
1117         */
1118        if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1119                printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1120                goto err_disable_scc_events;
1121        }
1122        
1123        if (debug > 2)
1124                dscc4_tx_print(dev, dpriv, "Open");
1125
1126done:
1127        netif_start_queue(dev);
1128
1129        init_timer(&dpriv->timer);
1130        dpriv->timer.expires = jiffies + 10*HZ;
1131        dpriv->timer.data = (unsigned long)dev;
1132        dpriv->timer.function = dscc4_timer;
1133        add_timer(&dpriv->timer);
1134        netif_carrier_on(dev);
1135
1136        return 0;
1137
1138err_disable_scc_events:
1139        scc_writel(0xffffffff, dpriv, dev, IMR);
1140        scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1141err_out:
1142        hdlc_close(dev);
1143err:
1144        return ret;
1145}
1146
1147#ifdef DSCC4_POLLING
1148static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1149{
1150        /* FIXME: it's gonna be easy (TM), for sure */
1151}
1152#endif /* DSCC4_POLLING */
1153
1154static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1155                                          struct net_device *dev)
1156{
1157        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1158        struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1159        struct TxFD *tx_fd;
1160        int next;
1161
1162        next = dpriv->tx_current%TX_RING_SIZE;
1163        dpriv->tx_skbuff[next] = skb;
1164        tx_fd = dpriv->tx_fd + next;
1165        tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1166        tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1167                                     PCI_DMA_TODEVICE));
1168        tx_fd->complete = 0x00000000;
1169        tx_fd->jiffies = jiffies;
1170        mb();
1171
1172#ifdef DSCC4_POLLING
1173        spin_lock(&dpriv->lock);
1174        while (dscc4_tx_poll(dpriv, dev));
1175        spin_unlock(&dpriv->lock);
1176#endif
1177
1178        if (debug > 2)
1179                dscc4_tx_print(dev, dpriv, "Xmit");
1180        /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1181        if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1182                netif_stop_queue(dev);
1183
1184        if (dscc4_tx_quiescent(dpriv, dev))
1185                dscc4_do_tx(dpriv, dev);
1186
1187        return NETDEV_TX_OK;
1188}
1189
1190static int dscc4_close(struct net_device *dev)
1191{
1192        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1193
1194        del_timer_sync(&dpriv->timer);
1195        netif_stop_queue(dev);
1196
1197        scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1198        scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1199        scc_writel(0xffffffff, dpriv, dev, IMR);
1200
1201        dpriv->flags |= FakeReset;
1202
1203        hdlc_close(dev);
1204
1205        return 0;
1206}
1207
1208static inline int dscc4_check_clock_ability(int port)
1209{
1210        int ret = 0;
1211
1212#ifdef CONFIG_DSCC4_PCISYNC
1213        if (port >= 2)
1214                ret = -1;
1215#endif
1216        return ret;
1217}
1218
1219/*
1220 * DS1 p.137: "There are a total of 13 different clocking modes..."
1221 *                                  ^^
1222 * Design choices:
1223 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1224 *   Clock mode 3b _should_ work but the testing seems to make this point
1225 *   dubious (DIY testing requires setting CCR0 at 0x00000033).
1226 *   This is supposed to provide least surprise "DTE like" behavior.
1227 * - if line rate is specified, clocks are assumed to be locally generated.
1228 *   A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1229 *   between these it automagically done according on the required frequency
1230 *   scaling. Of course some rounding may take place.
1231 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1232 *   appropriate external clocking device for testing.
1233 * - no time-slot/clock mode 5: shameless laziness.
1234 *
1235 * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1236 *
1237 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1238 * won't pass the init sequence. For example, straight back-to-back DTE without
1239 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1240 * called.
