linux/drivers/pci/dmar.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006, Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  15 * Place - Suite 330, Boston, MA 02111-1307 USA.
  16 *
  17 * Copyright (C) 2006-2008 Intel Corporation
  18 * Author: Ashok Raj <ashok.raj@intel.com>
  19 * Author: Shaohua Li <shaohua.li@intel.com>
  20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  21 *
  22 * This file implements early detection/parsing of Remapping Devices
  23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  24 * tables.
  25 *
  26 * These routines are used by both DMA-remapping and Interrupt-remapping
  27 */
  28
  29#include <linux/pci.h>
  30#include <linux/dmar.h>
  31#include <linux/iova.h>
  32#include <linux/intel-iommu.h>
  33#include <linux/timer.h>
  34#include <linux/irq.h>
  35#include <linux/interrupt.h>
  36#include <linux/tboot.h>
  37#include <linux/dmi.h>
  38#include <linux/slab.h>
  39#include <asm/iommu_table.h>
  40
  41#define PREFIX "DMAR: "
  42
  43/* No locks are needed as DMA remapping hardware unit
  44 * list is constructed at boot time and hotplug of
  45 * these units are not supported by the architecture.
  46 */
  47LIST_HEAD(dmar_drhd_units);
  48
  49static struct acpi_table_header * __initdata dmar_tbl;
  50static acpi_size dmar_tbl_size;
  51
  52static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  53{
  54        /*
  55         * add INCLUDE_ALL at the tail, so scan the list will find it at
  56         * the very end.
  57         */
  58        if (drhd->include_all)
  59                list_add_tail(&drhd->list, &dmar_drhd_units);
  60        else
  61                list_add(&drhd->list, &dmar_drhd_units);
  62}
  63
  64static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
  65                                           struct pci_dev **dev, u16 segment)
  66{
  67        struct pci_bus *bus;
  68        struct pci_dev *pdev = NULL;
  69        struct acpi_dmar_pci_path *path;
  70        int count;
  71
  72        bus = pci_find_bus(segment, scope->bus);
  73        path = (struct acpi_dmar_pci_path *)(scope + 1);
  74        count = (scope->length - sizeof(struct acpi_dmar_device_scope))
  75                / sizeof(struct acpi_dmar_pci_path);
  76
  77        while (count) {
  78                if (pdev)
  79                        pci_dev_put(pdev);
  80                /*
  81                 * Some BIOSes list non-exist devices in DMAR table, just
  82                 * ignore it
  83                 */
  84                if (!bus) {
  85                        printk(KERN_WARNING
  86                        PREFIX "Device scope bus [%d] not found\n",
  87                        scope->bus);
  88                        break;
  89                }
  90                pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
  91                if (!pdev) {
  92                        printk(KERN_WARNING PREFIX
  93                        "Device scope device [%04x:%02x:%02x.%02x] not found\n",
  94                                segment, bus->number, path->dev, path->fn);
  95                        break;
  96                }
  97                path ++;
  98                count --;
  99                bus = pdev->subordinate;
 100        }
 101        if (!pdev) {
 102                printk(KERN_WARNING PREFIX
 103                "Device scope device [%04x:%02x:%02x.%02x] not found\n",
 104                segment, scope->bus, path->dev, path->fn);
 105                *dev = NULL;
 106                return 0;
 107        }
 108        if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
 109                        pdev->subordinate) || (scope->entry_type == \
 110                        ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
 111                pci_dev_put(pdev);
 112                printk(KERN_WARNING PREFIX
 113                        "Device scope type does not match for %s\n",
 114                         pci_name(pdev));
 115                return -EINVAL;
 116        }
 117        *dev = pdev;
 118        return 0;
 119}
 120
 121static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
 122                                       struct pci_dev ***devices, u16 segment)
 123{
 124        struct acpi_dmar_device_scope *scope;
 125        void * tmp = start;
 126        int index;
 127        int ret;
 128
 129        *cnt = 0;
 130        while (start < end) {
 131                scope = start;
 132                if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
 133                    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 134                        (*cnt)++;
 135                else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
 136                        printk(KERN_WARNING PREFIX
 137                               "Unsupported device scope\n");
 138                }
 139                start += scope->length;
 140        }
 141        if (*cnt == 0)
 142                return 0;
 143
 144        *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
 145        if (!*devices)
 146                return -ENOMEM;
 147
 148        start = tmp;
 149        index = 0;
 150        while (start < end) {
 151                scope = start;
 152                if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
 153                    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
 154                        ret = dmar_parse_one_dev_scope(scope,
 155                                &(*devices)[index], segment);
 156                        if (ret) {
 157                                kfree(*devices);
 158                                return ret;
 159                        }
 160                        index ++;
 161                }
 162                start += scope->length;
 163        }
 164
 165        return 0;
 166}
 167
 168/**
 169 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 170 * structure which uniquely represent one DMA remapping hardware unit
 171 * present in the platform
 172 */
 173static int __init
 174dmar_parse_one_drhd(struct acpi_dmar_header *header)
 175{
 176        struct acpi_dmar_hardware_unit *drhd;
 177        struct dmar_drhd_unit *dmaru;
 178        int ret = 0;
 179
 180        drhd = (struct acpi_dmar_hardware_unit *)header;
 181        dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
 182        if (!dmaru)
 183                return -ENOMEM;
 184
