linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/quotaops.h>
  29#include <linux/module.h>
  30#include <linux/writeback.h>
  31#include <linux/buffer_head.h>
  32#include <linux/mpage.h>
  33#include <linux/fiemap.h>
  34#include <linux/namei.h>
  35#include "ext2.h"
  36#include "acl.h"
  37#include "xip.h"
  38
  39MODULE_AUTHOR("Remy Card and others");
  40MODULE_DESCRIPTION("Second Extended Filesystem");
  41MODULE_LICENSE("GPL");
  42
  43static int __ext2_write_inode(struct inode *inode, int do_sync);
  44
  45/*
  46 * Test whether an inode is a fast symlink.
  47 */
  48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  49{
  50        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  51                (inode->i_sb->s_blocksize >> 9) : 0;
  52
  53        return (S_ISLNK(inode->i_mode) &&
  54                inode->i_blocks - ea_blocks == 0);
  55}
  56
  57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  58
  59static void ext2_write_failed(struct address_space *mapping, loff_t to)
  60{
  61        struct inode *inode = mapping->host;
  62
  63        if (to > inode->i_size) {
  64                truncate_pagecache(inode, to, inode->i_size);
  65                ext2_truncate_blocks(inode, inode->i_size);
  66        }
  67}
  68
  69/*
  70 * Called at the last iput() if i_nlink is zero.
  71 */
  72void ext2_evict_inode(struct inode * inode)
  73{
  74        struct ext2_block_alloc_info *rsv;
  75        int want_delete = 0;
  76
  77        if (!inode->i_nlink && !is_bad_inode(inode)) {
  78                want_delete = 1;
  79                dquot_initialize(inode);
  80        } else {
  81                dquot_drop(inode);
  82        }
  83
  84        truncate_inode_pages(&inode->i_data, 0);
  85
  86        if (want_delete) {
  87                /* set dtime */
  88                EXT2_I(inode)->i_dtime  = get_seconds();
  89                mark_inode_dirty(inode);
  90                __ext2_write_inode(inode, inode_needs_sync(inode));
  91                /* truncate to 0 */
  92                inode->i_size = 0;
  93                if (inode->i_blocks)
  94                        ext2_truncate_blocks(inode, 0);
  95        }
  96
  97        invalidate_inode_buffers(inode);
  98        end_writeback(inode);
  99
 100        ext2_discard_reservation(inode);
 101        rsv = EXT2_I(inode)->i_block_alloc_info;
 102        EXT2_I(inode)->i_block_alloc_info = NULL;
 103        if (unlikely(rsv))
 104                kfree(rsv);
 105
 106        if (want_delete)
 107                ext2_free_inode(inode);
 108}
 109
 110typedef struct {
 111        __le32  *p;
 112        __le32  key;
 113        struct buffer_head *bh;
 114} Indirect;
 115
 116static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 117{
 118        p->key = *(p->p = v);
 119        p->bh = bh;
 120}
 121
 122static inline int verify_chain(Indirect *from, Indirect *to)
 123{
 124        while (from <= to && from->key == *from->p)
 125                from++;
 126        return (from > to);
 127}
 128
 129/**
 130 *      ext2_block_to_path - parse the block number into array of offsets
 131 *      @inode: inode in question (we are only interested in its superblock)
 132 *      @i_block: block number to be parsed
 133 *      @offsets: array to store the offsets in
 134 *      @boundary: set this non-zero if the referred-to block is likely to be
 135 *             followed (on disk) by an indirect block.
 136 *      To store the locations of file's data ext2 uses a data structure common
 137 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 138 *      data blocks at leaves and indirect blocks in intermediate nodes.
 139 *      This function translates the block number into path in that tree -
 140 *      return value is the path length and @offsets[n] is the offset of
 141 *      pointer to (n+1)th node in the nth one. If @block is out of range
 142 *      (negative or too large) warning is printed and zero returned.
 143 *
 144 *      Note: function doesn't find node addresses, so no IO is needed. All
 145 *      we need to know is the capacity of indirect blocks (taken from the
 146 *      inode->i_sb).
 147 */
 148
 149/*
 150 * Portability note: the last comparison (check that we fit into triple
 151 * indirect block) is spelled differently, because otherwise on an
 152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 153 * if our filesystem had 8Kb blocks. We might use long long, but that would
 154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 155 * i_block would have to be negative in the very beginning, so we would not
 156 * get there at all.
 157 */
 158
 159static int ext2_block_to_path(struct inode *inode,
 160                        long i_block, int offsets[4], int *boundary)
 161{
 162        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 163        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 164        const long direct_blocks = EXT2_NDIR_BLOCKS,
 165                indirect_blocks = ptrs,
 166                double_blocks = (1 << (ptrs_bits * 2));
 167        int n = 0;
 168        int final = 0;
 169
 170        if (i_block < 0) {
 171                ext2_msg(inode->i_sb, KERN_WARNING,
 172                        "warning: %s: block < 0", __func__);
 173        } else if (i_block < direct_blocks) {
 174                offsets[n++] = i_block;
 175                final = direct_blocks;
 176        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 177                offsets[n++] = EXT2_IND_BLOCK;
 178                offsets[n++] = i_block;
 179                final = ptrs;
 180        } else if ((i_block -= indirect_blocks) < double_blocks) {
 181                offsets[n++] = EXT2_DIND_BLOCK;
 182                offsets[n++] = i_block >> ptrs_bits;
 183                offsets[n++] = i_block & (ptrs - 1);
 184                final = ptrs;
 185        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 186                offsets[n++] = EXT2_TIND_BLOCK;
 187                offsets[n++] = i_block >> (ptrs_bits * 2);
 188                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 189                offsets[n++] = i_block & (ptrs - 1);
 190                final = ptrs;
 191        } else {
 192                ext2_msg(inode->i_sb, KERN_WARNING,
 193                        "warning: %s: block is too big", __func__);
 194        }
 195        if (boundary)
 196                *boundary = final - 1 - (i_block & (ptrs - 1));
 197
 198        return n;
 199}
 200
 201/**
 202 *      ext2_get_branch - read the chain of indirect blocks leading to data
 203 *      @inode: inode in question
 204 *      @depth: depth of the chain (1 - direct pointer, etc.)
