linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95                             struct btrfs_root *root, struct inode *inode,
  96                             int inode_only);
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98                             struct btrfs_root *root,
  99                             struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101                                       struct btrfs_root *root,
 102                                       struct btrfs_root *log,
 103                                       struct btrfs_path *path,
 104                                       u64 dirid, int del_all);
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135                           struct btrfs_root *root)
 136{
 137        int ret;
 138        int err = 0;
 139
 140        mutex_lock(&root->log_mutex);
 141        if (root->log_root) {
 142                if (!root->log_start_pid) {
 143                        root->log_start_pid = current->pid;
 144                        root->log_multiple_pids = false;
 145                } else if (root->log_start_pid != current->pid) {
 146                        root->log_multiple_pids = true;
 147                }
 148
 149                root->log_batch++;
 150                atomic_inc(&root->log_writers);
 151                mutex_unlock(&root->log_mutex);
 152                return 0;
 153        }
 154        root->log_multiple_pids = false;
 155        root->log_start_pid = current->pid;
 156        mutex_lock(&root->fs_info->tree_log_mutex);
 157        if (!root->fs_info->log_root_tree) {
 158                ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159                if (ret)
 160                        err = ret;
 161        }
 162        if (err == 0 && !root->log_root) {
 163                ret = btrfs_add_log_tree(trans, root);
 164                if (ret)
 165                        err = ret;
 166        }
 167        mutex_unlock(&root->fs_info->tree_log_mutex);
 168        root->log_batch++;
 169        atomic_inc(&root->log_writers);
 170        mutex_unlock(&root->log_mutex);
 171        return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 181        int ret = -ENOENT;
 182
 183        smp_mb();
 184        if (!root->log_root)
 185                return -ENOENT;
 186
 187        mutex_lock(&root->log_mutex);
 188        if (root->log_root) {
 189                ret = 0;
 190                atomic_inc(&root->log_writers);
 191        }
 192        mutex_unlock(&root->log_mutex);
 193        return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203        int ret = -ENOENT;
 204
 205        mutex_lock(&root->log_mutex);
 206        atomic_inc(&root->log_writers);
 207        mutex_unlock(&root->log_mutex);
 208        return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215int btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217        if (atomic_dec_and_test(&root->log_writers)) {
 218                smp_mb();
 219                if (waitqueue_active(&root->log_writer_wait))
 220                        wake_up(&root->log_writer_wait);
 221        }
 222        return 0;
 223}
 224
 225
 226/*
 227 * the walk control struct is used to pass state down the chain when
 228 * processing the log tree.  The stage field tells us which part
 229 * of the log tree processing we are currently doing.  The others
 230 * are state fields used for that specific part
 231 */
 232struct walk_control {
 233        /* should we free the extent on disk when done?  This is used
 234         * at transaction commit time while freeing a log tree
 235         */
 236        int free;
 237
 238        /* should we write out the extent buffer?  This is used
 239         * while flushing the log tree to disk during a sync
 240         */
 241        int write;
 242
 243        /* should we wait for the extent buffer io to finish?  Also used
 244         * while flushing the log tree to disk for a sync
 245         */
 246        int wait;
 247
 248        /* pin only walk, we record which extents on disk belong to the
 249         * log trees
 250         */
 251        int pin;
 252
 253        /* what stage of the replay code we're currently in */
 254        int stage;
 255
 256        /* the root we are currently replaying */
 257        struct btrfs_root *replay_dest;
 258
 259        /* the trans handle for the current replay */
 260        struct btrfs_trans_handle *trans;
 261
 262        /* the function that gets used to process blocks we find in the
 263         * tree.  Note the extent_buffer might not be up to date when it is
 264         * passed in, and it must be checked or read if you need the data
 265         * inside it
 266         */
 267        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 268                            struct walk_control *wc, u64 gen);
 269};
 270
 271/*
 272 * process_func used to pin down extents, write them or wait on them
 273 */
 274static int process_one_buffer(struct btrfs_root *log,
 275                              struct extent_buffer *eb,
 276                              struct walk_control *wc, u64 gen)
 277{
 278        if (wc->pin)
 279                btrfs_pin_extent(log->fs_info->extent_root,
 280                                 eb->start, eb->len, 0);
 281
 282        if (btrfs_buffer_uptodate(eb, gen)) {
 283                if (wc->write)
 284                        btrfs_write_tree_block(eb);
 285                if (wc->wait)
 286                        btrfs_wait_tree_block_writeback(eb);
 287        }
 288        return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306                                   struct btrfs_root *root,
 307                                   struct btrfs_path *path,
 308                                   struct extent_buffer *eb, int slot,
 309                                   struct btrfs_key *key)
 310{
 311        int ret;
 312        u32 item_size;
 313        u64 saved_i_size = 0;
 314        int save_old_i_size = 0;
 315        unsigned long src_ptr;
 316        unsigned long dst_ptr;
 317        int overwrite_root = 0;
 318
 319        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320                overwrite_root = 1;
 321
 322        item_size = btrfs_item_size_nr(eb, slot);
 323        src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325        /* look for the key in the destination tree */
 326        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 327        if (ret == 0) {
 328                char *src_copy;
 329                char *dst_copy;
 330                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331                                                  path->slots[0]);
 332                if (dst_size != item_size)
 333                        goto insert;
 334
 335                if (item_size == 0) {
 336                        btrfs_release_path(path);
 337                        return 0;
 338                }
 339                dst_copy = kmalloc(item_size, GFP_NOFS);
 340                src_copy = kmalloc(item_size, GFP_NOFS);
 341                if (!dst_copy || !src_copy) {
 342                        btrfs_release_path(path);
 343                        kfree(dst_copy);
 344                        kfree(src_copy);
 345                        return -ENOMEM;
 346                }
 347
 348                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352                                   item_size);
 353                ret = memcmp(dst_copy, src_copy, item_size);
 354
 355                kfree(dst_copy);
 356                kfree(src_copy);
 357                /*
 358                 * they have the same contents, just return, this saves
 359                 * us from cowing blocks in the destination tree and doing
 360                 * extra writes that may not have been done by a previous
 361                 * sync
 362                 */
 363                if (ret == 0) {
 364                        btrfs_release_path(path);
 365                        return 0;
 366                }
 367
 368        }
 369insert:
 370        btrfs_release_path(path);
 371        /* try to insert the key into the destination tree */
 372        ret = btrfs_insert_empty_item(trans, root, path,
 373                                      key, item_size);
 374
 375        /* make sure any existing item is the correct size */
 376        if (ret == -EEXIST) {
 377                u32 found_size;
 378                found_size = btrfs_item_size_nr(path->nodes[0],
 379                                                path->slots[0]);
 380                if (found_size > item_size) {
 381                        btrfs_truncate_item(trans, root, path, item_size, 1);
 382                } else if (found_size < item_size) {
 383                        ret = btrfs_extend_item(trans, root, path,
 384                                                item_size - found_size);
 385                }
 386        } else if (ret) {
 387                return ret;
 388        }
 389        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 390                                        path->slots[0]);
 391
 392        /* don't overwrite an existing inode if the generation number
 393         * was logged as zero.  This is done when the tree logging code
 394         * is just logging an inode to make sure it exists after recovery.
 395         *
 396         * Also, don't overwrite i_size on directories during replay.
 397         * log replay inserts and removes directory items based on the
 398         * state of the tree found in the subvolume, and i_size is modified
 399         * as it goes
 400         */
 401        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 402                struct btrfs_inode_item *src_item;
 403                struct btrfs_inode_item *dst_item;
 404
 405                src_item = (struct btrfs_inode_item *)src_ptr;
 406                dst_item = (struct btrfs_inode_item *)dst_ptr;
 407
 408                if (btrfs_inode_generation(eb, src_item) == 0)
 409                        goto no_copy;
 410
 411                if (overwrite_root &&
 412                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 413                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 414                        save_old_i_size = 1;
 415                        saved_i_size = btrfs_inode_size(path->nodes[0],
 416                                                        dst_item);
 417                }
 418        }
 419
 420        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 421                           src_ptr, item_size);
 422
 423        if (save_old_i_size) {
 424                struct btrfs_inode_item *dst_item;
 425                dst_item = (struct btrfs_inode_item *)dst_ptr;
 426                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 427        }
 428
 429        /* make sure the generation is filled in */
 430        if (key->type == BTRFS_INODE_ITEM_KEY) {
 431                struct btrfs_inode_item *dst_item;
 432                dst_item = (struct btrfs_inode_item *)dst_ptr;
 433                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 434                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 435                                                   trans->transid);
 436                }
 437        }
 438no_copy:
 439        btrfs_mark_buffer_dirty(path->nodes[0]);
 440        btrfs_release_path(path);
 441        return 0;
 442}
 443
 444/*
 445 * simple helper to read an inode off the disk from a given root
 446 * This can only be called for subvolume roots and not for the log
 447 */
 448static noinline struct inode *read_one_inode(struct btrfs_root *root,
 449                                             u64 objectid)
 450{
 451        struct btrfs_key key;
 452        struct inode *inode;
 453
 454        key.objectid = objectid;
 455        key.type = BTRFS_INODE_ITEM_KEY;
 456        key.offset = 0;
 457        inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 458        if (IS_ERR(inode)) {
 459                inode = NULL;
 460        } else if (is_bad_inode(inode)) {
 461                iput(inode);
 462                inode = NULL;
 463        }
 464        return inode;
 465}
 466
 467/* replays a single extent in 'eb' at 'slot' with 'key' into the
 468 * subvolume 'root'.  path is released on entry and should be released
 469 * on exit.
 470 *
 471 * extents in the log tree have not been allocated out of the extent
 472 * tree yet.  So, this completes the allocation, taking a reference
 473 * as required if the extent already exists or creating a new extent
 474 * if it isn't in the extent allocation tree yet.
 475 *
 476 * The extent is inserted into the file, dropping any existing extents
 477 * from the file that overlap the new one.
 478 */
 479static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 480                                      struct btrfs_root *root,
 481                                      struct btrfs_path *path,
 482                                      struct extent_buffer *eb, int slot,
 483                                      struct btrfs_key *key)
 484{
 485        int found_type;
 486        u64 mask = root->sectorsize - 1;
 487        u64 extent_end;
 488        u64 alloc_hint;
 489        u64 start = key->offset;
 490        u64 saved_nbytes;
 491        struct btrfs_file_extent_item *item;
 492        struct inode *inode = NULL;
 493        unsigned long size;
 494        int ret = 0;
 495
 496        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 497        found_type = btrfs_file_extent_type(eb, item);
 498
 499        if (found_type == BTRFS_FILE_EXTENT_REG ||
 500            found_type == BTRFS_FILE_EXTENT_PREALLOC)
 501                extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 502        else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 503                size = btrfs_file_extent_inline_len(eb, item);
 504                extent_end = (start + size + mask) & ~mask;
 505        } else {
 506                ret = 0;
 507                goto out;
 508        }
 509
 510        inode = read_one_inode(root, key->objectid);
 511        if (!inode) {
 512                ret = -EIO;
 513                goto out;
 514        }
 515
 516        /*
 517         * first check to see if we already have this extent in the
 518         * file.  This must be done before the btrfs_drop_extents run
 519         * so we don't try to drop this extent.