 185        dmaru->hdr = header;
 186        dmaru->reg_base_addr = drhd->address;
 187        dmaru->segment = drhd->segment;
 188        dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 189
 190        ret = alloc_iommu(dmaru);
 191        if (ret) {
 192                kfree(dmaru);
 193                return ret;
 194        }
 195        dmar_register_drhd_unit(dmaru);
 196        return 0;
 197}
 198
 199static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
 200{
 201        struct acpi_dmar_hardware_unit *drhd;
 202        int ret = 0;
 203
 204        drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
 205
 206        if (dmaru->include_all)
 207                return 0;
 208
 209        ret = dmar_parse_dev_scope((void *)(drhd + 1),
 210                                ((void *)drhd) + drhd->header.length,
 211                                &dmaru->devices_cnt, &dmaru->devices,
 212                                drhd->segment);
 213        if (ret) {
 214                list_del(&dmaru->list);
 215                kfree(dmaru);
 216        }
 217        return ret;
 218}
 219
 220#ifdef CONFIG_DMAR
 221LIST_HEAD(dmar_rmrr_units);
 222
 223static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
 224{
 225        list_add(&rmrr->list, &dmar_rmrr_units);
 226}
 227
 228
 229static int __init
 230dmar_parse_one_rmrr(struct acpi_dmar_header *header)
 231{
 232        struct acpi_dmar_reserved_memory *rmrr;
 233        struct dmar_rmrr_unit *rmrru;
 234
 235        rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
 236        if (!rmrru)
 237                return -ENOMEM;
 238
 239        rmrru->hdr = header;
 240        rmrr = (struct acpi_dmar_reserved_memory *)header;
 241        rmrru->base_address = rmrr->base_address;
 242        rmrru->end_address = rmrr->end_address;
 243
 244        dmar_register_rmrr_unit(rmrru);
 245        return 0;
 246}
 247
 248static int __init
 249rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
 250{
 251        struct acpi_dmar_reserved_memory *rmrr;
 252        int ret;
 253
 254        rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
 255        ret = dmar_parse_dev_scope((void *)(rmrr + 1),
 256                ((void *)rmrr) + rmrr->header.length,
 257                &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
 258
 259        if (ret || (rmrru->devices_cnt == 0)) {
 260                list_del(&rmrru->list);
 261                kfree(rmrru);
 262        }
 263        return ret;
 264}
 265
 266static LIST_HEAD(dmar_atsr_units);
 267
 268static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
 269{
 270        struct acpi_dmar_atsr *atsr;
 271        struct dmar_atsr_unit *atsru;
 272
 273        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
 274        atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
 275        if (!atsru)
 276                return -ENOMEM;
 277
 278        atsru->hdr = hdr;
 279        atsru->include_all = atsr->flags & 0x1;
 280
 281        list_add(&atsru->list, &dmar_atsr_units);
 282
 283        return 0;
 284}
 285
 286static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
 287{
 288        int rc;
 289        struct acpi_dmar_atsr *atsr;
 290
 291        if (atsru->include_all)
 292                return 0;
 293
 294        atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
 295        rc = dmar_parse_dev_scope((void *)(atsr + 1),
 296                                (void *)atsr + atsr->header.length,
 297                                &atsru->devices_cnt, &atsru->devices,
 298                                atsr->segment);
 299        if (rc || !atsru->devices_cnt) {
 300                list_del(&atsru->list);
 301                kfree(atsru);
 302        }
 303
 304        return rc;
 305}
 306
 307int dmar_find_matched_atsr_unit(struct pci_dev *dev)
 308{
 309        int i;
 310        struct pci_bus *bus;
 311        struct acpi_dmar_atsr *atsr;
 312        struct dmar_atsr_unit *atsru;
 313
 314        dev = pci_physfn(dev);
 315
 316        list_for_each_entry(atsru, &dmar_atsr_units, list) {
 317                atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
 318                if (atsr->segment == pci_domain_nr(dev->bus))
 319                        goto found;
 320        }
 321
 322        return 0;
 323
 324found:
 325        for (bus = dev->bus; bus; bus = bus->parent) {
 326                struct pci_dev *bridge = bus->self;
 327
 328                if (!bridge || !pci_is_pcie(bridge) ||
 329                    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
 330                        return 0;
 331
 332                if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
 333                        for (i = 0; i < atsru->devices_cnt; i++)
 334                                if (atsru->devices[i] == bridge)
 335                                        return 1;
 336                        break;
 337                }
 338        }
 339
 340        if (atsru->include_all)
 341                return 1;
 342
 343        return 0;
 344}
 345#endif
 346
 347#ifdef CONFIG_ACPI_NUMA
 348static int __init
 349dmar_parse_one_rhsa(struct acpi_dmar_header *header)
 350{
 351        struct acpi_dmar_rhsa *rhsa;
 352        struct dmar_drhd_unit *drhd;
 353
 354        rhsa = (struct acpi_dmar_rhsa *)header;
 355        for_each_drhd_unit(drhd) {
 356                if (drhd->reg_base_addr == rhsa->base_address) {
 357                        int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
 358
 359                        if (!node_online(node))
 360                                node = -1;
 361                        drhd->iommu->node = node;
 362                        return 0;
 363                }
 364        }
 365        WARN_TAINT(
 366                1, TAINT_FIRMWARE_WORKAROUND,
 367                "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 368                "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 369                drhd->reg_base_addr,
 370                dmi_get_system_info(DMI_BIOS_VENDOR),
 371                dmi_get_system_info(DMI_BIOS_VERSION),
 372                dmi_get_system_info(DMI_PRODUCT_VERSION));
 373
 374        return 0;
 375}
 376#endif
 377
 378static void __init
 379dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 380{
 381        struct acpi_dmar_hardware_unit *drhd;
 382        struct acpi_dmar_reserved_memory *rmrr;
