linux/drivers/net/wireless/rt2x00/rt61pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt61pci
  23        Abstract: rt61pci device specific routines.
  24        Supported chipsets: RT2561, RT2561s, RT2661.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34#include <linux/pci.h>
  35#include <linux/eeprom_93cx6.h>
  36
  37#include "rt2x00.h"
  38#include "rt2x00pci.h"
  39#include "rt61pci.h"
  40
  41/*
  42 * Allow hardware encryption to be disabled.
  43 */
  44static int modparam_nohwcrypt = 0;
  45module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  46MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  47
  48/*
  49 * Register access.
  50 * BBP and RF register require indirect register access,
  51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  52 * These indirect registers work with busy bits,
  53 * and we will try maximal REGISTER_BUSY_COUNT times to access
  54 * the register while taking a REGISTER_BUSY_DELAY us delay
  55 * between each attempt. When the busy bit is still set at that time,
  56 * the access attempt is considered to have failed,
  57 * and we will print an error.
  58 */
  59#define WAIT_FOR_BBP(__dev, __reg) \
  60        rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  61#define WAIT_FOR_RF(__dev, __reg) \
  62        rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  63#define WAIT_FOR_MCU(__dev, __reg) \
  64        rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  65                               H2M_MAILBOX_CSR_OWNER, (__reg))
  66
  67static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  68                              const unsigned int word, const u8 value)
  69{
  70        u32 reg;
  71
  72        mutex_lock(&rt2x00dev->csr_mutex);
  73
  74        /*
  75         * Wait until the BBP becomes available, afterwards we
  76         * can safely write the new data into the register.
  77         */
  78        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  79                reg = 0;
  80                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  81                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  82                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  83                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  84
  85                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  86        }
  87
  88        mutex_unlock(&rt2x00dev->csr_mutex);
  89}
  90
  91static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  92                             const unsigned int word, u8 *value)
  93{
  94        u32 reg;
  95
  96        mutex_lock(&rt2x00dev->csr_mutex);
  97
  98        /*
  99         * Wait until the BBP becomes available, afterwards we
 100         * can safely write the read request into the register.
 101         * After the data has been written, we wait until hardware
 102         * returns the correct value, if at any time the register
 103         * doesn't become available in time, reg will be 0xffffffff
 104         * which means we return 0xff to the caller.
 105         */
 106        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 107                reg = 0;
 108                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 109                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 110                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 111
 112                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
 113
 114                WAIT_FOR_BBP(rt2x00dev, &reg);
 115        }
 116
 117        *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 118
 119        mutex_unlock(&rt2x00dev->csr_mutex);
 120}
 121
 122static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 123                             const unsigned int word, const u32 value)
 124{
 125        u32 reg;
 126
 127        mutex_lock(&rt2x00dev->csr_mutex);
 128
 129        /*
 130         * Wait until the RF becomes available, afterwards we
 131         * can safely write the new data into the register.
 132         */
 133        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 134                reg = 0;
 135                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 136                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 137                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 138                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 139
 140                rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
 141                rt2x00_rf_write(rt2x00dev, word, value);
 142        }
 143
 144        mutex_unlock(&rt2x00dev->csr_mutex);
 145}
 146
 147static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 148                                const u8 command, const u8 token,
 149                                const u8 arg0, const u8 arg1)
 150{
 151        u32 reg;
 152
 153        mutex_lock(&rt2x00dev->csr_mutex);
 154
 155        /*
 156         * Wait until the MCU becomes available, afterwards we
 157         * can safely write the new data into the register.
 158         */
 159        if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 160                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 161                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 162                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 163                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 164                rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 165
 166                rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 167                rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 168                rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 169                rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 170        }
 171
 172        mutex_unlock(&rt2x00dev->csr_mutex);
 173
 174}
 175
 176static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 177{
 178        struct rt2x00_dev *rt2x00dev = eeprom->data;
 179        u32 reg;
 180
 181        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
 182
 183        eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 184        eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 185        eeprom->reg_data_clock =
 186            !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 187        eeprom->reg_chip_select =
 188            !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 189}
 190
 191static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 192{
 193        struct rt2x00_dev *rt2x00dev = eeprom->data;
 194        u32 reg = 0;
 195
 196        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 197        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 198        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 199                           !!eeprom->reg_data_clock);
 200        rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 201                           !!eeprom->reg_chip_select);
 202
 203        rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
 204}
 205
 206#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 207static const struct rt2x00debug rt61pci_rt2x00debug = {
 208        .owner  = THIS_MODULE,
 209        .csr    = {
 210                .read           = rt2x00pci_register_read,
 211                .write          = rt2x00pci_register_write,
 212                .flags          = RT2X00DEBUGFS_OFFSET,
 213                .word_base      = CSR_REG_BASE,
 214                .word_size      = sizeof(u32),
 215                .word_count     = CSR_REG_SIZE / sizeof(u32),
 216        },
 217        .eeprom = {
 218                .read           = rt2x00_eeprom_read,
 219                .write          = rt2x00_eeprom_write,
 220                .word_base      = EEPROM_BASE,
 221                .word_size      = sizeof(u16),
 222                .word_count     = EEPROM_SIZE / sizeof(u16),
 223        },
 224        .bbp    = {
 225                .read           = rt61pci_bbp_read,
 226                .write          = rt61pci_bbp_write,
 227                .word_base      = BBP_BASE,
 228                .word_size      = sizeof(u8),
 229                .word_count     = BBP_SIZE / sizeof(u8),
 230        },
 231        .rf     = {
 232                .read           = rt2x00_rf_read,
 233                .write          = rt61pci_rf_write,
 234                .word_base      = RF_BASE,
 235                .word_size      = sizeof(u32),
 236                .word_count     = RF_SIZE / sizeof(u32),
 237        },
 238};
 239#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 240
 241static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 242{
 243        u32 reg;
 244
 245        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 246        return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
 247}
 248
 249#ifdef CONFIG_RT2X00_LIB_LEDS
 250static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 251                                   enum led_brightness brightness)
 252{
 253        struct rt2x00_led *led =
 254            container_of(led_cdev, struct rt2x00_led, led_dev);
 255        unsigned int enabled = brightness != LED_OFF;
 256        unsigned int a_mode =
 257            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 258        unsigned int bg_mode =
 259            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 260
 261        if (led->type == LED_TYPE_RADIO) {
 262                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 263                                   MCU_LEDCS_RADIO_STATUS, enabled);
 264
 265                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 266                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 267                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 268        } else if (led->type == LED_TYPE_ASSOC) {
 269                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 270                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 271                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 272                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 273
 274                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 275                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 276                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 277        } else if (led->type == LED_TYPE_QUALITY) {
 278                /*
 279                 * The brightness is divided into 6 levels (0 - 5),
 280                 * this means we need to convert the brightness
 281                 * argument into the matching level within that range.
 282                 */
 283                rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 284                                    brightness / (LED_FULL / 6), 0);
 285        }
 286}
 287
 288static int rt61pci_blink_set(struct led_classdev *led_cdev,
 289                             unsigned long *delay_on,
 290                             unsigned long *delay_off)
 291{
 292        struct rt2x00_led *led =
 293            container_of(led_cdev, struct rt2x00_led, led_dev);
 294        u32 reg;
 295
 296        rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 297        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 298        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 299        rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
 300
 301        return 0;
 302}
 303
 304static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 305                             struct rt2x00_led *led,
 306                             enum led_type type)
 307{
 308        led->rt2x00dev = rt2x00dev;
 309        led->type = type;
 310        led->led_dev.brightness_set = rt61pci_brightness_set;
 311        led->led_dev.blink_set = rt61pci_blink_set;
 312        led->flags = LED_INITIALIZED;
 313}
 314#endif /* CONFIG_RT2X00_LIB_LEDS */
 315
 316/*
 317 * Configuration handlers.
 318 */
 319static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 320                                     struct rt2x00lib_crypto *crypto,
 321                                     struct ieee80211_key_conf *key)
 322{
 323        struct hw_key_entry key_entry;
 324        struct rt2x00_field32 field;
 325        u32 mask;
 326        u32 reg;
 327
 328        if (crypto->cmd == SET_KEY) {
 329                /*
 330                 * rt2x00lib can't determine the correct free
 331                 * key_idx for shared keys. We have 1 register
 332                 * with key valid bits. The goal is simple, read
 333                 * the register, if that is full we have no slots
 334                 * left.
 335                 * Note that each BSS is allowed to have up to 4
 336                 * shared keys, so put a mask over the allowed
 337                 * entries.
 338                 */
 339                mask = (0xf << crypto->bssidx);
 340
 341                rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 342                reg &= mask;
 343
 344                if (reg && reg == mask)
 345                        return -ENOSPC;
 346
 347                key->hw_key_idx += reg ? ffz(reg) : 0;
 348
 349                /*
 350                 * Upload key to hardware
 351                 */
 352                memcpy(key_entry.key, crypto->key,
 353                       sizeof(key_entry.key));
 354                memcpy(key_entry.tx_mic, crypto->tx_mic,
 355                       sizeof(key_entry.tx_mic));
 356                memcpy(key_entry.rx_mic, crypto->rx_mic,
 357                       sizeof(key_entry.rx_mic));
 358
 359                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 360                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 361                                              &key_entry, sizeof(key_entry));
 362
 363                /*
 364                 * The cipher types are stored over 2 registers.
