linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_quota.h"
  43#include "xfs_rw.h"
  44#include "xfs_utils.h"
  45#include "xfs_trace.h"
  46
  47STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  48STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  49#if defined(DEBUG)
  50STATIC void     xlog_recover_check_summary(xlog_t *);
  51#else
  52#define xlog_recover_check_summary(log)
  53#endif
  54
  55/*
  56 * This structure is used during recovery to record the buf log items which
  57 * have been canceled and should not be replayed.
  58 */
  59struct xfs_buf_cancel {
  60        xfs_daddr_t             bc_blkno;
  61        uint                    bc_len;
  62        int                     bc_refcount;
  63        struct list_head        bc_list;
  64};
  65
  66/*
  67 * Sector aligned buffer routines for buffer create/read/write/access
  68 */
  69
  70/*
  71 * Verify the given count of basic blocks is valid number of blocks
  72 * to specify for an operation involving the given XFS log buffer.
  73 * Returns nonzero if the count is valid, 0 otherwise.
  74 */
  75
  76static inline int
  77xlog_buf_bbcount_valid(
  78        xlog_t          *log,
  79        int             bbcount)
  80{
  81        return bbcount > 0 && bbcount <= log->l_logBBsize;
  82}
  83
  84/*
  85 * Allocate a buffer to hold log data.  The buffer needs to be able
  86 * to map to a range of nbblks basic blocks at any valid (basic
  87 * block) offset within the log.
  88 */
  89STATIC xfs_buf_t *
  90xlog_get_bp(
  91        xlog_t          *log,
  92        int             nbblks)
  93{
  94        if (!xlog_buf_bbcount_valid(log, nbblks)) {
  95                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  96                        nbblks);
  97                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  98                return NULL;
  99        }
 100
 101        /*
 102         * We do log I/O in units of log sectors (a power-of-2
 103         * multiple of the basic block size), so we round up the
 104         * requested size to accommodate the basic blocks required
 105         * for complete log sectors.
 106         *
 107         * In addition, the buffer may be used for a non-sector-
 108         * aligned block offset, in which case an I/O of the
 109         * requested size could extend beyond the end of the
 110         * buffer.  If the requested size is only 1 basic block it
 111         * will never straddle a sector boundary, so this won't be
 112         * an issue.  Nor will this be a problem if the log I/O is
 113         * done in basic blocks (sector size 1).  But otherwise we
 114         * extend the buffer by one extra log sector to ensure
 115         * there's space to accommodate this possibility.
 116         */
 117        if (nbblks > 1 && log->l_sectBBsize > 1)
 118                nbblks += log->l_sectBBsize;
 119        nbblks = round_up(nbblks, log->l_sectBBsize);
 120
 121        return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
 122                                        BBTOB(nbblks), 0);
 123}
 124
 125STATIC void
 126xlog_put_bp(
 127        xfs_buf_t       *bp)
 128{
 129        xfs_buf_free(bp);
 130}
 131
 132/*
 133 * Return the address of the start of the given block number's data
 134 * in a log buffer.  The buffer covers a log sector-aligned region.
 135 */
 136STATIC xfs_caddr_t
 137xlog_align(
 138        xlog_t          *log,
 139        xfs_daddr_t     blk_no,
 140        int             nbblks,
 141        xfs_buf_t       *bp)
 142{
 143        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 144
 145        ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
 146        return XFS_BUF_PTR(bp) + BBTOB(offset);
 147}
 148
 149
 150/*
 151 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 152 */
 153STATIC int
 154xlog_bread_noalign(
 155        xlog_t          *log,
 156        xfs_daddr_t     blk_no,
 157        int             nbblks,
 158        xfs_buf_t       *bp)
 159{
 160        int             error;
 161
 162        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 163                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 164                        nbblks);
 165                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 166                return EFSCORRUPTED;
 167        }
 168
 169        blk_no = round_down(blk_no, log->l_sectBBsize);
 170        nbblks = round_up(nbblks, log->l_sectBBsize);
 171
 172        ASSERT(nbblks > 0);
 173        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 174
 175        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 176        XFS_BUF_READ(bp);
 177        XFS_BUF_BUSY(bp);
 178        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 179        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 180
 181        xfsbdstrat(log->l_mp, bp);
 182        error = xfs_buf_iowait(bp);
 183        if (error)
 184                xfs_ioerror_alert("xlog_bread", log->l_mp,
 185                                  bp, XFS_BUF_ADDR(bp));
 186        return error;
 187}
 188
 189STATIC int
 190xlog_bread(
 191        xlog_t          *log,
 192        xfs_daddr_t     blk_no,
 193        int             nbblks,
 194        xfs_buf_t       *bp,
 195        xfs_caddr_t     *offset)
 196{
 197        int             error;
 198
 199        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 200        if (error)
 201                return error;
 202
 203        *offset = xlog_align(log, blk_no, nbblks, bp);
 204        return 0;
 205}
 206
 207/*
 208 * Read at an offset into the buffer. Returns with the buffer in it's original
 209 * state regardless of the result of the read.