1241 *
1242 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1243 * DS0 for example)
1244 *
1245 * Clock mode related bits of CCR0:
1246 *     +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1247 *     | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1248 *     | | +-------- High Speed: say 0
1249 *     | | | +-+-+-- Clock Mode: 0..7
1250 *     | | | | | |
1251 * -+-+-+-+-+-+-+-+
1252 * x|x|5|4|3|2|1|0| lower bits
1253 *
1254 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1255 *            +-+-+-+------------------ M (0..15)
1256 *            | | | |     +-+-+-+-+-+-- N (0..63)
1257 *    0 0 0 0 | | | | 0 0 | | | | | |
1258 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1259 *    f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1260 *
1261 */
1262static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1263{
1264        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1265        int ret = -1;
1266        u32 brr;
1267
1268        *state &= ~Ccr0ClockMask;
1269        if (*bps) { /* Clock generated - required for DCE */
1270                u32 n = 0, m = 0, divider;
1271                int xtal;
1272
1273                xtal = dpriv->pci_priv->xtal_hz;
1274                if (!xtal)
1275                        goto done;
1276                if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1277                        goto done;
1278                divider = xtal / *bps;
1279                if (divider > BRR_DIVIDER_MAX) {
1280                        divider >>= 4;
1281                        *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1282                } else
1283                        *state |= 0x00000037; /* Clock mode 7b (BRG) */
1284                if (divider >> 22) {
1285                        n = 63;
1286                        m = 15;
1287                } else if (divider) {
1288                        /* Extraction of the 6 highest weighted bits */
1289                        m = 0;
1290                        while (0xffffffc0 & divider) {
1291                                m++;
1292                                divider >>= 1;
1293                        }
1294                        n = divider;
1295                }
1296                brr = (m << 8) | n;
1297                divider = n << m;
1298                if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1299                        divider <<= 4;
1300                *bps = xtal / divider;
1301        } else {
1302                /*
1303                 * External clock - DTE
1304                 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1305                 * Nothing more to be done
1306                 */
1307                brr = 0;
1308        }
1309        scc_writel(brr, dpriv, dev, BRR);
1310        ret = 0;
1311done:
1312        return ret;
1313}
1314
1315static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1316{
1317        sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1318        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1319        const size_t size = sizeof(dpriv->settings);
1320        int ret = 0;
1321
1322        if (dev->flags & IFF_UP)
1323                return -EBUSY;
1324
1325        if (cmd != SIOCWANDEV)
1326                return -EOPNOTSUPP;
1327
1328        switch(ifr->ifr_settings.type) {
1329        case IF_GET_IFACE:
1330                ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1331                if (ifr->ifr_settings.size < size) {
1332                        ifr->ifr_settings.size = size; /* data size wanted */
1333                        return -ENOBUFS;
1334                }
1335                if (copy_to_user(line, &dpriv->settings, size))
1336                        return -EFAULT;
1337                break;
1338
1339        case IF_IFACE_SYNC_SERIAL:
1340                if (!capable(CAP_NET_ADMIN))
1341                        return -EPERM;
1342
1343                if (dpriv->flags & FakeReset) {
1344                        printk(KERN_INFO "%s: please reset the device"
1345                               " before this command\n", dev->name);
1346                        return -EPERM;
1347                }
1348                if (copy_from_user(&dpriv->settings, line, size))
1349                        return -EFAULT;
1350                ret = dscc4_set_iface(dpriv, dev);
1351                break;
1352
1353        default:
1354                ret = hdlc_ioctl(dev, ifr, cmd);
1355                break;
1356        }
1357
1358        return ret;
1359}
1360
1361static int dscc4_match(const struct thingie *p, int value)
1362{
1363        int i;
1364
1365        for (i = 0; p[i].define != -1; i++) {
1366                if (value == p[i].define)
1367                        break;
1368        }
1369        if (p[i].define == -1)
1370                return -1;
1371        else
1372                return i;
1373}
1374
1375static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1376                               struct net_device *dev)
1377{
1378        sync_serial_settings *settings = &dpriv->settings;
1379        int ret = -EOPNOTSUPP;
1380        u32 bps, state;
1381
1382        bps = settings->clock_rate;
1383        state = scc_readl(dpriv, CCR0);
1384        if (dscc4_set_clock(dev, &bps, &state) < 0)