 520         */
 521        ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 522                                       start, 0);
 523
 524        if (ret == 0 &&
 525            (found_type == BTRFS_FILE_EXTENT_REG ||
 526             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 527                struct btrfs_file_extent_item cmp1;
 528                struct btrfs_file_extent_item cmp2;
 529                struct btrfs_file_extent_item *existing;
 530                struct extent_buffer *leaf;
 531
 532                leaf = path->nodes[0];
 533                existing = btrfs_item_ptr(leaf, path->slots[0],
 534                                          struct btrfs_file_extent_item);
 535
 536                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 537                                   sizeof(cmp1));
 538                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 539                                   sizeof(cmp2));
 540
 541                /*
 542                 * we already have a pointer to this exact extent,
 543                 * we don't have to do anything
 544                 */
 545                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 546                        btrfs_release_path(path);
 547                        goto out;
 548                }
 549        }
 550        btrfs_release_path(path);
 551
 552        saved_nbytes = inode_get_bytes(inode);
 553        /* drop any overlapping extents */
 554        ret = btrfs_drop_extents(trans, inode, start, extent_end,
 555                                 &alloc_hint, 1);
 556        BUG_ON(ret);
 557
 558        if (found_type == BTRFS_FILE_EXTENT_REG ||
 559            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 560                u64 offset;
 561                unsigned long dest_offset;
 562                struct btrfs_key ins;
 563
 564                ret = btrfs_insert_empty_item(trans, root, path, key,
 565                                              sizeof(*item));
 566                BUG_ON(ret);
 567                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 568                                                    path->slots[0]);
 569                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 570                                (unsigned long)item,  sizeof(*item));
 571
 572                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 573                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 574                ins.type = BTRFS_EXTENT_ITEM_KEY;
 575                offset = key->offset - btrfs_file_extent_offset(eb, item);
 576
 577                if (ins.objectid > 0) {
 578                        u64 csum_start;
 579                        u64 csum_end;
 580                        LIST_HEAD(ordered_sums);
 581                        /*
 582                         * is this extent already allocated in the extent
 583                         * allocation tree?  If so, just add a reference
 584                         */
 585                        ret = btrfs_lookup_extent(root, ins.objectid,
 586                                                ins.offset);
 587                        if (ret == 0) {
 588                                ret = btrfs_inc_extent_ref(trans, root,
 589                                                ins.objectid, ins.offset,
 590                                                0, root->root_key.objectid,
 591                                                key->objectid, offset);
 592                                BUG_ON(ret);
 593                        } else {
 594                                /*
 595                                 * insert the extent pointer in the extent
 596                                 * allocation tree
 597                                 */
 598                                ret = btrfs_alloc_logged_file_extent(trans,
 599                                                root, root->root_key.objectid,
 600                                                key->objectid, offset, &ins);
 601                                BUG_ON(ret);
 602                        }
 603                        btrfs_release_path(path);
 604
 605                        if (btrfs_file_extent_compression(eb, item)) {
 606                                csum_start = ins.objectid;
 607                                csum_end = csum_start + ins.offset;
 608                        } else {
 609                                csum_start = ins.objectid +
 610                                        btrfs_file_extent_offset(eb, item);
 611                                csum_end = csum_start +
 612                                        btrfs_file_extent_num_bytes(eb, item);
 613                        }
 614
 615                        ret = btrfs_lookup_csums_range(root->log_root,
 616                                                csum_start, csum_end - 1,
 617                                                &ordered_sums, 0);
 618                        BUG_ON(ret);
 619                        while (!list_empty(&ordered_sums)) {
 620                                struct btrfs_ordered_sum *sums;
 621                                sums = list_entry(ordered_sums.next,
 622                                                struct btrfs_ordered_sum,
 623                                                list);
 624                                ret = btrfs_csum_file_blocks(trans,
 625                                                root->fs_info->csum_root,
 626                                                sums);
 627                                BUG_ON(ret);
 628                                list_del(&sums->list);
 629                                kfree(sums);
 630                        }
 631                } else {
 632                        btrfs_release_path(path);
 633                }
 634        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 635                /* inline extents are easy, we just overwrite them */
 636                ret = overwrite_item(trans, root, path, eb, slot, key);
 637                BUG_ON(ret);
 638        }
 639
 640        inode_set_bytes(inode, saved_nbytes);
 641        btrfs_update_inode(trans, root, inode);
 642out:
 643        if (inode)
 644                iput(inode);
 645        return ret;
 646}
 647
 648/*
 649 * when cleaning up conflicts between the directory names in the
 650 * subvolume, directory names in the log and directory names in the
 651 * inode back references, we may have to unlink inodes from directories.
 652 *
 653 * This is a helper function to do the unlink of a specific directory
 654 * item
 655 */
 656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 657                                      struct btrfs_root *root,
 658                                      struct btrfs_path *path,
 659                                      struct inode *dir,
 660                                      struct btrfs_dir_item *di)
 661{
 662        struct inode *inode;
 663        char *name;
 664        int name_len;
 665        struct extent_buffer *leaf;
 666        struct btrfs_key location;
 667        int ret;
 668
 669        leaf = path->nodes[0];
 670
 671        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 672        name_len = btrfs_dir_name_len(leaf, di);
 673        name = kmalloc(name_len, GFP_NOFS);
 674        if (!name)
 675                return -ENOMEM;
 676
 677        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 678        btrfs_release_path(path);
 679
 680        inode = read_one_inode(root, location.objectid);
 681        if (!inode) {
 682                kfree(name);
 683                return -EIO;
 684        }
 685
 686        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 687        BUG_ON(ret);
 688
 689        ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 690        BUG_ON(ret);
 691        kfree(name);
 692
 693        iput(inode);
 694        return ret;
 695}
 696
 697/*
 698 * helper function to see if a given name and sequence number found
 699 * in an inode back reference are already in a directory and correctly
 700 * point to this inode
 701 */
 702static noinline int inode_in_dir(struct btrfs_root *root,
 703                                 struct btrfs_path *path,
 704                                 u64 dirid, u64 objectid, u64 index,
 705                                 const char *name, int name_len)
 706{
 707        struct btrfs_dir_item *di;
 708        struct btrfs_key location;
 709        int match = 0;
 710
 711        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 712                                         index, name, name_len, 0);
 713        if (di && !IS_ERR(di)) {
 714                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 715                if (location.objectid != objectid)
 716                        goto out;
 717        } else
 718                goto out;
 719        btrfs_release_path(path);
 720
 721        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 722        if (di && !IS_ERR(di)) {
 723                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 724                if (location.objectid != objectid)
 725                        goto out;
 726        } else
 727                goto out;
 728        match = 1;
 729out:
 730        btrfs_release_path(path);
 731        return match;
 732}
 733
 734/*
 735 * helper function to check a log tree for a named back reference in
 736 * an inode.  This is used to decide if a back reference that is
 737 * found in the subvolume conflicts with what we find in the log.
 738 *
 739 * inode backreferences may have multiple refs in a single item,
 740 * during replay we process one reference at a time, and we don't
 741 * want to delete valid links to a file from the subvolume if that
 742 * link is also in the log.
 743 */
 744static noinline int backref_in_log(struct btrfs_root *log,
 745                                   struct btrfs_key *key,
 746                                   char *name, int namelen)
 747{
 748        struct btrfs_path *path;
 749        struct btrfs_inode_ref *ref;
 750        unsigned long ptr;
 751        unsigned long ptr_end;
 752        unsigned long name_ptr;
 753        int found_name_len;
 754        int item_size;
 755        int ret;
 756        int match = 0;
 757
 758        path = btrfs_alloc_path();
 759        if (!path)
 760                return -ENOMEM;
 761
 762        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 763        if (ret != 0)
 764                goto out;
 765
 766        item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 767        ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 768        ptr_end = ptr + item_size;
 769        while (ptr < ptr_end) {
 770                ref = (struct btrfs_inode_ref *)ptr;
 771                found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 772                if (found_name_len == namelen) {
 773                        name_ptr = (unsigned long)(ref + 1);
 774                        ret = memcmp_extent_buffer(path->nodes[0], name,
 775                                                   name_ptr, namelen);
 776                        if (ret == 0) {
 777                                match = 1;
 778                                goto out;
 779                        }
 780                }
 781                ptr = (unsigned long)(ref + 1) + found_name_len;
 782        }
 783out:
 784        btrfs_free_path(path);
 785        return match;
 786}
 787
 788
 789/*
 790 * replay one inode back reference item found in the log tree.
 791 * eb, slot and key refer to the buffer and key found in the log tree.
 792 * root is the destination we are replaying into, and path is for temp
 793 * use by this function.  (it should be released on return).
 794 */
 795static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 796                                  struct btrfs_root *root,
 797                                  struct btrfs_root *log,
 798                                  struct btrfs_path *path,
 799                                  struct extent_buffer *eb, int slot,
 800                                  struct btrfs_key *key)
 801{
 802        struct inode *dir;
 803        int ret;
 804        struct btrfs_inode_ref *ref;
 805        struct inode *inode;
 806        char *name;
 807        int namelen;
 808        unsigned long ref_ptr;
 809        unsigned long ref_end;
 810        int search_done = 0;
 811
 812        /*
 813         * it is possible that we didn't log all the parent directories
 814         * for a given inode.  If we don't find the dir, just don't
 815         * copy the back ref in.  The link count fixup code will take
 816         * care of the rest
 817         */
 818        dir = read_one_inode(root, key->offset);
 819        if (!dir)
 820                return -ENOENT;
 821
 822        inode = read_one_inode(root, key->objectid);
 823        if (!inode) {
 824                iput(dir);
 825                return -EIO;
 826        }
 827
 828        ref_ptr = btrfs_item_ptr_offset(eb, slot);
 829        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 830
 831again:
 832        ref = (struct btrfs_inode_ref *)ref_ptr;
 833
 834        namelen = btrfs_inode_ref_name_len(eb, ref);
 835        name = kmalloc(namelen, GFP_NOFS);
 836        BUG_ON(!name);
 837
 838        read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 839
 840        /* if we already have a perfect match, we're done */
 841        if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 842                         btrfs_inode_ref_index(eb, ref),
 843                         name, namelen)) {
 844                goto out;
 845        }
 846
 847        /*
 848         * look for a conflicting back reference in the metadata.
 849         * if we find one we have to unlink that name of the file
 850         * before we add our new link.  Later on, we overwrite any
 851         * existing back reference, and we don't want to create
 852         * dangling pointers in the directory.
 853         */
 854
 855        if (search_done)
 856                goto insert;
 857
 858        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 859        if (ret == 0) {
 860                char *victim_name;
 861                int victim_name_len;
 862                struct btrfs_inode_ref *victim_ref;
 863                unsigned long ptr;
 864                unsigned long ptr_end;
 865                struct extent_buffer *leaf = path->nodes[0];
 866
 867                /* are we trying to overwrite a back ref for the root directory
 868                 * if so, just jump out, we're done
 869                 */
 870                if (key->objectid == key->offset)
 871                        goto out_nowrite;
 872
 873                /* check all the names in this back reference to see
 874                 * if they are in the log.  if so, we allow them to stay
 875                 * otherwise they must be unlinked as a conflict
 876                 */
 877                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 878                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 879                while (ptr < ptr_end) {
 880                        victim_ref = (struct btrfs_inode_ref *)ptr;
 881                        victim_name_len = btrfs_inode_ref_name_len(leaf,
 882                                                                   victim_ref);
 883                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
 884                        BUG_ON(!victim_name);
 885
 886                        read_extent_buffer(leaf, victim_name,
 887                                           (unsigned long)(victim_ref + 1),
 888                                           victim_name_len);
 889
 890                        if (!backref_in_log(log, key, victim_name,
 891                                            victim_name_len)) {
 892                                btrfs_inc_nlink(inode);
 893                                btrfs_release_path(path);
 894
 895                                ret = btrfs_unlink_inode(trans, root, dir,
 896                                                         inode, victim_name,
 897                                                         victim_name_len);
 898                        }
 899                        kfree(victim_name);
 900                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 901                }
 902                BUG_ON(ret);
 903
 904                /*
 905                 * NOTE: we have searched root tree and checked the
 906                 * coresponding ref, it does not need to check again.
 907                 */
 908                search_done = 1;
 909        }
 910        btrfs_release_path(path);
 911
 912insert:
 913        /* insert our name */
 914        ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 915                             btrfs_inode_ref_index(eb, ref));
 916        BUG_ON(ret);
 917
 918        btrfs_update_inode(trans, root, inode);
 919
 920out:
 921        ref_ptr = (unsigned long)(ref + 1) + namelen;
 922        kfree(name);
 923        if (ref_ptr < ref_end)
 924                goto again;
 925
 926        /* finally write the back reference in the inode */
 927        ret = overwrite_item(trans, root, path, eb, slot, key);
 928        BUG_ON(ret);
 929
 930out_nowrite:
 931        btrfs_release_path(path);
 932        iput(dir);
 933        iput(inode);
 934        return 0;
 935}
 936
 937static int insert_orphan_item(struct btrfs_trans_handle *trans,
 938                              struct btrfs_root *root, u64 offset)
 939{
 940        int ret;
 941        ret = btrfs_find_orphan_item(root, offset);
 942        if (ret > 0)
 943                ret = btrfs_insert_orphan_item(trans, root, offset);
 944        return ret;
 945}
 946
 947
 948/*
 949 * There are a few corners where the link count of the file can't
 950 * be properly maintained during replay.  So, instead of adding
 951 * lots of complexity to the log code, we just scan the backrefs
 952 * for any file that has been through replay.