 210 */
 211STATIC int
 212xlog_bread_offset(
 213        xlog_t          *log,
 214        xfs_daddr_t     blk_no,         /* block to read from */
 215        int             nbblks,         /* blocks to read */
 216        xfs_buf_t       *bp,
 217        xfs_caddr_t     offset)
 218{
 219        xfs_caddr_t     orig_offset = XFS_BUF_PTR(bp);
 220        int             orig_len = bp->b_buffer_length;
 221        int             error, error2;
 222
 223        error = XFS_BUF_SET_PTR(bp, offset, BBTOB(nbblks));
 224        if (error)
 225                return error;
 226
 227        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 228
 229        /* must reset buffer pointer even on error */
 230        error2 = XFS_BUF_SET_PTR(bp, orig_offset, orig_len);
 231        if (error)
 232                return error;
 233        return error2;
 234}
 235
 236/*
 237 * Write out the buffer at the given block for the given number of blocks.
 238 * The buffer is kept locked across the write and is returned locked.
 239 * This can only be used for synchronous log writes.
 240 */
 241STATIC int
 242xlog_bwrite(
 243        xlog_t          *log,
 244        xfs_daddr_t     blk_no,
 245        int             nbblks,
 246        xfs_buf_t       *bp)
 247{
 248        int             error;
 249
 250        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 251                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 252                        nbblks);
 253                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 254                return EFSCORRUPTED;
 255        }
 256
 257        blk_no = round_down(blk_no, log->l_sectBBsize);
 258        nbblks = round_up(nbblks, log->l_sectBBsize);
 259
 260        ASSERT(nbblks > 0);
 261        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 262
 263        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 264        XFS_BUF_ZEROFLAGS(bp);
 265        XFS_BUF_BUSY(bp);
 266        XFS_BUF_HOLD(bp);
 267        XFS_BUF_PSEMA(bp, PRIBIO);
 268        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 269        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 270
 271        if ((error = xfs_bwrite(log->l_mp, bp)))
 272                xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 273                                  bp, XFS_BUF_ADDR(bp));
 274        return error;
 275}
 276
 277#ifdef DEBUG
 278/*
 279 * dump debug superblock and log record information
 280 */
 281STATIC void
 282xlog_header_check_dump(
 283        xfs_mount_t             *mp,
 284        xlog_rec_header_t       *head)
 285{
 286        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 287                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 288        xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 289                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 290}
 291#else
 292#define xlog_header_check_dump(mp, head)
 293#endif
 294
 295/*
 296 * check log record header for recovery
 297 */
 298STATIC int
 299xlog_header_check_recover(
 300        xfs_mount_t             *mp,
 301        xlog_rec_header_t       *head)
 302{
 303        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 304
 305        /*
 306         * IRIX doesn't write the h_fmt field and leaves it zeroed
 307         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 308         * a dirty log created in IRIX.
 309         */
 310        if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
 311                xfs_warn(mp,
 312        "dirty log written in incompatible format - can't recover");
 313                xlog_header_check_dump(mp, head);
 314                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 315                                 XFS_ERRLEVEL_HIGH, mp);
 316                return XFS_ERROR(EFSCORRUPTED);
 317        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 318                xfs_warn(mp,
 319        "dirty log entry has mismatched uuid - can't recover");
 320                xlog_header_check_dump(mp, head);
 321                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 322                                 XFS_ERRLEVEL_HIGH, mp);
 323                return XFS_ERROR(EFSCORRUPTED);
 324        }
 325        return 0;
 326}
 327
 328/*
 329 * read the head block of the log and check the header
 330 */
 331STATIC int
 332xlog_header_check_mount(
 333        xfs_mount_t             *mp,
 334        xlog_rec_header_t       *head)
 335{
 336        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 337
 338        if (uuid_is_nil(&head->h_fs_uuid)) {
 339                /*
 340                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 341                 * h_fs_uuid is nil, we assume this log was last mounted
 342                 * by IRIX and continue.