1385                goto done;
1386        if (bps) { /* DCE */
1387                printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1388                if (settings->clock_rate != bps) {
1389                        printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1390                                dev->name, settings->clock_rate, bps);
1391                        settings->clock_rate = bps;
1392                }
1393        } else { /* DTE */
1394                state |= PowerUp | Vis;
1395                printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1396        }
1397        scc_writel(state, dpriv, dev, CCR0);
1398        ret = 0;
1399done:
1400        return ret;
1401}
1402
1403static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1404                                  struct net_device *dev)
1405{
1406        static const struct thingie encoding[] = {
1407                { ENCODING_NRZ,         0x00000000 },
1408                { ENCODING_NRZI,        0x00200000 },
1409                { ENCODING_FM_MARK,     0x00400000 },
1410                { ENCODING_FM_SPACE,    0x00500000 },
1411                { ENCODING_MANCHESTER,  0x00600000 },
1412                { -1,                   0}
1413        };
1414        int i, ret = 0;
1415
1416        i = dscc4_match(encoding, dpriv->encoding);
1417        if (i >= 0)
1418                scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1419        else
1420                ret = -EOPNOTSUPP;
1421        return ret;
1422}
1423
1424static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1425                                  struct net_device *dev)
1426{
1427        sync_serial_settings *settings = &dpriv->settings;
1428        u32 state;
1429
1430        state = scc_readl(dpriv, CCR1);
1431        if (settings->loopback) {
1432                printk(KERN_DEBUG "%s: loopback\n", dev->name);
1433                state |= 0x00000100;
1434        } else {
1435                printk(KERN_DEBUG "%s: normal\n", dev->name);
1436                state &= ~0x00000100;
1437        }
1438        scc_writel(state, dpriv, dev, CCR1);
1439        return 0;
1440}
1441
1442static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1443                             struct net_device *dev)
1444{
1445        static const struct thingie crc[] = {
1446                { PARITY_CRC16_PR0_CCITT,       0x00000010 },
1447                { PARITY_CRC16_PR1_CCITT,       0x00000000 },
1448                { PARITY_CRC32_PR0_CCITT,       0x00000011 },
1449                { PARITY_CRC32_PR1_CCITT,       0x00000001 }
1450        };
1451        int i, ret = 0;
1452
1453        i = dscc4_match(crc, dpriv->parity);
1454        if (i >= 0)
1455                scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1456        else
1457                ret = -EOPNOTSUPP;
1458        return ret;
1459}
1460
1461static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1462{
1463        struct {
1464                int (*action)(struct dscc4_dev_priv *, struct net_device *);
1465        } *p, do_setting[] = {
1466                { dscc4_encoding_setting },
1467                { dscc4_clock_setting },
1468                { dscc4_loopback_setting },
1469                { dscc4_crc_setting },
1470                { NULL }
1471        };
1472        int ret = 0;
1473
1474        for (p = do_setting; p->action; p++) {
1475                if ((ret = p->action(dpriv, dev)) < 0)
1476                        break;
1477        }
1478        return ret;
1479}
1480
1481static irqreturn_t dscc4_irq(int irq, void *token)
1482{
1483        struct dscc4_dev_priv *root = token;
1484        struct dscc4_pci_priv *priv;
1485        struct net_device *dev;
1486        void __iomem *ioaddr;
1487        u32 state;
1488        unsigned long flags;
1489        int i, handled = 1;
1490
1491        priv = root->pci_priv;
1492        dev = dscc4_to_dev(root);
1493
1494        spin_lock_irqsave(&priv->lock, flags);
1495
1496        ioaddr = root->base_addr;
1497
1498        state = readl(ioaddr + GSTAR);
1499        if (!state) {
1500                handled = 0;
1501                goto out;
1502        }
1503        if (debug > 3)
1504                printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1505        writel(state, ioaddr + GSTAR);
1506
1507        if (state & Arf) {
1508                printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1509                       dev->name);
1510                goto out;
1511        }
1512        state &= ~ArAck;
1513        if (state & Cfg) {
1514                if (debug > 0)
1515                        printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1516                if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1517                        printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1518                if (!(state &= ~Cfg))
1519                        goto out;
1520        }
1521        if (state & RxEvt) {
1522                i = dev_per_card - 1;
1523                do {
1524                        dscc4_rx_irq(priv, root + i);
1525                } while (--i >= 0);
1526                state &= ~RxEvt;
1527        }
1528        if (state & TxEvt) {
1529                i = dev_per_card - 1;
1530                do {