 205 *      @offsets: offsets of pointers in inode/indirect blocks
 206 *      @chain: place to store the result
 207 *      @err: here we store the error value
 208 *
 209 *      Function fills the array of triples <key, p, bh> and returns %NULL
 210 *      if everything went OK or the pointer to the last filled triple
 211 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 212 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 213 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 214 *      number (it points into struct inode for i==0 and into the bh->b_data
 215 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 216 *      block for i>0 and NULL for i==0. In other words, it holds the block
 217 *      numbers of the chain, addresses they were taken from (and where we can
 218 *      verify that chain did not change) and buffer_heads hosting these
 219 *      numbers.
 220 *
 221 *      Function stops when it stumbles upon zero pointer (absent block)
 222 *              (pointer to last triple returned, *@err == 0)
 223 *      or when it gets an IO error reading an indirect block
 224 *              (ditto, *@err == -EIO)
 225 *      or when it notices that chain had been changed while it was reading
 226 *              (ditto, *@err == -EAGAIN)
 227 *      or when it reads all @depth-1 indirect blocks successfully and finds
 228 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 229 */
 230static Indirect *ext2_get_branch(struct inode *inode,
 231                                 int depth,
 232                                 int *offsets,
 233                                 Indirect chain[4],
 234                                 int *err)
 235{
 236        struct super_block *sb = inode->i_sb;
 237        Indirect *p = chain;
 238        struct buffer_head *bh;
 239
 240        *err = 0;
 241        /* i_data is not going away, no lock needed */
 242        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 243        if (!p->key)
 244                goto no_block;
 245        while (--depth) {
 246                bh = sb_bread(sb, le32_to_cpu(p->key));
 247                if (!bh)
 248                        goto failure;
 249                read_lock(&EXT2_I(inode)->i_meta_lock);
 250                if (!verify_chain(chain, p))
 251                        goto changed;
 252                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 253                read_unlock(&EXT2_I(inode)->i_meta_lock);
 254                if (!p->key)
 255                        goto no_block;
 256        }
 257        return NULL;
 258
 259changed:
 260        read_unlock(&EXT2_I(inode)->i_meta_lock);
 261        brelse(bh);
 262        *err = -EAGAIN;
 263        goto no_block;
 264failure:
 265        *err = -EIO;
 266no_block:
 267        return p;
 268}
 269
 270/**
 271 *      ext2_find_near - find a place for allocation with sufficient locality
 272 *      @inode: owner
 273 *      @ind: descriptor of indirect block.
 274 *
 275 *      This function returns the preferred place for block allocation.
 276 *      It is used when heuristic for sequential allocation fails.
 277 *      Rules are:
 278 *        + if there is a block to the left of our position - allocate near it.
 279 *        + if pointer will live in indirect block - allocate near that block.
 280 *        + if pointer will live in inode - allocate in the same cylinder group.
 281 *
 282 * In the latter case we colour the starting block by the callers PID to
 283 * prevent it from clashing with concurrent allocations for a different inode
 284 * in the same block group.   The PID is used here so that functionally related
 285 * files will be close-by on-disk.
 286 *
 287 *      Caller must make sure that @ind is valid and will stay that way.
 288 */
 289
 290static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 291{
 292        struct ext2_inode_info *ei = EXT2_I(inode);
 293        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 294        __le32 *p;
 295        ext2_fsblk_t bg_start;
 296        ext2_fsblk_t colour;
 297
 298        /* Try to find previous block */
 299        for (p = ind->p - 1; p >= start; p--)
 300                if (*p)
 301                        return le32_to_cpu(*p);
 302
 303        /* No such thing, so let's try location of indirect block */
 304        if (ind->bh)
 305                return ind->bh->b_blocknr;
 306
 307        /*
 308         * It is going to be referred from inode itself? OK, just put it into
 309         * the same cylinder group then.
 310         */
 311        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 312        colour = (current->pid % 16) *
 313                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 314        return bg_start + colour;
 315}
 316
 317/**
 318 *      ext2_find_goal - find a preferred place for allocation.
 319 *      @inode: owner
 320 *      @block:  block we want
 321 *      @partial: pointer to the last triple within a chain
 322 *
 323 *      Returns preferred place for a block (the goal).
 324 */
 325
 326static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 327                                          Indirect *partial)
 328{
 329        struct ext2_block_alloc_info *block_i;
 330
 331        block_i = EXT2_I(inode)->i_block_alloc_info;
 332
 333        /*
 334         * try the heuristic for sequential allocation,
 335         * failing that at least try to get decent locality.
 336         */
 337        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 338                && (block_i->last_alloc_physical_block != 0)) {
 339                return block_i->last_alloc_physical_block + 1;
 340        }
 341
 342        return ext2_find_near(inode, partial);
 343}
 344
 345/**
 346 *      ext2_blks_to_allocate: Look up the block map and count the number
 347 *      of direct blocks need to be allocated for the given branch.
 348 *
 349 *      @branch: chain of indirect blocks
 350 *      @k: number of blocks need for indirect blocks
 351 *      @blks: number of data blocks to be mapped.
 352 *      @blocks_to_boundary:  the offset in the indirect block
 353 *
 354 *      return the total number of blocks to be allocate, including the
 355 *      direct and indirect blocks.
 356 */
 357static int
 358ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 359                int blocks_to_boundary)
 360{
 361        unsigned long count = 0;
 362
 363        /*
 364         * Simple case, [t,d]Indirect block(s) has not allocated yet
 365         * then it's clear blocks on that path have not allocated
 366         */
 367        if (k > 0) {
 368                /* right now don't hanel cross boundary allocation */
 369                if (blks < blocks_to_boundary + 1)
 370                        count += blks;
 371                else
 372                        count += blocks_to_boundary + 1;
 373                return count;
 374        }
 375
 376        count++;
 377        while (count < blks && count <= blocks_to_boundary
 378                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 379                count++;
 380        }
 381        return count;
 382}
 383
 384/**
 385 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 386 *      @indirect_blks: the number of blocks need to allocate for indirect
 387 *                      blocks
 388 *
 389 *      @new_blocks: on return it will store the new block numbers for
 390 *      the indirect blocks(if needed) and the first direct block,
 391 *      @blks:  on return it will store the total number of allocated
 392 *              direct blocks
 393 */
 394static int ext2_alloc_blocks(struct inode *inode,
 395                        ext2_fsblk_t goal, int indirect_blks, int blks,
 396                        ext2_fsblk_t new_blocks[4], int *err)
 397{
 398        int target, i;
 399        unsigned long count = 0;
 400        int index = 0;
 401        ext2_fsblk_t current_block = 0;
 402        int ret = 0;
 403
 404        /*
 405         * Here we try to allocate the requested multiple blocks at once,
 406         * on a best-effort basis.