 343                 */
 344                xfs_warn(mp, "nil uuid in log - IRIX style log");
 345        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 346                xfs_warn(mp, "log has mismatched uuid - can't recover");
 347                xlog_header_check_dump(mp, head);
 348                XFS_ERROR_REPORT("xlog_header_check_mount",
 349                                 XFS_ERRLEVEL_HIGH, mp);
 350                return XFS_ERROR(EFSCORRUPTED);
 351        }
 352        return 0;
 353}
 354
 355STATIC void
 356xlog_recover_iodone(
 357        struct xfs_buf  *bp)
 358{
 359        if (XFS_BUF_GETERROR(bp)) {
 360                /*
 361                 * We're not going to bother about retrying
 362                 * this during recovery. One strike!
 363                 */
 364                xfs_ioerror_alert("xlog_recover_iodone",
 365                                        bp->b_target->bt_mount, bp,
 366                                        XFS_BUF_ADDR(bp));
 367                xfs_force_shutdown(bp->b_target->bt_mount,
 368                                        SHUTDOWN_META_IO_ERROR);
 369        }
 370        XFS_BUF_CLR_IODONE_FUNC(bp);
 371        xfs_buf_ioend(bp, 0);
 372}
 373
 374/*
 375 * This routine finds (to an approximation) the first block in the physical
 376 * log which contains the given cycle.  It uses a binary search algorithm.
 377 * Note that the algorithm can not be perfect because the disk will not
 378 * necessarily be perfect.
 379 */
 380STATIC int
 381xlog_find_cycle_start(
 382        xlog_t          *log,
 383        xfs_buf_t       *bp,
 384        xfs_daddr_t     first_blk,
 385        xfs_daddr_t     *last_blk,
 386        uint            cycle)
 387{
 388        xfs_caddr_t     offset;
 389        xfs_daddr_t     mid_blk;
 390        xfs_daddr_t     end_blk;
 391        uint            mid_cycle;
 392        int             error;
 393
 394        end_blk = *last_blk;
 395        mid_blk = BLK_AVG(first_blk, end_blk);
 396        while (mid_blk != first_blk && mid_blk != end_blk) {
 397                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 398                if (error)
 399                        return error;
 400                mid_cycle = xlog_get_cycle(offset);
 401                if (mid_cycle == cycle)
 402                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 403                else
 404                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 405                mid_blk = BLK_AVG(first_blk, end_blk);
 406        }
 407        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 408               (mid_blk == end_blk && mid_blk-1 == first_blk));
 409
 410        *last_blk = end_blk;
 411
 412        return 0;
 413}
 414
 415/*
 416 * Check that a range of blocks does not contain stop_on_cycle_no.
 417 * Fill in *new_blk with the block offset where such a block is
 418 * found, or with -1 (an invalid block number) if there is no such
 419 * block in the range.  The scan needs to occur from front to back
 420 * and the pointer into the region must be updated since a later
 421 * routine will need to perform another test.
 422 */
 423STATIC int
 424xlog_find_verify_cycle(
 425        xlog_t          *log,
 426        xfs_daddr_t     start_blk,
 427        int             nbblks,
 428        uint            stop_on_cycle_no,
 429        xfs_daddr_t     *new_blk)
 430{
 431        xfs_daddr_t     i, j;
 432        uint            cycle;
 433        xfs_buf_t       *bp;
 434        xfs_daddr_t     bufblks;
 435        xfs_caddr_t     buf = NULL;
 436        int             error = 0;
 437
 438        /*
 439         * Greedily allocate a buffer big enough to handle the full
 440         * range of basic blocks we'll be examining.  If that fails,
 441         * try a smaller size.  We need to be able to read at least
 442         * a log sector, or we're out of luck.
 443         */
 444        bufblks = 1 << ffs(nbblks);
 445        while (!(bp = xlog_get_bp(log, bufblks))) {
 446                bufblks >>= 1;
 447                if (bufblks < log->l_sectBBsize)
 448                        return ENOMEM;
 449        }
 450
 451        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 452                int     bcount;
 453
 454                bcount = min(bufblks, (start_blk + nbblks - i));
 455
 456                error = xlog_bread(log, i, bcount, bp, &buf);
 457                if (error)
 458                        goto out;
 459
 460                for (j = 0; j < bcount; j++) {
 461                        cycle = xlog_get_cycle(buf);
 462                        if (cycle == stop_on_cycle_no) {
 463                                *new_blk = i+j;
 464                                goto out;
 465                        }
 466
 467                        buf += BBSIZE;
 468                }
 469        }
 470
 471        *new_blk = -1;
 472
 473out:
 474        xlog_put_bp(bp);
 475        return error;
 476}
 477
 478/*
 479 * Potentially backup over partial log record write.