 953 *
 954 * The scan will update the link count on the inode to reflect the
 955 * number of back refs found.  If it goes down to zero, the iput
 956 * will free the inode.
 957 */
 958static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 959                                           struct btrfs_root *root,
 960                                           struct inode *inode)
 961{
 962        struct btrfs_path *path;
 963        int ret;
 964        struct btrfs_key key;
 965        u64 nlink = 0;
 966        unsigned long ptr;
 967        unsigned long ptr_end;
 968        int name_len;
 969        u64 ino = btrfs_ino(inode);
 970
 971        key.objectid = ino;
 972        key.type = BTRFS_INODE_REF_KEY;
 973        key.offset = (u64)-1;
 974
 975        path = btrfs_alloc_path();
 976        if (!path)
 977                return -ENOMEM;
 978
 979        while (1) {
 980                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 981                if (ret < 0)
 982                        break;
 983                if (ret > 0) {
 984                        if (path->slots[0] == 0)
 985                                break;
 986                        path->slots[0]--;
 987                }
 988                btrfs_item_key_to_cpu(path->nodes[0], &key,
 989                                      path->slots[0]);
 990                if (key.objectid != ino ||
 991                    key.type != BTRFS_INODE_REF_KEY)
 992                        break;
 993                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 994                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
 995                                                   path->slots[0]);
 996                while (ptr < ptr_end) {
 997                        struct btrfs_inode_ref *ref;
 998
 999                        ref = (struct btrfs_inode_ref *)ptr;
1000                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1001                                                            ref);
1002                        ptr = (unsigned long)(ref + 1) + name_len;
1003                        nlink++;
1004                }
1005
1006                if (key.offset == 0)
1007                        break;
1008                key.offset--;
1009                btrfs_release_path(path);
1010        }
1011        btrfs_release_path(path);
1012        if (nlink != inode->i_nlink) {
1013                inode->i_nlink = nlink;
1014                btrfs_update_inode(trans, root, inode);
1015        }
1016        BTRFS_I(inode)->index_cnt = (u64)-1;
1017
1018        if (inode->i_nlink == 0) {
1019                if (S_ISDIR(inode->i_mode)) {
1020                        ret = replay_dir_deletes(trans, root, NULL, path,
1021                                                 ino, 1);
1022                        BUG_ON(ret);
1023                }
1024                ret = insert_orphan_item(trans, root, ino);
1025                BUG_ON(ret);
1026        }
1027        btrfs_free_path(path);
1028
1029        return 0;
1030}
1031
1032static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1033                                            struct btrfs_root *root,
1034                                            struct btrfs_path *path)
1035{
1036        int ret;
1037        struct btrfs_key key;
1038        struct inode *inode;
1039
1040        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1041        key.type = BTRFS_ORPHAN_ITEM_KEY;
1042        key.offset = (u64)-1;
1043        while (1) {
1044                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045                if (ret < 0)
1046                        break;
1047
1048                if (ret == 1) {
1049                        if (path->slots[0] == 0)
1050                                break;
1051                        path->slots[0]--;
1052                }
1053
1054                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1055                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1056                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1057                        break;
1058
1059                ret = btrfs_del_item(trans, root, path);
1060                if (ret)
1061                        goto out;
1062
1063                btrfs_release_path(path);
1064                inode = read_one_inode(root, key.offset);
1065                if (!inode)
1066                        return -EIO;
1067
1068                ret = fixup_inode_link_count(trans, root, inode);
1069                BUG_ON(ret);
1070
1071                iput(inode);
1072
1073                /*
1074                 * fixup on a directory may create new entries,
1075                 * make sure we always look for the highset possible
1076                 * offset
1077                 */
1078                key.offset = (u64)-1;
1079        }
1080        ret = 0;
1081out:
1082        btrfs_release_path(path);
1083        return ret;
1084}
1085
1086
1087/*
1088 * record a given inode in the fixup dir so we can check its link
1089 * count when replay is done.  The link count is incremented here
1090 * so the inode won't go away until we check it
1091 */
1092static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1093                                      struct btrfs_root *root,
1094                                      struct btrfs_path *path,
1095                                      u64 objectid)
1096{
1097        struct btrfs_key key;
1098        int ret = 0;
1099        struct inode *inode;
1100
1101        inode = read_one_inode(root, objectid);
1102        if (!inode)
1103                return -EIO;
1104
1105        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1106        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1107        key.offset = objectid;
1108
1109        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1110
1111        btrfs_release_path(path);
1112        if (ret == 0) {
1113                btrfs_inc_nlink(inode);
1114                btrfs_update_inode(trans, root, inode);
1115        } else if (ret == -EEXIST) {
1116                ret = 0;
1117        } else {
1118                BUG();
1119        }
1120        iput(inode);
1121
1122        return ret;
1123}
1124
1125/*
1126 * when replaying the log for a directory, we only insert names
1127 * for inodes that actually exist.  This means an fsync on a directory
1128 * does not implicitly fsync all the new files in it
1129 */
1130static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1131                                    struct btrfs_root *root,
1132                                    struct btrfs_path *path,
1133                                    u64 dirid, u64 index,
1134                                    char *name, int name_len, u8 type,
1135                                    struct btrfs_key *location)
1136{
1137        struct inode *inode;
1138        struct inode *dir;
1139        int ret;
1140
1141        inode = read_one_inode(root, location->objectid);
1142        if (!inode)
1143                return -ENOENT;
1144
1145        dir = read_one_inode(root, dirid);
1146        if (!dir) {
1147                iput(inode);
1148                return -EIO;
1149        }
1150        ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1151
1152        /* FIXME, put inode into FIXUP list */
1153
1154        iput(inode);
1155        iput(dir);
1156        return ret;
1157}
1158
1159/*
1160 * take a single entry in a log directory item and replay it into
1161 * the subvolume.
1162 *
1163 * if a conflicting item exists in the subdirectory already,
1164 * the inode it points to is unlinked and put into the link count
1165 * fix up tree.
1166 *
1167 * If a name from the log points to a file or directory that does
1168 * not exist in the FS, it is skipped.  fsyncs on directories
1169 * do not force down inodes inside that directory, just changes to the
1170 * names or unlinks in a directory.
1171 */
1172static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1173                                    struct btrfs_root *root,
1174                                    struct btrfs_path *path,
1175                                    struct extent_buffer *eb,
1176                                    struct btrfs_dir_item *di,
1177                                    struct btrfs_key *key)
1178{
1179        char *name;
1180        int name_len;
1181        struct btrfs_dir_item *dst_di;
1182        struct btrfs_key found_key;
1183        struct btrfs_key log_key;
1184        struct inode *dir;
1185        u8 log_type;
1186        int exists;
1187        int ret;
1188
1189        dir = read_one_inode(root, key->objectid);
1190        if (!dir)
1191                return -EIO;
1192
1193        name_len = btrfs_dir_name_len(eb, di);
1194        name = kmalloc(name_len, GFP_NOFS);
1195        if (!name)
1196                return -ENOMEM;
1197
1198        log_type = btrfs_dir_type(eb, di);
1199        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200                   name_len);
1201
1202        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204        if (exists == 0)
1205                exists = 1;
1206        else
1207                exists = 0;
1208        btrfs_release_path(path);
1209
1210        if (key->type == BTRFS_DIR_ITEM_KEY) {
1211                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212                                       name, name_len, 1);
1213        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215                                                     key->objectid,
1216                                                     key->offset, name,
1217                                                     name_len, 1);
1218        } else {
1219                BUG();
1220        }
1221        if (IS_ERR_OR_NULL(dst_di)) {
1222                /* we need a sequence number to insert, so we only
1223                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224                 */
1225                if (key->type != BTRFS_DIR_INDEX_KEY)
1226                        goto out;
1227                goto insert;
1228        }
1229
1230        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231        /* the existing item matches the logged item */
1232        if (found_key.objectid == log_key.objectid &&
1233            found_key.type == log_key.type &&
1234            found_key.offset == log_key.offset &&
1235            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236                goto out;
1237        }
1238
1239        /*
1240         * don't drop the conflicting directory entry if the inode
1241         * for the new entry doesn't exist
1242         */
1243        if (!exists)
1244                goto out;
1245
1246        ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247        BUG_ON(ret);
1248
1249        if (key->type == BTRFS_DIR_INDEX_KEY)
1250                goto insert;
1251out:
1252        btrfs_release_path(path);
1253        kfree(name);
1254        iput(dir);
1255        return 0;
1256
1257insert:
1258        btrfs_release_path(path);
1259        ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260                              name, name_len, log_type, &log_key);
1261
1262        BUG_ON(ret && ret != -ENOENT);
1263        goto out;
1264}
1265
1266/*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273                                        struct btrfs_root *root,
1274                                        struct btrfs_path *path,
1275                                        struct extent_buffer *eb, int slot,
1276                                        struct btrfs_key *key)
1277{
1278        int ret;
1279        u32 item_size = btrfs_item_size_nr(eb, slot);
1280        struct btrfs_dir_item *di;
1281        int name_len;
1282        unsigned long ptr;
1283        unsigned long ptr_end;
1284
1285        ptr = btrfs_item_ptr_offset(eb, slot);
1286        ptr_end = ptr + item_size;
1287        while (ptr < ptr_end) {
1288                di = (struct btrfs_dir_item *)ptr;
1289                if (verify_dir_item(root, eb, di))
1290                        return -EIO;
1291                name_len = btrfs_dir_name_len(eb, di);
1292                ret = replay_one_name(trans, root, path, eb, di, key);
1293                BUG_ON(ret);
1294                ptr = (unsigned long)(di + 1);
1295                ptr += name_len;
1296        }
1297        return 0;
1298}
1299
1300/*
1301 * directory replay has two parts.  There are the standard directory
1302 * items in the log copied from the subvolume, and range items
1303 * created in the log while the subvolume was logged.
1304 *
1305 * The range items tell us which parts of the key space the log
1306 * is authoritative for.  During replay, if a key in the subvolume
1307 * directory is in a logged range item, but not actually in the log
1308 * that means it was deleted from the directory before the fsync
1309 * and should be removed.