 407         * To build a branch, we should allocate blocks for
 408         * the indirect blocks(if not allocated yet), and at least
 409         * the first direct block of this branch.  That's the
 410         * minimum number of blocks need to allocate(required)
 411         */
 412        target = blks + indirect_blks;
 413
 414        while (1) {
 415                count = target;
 416                /* allocating blocks for indirect blocks and direct blocks */
 417                current_block = ext2_new_blocks(inode,goal,&count,err);
 418                if (*err)
 419                        goto failed_out;
 420
 421                target -= count;
 422                /* allocate blocks for indirect blocks */
 423                while (index < indirect_blks && count) {
 424                        new_blocks[index++] = current_block++;
 425                        count--;
 426                }
 427
 428                if (count > 0)
 429                        break;
 430        }
 431
 432        /* save the new block number for the first direct block */
 433        new_blocks[index] = current_block;
 434
 435        /* total number of blocks allocated for direct blocks */
 436        ret = count;
 437        *err = 0;
 438        return ret;
 439failed_out:
 440        for (i = 0; i <index; i++)
 441                ext2_free_blocks(inode, new_blocks[i], 1);
 442        if (index)
 443                mark_inode_dirty(inode);
 444        return ret;
 445}
 446
 447/**
 448 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 449 *      @inode: owner
 450 *      @num: depth of the chain (number of blocks to allocate)
 451 *      @offsets: offsets (in the blocks) to store the pointers to next.
 452 *      @branch: place to store the chain in.
 453 *
 454 *      This function allocates @num blocks, zeroes out all but the last one,
 455 *      links them into chain and (if we are synchronous) writes them to disk.
 456 *      In other words, it prepares a branch that can be spliced onto the
 457 *      inode. It stores the information about that chain in the branch[], in
 458 *      the same format as ext2_get_branch() would do. We are calling it after
 459 *      we had read the existing part of chain and partial points to the last
 460 *      triple of that (one with zero ->key). Upon the exit we have the same
 461 *      picture as after the successful ext2_get_block(), except that in one
 462 *      place chain is disconnected - *branch->p is still zero (we did not
 463 *      set the last link), but branch->key contains the number that should
 464 *      be placed into *branch->p to fill that gap.
 465 *
 466 *      If allocation fails we free all blocks we've allocated (and forget
 467 *      their buffer_heads) and return the error value the from failed
 468 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 469 *      as described above and return 0.
 470 */
 471
 472static int ext2_alloc_branch(struct inode *inode,
 473                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 474                        int *offsets, Indirect *branch)
 475{
 476        int blocksize = inode->i_sb->s_blocksize;
 477        int i, n = 0;
 478        int err = 0;
 479        struct buffer_head *bh;
 480        int num;
 481        ext2_fsblk_t new_blocks[4];
 482        ext2_fsblk_t current_block;
 483
 484        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 485                                *blks, new_blocks, &err);
 486        if (err)
 487                return err;
 488
 489        branch[0].key = cpu_to_le32(new_blocks[0]);
 490        /*
 491         * metadata blocks and data blocks are allocated.
 492         */
 493        for (n = 1; n <= indirect_blks;  n++) {
 494                /*
 495                 * Get buffer_head for parent block, zero it out
 496                 * and set the pointer to new one, then send
 497                 * parent to disk.
 498                 */
 499                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 500                branch[n].bh = bh;
 501                lock_buffer(bh);
 502                memset(bh->b_data, 0, blocksize);
 503                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 504                branch[n].key = cpu_to_le32(new_blocks[n]);
 505                *branch[n].p = branch[n].key;
 506                if ( n == indirect_blks) {
 507                        current_block = new_blocks[n];
 508                        /*
 509                         * End of chain, update the last new metablock of
 510                         * the chain to point to the new allocated
 511                         * data blocks numbers
 512                         */
 513                        for (i=1; i < num; i++)
 514                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 515                }
 516                set_buffer_uptodate(bh);
 517                unlock_buffer(bh);
 518                mark_buffer_dirty_inode(bh, inode);
 519                /* We used to sync bh here if IS_SYNC(inode).
 520                 * But we now rely upon generic_write_sync()
 521                 * and b_inode_buffers.  But not for directories.
 522                 */
 523                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 524                        sync_dirty_buffer(bh);
 525        }
 526        *blks = num;
 527        return err;
 528}
 529
 530/**
 531 * ext2_splice_branch - splice the allocated branch onto inode.
 532 * @inode: owner
 533 * @block: (logical) number of block we are adding
 534 * @where: location of missing link
 535 * @num:   number of indirect blocks we are adding
 536 * @blks:  number of direct blocks we are adding
 537 *
 538 * This function fills the missing link and does all housekeeping needed in
 539 * inode (->i_blocks, etc.). In case of success we end up with the full
 540 * chain to new block and return 0.
 541 */
 542static void ext2_splice_branch(struct inode *inode,
 543                        long block, Indirect *where, int num, int blks)
 544{
 545        int i;
 546        struct ext2_block_alloc_info *block_i;
 547        ext2_fsblk_t current_block;
 548
 549        block_i = EXT2_I(inode)->i_block_alloc_info;
 550
 551        /* XXX LOCKING probably should have i_meta_lock ?*/
 552        /* That's it */
 553
 554        *where->p = where->key;
 555
 556        /*
 557         * Update the host buffer_head or inode to point to more just allocated
 558         * direct blocks blocks
 559         */
 560        if (num == 0 && blks > 1) {
 561                current_block = le32_to_cpu(where->key) + 1;
 562                for (i = 1; i < blks; i++)
 563                        *(where->p + i ) = cpu_to_le32(current_block++);
 564        }
 565
 566        /*
 567         * update the most recently allocated logical & physical block
 568         * in i_block_alloc_info, to assist find the proper goal block for next
 569         * allocation
 570         */
 571        if (block_i) {
 572                block_i->last_alloc_logical_block = block + blks - 1;
 573                block_i->last_alloc_physical_block =
 574                                le32_to_cpu(where[num].key) + blks - 1;
 575        }
 576
 577        /* We are done with atomic stuff, now do the rest of housekeeping */
 578
 579        /* had we spliced it onto indirect block? */
 580        if (where->bh)
 581                mark_buffer_dirty_inode(where->bh, inode);
 582
 583        inode->i_ctime = CURRENT_TIME_SEC;
 584        mark_inode_dirty(inode);
 585}
 586
 587/*
 588 * Allocation strategy is simple: if we have to allocate something, we will
 589 * have to go the whole way to leaf. So let's do it before attaching anything
 590 * to tree, set linkage between the newborn blocks, write them if sync is
 591 * required, recheck the path, free and repeat if check fails, otherwise
 592 * set the last missing link (that will protect us from any truncate-generated
 593 * removals - all blocks on the path are immune now) and possibly force the
 594 * write on the parent block.