1531                        dscc4_tx_irq(priv, root + i);
1532                } while (--i >= 0);
1533                state &= ~TxEvt;
1534        }
1535out:
1536        spin_unlock_irqrestore(&priv->lock, flags);
1537        return IRQ_RETVAL(handled);
1538}
1539
1540static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1541                                struct dscc4_dev_priv *dpriv)
1542{
1543        struct net_device *dev = dscc4_to_dev(dpriv);
1544        u32 state;
1545        int cur, loop = 0;
1546
1547try:
1548        cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1549        state = le32_to_cpu(dpriv->iqtx[cur]);
1550        if (!state) {
1551                if (debug > 4)
1552                        printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1553                               state);
1554                if ((debug > 1) && (loop > 1))
1555                        printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1556                if (loop && netif_queue_stopped(dev))
1557                        if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1558                                netif_wake_queue(dev);
1559
1560                if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1561                    !dscc4_tx_done(dpriv))
1562                                dscc4_do_tx(dpriv, dev);
1563                return;
1564        }
1565        loop++;
1566        dpriv->iqtx[cur] = 0;
1567        dpriv->iqtx_current++;
1568
1569        if (state_check(state, dpriv, dev, "Tx") < 0)
1570                return;
1571
1572        if (state & SccEvt) {
1573                if (state & Alls) {
1574                        struct sk_buff *skb;
1575                        struct TxFD *tx_fd;
1576
1577                        if (debug > 2)
1578                                dscc4_tx_print(dev, dpriv, "Alls");
1579                        /*
1580                         * DataComplete can't be trusted for Tx completion.
1581                         * Cf errata DS5 p.8
1582                         */
1583                        cur = dpriv->tx_dirty%TX_RING_SIZE;
1584                        tx_fd = dpriv->tx_fd + cur;
1585                        skb = dpriv->tx_skbuff[cur];
1586                        if (skb) {
1587                                pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1588                                                 skb->len, PCI_DMA_TODEVICE);
1589                                if (tx_fd->state & FrameEnd) {
1590                                        dev->stats.tx_packets++;
1591                                        dev->stats.tx_bytes += skb->len;
1592                                }
1593                                dev_kfree_skb_irq(skb);
1594                                dpriv->tx_skbuff[cur] = NULL;
1595                                ++dpriv->tx_dirty;
1596                        } else {
1597                                if (debug > 1)
1598                                        printk(KERN_ERR "%s Tx: NULL skb %d\n",
1599                                                dev->name, cur);
1600                        }
1601                        /*
1602                         * If the driver ends sending crap on the wire, it
1603                         * will be way easier to diagnose than the (not so)
1604                         * random freeze induced by null sized tx frames.
1605                         */
1606                        tx_fd->data = tx_fd->next;
1607                        tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1608                        tx_fd->complete = 0x00000000;
1609                        tx_fd->jiffies = 0;
1610
1611                        if (!(state &= ~Alls))
1612                                goto try;
1613                }
1614                /*
1615                 * Transmit Data Underrun
1616                 */
1617                if (state & Xdu) {
1618                        printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1619                        dpriv->flags = NeedIDT;
1620                        /* Tx reset */
1621                        writel(MTFi | Rdt,
1622                               dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1623                        writel(Action, dpriv->base_addr + GCMDR);
1624                        return;
1625                }
1626                if (state & Cts) {
1627                        printk(KERN_INFO "%s: CTS transition\n", dev->name);
1628                        if (!(state &= ~Cts)) /* DEBUG */
1629                                goto try;
1630                }
1631                if (state & Xmr) {
1632                        /* Frame needs to be sent again - FIXME */
1633                        printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1634                        if (!(state &= ~Xmr)) /* DEBUG */
1635                                goto try;
1636                }
1637                if (state & Xpr) {
1638                        void __iomem *scc_addr;
1639                        unsigned long ring;
1640                        int i;
1641
1642                        /*
1643                         * - the busy condition happens (sometimes);
1644                         * - it doesn't seem to make the handler unreliable.