1310 */
1311static noinline int find_dir_range(struct btrfs_root *root,
1312                                   struct btrfs_path *path,
1313                                   u64 dirid, int key_type,
1314                                   u64 *start_ret, u64 *end_ret)
1315{
1316        struct btrfs_key key;
1317        u64 found_end;
1318        struct btrfs_dir_log_item *item;
1319        int ret;
1320        int nritems;
1321
1322        if (*start_ret == (u64)-1)
1323                return 1;
1324
1325        key.objectid = dirid;
1326        key.type = key_type;
1327        key.offset = *start_ret;
1328
1329        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1330        if (ret < 0)
1331                goto out;
1332        if (ret > 0) {
1333                if (path->slots[0] == 0)
1334                        goto out;
1335                path->slots[0]--;
1336        }
1337        if (ret != 0)
1338                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1339
1340        if (key.type != key_type || key.objectid != dirid) {
1341                ret = 1;
1342                goto next;
1343        }
1344        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345                              struct btrfs_dir_log_item);
1346        found_end = btrfs_dir_log_end(path->nodes[0], item);
1347
1348        if (*start_ret >= key.offset && *start_ret <= found_end) {
1349                ret = 0;
1350                *start_ret = key.offset;
1351                *end_ret = found_end;
1352                goto out;
1353        }
1354        ret = 1;
1355next:
1356        /* check the next slot in the tree to see if it is a valid item */
1357        nritems = btrfs_header_nritems(path->nodes[0]);
1358        if (path->slots[0] >= nritems) {
1359                ret = btrfs_next_leaf(root, path);
1360                if (ret)
1361                        goto out;
1362        } else {
1363                path->slots[0]++;
1364        }
1365
1366        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1367
1368        if (key.type != key_type || key.objectid != dirid) {
1369                ret = 1;
1370                goto out;
1371        }
1372        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373                              struct btrfs_dir_log_item);
1374        found_end = btrfs_dir_log_end(path->nodes[0], item);
1375        *start_ret = key.offset;
1376        *end_ret = found_end;
1377        ret = 0;
1378out:
1379        btrfs_release_path(path);
1380        return ret;
1381}
1382
1383/*
1384 * this looks for a given directory item in the log.  If the directory
1385 * item is not in the log, the item is removed and the inode it points
1386 * to is unlinked
1387 */
1388static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1389                                      struct btrfs_root *root,
1390                                      struct btrfs_root *log,
1391                                      struct btrfs_path *path,
1392                                      struct btrfs_path *log_path,
1393                                      struct inode *dir,
1394                                      struct btrfs_key *dir_key)
1395{
1396        int ret;
1397        struct extent_buffer *eb;
1398        int slot;
1399        u32 item_size;
1400        struct btrfs_dir_item *di;
1401        struct btrfs_dir_item *log_di;
1402        int name_len;
1403        unsigned long ptr;
1404        unsigned long ptr_end;
1405        char *name;
1406        struct inode *inode;
1407        struct btrfs_key location;
1408
1409again:
1410        eb = path->nodes[0];
1411        slot = path->slots[0];
1412        item_size = btrfs_item_size_nr(eb, slot);
1413        ptr = btrfs_item_ptr_offset(eb, slot);
1414        ptr_end = ptr + item_size;
1415        while (ptr < ptr_end) {
1416                di = (struct btrfs_dir_item *)ptr;
1417                if (verify_dir_item(root, eb, di)) {
1418                        ret = -EIO;
1419                        goto out;
1420                }
1421
1422                name_len = btrfs_dir_name_len(eb, di);
1423                name = kmalloc(name_len, GFP_NOFS);
1424                if (!name) {
1425                        ret = -ENOMEM;
1426                        goto out;
1427                }
1428                read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429                                  name_len);
1430                log_di = NULL;
1431                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1432                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433                                                       dir_key->objectid,
1434                                                       name, name_len, 0);
1435                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1436                        log_di = btrfs_lookup_dir_index_item(trans, log,
1437                                                     log_path,
1438                                                     dir_key->objectid,
1439                                                     dir_key->offset,
1440                                                     name, name_len, 0);
1441                }
1442                if (IS_ERR_OR_NULL(log_di)) {
1443                        btrfs_dir_item_key_to_cpu(eb, di, &location);
1444                        btrfs_release_path(path);
1445                        btrfs_release_path(log_path);
1446                        inode = read_one_inode(root, location.objectid);
1447                        if (!inode) {
1448                                kfree(name);
1449                                return -EIO;
1450                        }
1451
1452                        ret = link_to_fixup_dir(trans, root,
1453                                                path, location.objectid);
1454                        BUG_ON(ret);
1455                        btrfs_inc_nlink(inode);
1456                        ret = btrfs_unlink_inode(trans, root, dir, inode,
1457                                                 name, name_len);
1458                        BUG_ON(ret);
1459                        kfree(name);
1460                        iput(inode);
1461
1462                        /* there might still be more names under this key
1463                         * check and repeat if required
1464                         */
1465                        ret = btrfs_search_slot(NULL, root, dir_key, path,
1466                                                0, 0);
1467                        if (ret == 0)
1468                                goto again;
1469                        ret = 0;
1470                        goto out;
1471                }
1472                btrfs_release_path(log_path);
1473                kfree(name);
1474
1475                ptr = (unsigned long)(di + 1);
1476                ptr += name_len;
1477        }
1478        ret = 0;
1479out:
1480        btrfs_release_path(path);
1481        btrfs_release_path(log_path);
1482        return ret;
1483}
1484
1485/*
1486 * deletion replay happens before we copy any new directory items
1487 * out of the log or out of backreferences from inodes.  It
1488 * scans the log to find ranges of keys that log is authoritative for,
1489 * and then scans the directory to find items in those ranges that are
1490 * not present in the log.
1491 *
1492 * Anything we don't find in the log is unlinked and removed from the
1493 * directory.
1494 */
1495static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1496                                       struct btrfs_root *root,
1497                                       struct btrfs_root *log,
1498                                       struct btrfs_path *path,
1499                                       u64 dirid, int del_all)
1500{
1501        u64 range_start;
1502        u64 range_end;
1503        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1504        int ret = 0;
1505        struct btrfs_key dir_key;
1506        struct btrfs_key found_key;
1507        struct btrfs_path *log_path;
1508        struct inode *dir;
1509
1510        dir_key.objectid = dirid;
1511        dir_key.type = BTRFS_DIR_ITEM_KEY;
1512        log_path = btrfs_alloc_path();
1513        if (!log_path)
1514                return -ENOMEM;
1515
1516        dir = read_one_inode(root, dirid);
1517        /* it isn't an error if the inode isn't there, that can happen
1518         * because we replay the deletes before we copy in the inode item
1519         * from the log
1520         */
1521        if (!dir) {
1522                btrfs_free_path(log_path);
1523                return 0;
1524        }
1525again:
1526        range_start = 0;
1527        range_end = 0;
1528        while (1) {
1529                if (del_all)
1530                        range_end = (u64)-1;
1531                else {
1532                        ret = find_dir_range(log, path, dirid, key_type,
1533                                             &range_start, &range_end);
1534                        if (ret != 0)
1535                                break;
1536                }
1537
1538                dir_key.offset = range_start;
1539                while (1) {
1540                        int nritems;
1541                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
1542                                                0, 0);
1543                        if (ret < 0)
1544                                goto out;
1545
1546                        nritems = btrfs_header_nritems(path->nodes[0]);
1547                        if (path->slots[0] >= nritems) {
1548                                ret = btrfs_next_leaf(root, path);
1549                                if (ret)
1550                                        break;
1551                        }
1552                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1553                                              path->slots[0]);
1554                        if (found_key.objectid != dirid ||
1555                            found_key.type != dir_key.type)
1556                                goto next_type;
1557
1558                        if (found_key.offset > range_end)
1559                                break;
1560
1561                        ret = check_item_in_log(trans, root, log, path,
1562                                                log_path, dir,
1563                                                &found_key);
1564                        BUG_ON(ret);
1565                        if (found_key.offset == (u64)-1)
1566                                break;
1567                        dir_key.offset = found_key.offset + 1;
1568                }
1569                btrfs_release_path(path);
1570                if (range_end == (u64)-1)
1571                        break;
1572                range_start = range_end + 1;
1573        }
1574
1575next_type:
1576        ret = 0;
1577        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1578                key_type = BTRFS_DIR_LOG_INDEX_KEY;
1579                dir_key.type = BTRFS_DIR_INDEX_KEY;
1580                btrfs_release_path(path);
1581                goto again;
1582        }
1583out:
1584        btrfs_release_path(path);
1585        btrfs_free_path(log_path);
1586        iput(dir);
1587        return ret;
1588}
1589
1590/*
1591 * the process_func used to replay items from the log tree.  This
1592 * gets called in two different stages.  The first stage just looks
1593 * for inodes and makes sure they are all copied into the subvolume.
1594 *
1595 * The second stage copies all the other item types from the log into
1596 * the subvolume.  The two stage approach is slower, but gets rid of
1597 * lots of complexity around inodes referencing other inodes that exist
1598 * only in the log (references come from either directory items or inode
1599 * back refs).
1600 */
1601static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1602                             struct walk_control *wc, u64 gen)
1603{
1604        int nritems;
1605        struct btrfs_path *path;
1606        struct btrfs_root *root = wc->replay_dest;
1607        struct btrfs_key key;
1608        int level;
1609        int i;
1610        int ret;
1611
1612        btrfs_read_buffer(eb, gen);
1613
1614        level = btrfs_header_level(eb);
1615
1616        if (level != 0)
1617                return 0;
1618
1619        path = btrfs_alloc_path();
1620        BUG_ON(!path);
1621
1622        nritems = btrfs_header_nritems(eb);
1623        for (i = 0; i < nritems; i++) {
1624                btrfs_item_key_to_cpu(eb, &key, i);
1625
1626                /* inode keys are done during the first stage */
1627                if (key.type == BTRFS_INODE_ITEM_KEY &&
1628                    wc->stage == LOG_WALK_REPLAY_INODES) {
1629                        struct btrfs_inode_item *inode_item;
1630                        u32 mode;
1631
1632                        inode_item = btrfs_item_ptr(eb, i,
1633                                            struct btrfs_inode_item);
1634                        mode = btrfs_inode_mode(eb, inode_item);
1635                        if (S_ISDIR(mode)) {
1636                                ret = replay_dir_deletes(wc->trans,
1637                                         root, log, path, key.objectid, 0);
1638                                BUG_ON(ret);
1639                        }
1640                        ret = overwrite_item(wc->trans, root, path,
1641                                             eb, i, &key);
1642                        BUG_ON(ret);
1643
1644                        /* for regular files, make sure corresponding
1645                         * orhpan item exist. extents past the new EOF
1646                         * will be truncated later by orphan cleanup.
1647                         */
1648                        if (S_ISREG(mode)) {
1649                                ret = insert_orphan_item(wc->trans, root,
1650                                                         key.objectid);
1651                                BUG_ON(ret);
1652                        }
1653
1654                        ret = link_to_fixup_dir(wc->trans, root,
1655                                                path, key.objectid);
1656                        BUG_ON(ret);
1657                }
1658                if (wc->stage < LOG_WALK_REPLAY_ALL)
1659                        continue;
1660
1661                /* these keys are simply copied */
1662                if (key.type == BTRFS_XATTR_ITEM_KEY) {
1663                        ret = overwrite_item(wc->trans, root, path,
1664                                             eb, i, &key);
1665                        BUG_ON(ret);
1666                } else if (key.type == BTRFS_INODE_REF_KEY) {
1667                        ret = add_inode_ref(wc->trans, root, log, path,
1668                                            eb, i, &key);
1669                        BUG_ON(ret && ret != -ENOENT);
1670                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1671                        ret = replay_one_extent(wc->trans, root, path,
1672                                                eb, i, &key);
1673                        BUG_ON(ret);
1674                } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1675                           key.type == BTRFS_DIR_INDEX_KEY) {
1676                        ret = replay_one_dir_item(wc->trans, root, path,
1677                                                  eb, i, &key);
1678                        BUG_ON(ret);
1679                }
1680        }
1681        btrfs_free_path(path);
1682        return 0;
1683}
1684
1685static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1686                                   struct btrfs_root *root,
1687                                   struct btrfs_path *path, int *level,
1688                                   struct walk_control *wc)
1689{
1690        u64 root_owner;
1691        u64 bytenr;
1692        u64 ptr_gen;
1693        struct extent_buffer *next;
1694        struct extent_buffer *cur;
1695        struct extent_buffer *parent;
1696        u32 blocksize;
1697        int ret = 0;
1698
1699        WARN_ON(*level < 0);
1700        WARN_ON(*level >= BTRFS_MAX_LEVEL);
1701
1702        while (*level > 0) {
1703                WARN_ON(*level < 0);
1704                WARN_ON(*level >= BTRFS_MAX_LEVEL);
1705                cur = path->nodes[*level];
1706
1707                if (btrfs_header_level(cur) != *level)
1708                        WARN_ON(1);
1709
1710                if (path->slots[*level] >=
1711                    btrfs_header_nritems(cur))
1712                        break;
1713
1714                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1715                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1716                blocksize = btrfs_level_size(root, *level - 1);
1717
1718                parent = path->nodes[*level];
1719                root_owner = btrfs_header_owner(parent);
1720
1721                next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1722                if (!next)
1723                        return -ENOMEM;
1724
1725                if (*level == 1) {
1726                        wc->process_func(root, next, wc, ptr_gen);
1727
1728                        path->slots[*level]++;
1729                        if (wc->free) {
1730                                btrfs_read_buffer(next, ptr_gen);
1731
1732                                btrfs_tree_lock(next);
1733                                clean_tree_block(trans, root, next);
1734                                btrfs_set_lock_blocking(next);
1735                                btrfs_wait_tree_block_writeback(next);
1736                                btrfs_tree_unlock(next);
1737
1738                                WARN_ON(root_owner !=
1739                                        BTRFS_TREE_LOG_OBJECTID);
1740                                ret = btrfs_free_reserved_extent(root,
1741                                                         bytenr, blocksize);
1742                                BUG_ON(ret);
1743                        }
1744                        free_extent_buffer(next);
1745                        continue;
1746                }
1747                btrfs_read_buffer(next, ptr_gen);
1748
1749                WARN_ON(*level <= 0);
1750                if (path->nodes[*level-1])
1751                        free_extent_buffer(path->nodes[*level-1]);
1752                path->nodes[*level-1] = next;
1753                *level = btrfs_header_level(next);
1754                path->slots[*level] = 0;
1755                cond_resched();
1756        }
1757        WARN_ON(*level < 0);
1758        WARN_ON(*level >= BTRFS_MAX_LEVEL);
1759
1760        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1761
1762        cond_resched();
1763        return 0;
1764}
1765
1766static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1767                                 struct btrfs_root *root,
1768                                 struct btrfs_path *path, int *level,
1769                                 struct walk_control *wc)
1770{
1771        u64 root_owner;
1772        int i;
1773        int slot;
1774        int ret;
1775
1776        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1777                slot = path->slots[i];
1778                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1779                        path->slots[i]++;
1780                        *level = i;
1781                        WARN_ON(*level == 0);
1782                        return 0;
1783                } else {
1784                        struct extent_buffer *parent;
1785                        if (path->nodes[*level] == root->node)
1786                                parent = path->nodes[*level];
1787                        else
1788                                parent = path->nodes[*level + 1];
1789
1790                        root_owner = btrfs_header_owner(parent);
1791                        wc->process_func(root, path->nodes[*level], wc,
1792                                 btrfs_header_generation(path->nodes[*level]));
1793                        if (wc->free) {
1794                                struct extent_buffer *next;
1795
1796                                next = path->nodes[*level];
1797
1798                                btrfs_tree_lock(next);
1799                                clean_tree_block(trans, root, next);
1800                                btrfs_set_lock_blocking(next);
1801                                btrfs_wait_tree_block_writeback(next);
1802                                btrfs_tree_unlock(next);
1803
1804                                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1805                                ret = btrfs_free_reserved_extent(root,
1806                                                path->nodes[*level]->start,
1807                                                path->nodes[*level]->len);
1808                                BUG_ON(ret);
1809                        }
1810                        free_extent_buffer(path->nodes[*level]);
1811                        path->nodes[*level] = NULL;
1812                        *level = i + 1;
1813                }
1814        }
1815        return 1;
1816}
1817
1818/*
1819 * drop the reference count on the tree rooted at 'snap'.  This traverses
1820 * the tree freeing any blocks that have a ref count of zero after being
1821 * decremented.