 365                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 366                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 367                 * Using the correct defines correctly will cause overhead,
 368                 * so just calculate the correct offset.
 369                 */
 370                if (key->hw_key_idx < 8) {
 371                        field.bit_offset = (3 * key->hw_key_idx);
 372                        field.bit_mask = 0x7 << field.bit_offset;
 373
 374                        rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
 375                        rt2x00_set_field32(&reg, field, crypto->cipher);
 376                        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
 377                } else {
 378                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 379                        field.bit_mask = 0x7 << field.bit_offset;
 380
 381                        rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
 382                        rt2x00_set_field32(&reg, field, crypto->cipher);
 383                        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
 384                }
 385
 386                /*
 387                 * The driver does not support the IV/EIV generation
 388                 * in hardware. However it doesn't support the IV/EIV
 389                 * inside the ieee80211 frame either, but requires it
 390                 * to be provided separately for the descriptor.
 391                 * rt2x00lib will cut the IV/EIV data out of all frames
 392                 * given to us by mac80211, but we must tell mac80211
 393                 * to generate the IV/EIV data.
 394                 */
 395                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 396        }
 397
 398        /*
 399         * SEC_CSR0 contains only single-bit fields to indicate
 400         * a particular key is valid. Because using the FIELD32()
 401         * defines directly will cause a lot of overhead, we use
 402         * a calculation to determine the correct bit directly.
 403         */
 404        mask = 1 << key->hw_key_idx;
 405
 406        rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 407        if (crypto->cmd == SET_KEY)
 408                reg |= mask;
 409        else if (crypto->cmd == DISABLE_KEY)
 410                reg &= ~mask;
 411        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
 412
 413        return 0;
 414}
 415
 416static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 417                                       struct rt2x00lib_crypto *crypto,
 418                                       struct ieee80211_key_conf *key)
 419{
 420        struct hw_pairwise_ta_entry addr_entry;
 421        struct hw_key_entry key_entry;
 422        u32 mask;
 423        u32 reg;
 424
 425        if (crypto->cmd == SET_KEY) {
 426                /*
 427                 * rt2x00lib can't determine the correct free
 428                 * key_idx for pairwise keys. We have 2 registers
 429                 * with key valid bits. The goal is simple: read
 430                 * the first register. If that is full, move to
 431                 * the next register.
 432                 * When both registers are full, we drop the key.
 433                 * Otherwise, we use the first invalid entry.
 434                 */
 435                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 436                if (reg && reg == ~0) {
 437                        key->hw_key_idx = 32;
 438                        rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 439                        if (reg && reg == ~0)
 440                                return -ENOSPC;
 441                }
 442
 443                key->hw_key_idx += reg ? ffz(reg) : 0;
 444
 445                /*
 446                 * Upload key to hardware
 447                 */
 448                memcpy(key_entry.key, crypto->key,
 449                       sizeof(key_entry.key));
 450                memcpy(key_entry.tx_mic, crypto->tx_mic,
 451                       sizeof(key_entry.tx_mic));
 452                memcpy(key_entry.rx_mic, crypto->rx_mic,
 453                       sizeof(key_entry.rx_mic));
 454
 455                memset(&addr_entry, 0, sizeof(addr_entry));
 456                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 457                addr_entry.cipher = crypto->cipher;
 458
 459                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 460                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 461                                              &key_entry, sizeof(key_entry));
 462
 463                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 464                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 465                                              &addr_entry, sizeof(addr_entry));
 466
 467                /*
 468                 * Enable pairwise lookup table for given BSS idx.
 469                 * Without this, received frames will not be decrypted
 470                 * by the hardware.
 471                 */
 472                rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
 473                reg |= (1 << crypto->bssidx);
 474                rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
 475
 476                /*
 477                 * The driver does not support the IV/EIV generation
 478                 * in hardware. However it doesn't support the IV/EIV
 479                 * inside the ieee80211 frame either, but requires it
 480                 * to be provided separately for the descriptor.
 481                 * rt2x00lib will cut the IV/EIV data out of all frames
 482                 * given to us by mac80211, but we must tell mac80211
 483                 * to generate the IV/EIV data.
 484                 */
 485                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 486        }
 487
 488        /*
 489         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 490         * a particular key is valid. Because using the FIELD32()
 491         * defines directly will cause a lot of overhead, we use
 492         * a calculation to determine the correct bit directly.
 493         */
 494        if (key->hw_key_idx < 32) {
 495                mask = 1 << key->hw_key_idx;
 496
 497                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 498                if (crypto->cmd == SET_KEY)
 499                        reg |= mask;
 500                else if (crypto->cmd == DISABLE_KEY)
 501                        reg &= ~mask;
 502                rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
 503        } else {
 504                mask = 1 << (key->hw_key_idx - 32);
 505
 506                rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 507                if (crypto->cmd == SET_KEY)
 508                        reg |= mask;
 509                else if (crypto->cmd == DISABLE_KEY)
 510                        reg &= ~mask;
 511                rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
 512        }
 513
 514        return 0;
 515}
 516
 517static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 518                                  const unsigned int filter_flags)
 519{
 520        u32 reg;
 521
 522        /*
 523         * Start configuration steps.
 524         * Note that the version error will always be dropped
 525         * and broadcast frames will always be accepted since
 526         * there is no filter for it at this time.
 527         */
 528        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 529        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 530                           !(filter_flags & FIF_FCSFAIL));
 531        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 532                           !(filter_flags & FIF_PLCPFAIL));
 533        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 534                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 535        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 536                           !(filter_flags & FIF_PROMISC_IN_BSS));
 537        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 538                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 539                           !rt2x00dev->intf_ap_count);
 540        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 541        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 542                           !(filter_flags & FIF_ALLMULTI));
 543        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 544        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 545                           !(filter_flags & FIF_CONTROL));
 546        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 547}
 548
 549static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 550                                struct rt2x00_intf *intf,
 551                                struct rt2x00intf_conf *conf,
 552                                const unsigned int flags)
 553{
 554        u32 reg;
 555
 556        if (flags & CONFIG_UPDATE_TYPE) {
 557                /*
 558                 * Enable synchronisation.
 559                 */
 560                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 561                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 562                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 563        }
 564
 565        if (flags & CONFIG_UPDATE_MAC) {
 566                reg = le32_to_cpu(conf->mac[1]);
 567                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 568                conf->mac[1] = cpu_to_le32(reg);
 569
 570                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
 571                                              conf->mac, sizeof(conf->mac));
 572        }
 573
 574        if (flags & CONFIG_UPDATE_BSSID) {
 575                reg = le32_to_cpu(conf->bssid[1]);
 576                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 577                conf->bssid[1] = cpu_to_le32(reg);
 578
 579                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
 580                                              conf->bssid, sizeof(conf->bssid));
 581        }
 582}
 583
 584static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 585                               struct rt2x00lib_erp *erp,
 586                               u32 changed)
 587{
 588        u32 reg;
 589
 590        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 591        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 592        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 593        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 594
 595        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 596                rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 597                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 598                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 599                                   !!erp->short_preamble);
 600                rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 601        }
 602
 603        if (changed & BSS_CHANGED_BASIC_RATES)
 604                rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
 605                                         erp->basic_rates);
 606
 607        if (changed & BSS_CHANGED_BEACON_INT) {
 608                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 609                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 610                                   erp->beacon_int * 16);
 611                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 612        }
 613
 614        if (changed & BSS_CHANGED_ERP_SLOT) {
 615                rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
 616                rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 617                rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
 618
 619                rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
 620                rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 621                rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 622                rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 623                rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
 624        }
 625}
 626
 627static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 628                                      struct antenna_setup *ant)
 629{
 630        u8 r3;
 631        u8 r4;
 632        u8 r77;
 633
 634        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 635        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 636        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 637
 638        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 639
 640        /*
 641         * Configure the RX antenna.
 642         */
 643        switch (ant->rx) {
 644        case ANTENNA_HW_DIVERSITY:
 645                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 646                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 647                                  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 648                break;
 649        case ANTENNA_A:
 650                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 651                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 652                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 653                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 654                else
 655                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 656                break;
 657        case ANTENNA_B:
 658        default:
 659                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 660                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 661                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 662                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 663                else
 664                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 665                break;
 666        }
 667
 668        rt61pci_bbp_write(rt2x00dev, 77, r77);
 669        rt61pci_bbp_write(rt2x00dev, 3, r3);
 670        rt61pci_bbp_write(rt2x00dev, 4, r4);
 671}
 672
 673static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 674                                      struct antenna_setup *ant)
 675{
 676        u8 r3;
 677        u8 r4;
 678        u8 r77;
 679
 680        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 681        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 682        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 683
 684        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 685        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 686                          !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
 687
 688        /*
 689         * Configure the RX antenna.
 690         */
 691        switch (ant->rx) {
 692        case ANTENNA_HW_DIVERSITY:
 693                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 694                break;
 695        case ANTENNA_A:
 696                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 697                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 698                break;
 699        case ANTENNA_B:
 700        default:
 701                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 702                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 703                break;
 704        }
 705
 706        rt61pci_bbp_write(rt2x00dev, 77, r77);
 707        rt61pci_bbp_write(rt2x00dev, 3, r3);
 708        rt61pci_bbp_write(rt2x00dev, 4, r4);
 709}
 710
 711static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 712                                           const int p1, const int p2)
 713{
 714        u32 reg;
 715
 716        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 717
 718        rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
 719        rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
 720
 721        rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
 722        rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
 723
 724        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
 725}
 726
 727static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 728                                        struct antenna_setup *ant)
 729{
 730        u8 r3;
 731        u8 r4;
 732        u8 r77;
 733
 734        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 735        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 736        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 737
 738        /*
 739         * Configure the RX antenna.