 383        struct acpi_dmar_atsr *atsr;
 384        struct acpi_dmar_rhsa *rhsa;
 385
 386        switch (header->type) {
 387        case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 388                drhd = container_of(header, struct acpi_dmar_hardware_unit,
 389                                    header);
 390                printk (KERN_INFO PREFIX
 391                        "DRHD base: %#016Lx flags: %#x\n",
 392                        (unsigned long long)drhd->address, drhd->flags);
 393                break;
 394        case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 395                rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 396                                    header);
 397                printk (KERN_INFO PREFIX
 398                        "RMRR base: %#016Lx end: %#016Lx\n",
 399                        (unsigned long long)rmrr->base_address,
 400                        (unsigned long long)rmrr->end_address);
 401                break;
 402        case ACPI_DMAR_TYPE_ATSR:
 403                atsr = container_of(header, struct acpi_dmar_atsr, header);
 404                printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
 405                break;
 406        case ACPI_DMAR_HARDWARE_AFFINITY:
 407                rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 408                printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
 409                       (unsigned long long)rhsa->base_address,
 410                       rhsa->proximity_domain);
 411                break;
 412        }
 413}
 414
 415/**
 416 * dmar_table_detect - checks to see if the platform supports DMAR devices
 417 */
 418static int __init dmar_table_detect(void)
 419{
 420        acpi_status status = AE_OK;
 421
 422        /* if we could find DMAR table, then there are DMAR devices */
 423        status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
 424                                (struct acpi_table_header **)&dmar_tbl,
 425                                &dmar_tbl_size);
 426
 427        if (ACPI_SUCCESS(status) && !dmar_tbl) {
 428                printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
 429                status = AE_NOT_FOUND;
 430        }
 431
 432        return (ACPI_SUCCESS(status) ? 1 : 0);
 433}
 434
 435/**
 436 * parse_dmar_table - parses the DMA reporting table
 437 */
 438static int __init
 439parse_dmar_table(void)
 440{
 441        struct acpi_table_dmar *dmar;
 442        struct acpi_dmar_header *entry_header;
 443        int ret = 0;
 444
 445        /*
 446         * Do it again, earlier dmar_tbl mapping could be mapped with
 447         * fixed map.
 448         */
 449        dmar_table_detect();
 450
 451        /*
 452         * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 453         * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 454         */
 455        dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 456
 457        dmar = (struct acpi_table_dmar *)dmar_tbl;
 458        if (!dmar)
 459                return -ENODEV;
 460
 461        if (dmar->width < PAGE_SHIFT - 1) {
 462                printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
 463                return -EINVAL;
 464        }
 465
 466        printk (KERN_INFO PREFIX "Host address width %d\n",
 467                dmar->width + 1);
 468
 469        entry_header = (struct acpi_dmar_header *)(dmar + 1);
 470        while (((unsigned long)entry_header) <
 471                        (((unsigned long)dmar) + dmar_tbl->length)) {
 472                /* Avoid looping forever on bad ACPI tables */
 473                if (entry_header->length == 0) {
 474                        printk(KERN_WARNING PREFIX
 475                                "Invalid 0-length structure\n");
 476                        ret = -EINVAL;
 477                        break;
 478                }
 479
 480                dmar_table_print_dmar_entry(entry_header);
 481
 482                switch (entry_header->type) {
 483                case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 484                        ret = dmar_parse_one_drhd(entry_header);
 485                        break;
 486                case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 487#ifdef CONFIG_DMAR
 488                        ret = dmar_parse_one_rmrr(entry_header);
 489#endif
 490                        break;
 491                case ACPI_DMAR_TYPE_ATSR:
 492#ifdef CONFIG_DMAR
 493                        ret = dmar_parse_one_atsr(entry_header);
 494#endif
 495                        break;
 496                case ACPI_DMAR_HARDWARE_AFFINITY:
 497#ifdef CONFIG_ACPI_NUMA
 498                        ret = dmar_parse_one_rhsa(entry_header);
 499#endif
 500                        break;
 501                default:
 502                        printk(KERN_WARNING PREFIX
 503                                "Unknown DMAR structure type %d\n",
 504                                entry_header->type);
 505                        ret = 0; /* for forward compatibility */
 506                        break;
 507                }
 508                if (ret)
 509                        break;
 510
 511                entry_header = ((void *)entry_header + entry_header->length);
 512        }
 513        return ret;
 514}
 515
 516static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
 517                          struct pci_dev *dev)
 518{
 519        int index;
 520
 521        while (dev) {
 522                for (index = 0; index < cnt; index++)
 523                        if (dev == devices[index])
 524                                return 1;
 525
 526                /* Check our parent */
 527                dev = dev->bus->self;
 528        }
 529
 530        return 0;
 531}
 532
 533struct dmar_drhd_unit *
 534dmar_find_matched_drhd_unit(struct pci_dev *dev)
 535{
 536        struct dmar_drhd_unit *dmaru = NULL;
 537        struct acpi_dmar_hardware_unit *drhd;
 538
 539        dev = pci_physfn(dev);
 540
 541        list_for_each_entry(dmaru, &dmar_drhd_units, list) {
 542                drhd = container_of(dmaru->hdr,
 543                                    struct acpi_dmar_hardware_unit,
 544                                    header);
 545
 546                if (dmaru->include_all &&
 547                    drhd->segment == pci_domain_nr(dev->bus))
 548                        return dmaru;
 549