 595 * That has a nice additional property: no special recovery from the failed
 596 * allocations is needed - we simply release blocks and do not touch anything
 597 * reachable from inode.
 598 *
 599 * `handle' can be NULL if create == 0.
 600 *
 601 * return > 0, # of blocks mapped or allocated.
 602 * return = 0, if plain lookup failed.
 603 * return < 0, error case.
 604 */
 605static int ext2_get_blocks(struct inode *inode,
 606                           sector_t iblock, unsigned long maxblocks,
 607                           struct buffer_head *bh_result,
 608                           int create)
 609{
 610        int err = -EIO;
 611        int offsets[4];
 612        Indirect chain[4];
 613        Indirect *partial;
 614        ext2_fsblk_t goal;
 615        int indirect_blks;
 616        int blocks_to_boundary = 0;
 617        int depth;
 618        struct ext2_inode_info *ei = EXT2_I(inode);
 619        int count = 0;
 620        ext2_fsblk_t first_block = 0;
 621
 622        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 623
 624        if (depth == 0)
 625                return (err);
 626
 627        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 628        /* Simplest case - block found, no allocation needed */
 629        if (!partial) {
 630                first_block = le32_to_cpu(chain[depth - 1].key);
 631                clear_buffer_new(bh_result); /* What's this do? */
 632                count++;
 633                /*map more blocks*/
 634                while (count < maxblocks && count <= blocks_to_boundary) {
 635                        ext2_fsblk_t blk;
 636
 637                        if (!verify_chain(chain, chain + depth - 1)) {
 638                                /*
 639                                 * Indirect block might be removed by
 640                                 * truncate while we were reading it.
 641                                 * Handling of that case: forget what we've
 642                                 * got now, go to reread.
 643                                 */
 644                                err = -EAGAIN;
 645                                count = 0;
 646                                break;
 647                        }
 648                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 649                        if (blk == first_block + count)
 650                                count++;
 651                        else
 652                                break;
 653                }
 654                if (err != -EAGAIN)
 655                        goto got_it;
 656        }
 657
 658        /* Next simple case - plain lookup or failed read of indirect block */
 659        if (!create || err == -EIO)
 660                goto cleanup;
 661
 662        mutex_lock(&ei->truncate_mutex);
 663        /*
 664         * If the indirect block is missing while we are reading
 665         * the chain(ext2_get_branch() returns -EAGAIN err), or
 666         * if the chain has been changed after we grab the semaphore,
 667         * (either because another process truncated this branch, or
 668         * another get_block allocated this branch) re-grab the chain to see if
 669         * the request block has been allocated or not.
 670         *
 671         * Since we already block the truncate/other get_block
 672         * at this point, we will have the current copy of the chain when we
 673         * splice the branch into the tree.
 674         */
 675        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 676                while (partial > chain) {
 677                        brelse(partial->bh);
 678                        partial--;
 679                }
 680                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 681                if (!partial) {
 682                        count++;
 683                        mutex_unlock(&ei->truncate_mutex);
 684                        if (err)
 685                                goto cleanup;
 686                        clear_buffer_new(bh_result);
 687                        goto got_it;
 688                }
 689        }
 690
 691        /*
 692         * Okay, we need to do block allocation.  Lazily initialize the block
 693         * allocation info here if necessary
 694        */
 695        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 696                ext2_init_block_alloc_info(inode);
 697
 698        goal = ext2_find_goal(inode, iblock, partial);
 699
 700        /* the number of blocks need to allocate for [d,t]indirect blocks */
 701        indirect_blks = (chain + depth) - partial - 1;
 702        /*
 703         * Next look up the indirect map to count the totoal number of
 704         * direct blocks to allocate for this branch.
 705         */
 706        count = ext2_blks_to_allocate(partial, indirect_blks,
 707                                        maxblocks, blocks_to_boundary);
 708        /*
 709         * XXX ???? Block out ext2_truncate while we alter the tree
 710         */
 711        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 712                                offsets + (partial - chain), partial);
 713
 714        if (err) {
 715                mutex_unlock(&ei->truncate_mutex);
 716                goto cleanup;
 717        }
 718
 719        if (ext2_use_xip(inode->i_sb)) {
 720                /*
 721                 * we need to clear the block
 722                 */
 723                err = ext2_clear_xip_target (inode,
 724                        le32_to_cpu(chain[depth-1].key));
 725                if (err) {
 726                        mutex_unlock(&ei->truncate_mutex);
 727                        goto cleanup;
 728                }
 729        }
 730
 731        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 732        mutex_unlock(&ei->truncate_mutex);
 733        set_buffer_new(bh_result);
 734got_it:
 735        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 736        if (count > blocks_to_boundary)
 737                set_buffer_boundary(bh_result);
 738        err = count;
 739        /* Clean up and exit */
 740        partial = chain + depth - 1;    /* the whole chain */
 741cleanup:
 742        while (partial > chain) {
 743                brelse(partial->bh);
 744                partial--;
 745        }
 746        return err;
 747}
 748
 749int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 750{
 751        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 752        int ret = ext2_get_blocks(inode, iblock, max_blocks,
 753                              bh_result, create);
 754        if (ret > 0) {
 755                bh_result->b_size = (ret << inode->i_blkbits);
 756                ret = 0;
 757        }
 758        return ret;
 759
 760}
 761
 762int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 763                u64 start, u64 len)
 764{
 765        return generic_block_fiemap(inode, fieinfo, start, len,
 766                                    ext2_get_block);
 767}
 768
 769static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 770{
 771        return block_write_full_page(page, ext2_get_block, wbc);
 772}
 773
 774static int ext2_readpage(struct file *file, struct page *page)
 775{
 776        return mpage_readpage(page, ext2_get_block);