 740         */
 741        switch (ant->rx) {
 742        case ANTENNA_A:
 743                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 744                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 745                rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 746                break;
 747        case ANTENNA_HW_DIVERSITY:
 748                /*
 749                 * FIXME: Antenna selection for the rf 2529 is very confusing
 750                 * in the legacy driver. Just default to antenna B until the
 751                 * legacy code can be properly translated into rt2x00 code.
 752                 */
 753        case ANTENNA_B:
 754        default:
 755                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 756                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 757                rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 758                break;
 759        }
 760
 761        rt61pci_bbp_write(rt2x00dev, 77, r77);
 762        rt61pci_bbp_write(rt2x00dev, 3, r3);
 763        rt61pci_bbp_write(rt2x00dev, 4, r4);
 764}
 765
 766struct antenna_sel {
 767        u8 word;
 768        /*
 769         * value[0] -> non-LNA
 770         * value[1] -> LNA
 771         */
 772        u8 value[2];
 773};
 774
 775static const struct antenna_sel antenna_sel_a[] = {
 776        { 96,  { 0x58, 0x78 } },
 777        { 104, { 0x38, 0x48 } },
 778        { 75,  { 0xfe, 0x80 } },
 779        { 86,  { 0xfe, 0x80 } },
 780        { 88,  { 0xfe, 0x80 } },
 781        { 35,  { 0x60, 0x60 } },
 782        { 97,  { 0x58, 0x58 } },
 783        { 98,  { 0x58, 0x58 } },
 784};
 785
 786static const struct antenna_sel antenna_sel_bg[] = {
 787        { 96,  { 0x48, 0x68 } },
 788        { 104, { 0x2c, 0x3c } },
 789        { 75,  { 0xfe, 0x80 } },
 790        { 86,  { 0xfe, 0x80 } },
 791        { 88,  { 0xfe, 0x80 } },
 792        { 35,  { 0x50, 0x50 } },
 793        { 97,  { 0x48, 0x48 } },
 794        { 98,  { 0x48, 0x48 } },
 795};
 796
 797static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 798                               struct antenna_setup *ant)
 799{
 800        const struct antenna_sel *sel;
 801        unsigned int lna;
 802        unsigned int i;
 803        u32 reg;
 804
 805        /*
 806         * We should never come here because rt2x00lib is supposed
 807         * to catch this and send us the correct antenna explicitely.
 808         */
 809        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 810               ant->tx == ANTENNA_SW_DIVERSITY);
 811
 812        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 813                sel = antenna_sel_a;
 814                lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
 815        } else {
 816                sel = antenna_sel_bg;
 817                lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
 818        }
 819
 820        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 821                rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 822
 823        rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
 824
 825        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 826                           rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 827        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 828                           rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 829
 830        rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
 831
 832        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 833                rt61pci_config_antenna_5x(rt2x00dev, ant);
 834        else if (rt2x00_rf(rt2x00dev, RF2527))
 835                rt61pci_config_antenna_2x(rt2x00dev, ant);
 836        else if (rt2x00_rf(rt2x00dev, RF2529)) {
 837                if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
 838                        rt61pci_config_antenna_2x(rt2x00dev, ant);
 839                else
 840                        rt61pci_config_antenna_2529(rt2x00dev, ant);
 841        }
 842}
 843
 844static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 845                                    struct rt2x00lib_conf *libconf)
 846{
 847        u16 eeprom;
 848        short lna_gain = 0;
 849
 850        if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
 851                if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
 852                        lna_gain += 14;
 853
 854                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 855                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 856        } else {
 857                if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
 858                        lna_gain += 14;
 859
 860                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 861                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 862        }
 863
 864        rt2x00dev->lna_gain = lna_gain;
 865}
 866
 867static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 868                                   struct rf_channel *rf, const int txpower)
 869{
 870        u8 r3;
 871        u8 r94;
 872        u8 smart;
 873
 874        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 875        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 876
 877        smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 878
 879        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 880        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 881        rt61pci_bbp_write(rt2x00dev, 3, r3);
 882
 883        r94 = 6;
 884        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 885                r94 += txpower - MAX_TXPOWER;
 886        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 887                r94 += txpower;
 888        rt61pci_bbp_write(rt2x00dev, 94, r94);
 889
 890        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 891        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 892        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 893        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 894
 895        udelay(200);
 896
 897        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 898        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 899        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 900        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 901
 902        udelay(200);
 903
 904        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 905        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 906        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 907        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 908
 909        msleep(1);
 910}
 911
 912static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 913                                   const int txpower)
 914{
 915        struct rf_channel rf;
 916
 917        rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 918        rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 919        rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 920        rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 921
 922        rt61pci_config_channel(rt2x00dev, &rf, txpower);
 923}
 924
 925static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 926                                    struct rt2x00lib_conf *libconf)
 927{
 928        u32 reg;
 929
 930        rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 931        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 932        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 933        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 934        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 935                           libconf->conf->long_frame_max_tx_count);
 936        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 937                           libconf->conf->short_frame_max_tx_count);
 938        rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 939}
 940
 941static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 942                                struct rt2x00lib_conf *libconf)
 943{
 944        enum dev_state state =
 945            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 946                STATE_SLEEP : STATE_AWAKE;
 947        u32 reg;
 948
 949        if (state == STATE_SLEEP) {
 950                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 951                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 952                                   rt2x00dev->beacon_int - 10);
 953                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 954                                   libconf->conf->listen_interval - 1);
 955                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 956
 957                /* We must first disable autowake before it can be enabled */
 958                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 959                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 960
 961                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 962                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 963
 964                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
 965                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 966                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 967
 968                rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 969        } else {
 970                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 971                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 972                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 973                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 974                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 975                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 976
 977                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
 978                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 979                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 980
 981                rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 982        }
 983}
 984
 985static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 986                           struct rt2x00lib_conf *libconf,
 987                           const unsigned int flags)
 988{
 989        /* Always recalculate LNA gain before changing configuration */
 990        rt61pci_config_lna_gain(rt2x00dev, libconf);
 991
 992        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 993                rt61pci_config_channel(rt2x00dev, &libconf->rf,
 994                                       libconf->conf->power_level);
 995        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 996            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 997                rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
 998        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 999                rt61pci_config_retry_limit(rt2x00dev, libconf);
1000        if (flags & IEEE80211_CONF_CHANGE_PS)
1001                rt61pci_config_ps(rt2x00dev, libconf);
1002}
1003
1004/*
1005 * Link tuning
1006 */
1007static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008                               struct link_qual *qual)
1009{
1010        u32 reg;
1011
1012        /*
1013         * Update FCS error count from register.
1014         */
1015        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018        /*
1019         * Update False CCA count from register.
1020         */
1021        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023}
1024
1025static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026                                   struct link_qual *qual, u8 vgc_level)
1027{
1028        if (qual->vgc_level != vgc_level) {
1029                rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030                qual->vgc_level = vgc_level;
1031                qual->vgc_level_reg = vgc_level;
1032        }
1033}
1034
1035static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036                                struct link_qual *qual)
1037{
1038        rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039}
1040
1041static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042                               struct link_qual *qual, const u32 count)
1043{
1044        u8 up_bound;
1045        u8 low_bound;
1046
1047        /*
1048         * Determine r17 bounds.
1049         */
1050        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051                low_bound = 0x28;
1052                up_bound = 0x48;
1053                if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1054                        low_bound += 0x10;
1055                        up_bound += 0x10;
1056                }
1057        } else {
1058                low_bound = 0x20;
1059                up_bound = 0x40;
1060                if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1061                        low_bound += 0x10;
1062                        up_bound += 0x10;
1063                }
1064        }
1065
1066        /*
1067         * If we are not associated, we should go straight to the
1068         * dynamic CCA tuning.
1069         */
1070        if (!rt2x00dev->intf_associated)
1071                goto dynamic_cca_tune;
1072
1073        /*
1074         * Special big-R17 for very short distance
1075         */
1076        if (qual->rssi >= -35) {
1077                rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078                return;
1079        }
1080
1081        /*
1082         * Special big-R17 for short distance
1083         */
1084        if (qual->rssi >= -58) {
1085                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086                return;
1087        }
1088
1089        /*
1090         * Special big-R17 for middle-short distance
1091         */
1092        if (qual->rssi >= -66) {
1093                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094                return;
1095        }
1096
1097        /*
1098         * Special mid-R17 for middle distance
1099         */
1100        if (qual->rssi >= -74) {
1101                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102                return;
1103        }
1104
1105        /*
1106         * Special case: Change up_bound based on the rssi.
1107         * Lower up_bound when rssi is weaker then -74 dBm.
1108         */
1109        up_bound -= 2 * (-74 - qual->rssi);
1110        if (low_bound > up_bound)
1111                up_bound = low_bound;
1112
1113        if (qual->vgc_level > up_bound) {
1114                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115                return;
1116        }
1117
1118dynamic_cca_tune:
1119
1120        /*
1121         * r17 does not yet exceed upper limit, continue and base
1122         * the r17 tuning on the false CCA count.