1645                         */
1646                        for (i = 1; i; i <<= 1) {
1647                                if (!(scc_readl_star(dpriv, dev) & SccBusy))
1648                                        break;
1649                        }
1650                        if (!i)
1651                                printk(KERN_INFO "%s busy in irq\n", dev->name);
1652
1653                        scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1654                        /* Keep this order: IDT before IDR */
1655                        if (dpriv->flags & NeedIDT) {
1656                                if (debug > 2)
1657                                        dscc4_tx_print(dev, dpriv, "Xpr");
1658                                ring = dpriv->tx_fd_dma +
1659                                       (dpriv->tx_dirty%TX_RING_SIZE)*
1660                                       sizeof(struct TxFD);
1661                                writel(ring, scc_addr + CH0BTDA);
1662                                dscc4_do_tx(dpriv, dev);
1663                                writel(MTFi | Idt, scc_addr + CH0CFG);
1664                                if (dscc4_do_action(dev, "IDT") < 0)
1665                                        goto err_xpr;
1666                                dpriv->flags &= ~NeedIDT;
1667                        }
1668                        if (dpriv->flags & NeedIDR) {
1669                                ring = dpriv->rx_fd_dma +
1670                                       (dpriv->rx_current%RX_RING_SIZE)*
1671                                       sizeof(struct RxFD);
1672                                writel(ring, scc_addr + CH0BRDA);
1673                                dscc4_rx_update(dpriv, dev);
1674                                writel(MTFi | Idr, scc_addr + CH0CFG);
1675                                if (dscc4_do_action(dev, "IDR") < 0)
1676                                        goto err_xpr;
1677                                dpriv->flags &= ~NeedIDR;
1678                                smp_wmb();
1679                                /* Activate receiver and misc */
1680                                scc_writel(0x08050008, dpriv, dev, CCR2);
1681                        }
1682                err_xpr:
1683                        if (!(state &= ~Xpr))
1684                                goto try;
1685                }
1686                if (state & Cd) {
1687                        if (debug > 0)
1688                                printk(KERN_INFO "%s: CD transition\n", dev->name);
1689                        if (!(state &= ~Cd)) /* DEBUG */
1690                                goto try;
1691                }
1692        } else { /* ! SccEvt */
1693                if (state & Hi) {
1694#ifdef DSCC4_POLLING
1695                        while (!dscc4_tx_poll(dpriv, dev));
1696#endif
1697                        printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1698                        state &= ~Hi;
1699                }
1700                if (state & Err) {
1701                        printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1702                        dev->stats.tx_errors++;
1703                        state &= ~Err;
1704                }
1705        }
1706        goto try;
1707}
1708
1709static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1710                                    struct dscc4_dev_priv *dpriv)
1711{
1712        struct net_device *dev = dscc4_to_dev(dpriv);
1713        u32 state;
1714        int cur;
1715
1716try:
1717        cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1718        state = le32_to_cpu(dpriv->iqrx[cur]);
1719        if (!state)
1720                return;
1721        dpriv->iqrx[cur] = 0;
1722        dpriv->iqrx_current++;
1723
1724        if (state_check(state, dpriv, dev, "Rx") < 0)
1725                return;
1726
1727        if (!(state & SccEvt)){
1728                struct RxFD *rx_fd;
1729
1730                if (debug > 4)
1731                        printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1732                               state);
1733                state &= 0x00ffffff;
1734                if (state & Err) { /* Hold or reset */
1735                        printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1736                        cur = dpriv->rx_current%RX_RING_SIZE;
1737                        rx_fd = dpriv->rx_fd + cur;
1738                        /*
1739                         * Presume we're not facing a DMAC receiver reset.