 550                if (dmar_pci_device_match(dmaru->devices,
 551                                          dmaru->devices_cnt, dev))
 552                        return dmaru;
 553        }
 554
 555        return NULL;
 556}
 557
 558int __init dmar_dev_scope_init(void)
 559{
 560        struct dmar_drhd_unit *drhd, *drhd_n;
 561        int ret = -ENODEV;
 562
 563        list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
 564                ret = dmar_parse_dev(drhd);
 565                if (ret)
 566                        return ret;
 567        }
 568
 569#ifdef CONFIG_DMAR
 570        {
 571                struct dmar_rmrr_unit *rmrr, *rmrr_n;
 572                struct dmar_atsr_unit *atsr, *atsr_n;
 573
 574                list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
 575                        ret = rmrr_parse_dev(rmrr);
 576                        if (ret)
 577                                return ret;
 578                }
 579
 580                list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
 581                        ret = atsr_parse_dev(atsr);
 582                        if (ret)
 583                                return ret;
 584                }
 585        }
 586#endif
 587
 588        return ret;
 589}
 590
 591
 592int __init dmar_table_init(void)
 593{
 594        static int dmar_table_initialized;
 595        int ret;
 596
 597        if (dmar_table_initialized)
 598                return 0;
 599
 600        dmar_table_initialized = 1;
 601
 602        ret = parse_dmar_table();
 603        if (ret) {
 604                if (ret != -ENODEV)
 605                        printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
 606                return ret;
 607        }
 608
 609        if (list_empty(&dmar_drhd_units)) {
 610                printk(KERN_INFO PREFIX "No DMAR devices found\n");
 611                return -ENODEV;
 612        }
 613
 614#ifdef CONFIG_DMAR
 615        if (list_empty(&dmar_rmrr_units))
 616                printk(KERN_INFO PREFIX "No RMRR found\n");
 617
 618        if (list_empty(&dmar_atsr_units))
 619                printk(KERN_INFO PREFIX "No ATSR found\n");
 620#endif
 621
 622        return 0;
 623}
 624
 625static void warn_invalid_dmar(u64 addr, const char *message)
 626{
 627        WARN_TAINT_ONCE(
 628                1, TAINT_FIRMWARE_WORKAROUND,
 629                "Your BIOS is broken; DMAR reported at address %llx%s!\n"
 630                "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 631                addr, message,
 632                dmi_get_system_info(DMI_BIOS_VENDOR),
 633                dmi_get_system_info(DMI_BIOS_VERSION),
 634                dmi_get_system_info(DMI_PRODUCT_VERSION));
 635}
 636
 637int __init check_zero_address(void)
 638{
 639        struct acpi_table_dmar *dmar;
 640        struct acpi_dmar_header *entry_header;
 641        struct acpi_dmar_hardware_unit *drhd;
 642
 643        dmar = (struct acpi_table_dmar *)dmar_tbl;
 644        entry_header = (struct acpi_dmar_header *)(dmar + 1);
 645
 646        while (((unsigned long)entry_header) <
 647                        (((unsigned long)dmar) + dmar_tbl->length)) {
 648                /* Avoid looping forever on bad ACPI tables */
 649                if (entry_header->length == 0) {
 650                        printk(KERN_WARNING PREFIX
 651                                "Invalid 0-length structure\n");
 652                        return 0;
 653                }
 654
 655                if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
 656                        void __iomem *addr;
 657                        u64 cap, ecap;
 658
 659                        drhd = (void *)entry_header;
 660                        if (!drhd->address) {
 661                                warn_invalid_dmar(0, "");
 662                                goto failed;
 663                        }
 664
 665                        addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 666                        if (!addr ) {
 667                                printk("IOMMU: can't validate: %llx\n", drhd->address);
 668                                goto failed;
 669                        }
 670                        cap = dmar_readq(addr + DMAR_CAP_REG);
 671                        ecap = dmar_readq(addr + DMAR_ECAP_REG);
 672                        early_iounmap(addr, VTD_PAGE_SIZE);
 673                        if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 674                                warn_invalid_dmar(drhd->address,
 675                                                  " returns all ones");
 676                                goto failed;
 677                        }
 678                }
 679
 680                entry_header = ((void *)entry_header + entry_header->length);
 681        }
 682        return 1;
 683
 684failed:
 685#ifdef CONFIG_DMAR
 686        dmar_disabled = 1;
 687#endif
 688        return 0;
 689}
 690
 691int __init detect_intel_iommu(void)
 692{
 693        int ret;
 694
 695        ret = dmar_table_detect();
 696        if (ret)
 697                ret = check_zero_address();
 698        {
 699#ifdef CONFIG_INTR_REMAP
 700                struct acpi_table_dmar *dmar;
 701
 702                dmar = (struct acpi_table_dmar *) dmar_tbl;
 703                if (ret && cpu_has_x2apic && dmar->flags & 0x1)
 704                        printk(KERN_INFO
 705                               "Queued invalidation will be enabled to support "
 706                               "x2apic and Intr-remapping.\n");
 707#endif
 708#ifdef CONFIG_DMAR
 709                if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
 710                        iommu_detected = 1;
 711                        /* Make sure ACS will be enabled */
 712                        pci_request_acs();
 713                }
 714#endif
 715#ifdef CONFIG_X86
 716                if (ret)
 717                        x86_init.iommu.iommu_init = intel_iommu_init;
 718#endif
 719        }
 720        early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
 721        dmar_tbl = NULL;
 722
 723        return ret ? 1 : -ENODEV;
 724}
 725
 726
 727int alloc_iommu(struct dmar_drhd_unit *drhd)
 728{
 729        struct intel_iommu *iommu;
 730        int map_size;
 731        u32 ver;
 732        static int iommu_allocated = 0;
 733        int agaw = 0;
 734        int msagaw = 0;
 735