1123         */
1124        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125                rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127                rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128}
1129
1130/*
1131 * Queue handlers.
1132 */
1133static void rt61pci_start_queue(struct data_queue *queue)
1134{
1135        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1136        u32 reg;
1137
1138        switch (queue->qid) {
1139        case QID_RX:
1140                rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1141                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142                rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1143                break;
1144        case QID_BEACON:
1145                /*
1146                 * Allow the tbtt tasklet to be scheduled.
1147                 */
1148                tasklet_enable(&rt2x00dev->tbtt_tasklet);
1149
1150                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1151                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1152                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1153                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1154                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1155                break;
1156        default:
1157                break;
1158        }
1159}
1160
1161static void rt61pci_kick_queue(struct data_queue *queue)
1162{
1163        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1164        u32 reg;
1165
1166        switch (queue->qid) {
1167        case QID_AC_VO:
1168                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1169                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1170                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1171                break;
1172        case QID_AC_VI:
1173                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1174                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1175                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1176                break;
1177        case QID_AC_BE:
1178                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1179                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1180                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1181                break;
1182        case QID_AC_BK:
1183                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1184                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1185                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1186                break;
1187        default:
1188                break;
1189        }
1190}
1191
1192static void rt61pci_stop_queue(struct data_queue *queue)
1193{
1194        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1195        u32 reg;
1196
1197        switch (queue->qid) {
1198        case QID_AC_VO:
1199                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1200                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1201                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1202                break;
1203        case QID_AC_VI:
1204                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1205                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1206                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1207                break;
1208        case QID_AC_BE:
1209                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1210                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1211                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1212                break;
1213        case QID_AC_BK:
1214                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1215                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1216                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1217                break;
1218        case QID_RX:
1219                rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1220                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1221                rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1222                break;
1223        case QID_BEACON:
1224                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1225                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1226                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1227                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1228                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1229
1230                /*
1231                 * Wait for possibly running tbtt tasklets.
1232                 */
1233                tasklet_disable(&rt2x00dev->tbtt_tasklet);
1234                break;
1235        default:
1236                break;
1237        }
1238}
1239
1240/*
1241 * Firmware functions
1242 */
1243static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1244{
1245        u16 chip;
1246        char *fw_name;
1247
1248        pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1249        switch (chip) {
1250        case RT2561_PCI_ID:
1251                fw_name = FIRMWARE_RT2561;
1252                break;
1253        case RT2561s_PCI_ID:
1254                fw_name = FIRMWARE_RT2561s;
1255                break;
1256        case RT2661_PCI_ID:
1257                fw_name = FIRMWARE_RT2661;
1258                break;
1259        default:
1260                fw_name = NULL;
1261                break;
1262        }
1263
1264        return fw_name;
1265}
1266
1267static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1268                                  const u8 *data, const size_t len)
1269{
1270        u16 fw_crc;
1271        u16 crc;
1272
1273        /*
1274         * Only support 8kb firmware files.
1275         */
1276        if (len != 8192)
1277                return FW_BAD_LENGTH;
1278
1279        /*
1280         * The last 2 bytes in the firmware array are the crc checksum itself.
1281         * This means that we should never pass those 2 bytes to the crc
1282         * algorithm.
1283         */
1284        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1285
1286        /*
1287         * Use the crc itu-t algorithm.
1288         */
1289        crc = crc_itu_t(0, data, len - 2);
1290        crc = crc_itu_t_byte(crc, 0);
1291        crc = crc_itu_t_byte(crc, 0);
1292
1293        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1294}
1295
1296static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1297                                 const u8 *data, const size_t len)
1298{
1299        int i;
1300        u32 reg;
1301
1302        /*
1303         * Wait for stable hardware.
1304         */
1305        for (i = 0; i < 100; i++) {
1306                rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1307                if (reg)
1308                        break;
1309                msleep(1);
1310        }
1311
1312        if (!reg) {
1313                ERROR(rt2x00dev, "Unstable hardware.\n");
1314                return -EBUSY;
1315        }
1316
1317        /*
1318         * Prepare MCU and mailbox for firmware loading.
1319         */
1320        reg = 0;
1321        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1322        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1323        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1324        rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1325        rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1326
1327        /*
1328         * Write firmware to device.
1329         */
1330        reg = 0;
1331        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1332        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1333        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1334
1335        rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1336                                      data, len);
1337
1338        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1339        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1340
1341        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1342        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1343
1344        for (i = 0; i < 100; i++) {
1345                rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1346                if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1347                        break;
1348                msleep(1);
1349        }
1350
1351        if (i == 100) {
1352                ERROR(rt2x00dev, "MCU Control register not ready.\n");
1353                return -EBUSY;
1354        }
1355
1356        /*
1357         * Hardware needs another millisecond before it is ready.
1358         */
1359        msleep(1);
1360
1361        /*
1362         * Reset MAC and BBP registers.
1363         */
1364        reg = 0;
1365        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1366        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1367        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1368
1369        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1370        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1371        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1372        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1375        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1376        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1377
1378        return 0;
1379}
1380
1381/*
1382 * Initialization functions.
1383 */
1384static bool rt61pci_get_entry_state(struct queue_entry *entry)
1385{
1386        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1387        u32 word;
1388
1389        if (entry->queue->qid == QID_RX) {
1390                rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1393        } else {
1394                rt2x00_desc_read(entry_priv->desc, 0, &word);
1395
1396                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1397                        rt2x00_get_field32(word, TXD_W0_VALID));
1398        }
1399}
1400
1401static void rt61pci_clear_entry(struct queue_entry *entry)
1402{
1403        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1404        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1405        u32 word;
1406
1407        if (entry->queue->qid == QID_RX) {
1408                rt2x00_desc_read(entry_priv->desc, 5, &word);
1409                rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1410                                   skbdesc->skb_dma);
1411                rt2x00_desc_write(entry_priv->desc, 5, word);
1412
1413                rt2x00_desc_read(entry_priv->desc, 0, &word);
1414                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1415                rt2x00_desc_write(entry_priv->desc, 0, word);
1416        } else {
1417                rt2x00_desc_read(entry_priv->desc, 0, &word);
1418                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1419                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1420                rt2x00_desc_write(entry_priv->desc, 0, word);
1421        }
1422}
1423
1424static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1425{
1426        struct queue_entry_priv_pci *entry_priv;
1427        u32 reg;
1428
1429        /*
1430         * Initialize registers.
1431         */
1432        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1433        rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1434                           rt2x00dev->tx[0].limit);
1435        rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1436                           rt2x00dev->tx[1].limit);
1437        rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1438                           rt2x00dev->tx[2].limit);
1439        rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1440                           rt2x00dev->tx[3].limit);
1441        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1442
1443        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1444        rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1445                           rt2x00dev->tx[0].desc_size / 4);
1446        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1447
1448        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1449        rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1450        rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1451                           entry_priv->desc_dma);
1452        rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1453
1454        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1455        rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1456        rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1457                           entry_priv->desc_dma);
1458        rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1459
1460        entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1461        rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1462        rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1463                           entry_priv->desc_dma);
1464        rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1465
1466        entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1467        rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1468        rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1469                           entry_priv->desc_dma);
1470        rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1471
1472        rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1473        rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1474        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1475                           rt2x00dev->rx->desc_size / 4);
1476        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1477        rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1478
1479        entry_priv = rt2x00dev->rx->entries[0].priv_data;
1480        rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1481        rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1482                           entry_priv->desc_dma);
1483        rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1484
1485        rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1486        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1487        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1488        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1489        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1490        rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1491
1492        rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1493        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1494        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1495        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1496        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1497        rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1498
1499        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1500        rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1501        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1502
1503        return 0;
1504}
1505
1506static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1507{
1508        u32 reg;
1509
1510        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1511        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1512        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1513        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1514        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1515
1516        rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1517        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1518        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1519        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1520        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1521        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1522        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1523        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1524        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1525        rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1526
1527        /*
1528         * CCK TXD BBP registers
1529         */
1530        rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1531        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1532        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1533        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1534        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1535        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1536        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1537        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1538        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1539        rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1540
1541        /*
1542         * OFDM TXD BBP registers
1543         */
1544        rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1545        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1546        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1547        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1548        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1549        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1550        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1551        rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1552
1553        rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1554        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1555        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1556        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1557        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1558        rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1559
1560        rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1561        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1562        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1563        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1564        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1565        rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1566
1567        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1568        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1569        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1570        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1571        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1572        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1573        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1574        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1575
1576        rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1577
1578        rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1579
1580        rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1581        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1582        rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1583
1584        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1585
1586        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1587                return -EBUSY;
1588
1589        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1590
1591        /*
1592         * Invalidate all Shared Keys (SEC_CSR0),
1593         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1594         */
1595        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1596        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1597        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1598
1599        rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1600        rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1601        rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1602        rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1603
1604        rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1605
1606        rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1607
1608        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1609
1610        /*
1611         * Clear all beacons
1612         * For the Beacon base registers we only need to clear
1613         * the first byte since that byte contains the VALID and OWNER
1614         * bits which (when set to 0) will invalidate the entire beacon.
1615         */
1616        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1617        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1618        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1619        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1620
1621        /*
1622         * We must clear the error counters.