1740                         * As We use the rx size-filtering feature of the
1741                         * DSCC4, the beginning of a new frame is waiting in
1742                         * the rx fifo. I bet a Receive Data Overflow will
1743                         * happen most of time but let's try and avoid it.
1744                         * Btw (as for RDO) if one experiences ERR whereas
1745                         * the system looks rather idle, there may be a
1746                         * problem with latency. In this case, increasing
1747                         * RX_RING_SIZE may help.
1748                         */
1749                        //while (dpriv->rx_needs_refill) {
1750                                while (!(rx_fd->state1 & Hold)) {
1751                                        rx_fd++;
1752                                        cur++;
1753                                        if (!(cur = cur%RX_RING_SIZE))
1754                                                rx_fd = dpriv->rx_fd;
1755                                }
1756                                //dpriv->rx_needs_refill--;
1757                                try_get_rx_skb(dpriv, dev);
1758                                if (!rx_fd->data)
1759                                        goto try;
1760                                rx_fd->state1 &= ~Hold;
1761                                rx_fd->state2 = 0x00000000;
1762                                rx_fd->end = cpu_to_le32(0xbabeface);
1763                        //}
1764                        goto try;
1765                }
1766                if (state & Fi) {
1767                        dscc4_rx_skb(dpriv, dev);
1768                        goto try;
1769                }
1770                if (state & Hi ) { /* HI bit */
1771                        printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1772                        state &= ~Hi;
1773                        goto try;
1774                }
1775        } else { /* SccEvt */
1776                if (debug > 1) {
1777                        //FIXME: verifier la presence de tous les evenements
1778                static struct {
1779                        u32 mask;
1780                        const char *irq_name;
1781                } evts[] = {
1782                        { 0x00008000, "TIN"},
1783                        { 0x00000020, "RSC"},
1784                        { 0x00000010, "PCE"},
1785                        { 0x00000008, "PLLA"},
1786                        { 0, NULL}
1787                }, *evt;
1788
1789                for (evt = evts; evt->irq_name; evt++) {
1790                        if (state & evt->mask) {
1791                                        printk(KERN_DEBUG "%s: %s\n",
1792                                                dev->name, evt->irq_name);
1793                                if (!(state &= ~evt->mask))
1794                                        goto try;
1795                        }
1796                }
1797                } else {
1798                        if (!(state &= ~0x0000c03c))
1799                                goto try;
1800                }
1801                if (state & Cts) {
1802                        printk(KERN_INFO "%s: CTS transition\n", dev->name);
1803                        if (!(state &= ~Cts)) /* DEBUG */
1804                                goto try;
1805                }
1806                /*
1807                 * Receive Data Overflow (FIXME: fscked)
1808                 */
1809                if (state & Rdo) {
1810                        struct RxFD *rx_fd;
1811                        void __iomem *scc_addr;
1812                        int cur;
1813
1814                        //if (debug)
1815                        //      dscc4_rx_dump(dpriv);
1816                        scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1817
1818                        scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1819                        /*
1820                         * This has no effect. Why ?
1821                         * ORed with TxSccRes, one sees the CFG ack (for
1822                         * the TX part only).
1823                         */
1824                        scc_writel(RxSccRes, dpriv, dev, CMDR);
1825                        dpriv->flags |= RdoSet;
1826
1827                        /*
1828                         * Let's try and save something in the received data.
1829                         * rx_current must be incremented at least once to
1830                         * avoid HOLD in the BRDA-to-be-pointed desc.