 736        if (!drhd->reg_base_addr) {
 737                warn_invalid_dmar(0, "");
 738                return -EINVAL;
 739        }
 740
 741        iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
 742        if (!iommu)
 743                return -ENOMEM;
 744
 745        iommu->seq_id = iommu_allocated++;
 746        sprintf (iommu->name, "dmar%d", iommu->seq_id);
 747
 748        iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
 749        if (!iommu->reg) {
 750                printk(KERN_ERR "IOMMU: can't map the region\n");
 751                goto error;
 752        }
 753        iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 754        iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 755
 756        if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 757                warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
 758                goto err_unmap;
 759        }
 760
 761#ifdef CONFIG_DMAR
 762        agaw = iommu_calculate_agaw(iommu);
 763        if (agaw < 0) {
 764                printk(KERN_ERR
 765                       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
 766                       iommu->seq_id);
 767                goto err_unmap;
 768        }
 769        msagaw = iommu_calculate_max_sagaw(iommu);
 770        if (msagaw < 0) {
 771                printk(KERN_ERR
 772                        "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
 773                        iommu->seq_id);
 774                goto err_unmap;
 775        }
 776#endif
 777        iommu->agaw = agaw;
 778        iommu->msagaw = msagaw;
 779
 780        iommu->node = -1;
 781
 782        /* the registers might be more than one page */
 783        map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
 784                cap_max_fault_reg_offset(iommu->cap));
 785        map_size = VTD_PAGE_ALIGN(map_size);
 786        if (map_size > VTD_PAGE_SIZE) {
 787                iounmap(iommu->reg);
 788                iommu->reg = ioremap(drhd->reg_base_addr, map_size);
 789                if (!iommu->reg) {
 790                        printk(KERN_ERR "IOMMU: can't map the region\n");
 791                        goto error;
 792                }
 793        }
 794
 795        ver = readl(iommu->reg + DMAR_VER_REG);
 796        pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
 797                iommu->seq_id,
 798                (unsigned long long)drhd->reg_base_addr,
 799                DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
 800                (unsigned long long)iommu->cap,
 801                (unsigned long long)iommu->ecap);
 802
 803        spin_lock_init(&iommu->register_lock);
 804
 805        drhd->iommu = iommu;
 806        return 0;
 807
 808 err_unmap:
 809        iounmap(iommu->reg);
 810 error:
 811        kfree(iommu);
 812        return -1;
 813}
 814
 815void free_iommu(struct intel_iommu *iommu)
 816{
 817        if (!iommu)
 818                return;
 819
 820#ifdef CONFIG_DMAR
 821        free_dmar_iommu(iommu);
 822#endif
 823
 824        if (iommu->reg)
 825                iounmap(iommu->reg);
 826        kfree(iommu);
 827}
 828
 829/*
 830 * Reclaim all the submitted descriptors which have completed its work.
 831 */
 832static inline void reclaim_free_desc(struct q_inval *qi)
 833{
 834        while (qi->desc_status[qi->free_tail] == QI_DONE ||
 835               qi->desc_status[qi->free_tail] == QI_ABORT) {
 836                qi->desc_status[qi->free_tail] = QI_FREE;
 837                qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
 838                qi->free_cnt++;
 839        }
 840}
 841
 842static int qi_check_fault(struct intel_iommu *iommu, int index)
 843{
 844        u32 fault;
 845        int head, tail;
 846        struct q_inval *qi = iommu->qi;
 847        int wait_index = (index + 1) % QI_LENGTH;
 848
 849        if (qi->desc_status[wait_index] == QI_ABORT)
 850                return -EAGAIN;
 851
 852        fault = readl(iommu->reg + DMAR_FSTS_REG);
 853
 854        /*
 855         * If IQE happens, the head points to the descriptor associated
 856         * with the error. No new descriptors are fetched until the IQE
 857         * is cleared.
 858         */
 859        if (fault & DMA_FSTS_IQE) {
 860                head = readl(iommu->reg + DMAR_IQH_REG);
 861                if ((head >> DMAR_IQ_SHIFT) == index) {
 862                        printk(KERN_ERR "VT-d detected invalid descriptor: "
 863                                "low=%llx, high=%llx\n",
 864                                (unsigned long long)qi->desc[index].low,
 865                                (unsigned long long)qi->desc[index].high);
 866                        memcpy(&qi->desc[index], &qi->desc[wait_index],
 867                                        sizeof(struct qi_desc));
 868                        __iommu_flush_cache(iommu, &qi->desc[index],
 869                                        sizeof(struct qi_desc));
 870                        writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
 871                        return -EINVAL;
 872                }
 873        }
 874
 875        /*
 876         * If ITE happens, all pending wait_desc commands are aborted.
 877         * No new descriptors are fetched until the ITE is cleared.
 878         */
 879        if (fault & DMA_FSTS_ITE) {
 880                head = readl(iommu->reg + DMAR_IQH_REG);
 881                head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
 882                head |= 1;
 883                tail = readl(iommu->reg + DMAR_IQT_REG);
 884                tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
 885
 886                writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
 887
 888                do {
 889                        if (qi->desc_status[head] == QI_IN_USE)
 890                                qi->desc_status[head] = QI_ABORT;
 891                        head = (head - 2 + QI_LENGTH) % QI_LENGTH;
 892                } while (head != tail);
 893
 894                if (qi->desc_status[wait_index] == QI_ABORT)
 895                        return -EAGAIN;
 896        }
 897
 898        if (fault & DMA_FSTS_ICE)
 899                writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
 900
 901        return 0;
 902}
 903
 904/*
 905 * Submit the queued invalidation descriptor to the remapping
 906 * hardware unit and wait for its completion.