 480 *
 481 * In the typical case, last_blk is the number of the block directly after
 482 * a good log record.  Therefore, we subtract one to get the block number
 483 * of the last block in the given buffer.  extra_bblks contains the number
 484 * of blocks we would have read on a previous read.  This happens when the
 485 * last log record is split over the end of the physical log.
 486 *
 487 * extra_bblks is the number of blocks potentially verified on a previous
 488 * call to this routine.
 489 */
 490STATIC int
 491xlog_find_verify_log_record(
 492        xlog_t                  *log,
 493        xfs_daddr_t             start_blk,
 494        xfs_daddr_t             *last_blk,
 495        int                     extra_bblks)
 496{
 497        xfs_daddr_t             i;
 498        xfs_buf_t               *bp;
 499        xfs_caddr_t             offset = NULL;
 500        xlog_rec_header_t       *head = NULL;
 501        int                     error = 0;
 502        int                     smallmem = 0;
 503        int                     num_blks = *last_blk - start_blk;
 504        int                     xhdrs;
 505
 506        ASSERT(start_blk != 0 || *last_blk != start_blk);
 507
 508        if (!(bp = xlog_get_bp(log, num_blks))) {
 509                if (!(bp = xlog_get_bp(log, 1)))
 510                        return ENOMEM;
 511                smallmem = 1;
 512        } else {
 513                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 514                if (error)
 515                        goto out;
 516                offset += ((num_blks - 1) << BBSHIFT);
 517        }
 518
 519        for (i = (*last_blk) - 1; i >= 0; i--) {
 520                if (i < start_blk) {
 521                        /* valid log record not found */
 522                        xfs_warn(log->l_mp,
 523                "Log inconsistent (didn't find previous header)");
 524                        ASSERT(0);
 525                        error = XFS_ERROR(EIO);
 526                        goto out;
 527                }
 528
 529                if (smallmem) {
 530                        error = xlog_bread(log, i, 1, bp, &offset);
 531                        if (error)
 532                                goto out;
 533                }
 534
 535                head = (xlog_rec_header_t *)offset;
 536
 537                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
 538                        break;
 539
 540                if (!smallmem)
 541                        offset -= BBSIZE;
 542        }
 543
 544        /*
 545         * We hit the beginning of the physical log & still no header.  Return
 546         * to caller.  If caller can handle a return of -1, then this routine
 547         * will be called again for the end of the physical log.
 548         */
 549        if (i == -1) {
 550                error = -1;
 551                goto out;
 552        }
 553
 554        /*
 555         * We have the final block of the good log (the first block
 556         * of the log record _before_ the head. So we check the uuid.
 557         */
 558        if ((error = xlog_header_check_mount(log->l_mp, head)))
 559                goto out;
 560
 561        /*
 562         * We may have found a log record header before we expected one.
 563         * last_blk will be the 1st block # with a given cycle #.  We may end
 564         * up reading an entire log record.  In this case, we don't want to
 565         * reset last_blk.  Only when last_blk points in the middle of a log
 566         * record do we update last_blk.
 567         */
 568        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 569                uint    h_size = be32_to_cpu(head->h_size);
 570
 571                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 572                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 573                        xhdrs++;
 574        } else {
 575                xhdrs = 1;
 576        }
 577
 578        if (*last_blk - i + extra_bblks !=
 579            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 580                *last_blk = i;
 581
 582out:
 583        xlog_put_bp(bp);
 584        return error;
 585}
 586
 587/*
 588 * Head is defined to be the point of the log where the next log write
 589 * write could go.  This means that incomplete LR writes at the end are
 590 * eliminated when calculating the head.  We aren't guaranteed that previous
 591 * LR have complete transactions.  We only know that a cycle number of
 592 * current cycle number -1 won't be present in the log if we start writing
 593 * from our current block number.
 594 *
 595 * last_blk contains the block number of the first block with a given
 596 * cycle number.
 597 *
 598 * Return: zero if normal, non-zero if error.