1831                         */
1832                        do {
1833                                cur = dpriv->rx_current++%RX_RING_SIZE;
1834                                rx_fd = dpriv->rx_fd + cur;
1835                                if (!(rx_fd->state2 & DataComplete))
1836                                        break;
1837                                if (rx_fd->state2 & FrameAborted) {
1838                                        dev->stats.rx_over_errors++;
1839                                        rx_fd->state1 |= Hold;
1840                                        rx_fd->state2 = 0x00000000;
1841                                        rx_fd->end = cpu_to_le32(0xbabeface);
1842                                } else
1843                                        dscc4_rx_skb(dpriv, dev);
1844                        } while (1);
1845
1846                        if (debug > 0) {
1847                                if (dpriv->flags & RdoSet)
1848                                        printk(KERN_DEBUG
1849                                               "%s: no RDO in Rx data\n", DRV_NAME);
1850                        }
1851#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1852                        /*
1853                         * FIXME: must the reset be this violent ?
1854                         */
1855#warning "FIXME: CH0BRDA"
1856                        writel(dpriv->rx_fd_dma +
1857                               (dpriv->rx_current%RX_RING_SIZE)*
1858                               sizeof(struct RxFD), scc_addr + CH0BRDA);
1859                        writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1860                        if (dscc4_do_action(dev, "RDR") < 0) {
1861                                printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1862                                       dev->name, "RDR");
1863                                goto rdo_end;
1864                        }
1865                        writel(MTFi|Idr, scc_addr + CH0CFG);
1866                        if (dscc4_do_action(dev, "IDR") < 0) {
1867                                printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1868                                       dev->name, "IDR");
1869                                goto rdo_end;
1870                        }
1871                rdo_end:
1872#endif
1873                        scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1874                        goto try;
1875                }
1876                if (state & Cd) {
1877                        printk(KERN_INFO "%s: CD transition\n", dev->name);
1878                        if (!(state &= ~Cd)) /* DEBUG */
1879                                goto try;
1880                }
1881                if (state & Flex) {
1882                        printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1883                        if (!(state &= ~Flex))
1884                                goto try;
1885                }
1886        }
1887}
1888
1889/*
1890 * I had expected the following to work for the first descriptor
1891 * (tx_fd->state = 0xc0000000)
1892 * - Hold=1 (don't try and branch to the next descripto);
1893 * - No=0 (I want an empty data section, i.e. size=0);
1894 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1895 * It failed and locked solid. Thus the introduction of a dummy skb.
1896 * Problem is acknowledged in errata sheet DS5. Joy :o/
1897 */
1898static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1899{
1900        struct sk_buff *skb;
1901
1902        skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1903        if (skb) {
1904                int last = dpriv->tx_dirty%TX_RING_SIZE;
1905                struct TxFD *tx_fd = dpriv->tx_fd + last;
1906
1907                skb->len = DUMMY_SKB_SIZE;
1908                skb_copy_to_linear_data(skb, version,
1909                                        strlen(version) % DUMMY_SKB_SIZE);
1910                tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1911                tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1912                                             skb->data, DUMMY_SKB_SIZE,
1913                                             PCI_DMA_TODEVICE));
1914                dpriv->tx_skbuff[last] = skb;
1915        }
1916        return skb;
1917}
1918
1919static int dscc4_init_ring(struct net_device *dev)
1920{
1921        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1922        struct pci_dev *pdev = dpriv->pci_priv->pdev;
1923        struct TxFD *tx_fd;
1924        struct RxFD *rx_fd;
1925        void *ring;
1926        int i;
1927
1928        ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1929        if (!ring)
1930                goto err_out;
1931        dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1932
1933        ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1934        if (!ring)
1935                goto err_free_dma_rx;
1936        dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1937