 907 */
 908int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
 909{
 910        int rc;
 911        struct q_inval *qi = iommu->qi;
 912        struct qi_desc *hw, wait_desc;
 913        int wait_index, index;
 914        unsigned long flags;
 915
 916        if (!qi)
 917                return 0;
 918
 919        hw = qi->desc;
 920
 921restart:
 922        rc = 0;
 923
 924        spin_lock_irqsave(&qi->q_lock, flags);
 925        while (qi->free_cnt < 3) {
 926                spin_unlock_irqrestore(&qi->q_lock, flags);
 927                cpu_relax();
 928                spin_lock_irqsave(&qi->q_lock, flags);
 929        }
 930
 931        index = qi->free_head;
 932        wait_index = (index + 1) % QI_LENGTH;
 933
 934        qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
 935
 936        hw[index] = *desc;
 937
 938        wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
 939                        QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
 940        wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
 941
 942        hw[wait_index] = wait_desc;
 943
 944        __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
 945        __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
 946
 947        qi->free_head = (qi->free_head + 2) % QI_LENGTH;
 948        qi->free_cnt -= 2;
 949
 950        /*
 951         * update the HW tail register indicating the presence of
 952         * new descriptors.
 953         */
 954        writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
 955
 956        while (qi->desc_status[wait_index] != QI_DONE) {
 957                /*
 958                 * We will leave the interrupts disabled, to prevent interrupt
 959                 * context to queue another cmd while a cmd is already submitted
 960                 * and waiting for completion on this cpu. This is to avoid
 961                 * a deadlock where the interrupt context can wait indefinitely
 962                 * for free slots in the queue.
 963                 */
 964                rc = qi_check_fault(iommu, index);
 965                if (rc)
 966                        break;
 967
 968                spin_unlock(&qi->q_lock);
 969                cpu_relax();
 970                spin_lock(&qi->q_lock);
 971        }
 972
 973        qi->desc_status[index] = QI_DONE;
 974
 975        reclaim_free_desc(qi);
 976        spin_unlock_irqrestore(&qi->q_lock, flags);
 977
 978        if (rc == -EAGAIN)
 979                goto restart;
 980
 981        return rc;
 982}
 983
 984/*
 985 * Flush the global interrupt entry cache.
 986 */
 987void qi_global_iec(struct intel_iommu *iommu)
 988{
 989        struct qi_desc desc;
 990
 991        desc.low = QI_IEC_TYPE;
 992        desc.high = 0;
 993
 994        /* should never fail */
 995        qi_submit_sync(&desc, iommu);
 996}
 997
 998void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
 999                      u64 type)
1000{
1001        struct qi_desc desc;
1002
1003        desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1004                        | QI_CC_GRAN(type) | QI_CC_TYPE;
1005        desc.high = 0;
1006
1007        qi_submit_sync(&desc, iommu);
1008}
1009
1010void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1011                    unsigned int size_order, u64 type)
1012{
1013        u8 dw = 0, dr = 0;
1014
1015        struct qi_desc desc;
1016        int ih = 0;
1017
1018        if (cap_write_drain(iommu->cap))
1019                dw = 1;
1020
1021        if (cap_read_drain(iommu->cap))
1022                dr = 1;
1023
1024        desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1025                | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1026        desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1027                | QI_IOTLB_AM(size_order);
1028
1029        qi_submit_sync(&desc, iommu);
1030}
1031
1032void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1033                        u64 addr, unsigned mask)
1034{
1035        struct qi_desc desc;
1036
1037        if (mask) {
1038                BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1039                addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1040                desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1041        } else
1042                desc.high = QI_DEV_IOTLB_ADDR(addr);
1043
1044        if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1045                qdep = 0;
1046
1047        desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1048                   QI_DIOTLB_TYPE;
1049
1050        qi_submit_sync(&desc, iommu);
1051}
1052
1053/*
1054 * Disable Queued Invalidation interface.
1055 */
1056void dmar_disable_qi(struct intel_iommu *iommu)
1057{
1058        unsigned long flags;
1059        u32 sts;
1060        cycles_t start_time = get_cycles();
1061
1062        if (!ecap_qis(iommu->ecap))
1063                return;
1064
1065        spin_lock_irqsave(&iommu->register_lock, flags);
1066
1067        sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
1068        if (!(sts & DMA_GSTS_QIES))
1069                goto end;
1070
1071        /*
1072         * Give a chance to HW to complete the pending invalidation requests.
1073         */
1074        while ((readl(iommu->reg + DMAR_IQT_REG) !=
1075                readl(iommu->reg + DMAR_IQH_REG)) &&
1076                (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1077                cpu_relax();
1078
1079        iommu->gcmd &= ~DMA_GCMD_QIE;
1080        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1081
1082        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1083                      !(sts & DMA_GSTS_QIES), sts);
1084end:
1085        spin_unlock_irqrestore(&iommu->register_lock, flags);
1086}
1087
1088/*
1089 * Enable queued invalidation.
1090 */
1091static void __dmar_enable_qi(struct intel_iommu *iommu)
1092{
1093        u32 sts;
1094        unsigned long flags;
1095        struct q_inval *qi = iommu->qi;
1096
1097        qi->free_head = qi->free_tail = 0;
1098        qi->free_cnt = QI_LENGTH;
1099
1100        spin_lock_irqsave(&iommu->register_lock, flags);
1101
1102        /* write zero to the tail reg */
1103        writel(0, iommu->reg + DMAR_IQT_REG);
1104
1105        dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1106
1107        iommu->gcmd |= DMA_GCMD_QIE;
1108        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1109
1110        /* Make sure hardware complete it */
1111        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1112
1113        spin_unlock_irqrestore(&iommu->register_lock, flags);
1114}
1115
1116/*
1117 * Enable Queued Invalidation interface. This is a must to support
1118 * interrupt-remapping. Also used by DMA-remapping, which replaces
1119 * register based IOTLB invalidation.