1623         * These registers are cleared on read,
1624         * so we may pass a useless variable to store the value.
1625         */
1626        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1627        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1628        rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1629
1630        /*
1631         * Reset MAC and BBP registers.
1632         */
1633        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1634        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1635        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1636        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1637
1638        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1639        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1640        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1641        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1644        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1645        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1646
1647        return 0;
1648}
1649
1650static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1651{
1652        unsigned int i;
1653        u8 value;
1654
1655        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1656                rt61pci_bbp_read(rt2x00dev, 0, &value);
1657                if ((value != 0xff) && (value != 0x00))
1658                        return 0;
1659                udelay(REGISTER_BUSY_DELAY);
1660        }
1661
1662        ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1663        return -EACCES;
1664}
1665
1666static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1667{
1668        unsigned int i;
1669        u16 eeprom;
1670        u8 reg_id;
1671        u8 value;
1672
1673        if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1674                return -EACCES;
1675
1676        rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1677        rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1678        rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1679        rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1680        rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1681        rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1682        rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1683        rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1684        rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1685        rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1686        rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1687        rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1688        rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1689        rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1690        rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1691        rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1692        rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1693        rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1694        rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1695        rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1696        rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1697        rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1698        rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1699        rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1700
1701        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1702                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1703
1704                if (eeprom != 0xffff && eeprom != 0x0000) {
1705                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1706                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1707                        rt61pci_bbp_write(rt2x00dev, reg_id, value);
1708                }
1709        }
1710
1711        return 0;
1712}
1713
1714/*
1715 * Device state switch handlers.
1716 */
1717static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1718                               enum dev_state state)
1719{
1720        int mask = (state == STATE_RADIO_IRQ_OFF);
1721        u32 reg;
1722        unsigned long flags;
1723
1724        /*
1725         * When interrupts are being enabled, the interrupt registers
1726         * should clear the register to assure a clean state.
1727         */
1728        if (state == STATE_RADIO_IRQ_ON) {
1729                rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1730                rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1731
1732                rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1733                rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1734
1735                /*
1736                 * Enable tasklets.
1737                 */
1738                tasklet_enable(&rt2x00dev->txstatus_tasklet);
1739                tasklet_enable(&rt2x00dev->rxdone_tasklet);
1740                tasklet_enable(&rt2x00dev->autowake_tasklet);
1741        }
1742
1743        /*
1744         * Only toggle the interrupts bits we are going to use.
1745         * Non-checked interrupt bits are disabled by default.
1746         */
1747        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1748
1749        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1750        rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1751        rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1752        rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1753        rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1754        rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1755        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1756
1757        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1758        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1759        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1760        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1761        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1762        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1763        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1764        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1765        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1766        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1767        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1768
1769        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1770
1771        if (state == STATE_RADIO_IRQ_OFF) {
1772                /*
1773                 * Ensure that all tasklets are finished.
1774                 */
1775                tasklet_disable(&rt2x00dev->txstatus_tasklet);
1776                tasklet_disable(&rt2x00dev->rxdone_tasklet);
1777                tasklet_disable(&rt2x00dev->autowake_tasklet);
1778        }
1779}
1780
1781static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1782{
1783        u32 reg;
1784
1785        /*
1786         * Initialize all registers.
1787         */
1788        if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1789                     rt61pci_init_registers(rt2x00dev) ||
1790                     rt61pci_init_bbp(rt2x00dev)))
1791                return -EIO;
1792
1793        /*
1794         * Enable RX.
1795         */
1796        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1797        rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1798        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1799
1800        return 0;
1801}
1802
1803static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1804{
1805        /*
1806         * Disable power
1807         */
1808        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1809}
1810
1811static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1812{
1813        u32 reg, reg2;
1814        unsigned int i;
1815        char put_to_sleep;
1816
1817        put_to_sleep = (state != STATE_AWAKE);
1818
1819        rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1820        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1821        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1822        rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1823
1824        /*
1825         * Device is not guaranteed to be in the requested state yet.
1826         * We must wait until the register indicates that the
1827         * device has entered the correct state.
1828         */
1829        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1830                rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1831                state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1832                if (state == !put_to_sleep)
1833                        return 0;
1834                rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1835                msleep(10);
1836        }
1837
1838        return -EBUSY;
1839}
1840
1841static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1842                                    enum dev_state state)
1843{
1844        int retval = 0;
1845
1846        switch (state) {
1847        case STATE_RADIO_ON:
1848                retval = rt61pci_enable_radio(rt2x00dev);
1849                break;
1850        case STATE_RADIO_OFF:
1851                rt61pci_disable_radio(rt2x00dev);
1852                break;
1853        case STATE_RADIO_IRQ_ON:
1854        case STATE_RADIO_IRQ_OFF:
1855                rt61pci_toggle_irq(rt2x00dev, state);
1856                break;
1857        case STATE_DEEP_SLEEP:
1858        case STATE_SLEEP:
1859        case STATE_STANDBY:
1860        case STATE_AWAKE:
1861                retval = rt61pci_set_state(rt2x00dev, state);
1862                break;
1863        default:
1864                retval = -ENOTSUPP;
1865                break;
1866        }
1867
1868        if (unlikely(retval))
1869                ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1870                      state, retval);
1871
1872        return retval;
1873}
1874
1875/*
1876 * TX descriptor initialization
1877 */
1878static void rt61pci_write_tx_desc(struct queue_entry *entry,
1879                                  struct txentry_desc *txdesc)
1880{
1881        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1882        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1883        __le32 *txd = entry_priv->desc;
1884        u32 word;
1885
1886        /*
1887         * Start writing the descriptor words.
1888         */
1889        rt2x00_desc_read(txd, 1, &word);
1890        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1891        rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1892        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1893        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1894        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1895        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1896                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1897        rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1898        rt2x00_desc_write(txd, 1, word);
1899
1900        rt2x00_desc_read(txd, 2, &word);
1901        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1902        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1903        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1904                           txdesc->u.plcp.length_low);
1905        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1906                           txdesc->u.plcp.length_high);
1907        rt2x00_desc_write(txd, 2, word);
1908
1909        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1910                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1911                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1912        }
1913
1914        rt2x00_desc_read(txd, 5, &word);
1915        rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1916        rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1917                           skbdesc->entry->entry_idx);
1918        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1919                           TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1920        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1921        rt2x00_desc_write(txd, 5, word);
1922
1923        if (entry->queue->qid != QID_BEACON) {
1924                rt2x00_desc_read(txd, 6, &word);
1925                rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1926                                   skbdesc->skb_dma);
1927                rt2x00_desc_write(txd, 6, word);
1928
1929                rt2x00_desc_read(txd, 11, &word);
1930                rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1931                                   txdesc->length);
1932                rt2x00_desc_write(txd, 11, word);
1933        }
1934
1935        /*
1936         * Writing TXD word 0 must the last to prevent a race condition with
1937         * the device, whereby the device may take hold of the TXD before we
1938         * finished updating it.
1939         */
1940        rt2x00_desc_read(txd, 0, &word);
1941        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1942        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1943        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1944                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1945        rt2x00_set_field32(&word, TXD_W0_ACK,
1946                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1947        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1948                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1949        rt2x00_set_field32(&word, TXD_W0_OFDM,
1950                           (txdesc->rate_mode == RATE_MODE_OFDM));
1951        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1952        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1953                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1954        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1955                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1956        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1957                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1958        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1959        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1960        rt2x00_set_field32(&word, TXD_W0_BURST,
1961                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1962        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1963        rt2x00_desc_write(txd, 0, word);
1964
1965        /*
1966         * Register descriptor details in skb frame descriptor.
1967         */
1968        skbdesc->desc = txd;
1969        skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1970                            TXD_DESC_SIZE;
1971}
1972
1973/*
1974 * TX data initialization
1975 */
1976static void rt61pci_write_beacon(struct queue_entry *entry,
1977                                 struct txentry_desc *txdesc)
1978{
1979        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1980        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1981        unsigned int beacon_base;
1982        unsigned int padding_len;
1983        u32 orig_reg, reg;
1984
1985        /*
1986         * Disable beaconing while we are reloading the beacon data,
1987         * otherwise we might be sending out invalid data.
1988         */
1989        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1990        orig_reg = reg;
1991        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1992        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1993
1994        /*
1995         * Write the TX descriptor for the beacon.
1996         */
1997        rt61pci_write_tx_desc(entry, txdesc);
1998
1999        /*
2000         * Dump beacon to userspace through debugfs.
2001         */
2002        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
2003
2004        /*
2005         * Write entire beacon with descriptor and padding to register.
2006         */
2007        padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2008        if (padding_len && skb_pad(entry->skb, padding_len)) {
2009                ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
2010                /* skb freed by skb_pad() on failure */
2011                entry->skb = NULL;
2012                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2013                return;
2014        }
2015
2016        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2017        rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2018                                      entry_priv->desc, TXINFO_SIZE);
2019        rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2020                                      entry->skb->data,
2021                                      entry->skb->len + padding_len);
2022
2023        /*
2024         * Enable beaconing again.
2025         *
2026         * For Wi-Fi faily generated beacons between participating
2027         * stations. Set TBTT phase adaptive adjustment step to 8us.
2028         */
2029        rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2030
2031        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2032        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2033
2034        /*
2035         * Clean up beacon skb.