1822 */
1823static int walk_log_tree(struct btrfs_trans_handle *trans,
1824                         struct btrfs_root *log, struct walk_control *wc)
1825{
1826        int ret = 0;
1827        int wret;
1828        int level;
1829        struct btrfs_path *path;
1830        int i;
1831        int orig_level;
1832
1833        path = btrfs_alloc_path();
1834        if (!path)
1835                return -ENOMEM;
1836
1837        level = btrfs_header_level(log->node);
1838        orig_level = level;
1839        path->nodes[level] = log->node;
1840        extent_buffer_get(log->node);
1841        path->slots[level] = 0;
1842
1843        while (1) {
1844                wret = walk_down_log_tree(trans, log, path, &level, wc);
1845                if (wret > 0)
1846                        break;
1847                if (wret < 0)
1848                        ret = wret;
1849
1850                wret = walk_up_log_tree(trans, log, path, &level, wc);
1851                if (wret > 0)
1852                        break;
1853                if (wret < 0)
1854                        ret = wret;
1855        }
1856
1857        /* was the root node processed? if not, catch it here */
1858        if (path->nodes[orig_level]) {
1859                wc->process_func(log, path->nodes[orig_level], wc,
1860                         btrfs_header_generation(path->nodes[orig_level]));
1861                if (wc->free) {
1862                        struct extent_buffer *next;
1863
1864                        next = path->nodes[orig_level];
1865
1866                        btrfs_tree_lock(next);
1867                        clean_tree_block(trans, log, next);
1868                        btrfs_set_lock_blocking(next);
1869                        btrfs_wait_tree_block_writeback(next);
1870                        btrfs_tree_unlock(next);
1871
1872                        WARN_ON(log->root_key.objectid !=
1873                                BTRFS_TREE_LOG_OBJECTID);
1874                        ret = btrfs_free_reserved_extent(log, next->start,
1875                                                         next->len);
1876                        BUG_ON(ret);
1877                }
1878        }
1879
1880        for (i = 0; i <= orig_level; i++) {
1881                if (path->nodes[i]) {
1882                        free_extent_buffer(path->nodes[i]);
1883                        path->nodes[i] = NULL;
1884                }
1885        }
1886        btrfs_free_path(path);
1887        return ret;
1888}
1889
1890/*
1891 * helper function to update the item for a given subvolumes log root
1892 * in the tree of log roots
1893 */
1894static int update_log_root(struct btrfs_trans_handle *trans,
1895                           struct btrfs_root *log)
1896{
1897        int ret;
1898
1899        if (log->log_transid == 1) {
1900                /* insert root item on the first sync */
1901                ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1902                                &log->root_key, &log->root_item);
1903        } else {
1904                ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1905                                &log->root_key, &log->root_item);
1906        }
1907        return ret;
1908}
1909
1910static int wait_log_commit(struct btrfs_trans_handle *trans,
1911                           struct btrfs_root *root, unsigned long transid)
1912{
1913        DEFINE_WAIT(wait);
1914        int index = transid % 2;
1915
1916        /*
1917         * we only allow two pending log transactions at a time,
1918         * so we know that if ours is more than 2 older than the
1919         * current transaction, we're done
1920         */
1921        do {
1922                prepare_to_wait(&root->log_commit_wait[index],
1923                                &wait, TASK_UNINTERRUPTIBLE);
1924                mutex_unlock(&root->log_mutex);
1925
1926                if (root->fs_info->last_trans_log_full_commit !=
1927                    trans->transid && root->log_transid < transid + 2 &&
1928                    atomic_read(&root->log_commit[index]))
1929                        schedule();
1930
1931                finish_wait(&root->log_commit_wait[index], &wait);
1932                mutex_lock(&root->log_mutex);
1933        } while (root->log_transid < transid + 2 &&
1934                 atomic_read(&root->log_commit[index]));
1935        return 0;
1936}
1937
1938static int wait_for_writer(struct btrfs_trans_handle *trans,
1939                           struct btrfs_root *root)
1940{
1941        DEFINE_WAIT(wait);
1942        while (atomic_read(&root->log_writers)) {
1943                prepare_to_wait(&root->log_writer_wait,
1944                                &wait, TASK_UNINTERRUPTIBLE);
1945                mutex_unlock(&root->log_mutex);
1946                if (root->fs_info->last_trans_log_full_commit !=
1947                    trans->transid && atomic_read(&root->log_writers))
1948                        schedule();
1949                mutex_lock(&root->log_mutex);
1950                finish_wait(&root->log_writer_wait, &wait);
1951        }
1952        return 0;
1953}
1954
1955/*
1956 * btrfs_sync_log does sends a given tree log down to the disk and
1957 * updates the super blocks to record it.  When this call is done,
1958 * you know that any inodes previously logged are safely on disk only
1959 * if it returns 0.
1960 *
1961 * Any other return value means you need to call btrfs_commit_transaction.
1962 * Some of the edge cases for fsyncing directories that have had unlinks
1963 * or renames done in the past mean that sometimes the only safe
1964 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1965 * that has happened.
1966 */
1967int btrfs_sync_log(struct btrfs_trans_handle *trans,
1968                   struct btrfs_root *root)
1969{
1970        int index1;
1971        int index2;
1972        int mark;
1973        int ret;
1974        struct btrfs_root *log = root->log_root;
1975        struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1976        unsigned long log_transid = 0;
1977
1978        mutex_lock(&root->log_mutex);
1979        index1 = root->log_transid % 2;
1980        if (atomic_read(&root->log_commit[index1])) {
1981                wait_log_commit(trans, root, root->log_transid);
1982                mutex_unlock(&root->log_mutex);
1983                return 0;
1984        }
1985        atomic_set(&root->log_commit[index1], 1);
1986
1987        /* wait for previous tree log sync to complete */
1988        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1989                wait_log_commit(trans, root, root->log_transid - 1);
1990
1991        while (1) {
1992                unsigned long batch = root->log_batch;
1993                if (root->log_multiple_pids) {
1994                        mutex_unlock(&root->log_mutex);
1995                        schedule_timeout_uninterruptible(1);
1996                        mutex_lock(&root->log_mutex);
1997                }
1998                wait_for_writer(trans, root);
1999                if (batch == root->log_batch)
2000                        break;
2001        }
2002
2003        /* bail out if we need to do a full commit */
2004        if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2005                ret = -EAGAIN;
2006                mutex_unlock(&root->log_mutex);
2007                goto out;
2008        }
2009
2010        log_transid = root->log_transid;
2011        if (log_transid % 2 == 0)
2012                mark = EXTENT_DIRTY;
2013        else
2014                mark = EXTENT_NEW;
2015
2016        /* we start IO on  all the marked extents here, but we don't actually
2017         * wait for them until later.
2018         */
2019        ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2020        BUG_ON(ret);
2021
2022        btrfs_set_root_node(&log->root_item, log->node);
2023
2024        root->log_batch = 0;
2025        root->log_transid++;
2026        log->log_transid = root->log_transid;
2027        root->log_start_pid = 0;
2028        smp_mb();
2029        /*
2030         * IO has been started, blocks of the log tree have WRITTEN flag set
2031         * in their headers. new modifications of the log will be written to
2032         * new positions. so it's safe to allow log writers to go in.
2033         */
2034        mutex_unlock(&root->log_mutex);
2035
2036        mutex_lock(&log_root_tree->log_mutex);
2037        log_root_tree->log_batch++;
2038        atomic_inc(&log_root_tree->log_writers);
2039        mutex_unlock(&log_root_tree->log_mutex);
2040
2041        ret = update_log_root(trans, log);
2042
2043        mutex_lock(&log_root_tree->log_mutex);
2044        if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2045                smp_mb();
2046                if (waitqueue_active(&log_root_tree->log_writer_wait))
2047                        wake_up(&log_root_tree->log_writer_wait);
2048        }
2049
2050        if (ret) {
2051                BUG_ON(ret != -ENOSPC);
2052                root->fs_info->last_trans_log_full_commit = trans->transid;
2053                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2054                mutex_unlock(&log_root_tree->log_mutex);
2055                ret = -EAGAIN;
2056                goto out;
2057        }
2058
2059        index2 = log_root_tree->log_transid % 2;
2060        if (atomic_read(&log_root_tree->log_commit[index2])) {
2061                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2062                wait_log_commit(trans, log_root_tree,
2063                                log_root_tree->log_transid);
2064                mutex_unlock(&log_root_tree->log_mutex);
2065                ret = 0;
2066                goto out;
2067        }
2068        atomic_set(&log_root_tree->log_commit[index2], 1);
2069
2070        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2071                wait_log_commit(trans, log_root_tree,
2072                                log_root_tree->log_transid - 1);
2073        }
2074
2075        wait_for_writer(trans, log_root_tree);
2076
2077        /*
2078         * now that we've moved on to the tree of log tree roots,
2079         * check the full commit flag again
2080         */
2081        if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2082                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2083                mutex_unlock(&log_root_tree->log_mutex);
2084                ret = -EAGAIN;
2085                goto out_wake_log_root;
2086        }
2087
2088        ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2089                                &log_root_tree->dirty_log_pages,
2090                                EXTENT_DIRTY | EXTENT_NEW);
2091        BUG_ON(ret);
2092        btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2093
2094        btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2095                                log_root_tree->node->start);
2096        btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2097                                btrfs_header_level(log_root_tree->node));
2098
2099        log_root_tree->log_batch = 0;
2100        log_root_tree->log_transid++;
2101        smp_mb();
2102
2103        mutex_unlock(&log_root_tree->log_mutex);
2104
2105        /*
2106         * nobody else is going to jump in and write the the ctree
2107         * super here because the log_commit atomic below is protecting
2108         * us.  We must be called with a transaction handle pinning
2109         * the running transaction open, so a full commit can't hop
2110         * in and cause problems either.