 777}
 778
 779static int
 780ext2_readpages(struct file *file, struct address_space *mapping,
 781                struct list_head *pages, unsigned nr_pages)
 782{
 783        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 784}
 785
 786static int
 787ext2_write_begin(struct file *file, struct address_space *mapping,
 788                loff_t pos, unsigned len, unsigned flags,
 789                struct page **pagep, void **fsdata)
 790{
 791        int ret;
 792
 793        ret = block_write_begin(mapping, pos, len, flags, pagep,
 794                                ext2_get_block);
 795        if (ret < 0)
 796                ext2_write_failed(mapping, pos + len);
 797        return ret;
 798}
 799
 800static int ext2_write_end(struct file *file, struct address_space *mapping,
 801                        loff_t pos, unsigned len, unsigned copied,
 802                        struct page *page, void *fsdata)
 803{
 804        int ret;
 805
 806        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 807        if (ret < len)
 808                ext2_write_failed(mapping, pos + len);
 809        return ret;
 810}
 811
 812static int
 813ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 814                loff_t pos, unsigned len, unsigned flags,
 815                struct page **pagep, void **fsdata)
 816{
 817        int ret;
 818
 819        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 820                               ext2_get_block);
 821        if (ret < 0)
 822                ext2_write_failed(mapping, pos + len);
 823        return ret;
 824}
 825
 826static int ext2_nobh_writepage(struct page *page,
 827                        struct writeback_control *wbc)
 828{
 829        return nobh_writepage(page, ext2_get_block, wbc);
 830}
 831
 832static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 833{
 834        return generic_block_bmap(mapping,block,ext2_get_block);
 835}
 836
 837static ssize_t
 838ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 839                        loff_t offset, unsigned long nr_segs)
 840{
 841        struct file *file = iocb->ki_filp;
 842        struct address_space *mapping = file->f_mapping;
 843        struct inode *inode = mapping->host;
 844        ssize_t ret;
 845
 846        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 847                                iov, offset, nr_segs, ext2_get_block, NULL);
 848        if (ret < 0 && (rw & WRITE))
 849                ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
 850        return ret;
 851}
 852
 853static int
 854ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 855{
 856        return mpage_writepages(mapping, wbc, ext2_get_block);
 857}
 858
 859const struct address_space_operations ext2_aops = {
 860        .readpage               = ext2_readpage,
 861        .readpages              = ext2_readpages,
 862        .writepage              = ext2_writepage,
 863        .write_begin            = ext2_write_begin,
 864        .write_end              = ext2_write_end,
 865        .bmap                   = ext2_bmap,
 866        .direct_IO              = ext2_direct_IO,
 867        .writepages             = ext2_writepages,
 868        .migratepage            = buffer_migrate_page,
 869        .is_partially_uptodate  = block_is_partially_uptodate,
 870        .error_remove_page      = generic_error_remove_page,
 871};
 872
 873const struct address_space_operations ext2_aops_xip = {
 874        .bmap                   = ext2_bmap,
 875        .get_xip_mem            = ext2_get_xip_mem,
 876};
 877
 878const struct address_space_operations ext2_nobh_aops = {
 879        .readpage               = ext2_readpage,
 880        .readpages              = ext2_readpages,
 881        .writepage              = ext2_nobh_writepage,
 882        .write_begin            = ext2_nobh_write_begin,
 883        .write_end              = nobh_write_end,
 884        .bmap                   = ext2_bmap,
 885        .direct_IO              = ext2_direct_IO,
 886        .writepages             = ext2_writepages,
 887        .migratepage            = buffer_migrate_page,
 888        .error_remove_page      = generic_error_remove_page,
 889};
 890
 891/*
 892 * Probably it should be a library function... search for first non-zero word
 893 * or memcmp with zero_page, whatever is better for particular architecture.
 894 * Linus?
 895 */
 896static inline int all_zeroes(__le32 *p, __le32 *q)
 897{
 898        while (p < q)
 899                if (*p++)
 900                        return 0;
 901        return 1;
 902}
 903
 904/**
 905 *      ext2_find_shared - find the indirect blocks for partial truncation.
 906 *      @inode:   inode in question
 907 *      @depth:   depth of the affected branch
 908 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
 909 *      @chain:   place to store the pointers to partial indirect blocks
 910 *      @top:     place to the (detached) top of branch
 911 *
 912 *      This is a helper function used by ext2_truncate().
 913 *
 914 *      When we do truncate() we may have to clean the ends of several indirect
 915 *      blocks but leave the blocks themselves alive. Block is partially
 916 *      truncated if some data below the new i_size is referred from it (and
 917 *      it is on the path to the first completely truncated data block, indeed).
 918 *      We have to free the top of that path along with everything to the right
 919 *      of the path. Since no allocation past the truncation point is possible
 920 *      until ext2_truncate() finishes, we may safely do the latter, but top
 921 *      of branch may require special attention - pageout below the truncation
 922 *      point might try to populate it.
 923 *
 924 *      We atomically detach the top of branch from the tree, store the block
 925 *      number of its root in *@top, pointers to buffer_heads of partially
 926 *      truncated blocks - in @chain[].bh and pointers to their last elements
 927 *      that should not be removed - in @chain[].p. Return value is the pointer
 928 *      to last filled element of @chain.
 929 *
 930 *      The work left to caller to do the actual freeing of subtrees:
 931 *              a) free the subtree starting from *@top
 932 *              b) free the subtrees whose roots are stored in
 933 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 934 *              c) free the subtrees growing from the inode past the @chain[0].p
 935 *                      (no partially truncated stuff there).
 936 */
 937
 938static Indirect *ext2_find_shared(struct inode *inode,
 939                                int depth,
 940                                int offsets[4],
 941                                Indirect chain[4],
 942                                __le32 *top)
 943{
 944        Indirect *partial, *p;
 945        int k, err;
 946
 947        *top = 0;
 948        for (k = depth; k > 1 && !offsets[k-1]; k--)
 949                ;
 950        partial = ext2_get_branch(inode, k, offsets, chain, &err);
 951        if (!partial)
 952                partial = chain + k-1;
 953        /*
 954         * If the branch acquired continuation since we've looked at it -
 955         * fine, it should all survive and (new) top doesn't belong to us.