2036         */
2037        dev_kfree_skb_any(entry->skb);
2038        entry->skb = NULL;
2039}
2040
2041static void rt61pci_clear_beacon(struct queue_entry *entry)
2042{
2043        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2044        u32 reg;
2045
2046        /*
2047         * Disable beaconing while we are reloading the beacon data,
2048         * otherwise we might be sending out invalid data.
2049         */
2050        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2051        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2052        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2053
2054        /*
2055         * Clear beacon.
2056         */
2057        rt2x00pci_register_write(rt2x00dev,
2058                                 HW_BEACON_OFFSET(entry->entry_idx), 0);
2059
2060        /*
2061         * Enable beaconing again.
2062         */
2063        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2064        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2065}
2066
2067/*
2068 * RX control handlers
2069 */
2070static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2071{
2072        u8 offset = rt2x00dev->lna_gain;
2073        u8 lna;
2074
2075        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2076        switch (lna) {
2077        case 3:
2078                offset += 90;
2079                break;
2080        case 2:
2081                offset += 74;
2082                break;
2083        case 1:
2084                offset += 64;
2085                break;
2086        default:
2087                return 0;
2088        }
2089
2090        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2091                if (lna == 3 || lna == 2)
2092                        offset += 10;
2093        }
2094
2095        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2096}
2097
2098static void rt61pci_fill_rxdone(struct queue_entry *entry,
2099                                struct rxdone_entry_desc *rxdesc)
2100{
2101        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2102        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2103        u32 word0;
2104        u32 word1;
2105
2106        rt2x00_desc_read(entry_priv->desc, 0, &word0);
2107        rt2x00_desc_read(entry_priv->desc, 1, &word1);
2108
2109        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2110                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2111
2112        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2113        rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2114
2115        if (rxdesc->cipher != CIPHER_NONE) {
2116                _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2117                _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2118                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2119
2120                _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2121                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2122
2123                /*
2124                 * Hardware has stripped IV/EIV data from 802.11 frame during
2125                 * decryption. It has provided the data separately but rt2x00lib
2126                 * should decide if it should be reinserted.
2127                 */
2128                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2129
2130                /*
2131                 * The hardware has already checked the Michael Mic and has
2132                 * stripped it from the frame. Signal this to mac80211.
2133                 */
2134                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2135
2136                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2137                        rxdesc->flags |= RX_FLAG_DECRYPTED;
2138                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2139                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2140        }
2141
2142        /*
2143         * Obtain the status about this packet.
2144         * When frame was received with an OFDM bitrate,
2145         * the signal is the PLCP value. If it was received with
2146         * a CCK bitrate the signal is the rate in 100kbit/s.
2147         */
2148        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2149        rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2150        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2151
2152        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2153                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2154        else
2155                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2156        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2157                rxdesc->dev_flags |= RXDONE_MY_BSS;
2158}
2159
2160/*
2161 * Interrupt functions.
2162 */
2163static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2164{
2165        struct data_queue *queue;
2166        struct queue_entry *entry;
2167        struct queue_entry *entry_done;
2168        struct queue_entry_priv_pci *entry_priv;
2169        struct txdone_entry_desc txdesc;
2170        u32 word;
2171        u32 reg;
2172        int type;
2173        int index;
2174        int i;
2175
2176        /*
2177         * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2178         * at most X times and also stop processing once the TX_STA_FIFO_VALID
2179         * flag is not set anymore.
2180         *
2181         * The legacy drivers use X=TX_RING_SIZE but state in a comment
2182         * that the TX_STA_FIFO stack has a size of 16. We stick to our
2183         * tx ring size for now.
2184         */
2185        for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2186                rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2187                if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2188                        break;
2189
2190                /*
2191                 * Skip this entry when it contains an invalid
2192                 * queue identication number.
2193                 */
2194                type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2195                queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2196                if (unlikely(!queue))
2197                        continue;
2198
2199                /*
2200                 * Skip this entry when it contains an invalid
2201                 * index number.
2202                 */
2203                index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2204                if (unlikely(index >= queue->limit))
2205                        continue;
2206
2207                entry = &queue->entries[index];
2208                entry_priv = entry->priv_data;
2209                rt2x00_desc_read(entry_priv->desc, 0, &word);
2210
2211                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2212                    !rt2x00_get_field32(word, TXD_W0_VALID))
2213                        return;
2214
2215                entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2216                while (entry != entry_done) {
2217                        /* Catch up.
2218                         * Just report any entries we missed as failed.
2219                         */
2220                        WARNING(rt2x00dev,
2221                                "TX status report missed for entry %d\n",
2222                                entry_done->entry_idx);
2223
2224                        rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2225                        entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2226                }
2227
2228                /*
2229                 * Obtain the status about this packet.
2230                 */
2231                txdesc.flags = 0;
2232                switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2233                case 0: /* Success, maybe with retry */
2234                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2235                        break;
2236                case 6: /* Failure, excessive retries */
2237                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2238                        /* Don't break, this is a failed frame! */
2239                default: /* Failure */
2240                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
2241                }
2242                txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2243
2244                /*
2245                 * the frame was retried at least once
2246                 * -> hw used fallback rates
2247                 */
2248                if (txdesc.retry)
2249                        __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2250
2251                rt2x00lib_txdone(entry, &txdesc);
2252        }
2253}
2254
2255static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2256{
2257        struct ieee80211_conf conf = { .flags = 0 };
2258        struct rt2x00lib_conf libconf = { .conf = &conf };
2259
2260        rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2261}
2262
2263static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2264                                            struct rt2x00_field32 irq_field)
2265{
2266        u32 reg;
2267
2268        /*
2269         * Enable a single interrupt. The interrupt mask register
2270         * access needs locking.
2271         */
2272        spin_lock_irq(&rt2x00dev->irqmask_lock);
2273
2274        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2275        rt2x00_set_field32(&reg, irq_field, 0);
2276        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2277
2278        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2279}
2280
2281static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2282                                         struct rt2x00_field32 irq_field)
2283{
2284        u32 reg;
2285
2286        /*
2287         * Enable a single MCU interrupt. The interrupt mask register
2288         * access needs locking.
2289         */
2290        spin_lock_irq(&rt2x00dev->irqmask_lock);
2291
2292        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2293        rt2x00_set_field32(&reg, irq_field, 0);
2294        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2295
2296        spin_unlock_irq(&rt2x00dev->irqmask_lock);
2297}
2298
2299static void rt61pci_txstatus_tasklet(unsigned long data)
2300{
2301        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2302        rt61pci_txdone(rt2x00dev);
2303        rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2304}
2305
2306static void rt61pci_tbtt_tasklet(unsigned long data)
2307{
2308        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2309        rt2x00lib_beacondone(rt2x00dev);
2310        rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2311}
2312
2313static void rt61pci_rxdone_tasklet(unsigned long data)
2314{
2315        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316        if (rt2x00pci_rxdone(rt2x00dev))
2317                rt2x00pci_rxdone(rt2x00dev);
2318        else
2319                rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2320}
2321
2322static void rt61pci_autowake_tasklet(unsigned long data)
2323{
2324        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2325        rt61pci_wakeup(rt2x00dev);
2326        rt2x00pci_register_write(rt2x00dev,
2327                                 M2H_CMD_DONE_CSR, 0xffffffff);
2328        rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2329}
2330
2331static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2332{
2333        struct rt2x00_dev *rt2x00dev = dev_instance;
2334        u32 reg_mcu, mask_mcu;
2335        u32 reg, mask;
2336
2337        /*
2338         * Get the interrupt sources & saved to local variable.
2339         * Write register value back to clear pending interrupts.
2340         */
2341        rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2342        rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2343
2344        rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2345        rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2346
2347        if (!reg && !reg_mcu)
2348                return IRQ_NONE;
2349
2350        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2351                return IRQ_HANDLED;
2352
2353        /*
2354         * Schedule tasklets for interrupt handling.
2355         */
2356        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2357                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2358
2359        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2360                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2361
2362        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2363                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2364
2365        if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2366                tasklet_schedule(&rt2x00dev->autowake_tasklet);
2367
2368        /*
2369         * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2370         * for interrupts and interrupt masks we can just use the value of
2371         * INT_SOURCE_CSR to create the interrupt mask.
2372         */
2373        mask = reg;
2374        mask_mcu = reg_mcu;
2375
2376        /*
2377         * Disable all interrupts for which a tasklet was scheduled right now,
2378         * the tasklet will reenable the appropriate interrupts.
2379         */
2380        spin_lock(&rt2x00dev->irqmask_lock);
2381
2382        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2383        reg |= mask;
2384        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2385
2386        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2387        reg |= mask_mcu;
2388        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2389
2390        spin_unlock(&rt2x00dev->irqmask_lock);
2391
2392        return IRQ_HANDLED;
2393}
2394
2395/*
2396 * Device probe functions.
2397 */
2398static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2399{
2400        struct eeprom_93cx6 eeprom;
2401        u32 reg;
2402        u16 word;
2403        u8 *mac;
2404        s8 value;
2405
2406        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2407
2408        eeprom.data = rt2x00dev;
2409        eeprom.register_read = rt61pci_eepromregister_read;
2410        eeprom.register_write = rt61pci_eepromregister_write;
2411        eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2412            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2413        eeprom.reg_data_in = 0;
2414        eeprom.reg_data_out = 0;
2415        eeprom.reg_data_clock = 0;
2416        eeprom.reg_chip_select = 0;
2417
2418        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2419                               EEPROM_SIZE / sizeof(u16));
2420
2421        /*
2422         * Start validation of the data that has been read.