1120 */
1121int dmar_enable_qi(struct intel_iommu *iommu)
1122{
1123        struct q_inval *qi;
1124        struct page *desc_page;
1125
1126        if (!ecap_qis(iommu->ecap))
1127                return -ENOENT;
1128
1129        /*
1130         * queued invalidation is already setup and enabled.
1131         */
1132        if (iommu->qi)
1133                return 0;
1134
1135        iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1136        if (!iommu->qi)
1137                return -ENOMEM;
1138
1139        qi = iommu->qi;
1140
1141
1142        desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1143        if (!desc_page) {
1144                kfree(qi);
1145                iommu->qi = 0;
1146                return -ENOMEM;
1147        }
1148
1149        qi->desc = page_address(desc_page);
1150
1151        qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1152        if (!qi->desc_status) {
1153                free_page((unsigned long) qi->desc);
1154                kfree(qi);
1155                iommu->qi = 0;
1156                return -ENOMEM;
1157        }
1158
1159        qi->free_head = qi->free_tail = 0;
1160        qi->free_cnt = QI_LENGTH;
1161
1162        spin_lock_init(&qi->q_lock);
1163
1164        __dmar_enable_qi(iommu);
1165
1166        return 0;
1167}
1168
1169/* iommu interrupt handling. Most stuff are MSI-like. */
1170
1171enum faulttype {
1172        DMA_REMAP,
1173        INTR_REMAP,
1174        UNKNOWN,
1175};
1176
1177static const char *dma_remap_fault_reasons[] =
1178{
1179        "Software",
1180        "Present bit in root entry is clear",
1181        "Present bit in context entry is clear",
1182        "Invalid context entry",
1183        "Access beyond MGAW",
1184        "PTE Write access is not set",
1185        "PTE Read access is not set",
1186        "Next page table ptr is invalid",
1187        "Root table address invalid",
1188        "Context table ptr is invalid",
1189        "non-zero reserved fields in RTP",
1190        "non-zero reserved fields in CTP",
1191        "non-zero reserved fields in PTE",
1192};
1193
1194static const char *intr_remap_fault_reasons[] =
1195{
1196        "Detected reserved fields in the decoded interrupt-remapped request",
1197        "Interrupt index exceeded the interrupt-remapping table size",
1198        "Present field in the IRTE entry is clear",
1199        "Error accessing interrupt-remapping table pointed by IRTA_REG",
1200        "Detected reserved fields in the IRTE entry",
1201        "Blocked a compatibility format interrupt request",
1202        "Blocked an interrupt request due to source-id verification failure",
1203};
1204
1205#define MAX_FAULT_REASON_IDX    (ARRAY_SIZE(fault_reason_strings) - 1)
1206
1207const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1208{
1209        if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1210                                     ARRAY_SIZE(intr_remap_fault_reasons))) {
1211                *fault_type = INTR_REMAP;
1212                return intr_remap_fault_reasons[fault_reason - 0x20];
1213        } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1214                *fault_type = DMA_REMAP;
1215                return dma_remap_fault_reasons[fault_reason];
1216        } else {
1217                *fault_type = UNKNOWN;
1218                return "Unknown";
1219        }
1220}
1221
1222void dmar_msi_unmask(struct irq_data *data)
1223{
1224        struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1225        unsigned long flag;
1226
1227        /* unmask it */
1228        spin_lock_irqsave(&iommu->register_lock, flag);
1229        writel(0, iommu->reg + DMAR_FECTL_REG);
1230        /* Read a reg to force flush the post write */
1231        readl(iommu->reg + DMAR_FECTL_REG);
1232        spin_unlock_irqrestore(&iommu->register_lock, flag);
1233}
1234
1235void dmar_msi_mask(struct irq_data *data)
1236{
1237        unsigned long flag;
1238        struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1239
1240        /* mask it */
1241        spin_lock_irqsave(&iommu->register_lock, flag);
1242        writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1243        /* Read a reg to force flush the post write */
1244        readl(iommu->reg + DMAR_FECTL_REG);
1245        spin_unlock_irqrestore(&iommu->register_lock, flag);
1246}
1247
1248void dmar_msi_write(int irq, struct msi_msg *msg)
1249{
1250        struct intel_iommu *iommu = irq_get_handler_data(irq);
1251        unsigned long flag;
1252
1253        spin_lock_irqsave(&iommu->register_lock, flag);
1254        writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1255        writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1256        writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1257        spin_unlock_irqrestore(&iommu->register_lock, flag);
1258}
1259
1260void dmar_msi_read(int irq, struct msi_msg *msg)
1261{
1262        struct intel_iommu *iommu = irq_get_handler_data(irq);
1263        unsigned long flag;
1264
1265        spin_lock_irqsave(&iommu->register_lock, flag);
1266        msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1267        msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1268        msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1269        spin_unlock_irqrestore(&iommu->register_lock, flag);
1270}
1271
1272static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1273                u8 fault_reason, u16 source_id, unsigned long long addr)
1274{
1275        const char *reason;
1276        int fault_type;
1277
1278        reason = dmar_get_fault_reason(fault_reason, &fault_type);
1279
1280        if (fault_type == INTR_REMAP)
1281                printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1282                       "fault index %llx\n"
1283                        "INTR-REMAP:[fault reason %02d] %s\n",
1284                        (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1285                        PCI_FUNC(source_id & 0xFF), addr >> 48,