2111         */
2112        btrfs_scrub_pause_super(root);
2113        write_ctree_super(trans, root->fs_info->tree_root, 1);
2114        btrfs_scrub_continue_super(root);
2115        ret = 0;
2116
2117        mutex_lock(&root->log_mutex);
2118        if (root->last_log_commit < log_transid)
2119                root->last_log_commit = log_transid;
2120        mutex_unlock(&root->log_mutex);
2121
2122out_wake_log_root:
2123        atomic_set(&log_root_tree->log_commit[index2], 0);
2124        smp_mb();
2125        if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2126                wake_up(&log_root_tree->log_commit_wait[index2]);
2127out:
2128        atomic_set(&root->log_commit[index1], 0);
2129        smp_mb();
2130        if (waitqueue_active(&root->log_commit_wait[index1]))
2131                wake_up(&root->log_commit_wait[index1]);
2132        return ret;
2133}
2134
2135static void free_log_tree(struct btrfs_trans_handle *trans,
2136                          struct btrfs_root *log)
2137{
2138        int ret;
2139        u64 start;
2140        u64 end;
2141        struct walk_control wc = {
2142                .free = 1,
2143                .process_func = process_one_buffer
2144        };
2145
2146        ret = walk_log_tree(trans, log, &wc);
2147        BUG_ON(ret);
2148
2149        while (1) {
2150                ret = find_first_extent_bit(&log->dirty_log_pages,
2151                                0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2152                if (ret)
2153                        break;
2154
2155                clear_extent_bits(&log->dirty_log_pages, start, end,
2156                                  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2157        }
2158
2159        free_extent_buffer(log->node);
2160        kfree(log);
2161}
2162
2163/*
2164 * free all the extents used by the tree log.  This should be called
2165 * at commit time of the full transaction
2166 */
2167int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2168{
2169        if (root->log_root) {
2170                free_log_tree(trans, root->log_root);
2171                root->log_root = NULL;
2172        }
2173        return 0;
2174}
2175
2176int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2177                             struct btrfs_fs_info *fs_info)
2178{
2179        if (fs_info->log_root_tree) {
2180                free_log_tree(trans, fs_info->log_root_tree);
2181                fs_info->log_root_tree = NULL;
2182        }
2183        return 0;
2184}
2185
2186/*
2187 * If both a file and directory are logged, and unlinks or renames are
2188 * mixed in, we have a few interesting corners:
2189 *
2190 * create file X in dir Y
2191 * link file X to X.link in dir Y
2192 * fsync file X
2193 * unlink file X but leave X.link
2194 * fsync dir Y
2195 *
2196 * After a crash we would expect only X.link to exist.  But file X
2197 * didn't get fsync'd again so the log has back refs for X and X.link.
2198 *
2199 * We solve this by removing directory entries and inode backrefs from the
2200 * log when a file that was logged in the current transaction is
2201 * unlinked.  Any later fsync will include the updated log entries, and
2202 * we'll be able to reconstruct the proper directory items from backrefs.
2203 *
2204 * This optimizations allows us to avoid relogging the entire inode
2205 * or the entire directory.
2206 */
2207int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2208                                 struct btrfs_root *root,
2209                                 const char *name, int name_len,
2210                                 struct inode *dir, u64 index)
2211{
2212        struct btrfs_root *log;
2213        struct btrfs_dir_item *di;
2214        struct btrfs_path *path;
2215        int ret;
2216        int err = 0;
2217        int bytes_del = 0;
2218        u64 dir_ino = btrfs_ino(dir);
2219
2220        if (BTRFS_I(dir)->logged_trans < trans->transid)
2221                return 0;
2222
2223        ret = join_running_log_trans(root);
2224        if (ret)
2225                return 0;
2226
2227        mutex_lock(&BTRFS_I(dir)->log_mutex);
2228
2229        log = root->log_root;
2230        path = btrfs_alloc_path();
2231        if (!path) {
2232                err = -ENOMEM;
2233                goto out_unlock;
2234        }
2235
2236        di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2237                                   name, name_len, -1);
2238        if (IS_ERR(di)) {
2239                err = PTR_ERR(di);
2240                goto fail;
2241        }
2242        if (di) {
2243                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2244                bytes_del += name_len;
2245                BUG_ON(ret);
2246        }
2247        btrfs_release_path(path);
2248        di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2249                                         index, name, name_len, -1);
2250        if (IS_ERR(di)) {
2251                err = PTR_ERR(di);
2252                goto fail;
2253        }
2254        if (di) {
2255                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2256                bytes_del += name_len;
2257                BUG_ON(ret);
2258        }
2259
2260        /* update the directory size in the log to reflect the names
2261         * we have removed
2262         */
2263        if (bytes_del) {
2264                struct btrfs_key key;
2265
2266                key.objectid = dir_ino;
2267                key.offset = 0;
2268                key.type = BTRFS_INODE_ITEM_KEY;
2269                btrfs_release_path(path);
2270
2271                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2272                if (ret < 0) {
2273                        err = ret;
2274                        goto fail;
2275                }
2276                if (ret == 0) {
2277                        struct btrfs_inode_item *item;
2278                        u64 i_size;
2279
2280                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2281                                              struct btrfs_inode_item);
2282                        i_size = btrfs_inode_size(path->nodes[0], item);
2283                        if (i_size > bytes_del)
2284                                i_size -= bytes_del;
2285                        else
2286                                i_size = 0;
2287                        btrfs_set_inode_size(path->nodes[0], item, i_size);
2288                        btrfs_mark_buffer_dirty(path->nodes[0]);
2289                } else
2290                        ret = 0;
2291                btrfs_release_path(path);
2292        }
2293fail:
2294        btrfs_free_path(path);
2295out_unlock:
2296        mutex_unlock(&BTRFS_I(dir)->log_mutex);
2297        if (ret == -ENOSPC) {
2298                root->fs_info->last_trans_log_full_commit = trans->transid;
2299                ret = 0;
2300        }
2301        btrfs_end_log_trans(root);
2302
2303        return err;
2304}
2305
2306/* see comments for btrfs_del_dir_entries_in_log */
2307int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2308                               struct btrfs_root *root,
2309                               const char *name, int name_len,
2310                               struct inode *inode, u64 dirid)
2311{
2312        struct btrfs_root *log;
2313        u64 index;
2314        int ret;
2315
2316        if (BTRFS_I(inode)->logged_trans < trans->transid)
2317                return 0;
2318
2319        ret = join_running_log_trans(root);
2320        if (ret)
2321                return 0;
2322        log = root->log_root;
2323        mutex_lock(&BTRFS_I(inode)->log_mutex);
2324
2325        ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2326                                  dirid, &index);
2327        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2328        if (ret == -ENOSPC) {
2329                root->fs_info->last_trans_log_full_commit = trans->transid;
2330                ret = 0;
2331        }
2332        btrfs_end_log_trans(root);
2333
2334        return ret;
2335}
2336
2337/*
2338 * creates a range item in the log for 'dirid'.  first_offset and
2339 * last_offset tell us which parts of the key space the log should
2340 * be considered authoritative for.
2341 */
2342static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2343                                       struct btrfs_root *log,
2344                                       struct btrfs_path *path,
2345                                       int key_type, u64 dirid,
2346                                       u64 first_offset, u64 last_offset)
2347{
2348        int ret;
2349        struct btrfs_key key;
2350        struct btrfs_dir_log_item *item;
2351
2352        key.objectid = dirid;
2353        key.offset = first_offset;
2354        if (key_type == BTRFS_DIR_ITEM_KEY)
2355                key.type = BTRFS_DIR_LOG_ITEM_KEY;
2356        else
2357                key.type = BTRFS_DIR_LOG_INDEX_KEY;
2358        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2359        if (ret)
2360                return ret;
2361
2362        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2363                              struct btrfs_dir_log_item);
2364        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2365        btrfs_mark_buffer_dirty(path->nodes[0]);
2366        btrfs_release_path(path);
2367        return 0;
2368}
2369
2370/*
2371 * log all the items included in the current transaction for a given
2372 * directory.  This also creates the range items in the log tree required
2373 * to replay anything deleted before the fsync
2374 */
2375static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2376                          struct btrfs_root *root, struct inode *inode,
2377                          struct btrfs_path *path,
2378                          struct btrfs_path *dst_path, int key_type,
2379                          u64 min_offset, u64 *last_offset_ret)
2380{
2381        struct btrfs_key min_key;
2382        struct btrfs_key max_key;
2383        struct btrfs_root *log = root->log_root;
2384        struct extent_buffer *src;
2385        int err = 0;
2386        int ret;
2387        int i;
2388        int nritems;
2389        u64 first_offset = min_offset;
2390        u64 last_offset = (u64)-1;
2391        u64 ino = btrfs_ino(inode);
2392
2393        log = root->log_root;
2394        max_key.objectid = ino;
2395        max_key.offset = (u64)-1;
2396        max_key.type = key_type;
2397
2398        min_key.objectid = ino;
2399        min_key.type = key_type;
2400        min_key.offset = min_offset;
2401
2402        path->keep_locks = 1;
2403
2404        ret = btrfs_search_forward(root, &min_key, &max_key,
2405                                   path, 0, trans->transid);
2406
2407        /*
2408         * we didn't find anything from this transaction, see if there
2409         * is anything at all
2410         */
2411        if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2412                min_key.objectid = ino;
2413                min_key.type = key_type;
2414                min_key.offset = (u64)-1;
2415                btrfs_release_path(path);
2416                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2417                if (ret < 0) {
2418                        btrfs_release_path(path);
2419                        return ret;
2420                }
2421                ret = btrfs_previous_item(root, path, ino, key_type);
2422
2423                /* if ret == 0 there are items for this type,
2424                 * create a range to tell us the last key of this type.
2425                 * otherwise, there are no items in this directory after
2426                 * *min_offset, and we create a range to indicate that.
2427                 */
2428                if (ret == 0) {
2429                        struct btrfs_key tmp;
2430                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2431                                              path->slots[0]);
2432                        if (key_type == tmp.type)
2433                                first_offset = max(min_offset, tmp.offset) + 1;
2434                }
2435                goto done;
2436        }
2437
2438        /* go backward to find any previous key */
2439        ret = btrfs_previous_item(root, path, ino, key_type);
2440        if (ret == 0) {
2441                struct btrfs_key tmp;
2442                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2443                if (key_type == tmp.type) {
2444                        first_offset = tmp.offset;
2445                        ret = overwrite_item(trans, log, dst_path,
2446                                             path->nodes[0], path->slots[0],
2447                                             &tmp);
2448                        if (ret) {
2449                                err = ret;
2450                                goto done;
2451                        }
2452                }
2453        }
2454        btrfs_release_path(path);
2455
2456        /* find the first key from this transaction again */
2457        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2458        if (ret != 0) {
2459                WARN_ON(1);
2460                goto done;
2461        }
2462
2463        /*
2464         * we have a block from this transaction, log every item in it
2465         * from our directory
2466         */
2467        while (1) {
2468                struct btrfs_key tmp;
2469                src = path->nodes[0];
2470                nritems = btrfs_header_nritems(src);
2471                for (i = path->slots[0]; i < nritems; i++) {
2472                        btrfs_item_key_to_cpu(src, &min_key, i);
2473
2474                        if (min_key.objectid != ino || min_key.type != key_type)
2475                                goto done;
2476                        ret = overwrite_item(trans, log, dst_path, src, i,
2477                                             &min_key);
2478                        if (ret) {
2479                                err = ret;
2480                                goto done;
2481                        }
2482                }
2483                path->slots[0] = nritems;
2484
2485                /*
2486                 * look ahead to the next item and see if it is also
2487                 * from this directory and from this transaction
2488                 */
2489                ret = btrfs_next_leaf(root, path);
2490                if (ret == 1) {
2491                        last_offset = (u64)-1;
2492                        goto done;
2493                }
2494                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2495                if (tmp.objectid != ino || tmp.type != key_type) {
2496                        last_offset = (u64)-1;
2497                        goto done;
2498                }
2499                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2500                        ret = overwrite_item(trans, log, dst_path,
2501                                             path->nodes[0], path->slots[0],
2502                                             &tmp);
2503                        if (ret)
2504                                err = ret;
2505                        else
2506                                last_offset = tmp.offset;
2507                        goto done;
2508                }
2509        }
2510done:
2511        btrfs_release_path(path);
2512        btrfs_release_path(dst_path);
2513
2514        if (err == 0) {
2515                *last_offset_ret = last_offset;
2516                /*
2517                 * insert the log range keys to indicate where the log
2518                 * is valid
2519                 */
2520                ret = insert_dir_log_key(trans, log, path, key_type,
2521                                         ino, first_offset, last_offset);
2522                if (ret)
2523                        err = ret;
2524        }
2525        return err;
2526}
2527
2528/*
2529 * logging directories is very similar to logging inodes, We find all the items
2530 * from the current transaction and write them to the log.