2423         */
2424        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2425        if (!is_valid_ether_addr(mac)) {
2426                random_ether_addr(mac);
2427                EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2428        }
2429
2430        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2431        if (word == 0xffff) {
2432                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2433                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2434                                   ANTENNA_B);
2435                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2436                                   ANTENNA_B);
2437                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2438                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2439                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2440                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2441                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2442                EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2443        }
2444
2445        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2446        if (word == 0xffff) {
2447                rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2448                rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2449                rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2450                rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2451                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2452                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2453                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2454                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2455                EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2456        }
2457
2458        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2459        if (word == 0xffff) {
2460                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2461                                   LED_MODE_DEFAULT);
2462                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2463                EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2464        }
2465
2466        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2467        if (word == 0xffff) {
2468                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2469                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2470                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2471                EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2472        }
2473
2474        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2475        if (word == 0xffff) {
2476                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2477                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479                EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2480        } else {
2481                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2482                if (value < -10 || value > 10)
2483                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2484                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2485                if (value < -10 || value > 10)
2486                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2487                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2488        }
2489
2490        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2491        if (word == 0xffff) {
2492                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2493                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495                EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2496        } else {
2497                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2498                if (value < -10 || value > 10)
2499                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2500                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2501                if (value < -10 || value > 10)
2502                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2503                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2504        }
2505
2506        return 0;
2507}
2508
2509static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2510{
2511        u32 reg;
2512        u16 value;
2513        u16 eeprom;
2514
2515        /*
2516         * Read EEPROM word for configuration.
2517         */
2518        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2519
2520        /*
2521         * Identify RF chipset.
2522         */
2523        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2524        rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2525        rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2526                        value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2527
2528        if (!rt2x00_rf(rt2x00dev, RF5225) &&
2529            !rt2x00_rf(rt2x00dev, RF5325) &&
2530            !rt2x00_rf(rt2x00dev, RF2527) &&
2531            !rt2x00_rf(rt2x00dev, RF2529)) {
2532                ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2533                return -ENODEV;
2534        }
2535
2536        /*
2537         * Determine number of antennas.
2538         */
2539        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2540                __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2541
2542        /*
2543         * Identify default antenna configuration.
2544         */
2545        rt2x00dev->default_ant.tx =
2546            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2547        rt2x00dev->default_ant.rx =
2548            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2549
2550        /*
2551         * Read the Frame type.
2552         */
2553        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2554                __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2555
2556        /*
2557         * Detect if this device has a hardware controlled radio.
2558         */
2559        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2560                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2561
2562        /*
2563         * Read frequency offset and RF programming sequence.
2564         */
2565        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2566        if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2567                __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2568
2569        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2570
2571        /*
2572         * Read external LNA informations.
2573         */
2574        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2575
2576        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2577                __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2578        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2579                __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2580
2581        /*
2582         * When working with a RF2529 chip without double antenna,
2583         * the antenna settings should be gathered from the NIC
2584         * eeprom word.
2585         */
2586        if (rt2x00_rf(rt2x00dev, RF2529) &&
2587            !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2588                rt2x00dev->default_ant.rx =
2589                    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2590                rt2x00dev->default_ant.tx =
2591                    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2592
2593                if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2594                        rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2595                if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2596                        rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2597        }
2598
2599        /*
2600         * Store led settings, for correct led behaviour.
2601         * If the eeprom value is invalid,
2602         * switch to default led mode.
2603         */
2604#ifdef CONFIG_RT2X00_LIB_LEDS
2605        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2606        value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2607
2608        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2609        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2610        if (value == LED_MODE_SIGNAL_STRENGTH)
2611                rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2612                                 LED_TYPE_QUALITY);
2613
2614        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2615        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2616                           rt2x00_get_field16(eeprom,
2617                                              EEPROM_LED_POLARITY_GPIO_0));
2618        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2619                           rt2x00_get_field16(eeprom,
2620                                              EEPROM_LED_POLARITY_GPIO_1));
2621        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2622                           rt2x00_get_field16(eeprom,
2623                                              EEPROM_LED_POLARITY_GPIO_2));
2624        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2625                           rt2x00_get_field16(eeprom,
2626                                              EEPROM_LED_POLARITY_GPIO_3));
2627        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2628                           rt2x00_get_field16(eeprom,
2629                                              EEPROM_LED_POLARITY_GPIO_4));
2630        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2631                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2632        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2633                           rt2x00_get_field16(eeprom,
2634                                              EEPROM_LED_POLARITY_RDY_G));
2635        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2636                           rt2x00_get_field16(eeprom,
2637                                              EEPROM_LED_POLARITY_RDY_A));
2638#endif /* CONFIG_RT2X00_LIB_LEDS */
2639
2640        return 0;
2641}
2642
2643/*
2644 * RF value list for RF5225 & RF5325
2645 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2646 */
2647static const struct rf_channel rf_vals_noseq[] = {
2648        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2649        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2650        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2651        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2652        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2653        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2654        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2655        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2656        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2657        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2658        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2659        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2660        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2661        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2662
2663        /* 802.11 UNI / HyperLan 2 */
2664        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2665        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2666        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2667        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2668        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2669        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2670        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2671        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2672
2673        /* 802.11 HyperLan 2 */
2674        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2675        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2676        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2677        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2678        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2679        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2680        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2681        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2682        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2683        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2684
2685        /* 802.11 UNII */
2686        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2687        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2688        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2689        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2690        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2691        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2692
2693        /* MMAC(Japan)J52 ch 34,38,42,46 */
2694        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2695        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2696        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2697        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2698};
2699
2700/*
2701 * RF value list for RF5225 & RF5325
2702 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2703 */
2704static const struct rf_channel rf_vals_seq[] = {
2705        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2706        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2707        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2708        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2709        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2710        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2711        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2712        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2713        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2714        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2715        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2716        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2717        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2718        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2719
2720        /* 802.11 UNI / HyperLan 2 */
2721        { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2722        { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2723        { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2724        { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2725        { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2726        { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2727        { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2728        { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2729
2730        /* 802.11 HyperLan 2 */
2731        { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2732        { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2733        { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2734        { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2735        { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2736        { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2737        { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2738        { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2739        { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2740        { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2741
2742        /* 802.11 UNII */
2743        { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2744        { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2745        { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2746        { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2747        { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2748        { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2749
2750        /* MMAC(Japan)J52 ch 34,38,42,46 */
2751        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2752        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2753        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2754        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2755};
2756
2757static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2758{
2759        struct hw_mode_spec *spec = &rt2x00dev->spec;
2760        struct channel_info *info;
2761        char *tx_power;
2762        unsigned int i;
2763
2764        /*
2765         * Disable powersaving as default.
2766         */
2767        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2768
2769        /*
2770         * Initialize all hw fields.
2771         */
2772        rt2x00dev->hw->flags =
2773            IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2774            IEEE80211_HW_SIGNAL_DBM |
2775            IEEE80211_HW_SUPPORTS_PS |
2776            IEEE80211_HW_PS_NULLFUNC_STACK;
2777
2778        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2779        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2780                                rt2x00_eeprom_addr(rt2x00dev,
2781                                                   EEPROM_MAC_ADDR_0));
2782
2783        /*
2784         * As rt61 has a global fallback table we cannot specify
2785         * more then one tx rate per frame but since the hw will
2786         * try several rates (based on the fallback table) we should
2787         * initialize max_report_rates to the maximum number of rates
2788         * we are going to try. Otherwise mac80211 will truncate our
2789         * reported tx rates and the rc algortihm will end up with
2790         * incorrect data.
2791         */
2792        rt2x00dev->hw->max_rates = 1;
2793        rt2x00dev->hw->max_report_rates = 7;
2794        rt2x00dev->hw->max_rate_tries = 1;
2795
2796        /*
2797         * Initialize hw_mode information.
2798         */
2799        spec->supported_bands = SUPPORT_BAND_2GHZ;
2800        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2801
2802        if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2803                spec->num_channels = 14;
2804                spec->channels = rf_vals_noseq;
2805        } else {
2806                spec->num_channels = 14;
2807                spec->channels = rf_vals_seq;
2808        }
2809
2810        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2811                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2812                spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2813        }
2814
2815        /*
2816         * Create channel information array
2817         */
2818        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2819        if (!info)
2820                return -ENOMEM;
2821
2822        spec->channels_info = info;
2823
2824        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2825        for (i = 0; i < 14; i++) {
2826                info[i].max_power = MAX_TXPOWER;
2827                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2828        }
2829
2830        if (spec->num_channels > 14) {
2831                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2832                for (i = 14; i < spec->num_channels; i++) {
2833                        info[i].max_power = MAX_TXPOWER;
2834                        info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2835                }
2836        }
2837
2838        return 0;
2839}
2840
2841static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2842{
2843        int retval;
2844
2845        /*
2846         * Disable power saving.
2847         */
2848        rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2849
2850        /*
2851         * Allocate eeprom data.