1938        memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1939        dpriv->tx_dirty = 0xffffffff;
1940        i = dpriv->tx_current = 0;
1941        do {
1942                tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1943                tx_fd->complete = 0x00000000;
1944                /* FIXME: NULL should be ok - to be tried */
1945                tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1946                (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1947                                        (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1948        } while (i < TX_RING_SIZE);
1949
1950        if (!dscc4_init_dummy_skb(dpriv))
1951                goto err_free_dma_tx;
1952
1953        memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1954        i = dpriv->rx_dirty = dpriv->rx_current = 0;
1955        do {
1956                /* size set by the host. Multiple of 4 bytes please */
1957                rx_fd->state1 = HiDesc;
1958                rx_fd->state2 = 0x00000000;
1959                rx_fd->end = cpu_to_le32(0xbabeface);
1960                rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1961                // FIXME: return value verifiee mais traitement suspect
1962                if (try_get_rx_skb(dpriv, dev) >= 0)
1963                        dpriv->rx_dirty++;
1964                (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1965                                        (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1966        } while (i < RX_RING_SIZE);
1967
1968        return 0;
1969
1970err_free_dma_tx:
1971        pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1972err_free_dma_rx:
1973        pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1974err_out:
1975        return -ENOMEM;
1976}
1977
1978static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1979{
1980        struct dscc4_pci_priv *ppriv;
1981        struct dscc4_dev_priv *root;
1982        void __iomem *ioaddr;
1983        int i;
1984
1985        ppriv = pci_get_drvdata(pdev);
1986        root = ppriv->root;
1987
1988        ioaddr = root->base_addr;
1989
1990        dscc4_pci_reset(pdev, ioaddr);
1991
1992        free_irq(pdev->irq, root);
1993        pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1994                            ppriv->iqcfg_dma);
1995        for (i = 0; i < dev_per_card; i++) {
1996                struct dscc4_dev_priv *dpriv = root + i;
1997
1998                dscc4_release_ring(dpriv);
1999                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2000                                    dpriv->iqrx, dpriv->iqrx_dma);
2001                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2002                                    dpriv->iqtx, dpriv->iqtx_dma);
2003        }
2004
2005        dscc4_free1(pdev);
2006
2007        iounmap(ioaddr);
2008
2009        pci_release_region(pdev, 1);
2010        pci_release_region(pdev, 0);
2011
2012        pci_disable_device(pdev);
2013}
2014
2015static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2016        unsigned short parity)
2017{
2018        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2019
2020        if (encoding != ENCODING_NRZ &&
2021            encoding != ENCODING_NRZI &&
2022            encoding != ENCODING_FM_MARK &&
2023            encoding != ENCODING_FM_SPACE &&
2024            encoding != ENCODING_MANCHESTER)
2025                return -EINVAL;
2026
2027        if (parity != PARITY_NONE &&
2028            parity != PARITY_CRC16_PR0_CCITT &&
2029            parity != PARITY_CRC16_PR1_CCITT &&
2030            parity != PARITY_CRC32_PR0_CCITT &&
2031            parity != PARITY_CRC32_PR1_CCITT)
2032                return -EINVAL;
2033
2034        dpriv->encoding = encoding;
2035        dpriv->parity = parity;
2036        return 0;
2037}
2038
2039#ifndef MODULE
2040static int __init dscc4_setup(char *str)
2041{
2042        int *args[] = { &debug, &quartz, NULL }, **p = args;
2043
2044        while (*p && (get_option(&str, *p) == 2))
2045                p++;
2046        return 1;
2047}
2048
2049__setup("dscc4.setup=", dscc4_setup);
2050#endif
2051
2052static DEFINE_PCI_DEVICE_TABLE(dscc4_pci_tbl) = {
2053        { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2054                PCI_ANY_ID, PCI_ANY_ID, },
2055        { 0,}
2056};
2057MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2058
2059static struct pci_driver dscc4_driver = {
2060        .name           = DRV_NAME,
2061        .id_table       = dscc4_pci_tbl,
2062        .probe          = dscc4_init_one,
2063        .remove         = __devexit_p(dscc4_remove_one),
2064};
2065
2066static int __init dscc4_init_module(void)
2067{
2068        return pci_register_driver(&dscc4_driver);
2069}
2070
2071static void __exit dscc4_cleanup_module(void)
2072{
2073        pci_unregister_driver(&dscc4_driver);
2074}
2075
2076module_init(dscc4_init_module);
2077module_exit(dscc4_cleanup_module);
2078