2531 *
2532 * The recovery code scans the directory in the subvolume, and if it finds a
2533 * key in the range logged that is not present in the log tree, then it means
2534 * that dir entry was unlinked during the transaction.
2535 *
2536 * In order for that scan to work, we must include one key smaller than
2537 * the smallest logged by this transaction and one key larger than the largest
2538 * key logged by this transaction.
2539 */
2540static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2541                          struct btrfs_root *root, struct inode *inode,
2542                          struct btrfs_path *path,
2543                          struct btrfs_path *dst_path)
2544{
2545        u64 min_key;
2546        u64 max_key;
2547        int ret;
2548        int key_type = BTRFS_DIR_ITEM_KEY;
2549
2550again:
2551        min_key = 0;
2552        max_key = 0;
2553        while (1) {
2554                ret = log_dir_items(trans, root, inode, path,
2555                                    dst_path, key_type, min_key,
2556                                    &max_key);
2557                if (ret)
2558                        return ret;
2559                if (max_key == (u64)-1)
2560                        break;
2561                min_key = max_key + 1;
2562        }
2563
2564        if (key_type == BTRFS_DIR_ITEM_KEY) {
2565                key_type = BTRFS_DIR_INDEX_KEY;
2566                goto again;
2567        }
2568        return 0;
2569}
2570
2571/*
2572 * a helper function to drop items from the log before we relog an
2573 * inode.  max_key_type indicates the highest item type to remove.
2574 * This cannot be run for file data extents because it does not
2575 * free the extents they point to.
2576 */
2577static int drop_objectid_items(struct btrfs_trans_handle *trans,
2578                                  struct btrfs_root *log,
2579                                  struct btrfs_path *path,
2580                                  u64 objectid, int max_key_type)
2581{
2582        int ret;
2583        struct btrfs_key key;
2584        struct btrfs_key found_key;
2585
2586        key.objectid = objectid;
2587        key.type = max_key_type;
2588        key.offset = (u64)-1;
2589
2590        while (1) {
2591                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2592                BUG_ON(ret == 0);
2593                if (ret < 0)
2594                        break;
2595
2596                if (path->slots[0] == 0)
2597                        break;
2598
2599                path->slots[0]--;
2600                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2601                                      path->slots[0]);
2602
2603                if (found_key.objectid != objectid)
2604                        break;
2605
2606                ret = btrfs_del_item(trans, log, path);
2607                if (ret)
2608                        break;
2609                btrfs_release_path(path);
2610        }
2611        btrfs_release_path(path);
2612        return ret;
2613}
2614
2615static noinline int copy_items(struct btrfs_trans_handle *trans,
2616                               struct btrfs_root *log,
2617                               struct btrfs_path *dst_path,
2618                               struct extent_buffer *src,
2619                               int start_slot, int nr, int inode_only)
2620{
2621        unsigned long src_offset;
2622        unsigned long dst_offset;
2623        struct btrfs_file_extent_item *extent;
2624        struct btrfs_inode_item *inode_item;
2625        int ret;
2626        struct btrfs_key *ins_keys;
2627        u32 *ins_sizes;
2628        char *ins_data;
2629        int i;
2630        struct list_head ordered_sums;
2631
2632        INIT_LIST_HEAD(&ordered_sums);
2633
2634        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2635                           nr * sizeof(u32), GFP_NOFS);
2636        if (!ins_data)
2637                return -ENOMEM;
2638
2639        ins_sizes = (u32 *)ins_data;
2640        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2641
2642        for (i = 0; i < nr; i++) {
2643                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2644                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2645        }
2646        ret = btrfs_insert_empty_items(trans, log, dst_path,
2647                                       ins_keys, ins_sizes, nr);
2648        if (ret) {
2649                kfree(ins_data);
2650                return ret;
2651        }
2652
2653        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2654                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2655                                                   dst_path->slots[0]);
2656
2657                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2658
2659                copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2660                                   src_offset, ins_sizes[i]);
2661
2662                if (inode_only == LOG_INODE_EXISTS &&
2663                    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2664                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
2665                                                    dst_path->slots[0],
2666                                                    struct btrfs_inode_item);
2667                        btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2668
2669                        /* set the generation to zero so the recover code
2670                         * can tell the difference between an logging
2671                         * just to say 'this inode exists' and a logging
2672                         * to say 'update this inode with these values'
2673                         */
2674                        btrfs_set_inode_generation(dst_path->nodes[0],
2675                                                   inode_item, 0);
2676                }
2677                /* take a reference on file data extents so that truncates
2678                 * or deletes of this inode don't have to relog the inode
2679                 * again
2680                 */
2681                if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2682                        int found_type;
2683                        extent = btrfs_item_ptr(src, start_slot + i,
2684                                                struct btrfs_file_extent_item);
2685
2686                        if (btrfs_file_extent_generation(src, extent) < trans->transid)
2687                                continue;
2688
2689                        found_type = btrfs_file_extent_type(src, extent);
2690                        if (found_type == BTRFS_FILE_EXTENT_REG ||
2691                            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2692                                u64 ds, dl, cs, cl;
2693                                ds = btrfs_file_extent_disk_bytenr(src,
2694                                                                extent);
2695                                /* ds == 0 is a hole */
2696                                if (ds == 0)
2697                                        continue;
2698
2699                                dl = btrfs_file_extent_disk_num_bytes(src,
2700                                                                extent);
2701                                cs = btrfs_file_extent_offset(src, extent);
2702                                cl = btrfs_file_extent_num_bytes(src,
2703                                                                extent);
2704                                if (btrfs_file_extent_compression(src,
2705                                                                  extent)) {
2706                                        cs = 0;
2707                                        cl = dl;
2708                                }
2709
2710                                ret = btrfs_lookup_csums_range(
2711                                                log->fs_info->csum_root,
2712                                                ds + cs, ds + cs + cl - 1,
2713                                                &ordered_sums, 0);
2714                                BUG_ON(ret);
2715                        }
2716                }
2717        }
2718
2719        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2720        btrfs_release_path(dst_path);
2721        kfree(ins_data);
2722
2723        /*
2724         * we have to do this after the loop above to avoid changing the
2725         * log tree while trying to change the log tree.
2726         */
2727        ret = 0;
2728        while (!list_empty(&ordered_sums)) {
2729                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2730                                                   struct btrfs_ordered_sum,
2731                                                   list);
2732                if (!ret)
2733                        ret = btrfs_csum_file_blocks(trans, log, sums);
2734                list_del(&sums->list);
2735                kfree(sums);
2736        }
2737        return ret;
2738}
2739
2740/* log a single inode in the tree log.
2741 * At least one parent directory for this inode must exist in the tree
2742 * or be logged already.
2743 *
2744 * Any items from this inode changed by the current transaction are copied
2745 * to the log tree.  An extra reference is taken on any extents in this
2746 * file, allowing us to avoid a whole pile of corner cases around logging
2747 * blocks that have been removed from the tree.
2748 *
2749 * See LOG_INODE_ALL and related defines for a description of what inode_only
2750 * does.
2751 *
2752 * This handles both files and directories.
2753 */
2754static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2755                             struct btrfs_root *root, struct inode *inode,
2756                             int inode_only)
2757{
2758        struct btrfs_path *path;
2759        struct btrfs_path *dst_path;
2760        struct btrfs_key min_key;
2761        struct btrfs_key max_key;
2762        struct btrfs_root *log = root->log_root;
2763        struct extent_buffer *src = NULL;
2764        int err = 0;
2765        int ret;
2766        int nritems;
2767        int ins_start_slot = 0;
2768        int ins_nr;
2769        u64 ino = btrfs_ino(inode);
2770
2771        log = root->log_root;
2772
2773        path = btrfs_alloc_path();
2774        if (!path)
2775                return -ENOMEM;
2776        dst_path = btrfs_alloc_path();
2777        if (!dst_path) {
2778                btrfs_free_path(path);
2779                return -ENOMEM;
2780        }
2781
2782        min_key.objectid = ino;
2783        min_key.type = BTRFS_INODE_ITEM_KEY;
2784        min_key.offset = 0;
2785
2786        max_key.objectid = ino;
2787
2788        /* today the code can only do partial logging of directories */
2789        if (!S_ISDIR(inode->i_mode))
2790            inode_only = LOG_INODE_ALL;
2791
2792        if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2793                max_key.type = BTRFS_XATTR_ITEM_KEY;
2794        else
2795                max_key.type = (u8)-1;
2796        max_key.offset = (u64)-1;
2797
2798        ret = btrfs_commit_inode_delayed_items(trans, inode);
2799        if (ret) {
2800                btrfs_free_path(path);
2801                btrfs_free_path(dst_path);
2802                return ret;
2803        }
2804
2805        mutex_lock(&BTRFS_I(inode)->log_mutex);
2806
2807        /*
2808         * a brute force approach to making sure we get the most uptodate
2809         * copies of everything.
2810         */
2811        if (S_ISDIR(inode->i_mode)) {
2812                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2813
2814                if (inode_only == LOG_INODE_EXISTS)
2815                        max_key_type = BTRFS_XATTR_ITEM_KEY;
2816                ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2817        } else {
2818                ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2819        }
2820        if (ret) {
2821                err = ret;
2822                goto out_unlock;
2823        }
2824        path->keep_locks = 1;
2825
2826        while (1) {
2827                ins_nr = 0;
2828                ret = btrfs_search_forward(root, &min_key, &max_key,
2829                                           path, 0, trans->transid);
2830                if (ret != 0)
2831                        break;
2832again:
2833                /* note, ins_nr might be > 0 here, cleanup outside the loop */
2834                if (min_key.objectid != ino)
2835                        break;
2836                if (min_key.type > max_key.type)
2837                        break;
2838
2839                src = path->nodes[0];
2840                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2841                        ins_nr++;
2842                        goto next_slot;
2843                } else if (!ins_nr) {
2844                        ins_start_slot = path->slots[0];
2845                        ins_nr = 1;
2846                        goto next_slot;
2847                }
2848
2849                ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2850                                 ins_nr, inode_only);
2851                if (ret) {
2852                        err = ret;
2853                        goto out_unlock;
2854                }
2855                ins_nr = 1;
2856                ins_start_slot = path->slots[0];
2857next_slot:
2858
2859                nritems = btrfs_header_nritems(path->nodes[0]);
2860                path->slots[0]++;
2861                if (path->slots[0] < nritems) {
2862                        btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2863                                              path->slots[0]);
2864                        goto again;
2865                }
2866                if (ins_nr) {
2867                        ret = copy_items(trans, log, dst_path, src,
2868                                         ins_start_slot,
2869                                         ins_nr, inode_only);
2870                        if (ret) {
2871                                err = ret;
2872                                goto out_unlock;
2873                        }
2874                        ins_nr = 0;
2875                }
2876                btrfs_release_path(path);
2877
2878                if (min_key.offset < (u64)-1)
2879                        min_key.offset++;
2880                else if (min_key.type < (u8)-1)
2881                        min_key.type++;
2882                else if (min_key.objectid < (u64)-1)
2883                        min_key.objectid++;
2884                else
2885                        break;
2886        }
2887        if (ins_nr) {
2888                ret = copy_items(trans, log, dst_path, src,
2889                                 ins_start_slot,
2890                                 ins_nr, inode_only);
2891                if (ret) {
2892                        err = ret;
2893                        goto out_unlock;
2894                }
2895                ins_nr = 0;
2896        }
2897        WARN_ON(ins_nr);
2898        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2899                btrfs_release_path(path);
2900                btrfs_release_path(dst_path);
2901                ret = log_directory_changes(trans, root, inode, path, dst_path);
2902                if (ret) {
2903                        err = ret;
2904                        goto out_unlock;
2905                }
2906        }
2907        BTRFS_I(inode)->logged_trans = trans->transid;
2908out_unlock:
2909        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2910
2911        btrfs_free_path(path);
2912        btrfs_free_path(dst_path);
2913        return err;
2914}
2915
2916/*
2917 * follow the dentry parent pointers up the chain and see if any
2918 * of the directories in it require a full commit before they can
2919 * be logged.  Returns zero if nothing special needs to be done or 1 if
2920 * a full commit is required.