2852         */
2853        retval = rt61pci_validate_eeprom(rt2x00dev);
2854        if (retval)
2855                return retval;
2856
2857        retval = rt61pci_init_eeprom(rt2x00dev);
2858        if (retval)
2859                return retval;
2860
2861        /*
2862         * Initialize hw specifications.
2863         */
2864        retval = rt61pci_probe_hw_mode(rt2x00dev);
2865        if (retval)
2866                return retval;
2867
2868        /*
2869         * This device has multiple filters for control frames,
2870         * but has no a separate filter for PS Poll frames.
2871         */
2872        __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873
2874        /*
2875         * This device requires firmware and DMA mapped skbs.
2876         */
2877        __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2878        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879        if (!modparam_nohwcrypt)
2880                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2881        __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882
2883        /*
2884         * Set the rssi offset.
2885         */
2886        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887
2888        return 0;
2889}
2890
2891/*
2892 * IEEE80211 stack callback functions.
2893 */
2894static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2895                           const struct ieee80211_tx_queue_params *params)
2896{
2897        struct rt2x00_dev *rt2x00dev = hw->priv;
2898        struct data_queue *queue;
2899        struct rt2x00_field32 field;
2900        int retval;
2901        u32 reg;
2902        u32 offset;
2903
2904        /*
2905         * First pass the configuration through rt2x00lib, that will
2906         * update the queue settings and validate the input. After that
2907         * we are free to update the registers based on the value
2908         * in the queue parameter.
2909         */
2910        retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2911        if (retval)
2912                return retval;
2913
2914        /*
2915         * We only need to perform additional register initialization
2916         * for WMM queues.
2917         */
2918        if (queue_idx >= 4)
2919                return 0;
2920
2921        queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2922
2923        /* Update WMM TXOP register */
2924        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2925        field.bit_offset = (queue_idx & 1) * 16;
2926        field.bit_mask = 0xffff << field.bit_offset;
2927
2928        rt2x00pci_register_read(rt2x00dev, offset, &reg);
2929        rt2x00_set_field32(&reg, field, queue->txop);
2930        rt2x00pci_register_write(rt2x00dev, offset, reg);
2931
2932        /* Update WMM registers */
2933        field.bit_offset = queue_idx * 4;
2934        field.bit_mask = 0xf << field.bit_offset;
2935
2936        rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2937        rt2x00_set_field32(&reg, field, queue->aifs);
2938        rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2939
2940        rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2941        rt2x00_set_field32(&reg, field, queue->cw_min);
2942        rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2943
2944        rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2945        rt2x00_set_field32(&reg, field, queue->cw_max);
2946        rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2947
2948        return 0;
2949}
2950
2951static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2952{
2953        struct rt2x00_dev *rt2x00dev = hw->priv;
2954        u64 tsf;
2955        u32 reg;
2956
2957        rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2958        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2959        rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2960        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2961
2962        return tsf;
2963}
2964
2965static const struct ieee80211_ops rt61pci_mac80211_ops = {
2966        .tx                     = rt2x00mac_tx,
2967        .start                  = rt2x00mac_start,
2968        .stop                   = rt2x00mac_stop,
2969        .add_interface          = rt2x00mac_add_interface,
2970        .remove_interface       = rt2x00mac_remove_interface,
2971        .config                 = rt2x00mac_config,
2972        .configure_filter       = rt2x00mac_configure_filter,
2973        .set_key                = rt2x00mac_set_key,
2974        .sw_scan_start          = rt2x00mac_sw_scan_start,
2975        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2976        .get_stats              = rt2x00mac_get_stats,
2977        .bss_info_changed       = rt2x00mac_bss_info_changed,
2978        .conf_tx                = rt61pci_conf_tx,
2979        .get_tsf                = rt61pci_get_tsf,
2980        .rfkill_poll            = rt2x00mac_rfkill_poll,
2981        .flush                  = rt2x00mac_flush,
2982        .set_antenna            = rt2x00mac_set_antenna,
2983        .get_antenna            = rt2x00mac_get_antenna,
2984        .get_ringparam          = rt2x00mac_get_ringparam,
2985};
2986
2987static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2988        .irq_handler            = rt61pci_interrupt,
2989        .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2990        .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2991        .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2992        .autowake_tasklet       = rt61pci_autowake_tasklet,
2993        .probe_hw               = rt61pci_probe_hw,
2994        .get_firmware_name      = rt61pci_get_firmware_name,
2995        .check_firmware         = rt61pci_check_firmware,
2996        .load_firmware          = rt61pci_load_firmware,
2997        .initialize             = rt2x00pci_initialize,
2998        .uninitialize           = rt2x00pci_uninitialize,
2999        .get_entry_state        = rt61pci_get_entry_state,
3000        .clear_entry            = rt61pci_clear_entry,
3001        .set_device_state       = rt61pci_set_device_state,
3002        .rfkill_poll            = rt61pci_rfkill_poll,
3003        .link_stats             = rt61pci_link_stats,
3004        .reset_tuner            = rt61pci_reset_tuner,
3005        .link_tuner             = rt61pci_link_tuner,
3006        .start_queue            = rt61pci_start_queue,
3007        .kick_queue             = rt61pci_kick_queue,
3008        .stop_queue             = rt61pci_stop_queue,
3009        .flush_queue            = rt2x00pci_flush_queue,
3010        .write_tx_desc          = rt61pci_write_tx_desc,
3011        .write_beacon           = rt61pci_write_beacon,
3012        .clear_beacon           = rt61pci_clear_beacon,
3013        .fill_rxdone            = rt61pci_fill_rxdone,
3014        .config_shared_key      = rt61pci_config_shared_key,
3015        .config_pairwise_key    = rt61pci_config_pairwise_key,
3016        .config_filter          = rt61pci_config_filter,
3017        .config_intf            = rt61pci_config_intf,
3018        .config_erp             = rt61pci_config_erp,
3019        .config_ant             = rt61pci_config_ant,
3020        .config                 = rt61pci_config,
3021};
3022
3023static const struct data_queue_desc rt61pci_queue_rx = {
3024        .entry_num              = 32,
3025        .data_size              = DATA_FRAME_SIZE,
3026        .desc_size              = RXD_DESC_SIZE,
3027        .priv_size              = sizeof(struct queue_entry_priv_pci),
3028};
3029
3030static const struct data_queue_desc rt61pci_queue_tx = {
3031        .entry_num              = 32,
3032        .data_size              = DATA_FRAME_SIZE,
3033        .desc_size              = TXD_DESC_SIZE,
3034        .priv_size              = sizeof(struct queue_entry_priv_pci),
3035};
3036
3037static const struct data_queue_desc rt61pci_queue_bcn = {
3038        .entry_num              = 4,
3039        .data_size              = 0, /* No DMA required for beacons */
3040        .desc_size              = TXINFO_SIZE,
3041        .priv_size              = sizeof(struct queue_entry_priv_pci),
3042};
3043
3044static const struct rt2x00_ops rt61pci_ops = {
3045        .name                   = KBUILD_MODNAME,
3046        .max_sta_intf           = 1,
3047        .max_ap_intf            = 4,
3048        .eeprom_size            = EEPROM_SIZE,
3049        .rf_size                = RF_SIZE,
3050        .tx_queues              = NUM_TX_QUEUES,
3051        .extra_tx_headroom      = 0,
3052        .rx                     = &rt61pci_queue_rx,
3053        .tx                     = &rt61pci_queue_tx,
3054        .bcn                    = &rt61pci_queue_bcn,
3055        .lib                    = &rt61pci_rt2x00_ops,
3056        .hw                     = &rt61pci_mac80211_ops,
3057#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3058        .debugfs                = &rt61pci_rt2x00debug,
3059#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3060};
3061
3062/*
3063 * RT61pci module information.
3064 */
3065static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3066        /* RT2561s */
3067        { PCI_DEVICE(0x1814, 0x0301) },
3068        /* RT2561 v2 */
3069        { PCI_DEVICE(0x1814, 0x0302) },
3070        /* RT2661 */
3071        { PCI_DEVICE(0x1814, 0x0401) },
3072        { 0, }
3073};
3074
3075MODULE_AUTHOR(DRV_PROJECT);
3076MODULE_VERSION(DRV_VERSION);
3077MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3078MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3079                        "PCI & PCMCIA chipset based cards");
3080MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3081MODULE_FIRMWARE(FIRMWARE_RT2561);
3082MODULE_FIRMWARE(FIRMWARE_RT2561s);
3083MODULE_FIRMWARE(FIRMWARE_RT2661);
3084MODULE_LICENSE("GPL");
3085
3086static int rt61pci_probe(struct pci_dev *pci_dev,
3087                         const struct pci_device_id *id)
3088{
3089        return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3090}
3091
3092static struct pci_driver rt61pci_driver = {
3093        .name           = KBUILD_MODNAME,
3094        .id_table       = rt61pci_device_table,
3095        .probe          = rt61pci_probe,
3096        .remove         = __devexit_p(rt2x00pci_remove),
3097        .suspend        = rt2x00pci_suspend,
3098        .resume         = rt2x00pci_resume,
3099};
3100
3101static int __init rt61pci_init(void)
3102{
3103        return pci_register_driver(&rt61pci_driver);
3104}
3105
3106static void __exit rt61pci_exit(void)
3107{
3108        pci_unregister_driver(&rt61pci_driver);
3109}
3110
3111module_init(rt61pci_init);
3112module_exit(rt61pci_exit);
3113