 956         */
 957        write_lock(&EXT2_I(inode)->i_meta_lock);
 958        if (!partial->key && *partial->p) {
 959                write_unlock(&EXT2_I(inode)->i_meta_lock);
 960                goto no_top;
 961        }
 962        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 963                ;
 964        /*
 965         * OK, we've found the last block that must survive. The rest of our
 966         * branch should be detached before unlocking. However, if that rest
 967         * of branch is all ours and does not grow immediately from the inode
 968         * it's easier to cheat and just decrement partial->p.
 969         */
 970        if (p == chain + k - 1 && p > chain) {
 971                p->p--;
 972        } else {
 973                *top = *p->p;
 974                *p->p = 0;
 975        }
 976        write_unlock(&EXT2_I(inode)->i_meta_lock);
 977
 978        while(partial > p)
 979        {
 980                brelse(partial->bh);
 981                partial--;
 982        }
 983no_top:
 984        return partial;
 985}
 986
 987/**
 988 *      ext2_free_data - free a list of data blocks
 989 *      @inode: inode we are dealing with
 990 *      @p:     array of block numbers
 991 *      @q:     points immediately past the end of array
 992 *
 993 *      We are freeing all blocks referred from that array (numbers are
 994 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 995 *      appropriately.
 996 */
 997static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
 998{
 999        unsigned long block_to_free = 0, count = 0;
1000        unsigned long nr;
1001
1002        for ( ; p < q ; p++) {
1003                nr = le32_to_cpu(*p);
1004                if (nr) {
1005                        *p = 0;
1006                        /* accumulate blocks to free if they're contiguous */
1007                        if (count == 0)
1008                                goto free_this;
1009                        else if (block_to_free == nr - count)
1010                                count++;
1011                        else {
1012                                ext2_free_blocks (inode, block_to_free, count);
1013                                mark_inode_dirty(inode);
1014                        free_this:
1015                                block_to_free = nr;
1016                                count = 1;
1017                        }
1018                }
1019        }
1020        if (count > 0) {
1021                ext2_free_blocks (inode, block_to_free, count);
1022                mark_inode_dirty(inode);
1023        }
1024}
1025
1026/**
1027 *      ext2_free_branches - free an array of branches
1028 *      @inode: inode we are dealing with
1029 *      @p:     array of block numbers
1030 *      @q:     pointer immediately past the end of array
1031 *      @depth: depth of the branches to free
1032 *
1033 *      We are freeing all blocks referred from these branches (numbers are
1034 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1035 *      appropriately.
1036 */
1037static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1038{
1039        struct buffer_head * bh;
1040        unsigned long nr;
1041
1042        if (depth--) {
1043                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1044                for ( ; p < q ; p++) {
1045                        nr = le32_to_cpu(*p);
1046                        if (!nr)
1047                                continue;
1048                        *p = 0;
1049                        bh = sb_bread(inode->i_sb, nr);
1050                        /*
1051                         * A read failure? Report error and clear slot
1052                         * (should be rare).
1053                         */ 
1054                        if (!bh) {
1055                                ext2_error(inode->i_sb, "ext2_free_branches",
1056                                        "Read failure, inode=%ld, block=%ld",
1057                                        inode->i_ino, nr);
1058                                continue;
1059                        }
1060                        ext2_free_branches(inode,
1061                                           (__le32*)bh->b_data,
1062                                           (__le32*)bh->b_data + addr_per_block,
1063                                           depth);
1064                        bforget(bh);
1065                        ext2_free_blocks(inode, nr, 1);
1066                        mark_inode_dirty(inode);
1067                }
1068        } else
1069                ext2_free_data(inode, p, q);
1070}
1071
1072static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1073{
1074        __le32 *i_data = EXT2_I(inode)->i_data;
1075        struct ext2_inode_info *ei = EXT2_I(inode);
1076        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1077        int offsets[4];
1078        Indirect chain[4];
1079        Indirect *partial;
1080        __le32 nr = 0;
1081        int n;
1082        long iblock;
1083        unsigned blocksize;
1084        blocksize = inode->i_sb->s_blocksize;
1085        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1086
1087        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1088        if (n == 0)
1089                return;
1090
1091        /*
1092         * From here we block out all ext2_get_block() callers who want to
1093         * modify the block allocation tree.
1094         */
1095        mutex_lock(&ei->truncate_mutex);
1096
1097        if (n == 1) {
1098                ext2_free_data(inode, i_data+offsets[0],
1099                                        i_data + EXT2_NDIR_BLOCKS);
1100                goto do_indirects;
1101        }
1102
1103        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1104        /* Kill the top of shared branch (already detached) */
1105        if (nr) {
1106                if (partial == chain)
1107                        mark_inode_dirty(inode);
1108                else
1109                        mark_buffer_dirty_inode(partial->bh, inode);
1110                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1111        }
1112        /* Clear the ends of indirect blocks on the shared branch */
1113        while (partial > chain) {
1114                ext2_free_branches(inode,
1115                                   partial->p + 1,
1116                                   (__le32*)partial->bh->b_data+addr_per_block,
1117                                   (chain+n-1) - partial);
1118                mark_buffer_dirty_inode(partial->bh, inode);
1119                brelse (partial->bh);
1120                partial--;
1121        }
1122do_indirects:
1123        /* Kill the remaining (whole) subtrees */
1124        switch (offsets[0]) {
1125                default:
1126                        nr = i_data[EXT2_IND_BLOCK];
1127                        if (nr) {
1128                                i_data[EXT2_IND_BLOCK] = 0;
1129                                mark_inode_dirty(inode);
1130                                ext2_free_branches(inode, &nr, &nr+1, 1);
1131                        }
1132                case EXT2_IND_BLOCK:
1133                        nr = i_data[EXT2_DIND_BLOCK];
1134                        if (nr) {
1135                                i_data[EXT2_DIND_BLOCK] = 0;
1136                                mark_inode_dirty(inode);
1137                                ext2_free_branches(inode, &nr, &nr+1, 2);
1138                        }
1139                case EXT2_DIND_BLOCK:
1140                        nr = i_data[EXT2_TIND_BLOCK];
1141                        if (nr) {
1142                                i_data[EXT2_TIND_BLOCK] = 0;
1143                                mark_inode_dirty(inode);
1144                                ext2_free_branches(inode, &nr, &nr+1, 3);
1145                        }
1146                case EXT2_TIND_BLOCK:
1147                        ;
1148        }
1149
1150        ext2_discard_reservation(inode);
1151
1152        mutex_unlock(&ei->truncate_mutex);
1153}
1154
1155static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1156{
1157        /*
1158         * XXX: it seems like a bug here that we don't allow
1159         * IS_APPEND inode to have blocks-past-i_size trimmed off.