2921 */
2922static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2923                                               struct inode *inode,
2924                                               struct dentry *parent,
2925                                               struct super_block *sb,
2926                                               u64 last_committed)
2927{
2928        int ret = 0;
2929        struct btrfs_root *root;
2930        struct dentry *old_parent = NULL;
2931
2932        /*
2933         * for regular files, if its inode is already on disk, we don't
2934         * have to worry about the parents at all.  This is because
2935         * we can use the last_unlink_trans field to record renames
2936         * and other fun in this file.
2937         */
2938        if (S_ISREG(inode->i_mode) &&
2939            BTRFS_I(inode)->generation <= last_committed &&
2940            BTRFS_I(inode)->last_unlink_trans <= last_committed)
2941                        goto out;
2942
2943        if (!S_ISDIR(inode->i_mode)) {
2944                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2945                        goto out;
2946                inode = parent->d_inode;
2947        }
2948
2949        while (1) {
2950                BTRFS_I(inode)->logged_trans = trans->transid;
2951                smp_mb();
2952
2953                if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2954                        root = BTRFS_I(inode)->root;
2955
2956                        /*
2957                         * make sure any commits to the log are forced
2958                         * to be full commits
2959                         */
2960                        root->fs_info->last_trans_log_full_commit =
2961                                trans->transid;
2962                        ret = 1;
2963                        break;
2964                }
2965
2966                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2967                        break;
2968
2969                if (IS_ROOT(parent))
2970                        break;
2971
2972                parent = dget_parent(parent);
2973                dput(old_parent);
2974                old_parent = parent;
2975                inode = parent->d_inode;
2976
2977        }
2978        dput(old_parent);
2979out:
2980        return ret;
2981}
2982
2983static int inode_in_log(struct btrfs_trans_handle *trans,
2984                 struct inode *inode)
2985{
2986        struct btrfs_root *root = BTRFS_I(inode)->root;
2987        int ret = 0;
2988
2989        mutex_lock(&root->log_mutex);
2990        if (BTRFS_I(inode)->logged_trans == trans->transid &&
2991            BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2992                ret = 1;
2993        mutex_unlock(&root->log_mutex);
2994        return ret;
2995}
2996
2997
2998/*
2999 * helper function around btrfs_log_inode to make sure newly created
3000 * parent directories also end up in the log.  A minimal inode and backref
3001 * only logging is done of any parent directories that are older than
3002 * the last committed transaction
3003 */
3004int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3005                    struct btrfs_root *root, struct inode *inode,
3006                    struct dentry *parent, int exists_only)
3007{
3008        int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3009        struct super_block *sb;
3010        struct dentry *old_parent = NULL;
3011        int ret = 0;
3012        u64 last_committed = root->fs_info->last_trans_committed;
3013
3014        sb = inode->i_sb;
3015
3016        if (btrfs_test_opt(root, NOTREELOG)) {
3017                ret = 1;
3018                goto end_no_trans;
3019        }
3020
3021        if (root->fs_info->last_trans_log_full_commit >
3022            root->fs_info->last_trans_committed) {
3023                ret = 1;
3024                goto end_no_trans;
3025        }
3026
3027        if (root != BTRFS_I(inode)->root ||
3028            btrfs_root_refs(&root->root_item) == 0) {
3029                ret = 1;
3030                goto end_no_trans;
3031        }
3032
3033        ret = check_parent_dirs_for_sync(trans, inode, parent,
3034                                         sb, last_committed);
3035        if (ret)
3036                goto end_no_trans;
3037
3038        if (inode_in_log(trans, inode)) {
3039                ret = BTRFS_NO_LOG_SYNC;
3040                goto end_no_trans;
3041        }
3042
3043        ret = start_log_trans(trans, root);
3044        if (ret)
3045                goto end_trans;
3046
3047        ret = btrfs_log_inode(trans, root, inode, inode_only);
3048        if (ret)
3049                goto end_trans;
3050
3051        /*
3052         * for regular files, if its inode is already on disk, we don't
3053         * have to worry about the parents at all.  This is because
3054         * we can use the last_unlink_trans field to record renames
3055         * and other fun in this file.
3056         */
3057        if (S_ISREG(inode->i_mode) &&
3058            BTRFS_I(inode)->generation <= last_committed &&
3059            BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3060                ret = 0;
3061                goto end_trans;
3062        }
3063
3064        inode_only = LOG_INODE_EXISTS;
3065        while (1) {
3066                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3067                        break;
3068
3069                inode = parent->d_inode;
3070                if (root != BTRFS_I(inode)->root)
3071                        break;
3072
3073                if (BTRFS_I(inode)->generation >
3074                    root->fs_info->last_trans_committed) {
3075                        ret = btrfs_log_inode(trans, root, inode, inode_only);
3076                        if (ret)
3077                                goto end_trans;
3078                }
3079                if (IS_ROOT(parent))
3080                        break;
3081
3082                parent = dget_parent(parent);
3083                dput(old_parent);
3084                old_parent = parent;
3085        }
3086        ret = 0;
3087end_trans:
3088        dput(old_parent);
3089        if (ret < 0) {
3090                BUG_ON(ret != -ENOSPC);
3091                root->fs_info->last_trans_log_full_commit = trans->transid;
3092                ret = 1;
3093        }
3094        btrfs_end_log_trans(root);
3095end_no_trans:
3096        return ret;
3097}
3098
3099/*
3100 * it is not safe to log dentry if the chunk root has added new
3101 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3102 * If this returns 1, you must commit the transaction to safely get your
3103 * data on disk.
3104 */
3105int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3106                          struct btrfs_root *root, struct dentry *dentry)
3107{
3108        struct dentry *parent = dget_parent(dentry);
3109        int ret;
3110
3111        ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3112        dput(parent);
3113
3114        return ret;
3115}
3116
3117/*
3118 * should be called during mount to recover any replay any log trees
3119 * from the FS
3120 */
3121int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3122{
3123        int ret;
3124        struct btrfs_path *path;
3125        struct btrfs_trans_handle *trans;
3126        struct btrfs_key key;
3127        struct btrfs_key found_key;
3128        struct btrfs_key tmp_key;
3129        struct btrfs_root *log;
3130        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3131        struct walk_control wc = {
3132                .process_func = process_one_buffer,
3133                .stage = 0,
3134        };
3135
3136        path = btrfs_alloc_path();
3137        if (!path)
3138                return -ENOMEM;
3139
3140        fs_info->log_root_recovering = 1;
3141
3142        trans = btrfs_start_transaction(fs_info->tree_root, 0);
3143        BUG_ON(IS_ERR(trans));
3144
3145        wc.trans = trans;
3146        wc.pin = 1;
3147
3148        ret = walk_log_tree(trans, log_root_tree, &wc);
3149        BUG_ON(ret);
3150
3151again:
3152        key.objectid = BTRFS_TREE_LOG_OBJECTID;
3153        key.offset = (u64)-1;
3154        btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3155
3156        while (1) {
3157                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3158                if (ret < 0)
3159                        break;
3160                if (ret > 0) {
3161                        if (path->slots[0] == 0)
3162                                break;
3163                        path->slots[0]--;
3164                }
3165                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3166                                      path->slots[0]);
3167                btrfs_release_path(path);
3168                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3169                        break;
3170
3171                log = btrfs_read_fs_root_no_radix(log_root_tree,
3172                                                  &found_key);
3173                BUG_ON(IS_ERR(log));
3174
3175                tmp_key.objectid = found_key.offset;
3176                tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3177                tmp_key.offset = (u64)-1;
3178
3179                wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3180                BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3181
3182                wc.replay_dest->log_root = log;
3183                btrfs_record_root_in_trans(trans, wc.replay_dest);
3184                ret = walk_log_tree(trans, log, &wc);
3185                BUG_ON(ret);
3186
3187                if (wc.stage == LOG_WALK_REPLAY_ALL) {
3188                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
3189                                                      path);
3190                        BUG_ON(ret);
3191                }
3192
3193                key.offset = found_key.offset - 1;
3194                wc.replay_dest->log_root = NULL;
3195                free_extent_buffer(log->node);
3196                free_extent_buffer(log->commit_root);
3197                kfree(log);
3198
3199                if (found_key.offset == 0)
3200                        break;
3201        }
3202        btrfs_release_path(path);
3203
3204        /* step one is to pin it all, step two is to replay just inodes */
3205        if (wc.pin) {
3206                wc.pin = 0;
3207                wc.process_func = replay_one_buffer;
3208                wc.stage = LOG_WALK_REPLAY_INODES;
3209                goto again;
3210        }
3211        /* step three is to replay everything */
3212        if (wc.stage < LOG_WALK_REPLAY_ALL) {
3213                wc.stage++;
3214                goto again;
3215        }
3216
3217        btrfs_free_path(path);
3218
3219        free_extent_buffer(log_root_tree->node);
3220        log_root_tree->log_root = NULL;
3221        fs_info->log_root_recovering = 0;
3222
3223        /* step 4: commit the transaction, which also unpins the blocks */
3224        btrfs_commit_transaction(trans, fs_info->tree_root);
3225
3226        kfree(log_root_tree);
3227        return 0;
3228}
3229
3230/*
3231 * there are some corner cases where we want to force a full
3232 * commit instead of allowing a directory to be logged.
3233 *
3234 * They revolve around files there were unlinked from the directory, and
3235 * this function updates the parent directory so that a full commit is
3236 * properly done if it is fsync'd later after the unlinks are done.
3237 */
3238void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3239                             struct inode *dir, struct inode *inode,
3240                             int for_rename)
3241{
3242        /*
3243         * when we're logging a file, if it hasn't been renamed
3244         * or unlinked, and its inode is fully committed on disk,
3245         * we don't have to worry about walking up the directory chain
3246         * to log its parents.
3247         *
3248         * So, we use the last_unlink_trans field to put this transid
3249         * into the file.  When the file is logged we check it and
3250         * don't log the parents if the file is fully on disk.
3251         */
3252        if (S_ISREG(inode->i_mode))
3253                BTRFS_I(inode)->last_unlink_trans = trans->transid;
3254
3255        /*
3256         * if this directory was already logged any new
3257         * names for this file/dir will get recorded
3258         */
3259        smp_mb();
3260        if (BTRFS_I(dir)->logged_trans == trans->transid)
3261                return;
3262
3263        /*
3264         * if the inode we're about to unlink was logged,
3265         * the log will be properly updated for any new names
3266         */
3267        if (BTRFS_I(inode)->logged_trans == trans->transid)
3268                return;
3269
3270        /*
3271         * when renaming files across directories, if the directory
3272         * there we're unlinking from gets fsync'd later on, there's
3273         * no way to find the destination directory later and fsync it
3274         * properly.  So, we have to be conservative and force commits
3275         * so the new name gets discovered.
3276         */
3277        if (for_rename)
3278                goto record;
3279
3280        /* we can safely do the unlink without any special recording */
3281        return;
3282
3283record:
3284        BTRFS_I(dir)->last_unlink_trans = trans->transid;
3285}
3286
3287/*
3288 * Call this after adding a new name for a file and it will properly
3289 * update the log to reflect the new name.
3290 *
3291 * It will return zero if all goes well, and it will return 1 if a
3292 * full transaction commit is required.
3293 */
3294int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3295                        struct inode *inode, struct inode *old_dir,
3296                        struct dentry *parent)
3297{
3298        struct btrfs_root * root = BTRFS_I(inode)->root;
3299
3300        /*
3301         * this will force the logging code to walk the dentry chain
3302         * up for the file
3303         */
3304        if (S_ISREG(inode->i_mode))
3305                BTRFS_I(inode)->last_unlink_trans = trans->transid;
3306
3307        /*
3308         * if this inode hasn't been logged and directory we're renaming it
3309         * from hasn't been logged, we don't need to log it
3310         */
3311        if (BTRFS_I(inode)->logged_trans <=
3312            root->fs_info->last_trans_committed &&
3313            (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3314                    root->fs_info->last_trans_committed))
3315                return 0;
3316
3317        return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3318}
3319
3320