1286                        fault_reason, reason);
1287        else
1288                printk(KERN_ERR
1289                       "DMAR:[%s] Request device [%02x:%02x.%d] "
1290                       "fault addr %llx \n"
1291                       "DMAR:[fault reason %02d] %s\n",
1292                       (type ? "DMA Read" : "DMA Write"),
1293                       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1294                       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1295        return 0;
1296}
1297
1298#define PRIMARY_FAULT_REG_LEN (16)
1299irqreturn_t dmar_fault(int irq, void *dev_id)
1300{
1301        struct intel_iommu *iommu = dev_id;
1302        int reg, fault_index;
1303        u32 fault_status;
1304        unsigned long flag;
1305
1306        spin_lock_irqsave(&iommu->register_lock, flag);
1307        fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1308        if (fault_status)
1309                printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1310                       fault_status);
1311
1312        /* TBD: ignore advanced fault log currently */
1313        if (!(fault_status & DMA_FSTS_PPF))
1314                goto clear_rest;
1315
1316        fault_index = dma_fsts_fault_record_index(fault_status);
1317        reg = cap_fault_reg_offset(iommu->cap);
1318        while (1) {
1319                u8 fault_reason;
1320                u16 source_id;
1321                u64 guest_addr;
1322                int type;
1323                u32 data;
1324
1325                /* highest 32 bits */
1326                data = readl(iommu->reg + reg +
1327                                fault_index * PRIMARY_FAULT_REG_LEN + 12);
1328                if (!(data & DMA_FRCD_F))
1329                        break;
1330
1331                fault_reason = dma_frcd_fault_reason(data);
1332                type = dma_frcd_type(data);
1333
1334                data = readl(iommu->reg + reg +
1335                                fault_index * PRIMARY_FAULT_REG_LEN + 8);
1336                source_id = dma_frcd_source_id(data);
1337
1338                guest_addr = dmar_readq(iommu->reg + reg +
1339                                fault_index * PRIMARY_FAULT_REG_LEN);
1340                guest_addr = dma_frcd_page_addr(guest_addr);
1341                /* clear the fault */
1342                writel(DMA_FRCD_F, iommu->reg + reg +
1343                        fault_index * PRIMARY_FAULT_REG_LEN + 12);
1344
1345                spin_unlock_irqrestore(&iommu->register_lock, flag);
1346
1347                dmar_fault_do_one(iommu, type, fault_reason,
1348                                source_id, guest_addr);
1349
1350                fault_index++;
1351                if (fault_index >= cap_num_fault_regs(iommu->cap))
1352                        fault_index = 0;
1353                spin_lock_irqsave(&iommu->register_lock, flag);
1354        }
1355clear_rest:
1356        /* clear all the other faults */
1357        fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1358        writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1359
1360        spin_unlock_irqrestore(&iommu->register_lock, flag);
1361        return IRQ_HANDLED;
1362}
1363
1364int dmar_set_interrupt(struct intel_iommu *iommu)
1365{
1366        int irq, ret;
1367
1368        /*
1369         * Check if the fault interrupt is already initialized.
1370         */
1371        if (iommu->irq)
1372                return 0;
1373
1374        irq = create_irq();
1375        if (!irq) {
1376                printk(KERN_ERR "IOMMU: no free vectors\n");
1377                return -EINVAL;
1378        }
1379
1380        irq_set_handler_data(irq, iommu);
1381        iommu->irq = irq;
1382
1383        ret = arch_setup_dmar_msi(irq);
1384        if (ret) {
1385                irq_set_handler_data(irq, NULL);
1386                iommu->irq = 0;
1387                destroy_irq(irq);
1388                return ret;
1389        }
1390
1391        ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1392        if (ret)
1393                printk(KERN_ERR "IOMMU: can't request irq\n");
1394        return ret;
1395}
1396
1397int __init enable_drhd_fault_handling(void)
1398{
1399        struct dmar_drhd_unit *drhd;
1400
1401        /*
1402         * Enable fault control interrupt.
1403         */
1404        for_each_drhd_unit(drhd) {
1405                int ret;
1406                struct intel_iommu *iommu = drhd->iommu;
1407                ret = dmar_set_interrupt(iommu);
1408
1409                if (ret) {
1410                        printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1411                               " interrupt, ret %d\n",
1412                               (unsigned long long)drhd->reg_base_addr, ret);
1413                        return -1;
1414                }
1415
1416                /*
1417                 * Clear any previous faults.
1418                 */
1419                dmar_fault(iommu->irq, iommu);
1420        }
1421
1422        return 0;
1423}
1424
1425/*
1426 * Re-enable Queued Invalidation interface.
1427 */
1428int dmar_reenable_qi(struct intel_iommu *iommu)
1429{
1430        if (!ecap_qis(iommu->ecap))
1431                return -ENOENT;
1432
1433        if (!iommu->qi)
1434                return -ENOENT;
1435
1436        /*
1437         * First disable queued invalidation.
1438         */
1439        dmar_disable_qi(iommu);
1440        /*
1441         * Then enable queued invalidation again. Since there is no pending
1442         * invalidation requests now, it's safe to re-enable queued
1443         * invalidation.
1444         */
1445        __dmar_enable_qi(iommu);
1446
1447        return 0;
1448}
1449
1450/*
1451 * Check interrupt remapping support in DMAR table description.
1452 */
1453int __init dmar_ir_support(void)
1454{
1455        struct acpi_table_dmar *dmar;
1456        dmar = (struct acpi_table_dmar *)dmar_tbl;
1457        if (!dmar)
1458                return 0;
1459        return dmar->flags & 0x1;
1460}
1461IOMMU_INIT_POST(detect_intel_iommu);
1462