1160         * review and fix this.
1161         *
1162         * Also would be nice to be able to handle IO errors and such,
1163         * but that's probably too much to ask.
1164         */
1165        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1166            S_ISLNK(inode->i_mode)))
1167                return;
1168        if (ext2_inode_is_fast_symlink(inode))
1169                return;
1170        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1171                return;
1172        __ext2_truncate_blocks(inode, offset);
1173}
1174
1175static int ext2_setsize(struct inode *inode, loff_t newsize)
1176{
1177        int error;
1178
1179        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1180            S_ISLNK(inode->i_mode)))
1181                return -EINVAL;
1182        if (ext2_inode_is_fast_symlink(inode))
1183                return -EINVAL;
1184        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1185                return -EPERM;
1186
1187        if (mapping_is_xip(inode->i_mapping))
1188                error = xip_truncate_page(inode->i_mapping, newsize);
1189        else if (test_opt(inode->i_sb, NOBH))
1190                error = nobh_truncate_page(inode->i_mapping,
1191                                newsize, ext2_get_block);
1192        else
1193                error = block_truncate_page(inode->i_mapping,
1194                                newsize, ext2_get_block);
1195        if (error)
1196                return error;
1197
1198        truncate_setsize(inode, newsize);
1199        __ext2_truncate_blocks(inode, newsize);
1200
1201        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1202        if (inode_needs_sync(inode)) {
1203                sync_mapping_buffers(inode->i_mapping);
1204                sync_inode_metadata(inode, 1);
1205        } else {
1206                mark_inode_dirty(inode);
1207        }
1208
1209        return 0;
1210}
1211
1212static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1213                                        struct buffer_head **p)
1214{
1215        struct buffer_head * bh;
1216        unsigned long block_group;
1217        unsigned long block;
1218        unsigned long offset;
1219        struct ext2_group_desc * gdp;
1220
1221        *p = NULL;
1222        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1223            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1224                goto Einval;
1225
1226        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1227        gdp = ext2_get_group_desc(sb, block_group, NULL);
1228        if (!gdp)
1229                goto Egdp;
1230        /*
1231         * Figure out the offset within the block group inode table
1232         */
1233        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1234        block = le32_to_cpu(gdp->bg_inode_table) +
1235                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1236        if (!(bh = sb_bread(sb, block)))
1237                goto Eio;
1238
1239        *p = bh;
1240        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1241        return (struct ext2_inode *) (bh->b_data + offset);
1242
1243Einval:
1244        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1245                   (unsigned long) ino);
1246        return ERR_PTR(-EINVAL);
1247Eio:
1248        ext2_error(sb, "ext2_get_inode",
1249                   "unable to read inode block - inode=%lu, block=%lu",
1250                   (unsigned long) ino, block);
1251Egdp:
1252        return ERR_PTR(-EIO);
1253}
1254
1255void ext2_set_inode_flags(struct inode *inode)
1256{
1257        unsigned int flags = EXT2_I(inode)->i_flags;
1258
1259        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1260        if (flags & EXT2_SYNC_FL)
1261                inode->i_flags |= S_SYNC;
1262        if (flags & EXT2_APPEND_FL)
1263                inode->i_flags |= S_APPEND;
1264        if (flags & EXT2_IMMUTABLE_FL)
1265                inode->i_flags |= S_IMMUTABLE;
1266        if (flags & EXT2_NOATIME_FL)
1267                inode->i_flags |= S_NOATIME;
1268        if (flags & EXT2_DIRSYNC_FL)
1269                inode->i_flags |= S_DIRSYNC;
1270}
1271
1272/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1273void ext2_get_inode_flags(struct ext2_inode_info *ei)
1274{
1275        unsigned int flags = ei->vfs_inode.i_flags;
1276
1277        ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1278                        EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1279        if (flags & S_SYNC)
1280                ei->i_flags |= EXT2_SYNC_FL;
1281        if (flags & S_APPEND)
1282                ei->i_flags |= EXT2_APPEND_FL;
1283        if (flags & S_IMMUTABLE)
1284                ei->i_flags |= EXT2_IMMUTABLE_FL;
1285        if (flags & S_NOATIME)
1286                ei->i_flags |= EXT2_NOATIME_FL;
1287        if (flags & S_DIRSYNC)
1288                ei->i_flags |= EXT2_DIRSYNC_FL;
1289}
1290
1291struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1292{
1293        struct ext2_inode_info *ei;
1294        struct buffer_head * bh;
1295        struct ext2_inode *raw_inode;
1296        struct inode *inode;
1297        long ret = -EIO;
1298        int n;
1299
1300        inode = iget_locked(sb, ino);
1301        if (!inode)
1302                return ERR_PTR(-ENOMEM);
1303        if (!(inode->i_state & I_NEW))
1304                return inode;
1305
1306        ei = EXT2_I(inode);
1307        ei->i_block_alloc_info = NULL;
1308
1309        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1310        if (IS_ERR(raw_inode)) {
1311                ret = PTR_ERR(raw_inode);
1312                goto bad_inode;
1313        }
1314
1315        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1316        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1317        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1318        if (!(test_opt (inode->i_sb, NO_UID32))) {
1319                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1320                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1321        }
1322        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1323        inode->i_size = le32_to_cpu(raw_inode->i_size);
1324        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1325        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1326        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1327        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1328        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1329        /* We now have enough fields to check if the inode was active or not.
1330         * This is needed because nfsd might try to access dead inodes
1331         * the test is that same one that e2fsck uses
1332         * NeilBrown 1999oct15
1333         */
1334        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1335                /* this inode is deleted */
1336                brelse (bh);
1337                ret = -ESTALE;
1338                goto bad_inode;
1339        }
1340        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1341        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1342        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1343        ei->i_frag_no = raw_inode->i_frag;
1344        ei->i_frag_size = raw_inode->i_fsize;
1345        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1346        ei->i_dir_acl = 0;
1347        if (S_ISREG(inode->i_mode))
1348                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1349        else
1350                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1351        ei->i_dtime = 0;
1352        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1353        ei->i_state = 0;
1354        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1355        ei->i_dir_start_lookup = 0;
1356
1357        /*
1358         * NOTE! The in-memory inode i_data array is in little-endian order
1359         * even on big-endian machines: we do NOT byteswap the block numbers!
1360         */
1361        for (n = 0; n < EXT2_N_BLOCKS; n++)
1362                ei->i_data[n] = raw_inode->i_block[n];
1363
1364        if (S_ISREG(inode->i_mode)) {
1365                inode->i_op = &ext2_file_inode_operations;
1366                if (ext2_use_xip(inode->i_sb)) {
1367                        inode->i_mapping->a_ops = &ext2_aops_xip;
1368                        inode->i_fop = &ext2_xip_file_operations;
1369                } else if (test_opt(inode->i_sb, NOBH)) {
1370                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1371                        inode->i_fop = &ext2_file_operations;
1372                } else {
1373                        inode->i_mapping->a_ops = &ext2_aops;
1374                        inode->i_fop = &ext2_file_operations;
1375                }
1376        } else if (S_ISDIR(inode->i_mode)) {
1377                inode->i_op = &ext2_dir_inode_operations;
1378                inode->i_fop = &ext2_dir_operations;
1379                if (test_opt(inode->i_sb, NOBH))
1380                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1381                else
1382                        inode->i_mapping->a_ops = &ext2_aops;
1383        } else if (S_ISLNK(inode->i_mode)) {
1384                if (ext2_inode_is_fast_symlink(inode)) {
1385                        inode->i_op = &ext2_fast_symlink_inode_operations;
1386                        nd_terminate_link(ei->i_data, inode->i_size,
1387                                sizeof(ei->i_data) - 1);
1388                } else {
1389                        inode->i_op = &ext2_symlink_inode_operations;
1390                        if (test_opt(inode->i_sb, NOBH))
1391                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1392                        else
1393                                inode->i_mapping->a_ops = &ext2_aops;
1394                }
1395        } else {
1396                inode->i_op = &ext2_special_inode_operations;
1397                if (raw_inode->i_block[0])
1398                        init_special_inode(inode, inode->i_mode,
1399                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1400                else 
1401                        init_special_inode(inode, inode->i_mode,
1402                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1403        }
1404        brelse (bh);
1405        ext2_set_inode_flags(inode);
1406        unlock_new_inode(inode);
1407        return inode;
1408        
1409bad_inode:
1410        iget_failed(inode);
1411        return ERR_PTR(ret);
1412}
1413
1414static int __ext2_write_inode(struct inode *inode, int do_sync)
1415{
1416        struct ext2_inode_info *ei = EXT2_I(inode);
1417        struct super_block *sb = inode->i_sb;
1418        ino_t ino = inode->i_ino;
1419        uid_t uid = inode->i_uid;
1420        gid_t gid = inode->i_gid;
1421        struct buffer_head * bh;
1422        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1423        int n;
1424        int err = 0;
1425
1426        if (IS_ERR(raw_inode))
1427                return -EIO;
1428
1429        /* For fields not not tracking in the in-memory inode,
1430         * initialise them to zero for new inodes. */
1431        if (ei->i_state & EXT2_STATE_NEW)
1432                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1433
1434        ext2_get_inode_flags(ei);
1435        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1436        if (!(test_opt(sb, NO_UID32))) {
1437                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1438                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1439/*
1440 * Fix up interoperability with old kernels. Otherwise, old inodes get
1441 * re-used with the upper 16 bits of the uid/gid intact
1442 */
1443                if (!ei->i_dtime) {
1444                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1445                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1446                } else {
1447                        raw_inode->i_uid_high = 0;
1448                        raw_inode->i_gid_high = 0;
1449                }
1450        } else {
1451                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1452                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1453                raw_inode->i_uid_high = 0;
1454                raw_inode->i_gid_high = 0;
1455        }
1456        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1457        raw_inode->i_size = cpu_to_le32(inode->i_size);
1458        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1459        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1460        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1461
1462        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1463        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1464        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1465        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1466        raw_inode->i_frag = ei->i_frag_no;
1467        raw_inode->i_fsize = ei->i_frag_size;
1468        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1469        if (!S_ISREG(inode->i_mode))
1470                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1471        else {
1472                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1473                if (inode->i_size > 0x7fffffffULL) {
1474                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1475                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1476                            EXT2_SB(sb)->s_es->s_rev_level ==
1477                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1478                               /* If this is the first large file
1479                                * created, add a flag to the superblock.
1480                                */
1481                                spin_lock(&EXT2_SB(sb)->s_lock);
1482                                ext2_update_dynamic_rev(sb);
1483                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1484                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1485                                spin_unlock(&EXT2_SB(sb)->s_lock);
1486                                ext2_write_super(sb);
1487                        }
1488                }
1489        }
1490        
1491        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1492        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1493                if (old_valid_dev(inode->i_rdev)) {
1494                        raw_inode->i_block[0] =
1495                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1496                        raw_inode->i_block[1] = 0;
1497                } else {
1498                        raw_inode->i_block[0] = 0;
1499                        raw_inode->i_block[1] =
1500                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1501                        raw_inode->i_block[2] = 0;
1502                }
1503        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1504                raw_inode->i_block[n] = ei->i_data[n];
1505        mark_buffer_dirty(bh);
1506        if (do_sync) {
1507                sync_dirty_buffer(bh);
1508                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1509                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1510                                sb->s_id, (unsigned long) ino);
1511                        err = -EIO;
1512                }
1513        }
1514        ei->i_state &= ~EXT2_STATE_NEW;
1515        brelse (bh);
1516        return err;
1517}
1518
1519int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1520{
1521        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1522}
1523
1524int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1525{
1526        struct inode *inode = dentry->d_inode;
1527        int error;
1528
1529        error = inode_change_ok(inode, iattr);
1530        if (error)
1531                return error;
1532
1533        if (is_quota_modification(inode, iattr))
1534                dquot_initialize(inode);
1535        if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1536            (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1537                error = dquot_transfer(inode, iattr);
1538                if (error)
1539                        return error;
1540        }
1541        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1542                error = ext2_setsize(inode, iattr->ia_size);
1543                if (error)
1544                        return error;
1545        }
1546        setattr_copy(inode, iattr);
1547        if (iattr->ia_valid & ATTR_MODE)
1548                error = ext2_acl_chmod(inode);
1549        mark_inode_dirty(inode);
1550
1551        return error;
1552}
1553