 599 */
 600STATIC int
 601xlog_find_head(
 602        xlog_t          *log,
 603        xfs_daddr_t     *return_head_blk)
 604{
 605        xfs_buf_t       *bp;
 606        xfs_caddr_t     offset;
 607        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 608        int             num_scan_bblks;
 609        uint            first_half_cycle, last_half_cycle;
 610        uint            stop_on_cycle;
 611        int             error, log_bbnum = log->l_logBBsize;
 612
 613        /* Is the end of the log device zeroed? */
 614        if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 615                *return_head_blk = first_blk;
 616
 617                /* Is the whole lot zeroed? */
 618                if (!first_blk) {
 619                        /* Linux XFS shouldn't generate totally zeroed logs -
 620                         * mkfs etc write a dummy unmount record to a fresh
 621                         * log so we can store the uuid in there
 622                         */
 623                        xfs_warn(log->l_mp, "totally zeroed log");
 624                }
 625
 626                return 0;
 627        } else if (error) {
 628                xfs_warn(log->l_mp, "empty log check failed");
 629                return error;
 630        }
 631
 632        first_blk = 0;                  /* get cycle # of 1st block */
 633        bp = xlog_get_bp(log, 1);
 634        if (!bp)
 635                return ENOMEM;
 636
 637        error = xlog_bread(log, 0, 1, bp, &offset);
 638        if (error)
 639                goto bp_err;
 640
 641        first_half_cycle = xlog_get_cycle(offset);
 642
 643        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 644        error = xlog_bread(log, last_blk, 1, bp, &offset);
 645        if (error)
 646                goto bp_err;
 647
 648        last_half_cycle = xlog_get_cycle(offset);
 649        ASSERT(last_half_cycle != 0);
 650
 651        /*
 652         * If the 1st half cycle number is equal to the last half cycle number,
 653         * then the entire log is stamped with the same cycle number.  In this
 654         * case, head_blk can't be set to zero (which makes sense).  The below
 655         * math doesn't work out properly with head_blk equal to zero.  Instead,
 656         * we set it to log_bbnum which is an invalid block number, but this
 657         * value makes the math correct.  If head_blk doesn't changed through
 658         * all the tests below, *head_blk is set to zero at the very end rather
 659         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 660         * in a circular file.
 661         */
 662        if (first_half_cycle == last_half_cycle) {
 663                /*
 664                 * In this case we believe that the entire log should have
 665                 * cycle number last_half_cycle.  We need to scan backwards
 666                 * from the end verifying that there are no holes still
 667                 * containing last_half_cycle - 1.  If we find such a hole,
 668                 * then the start of that hole will be the new head.  The
 669                 * simple case looks like
 670                 *        x | x ... | x - 1 | x
 671                 * Another case that fits this picture would be
 672                 *        x | x + 1 | x ... | x
 673                 * In this case the head really is somewhere at the end of the
 674                 * log, as one of the latest writes at the beginning was
 675                 * incomplete.
 676                 * One more case is
 677                 *        x | x + 1 | x ... | x - 1 | x
 678                 * This is really the combination of the above two cases, and
 679                 * the head has to end up at the start of the x-1 hole at the
 680                 * end of the log.
 681                 *
 682                 * In the 256k log case, we will read from the beginning to the
 683                 * end of the log and search for cycle numbers equal to x-1.
 684                 * We don't worry about the x+1 blocks that we encounter,
 685                 * because we know that they cannot be the head since the log
 686                 * started with x.
 687                 */
 688                head_blk = log_bbnum;
 689                stop_on_cycle = last_half_cycle - 1;
 690        } else {
 691                /*
 692                 * In this case we want to find the first block with cycle
 693                 * number matching last_half_cycle.  We expect the log to be
 694                 * some variation on
 695                 *        x + 1 ... | x ... | x
 696                 * The first block with cycle number x (last_half_cycle) will
 697                 * be where the new head belongs.  First we do a binary search
 698                 * for the first occurrence of last_half_cycle.  The binary
 699                 * search may not be totally accurate, so then we scan back
 700                 * from there looking for occurrences of last_half_cycle before
 701                 * us.  If that backwards scan wraps around the beginning of
 702                 * the log, then we look for occurrences of last_half_cycle - 1
 703                 * at the end of the log.  The cases we're looking for look
 704                 * like
 705                 *                               v binary search stopped here
 706                 *        x + 1 ... | x | x + 1 | x ... | x
 707                 *                   ^ but we want to locate this spot
 708                 * or
 709                 *        <---------> less than scan distance
 710                 *        x + 1 ... | x ... | x - 1 | x
 711                 *                           ^ we want to locate this spot
 712                 */
 713                stop_on_cycle = last_half_cycle;
 714                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 715                                                &head_blk, last_half_cycle)))
 716                        goto bp_err;
 717        }
 718
 719        /*
 720         * Now validate the answer.  Scan back some number of maximum possible
 721         * blocks and make sure each one has the expected cycle number.  The
 722         * maximum is determined by the total possible amount of buffering
 723         * in the in-core log.  The following number can be made tighter if
 724         * we actually look at the block size of the filesystem.
 725         */
 726        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 727        if (head_blk >= num_scan_bblks) {
 728                /*
 729                 * We are guaranteed that the entire check can be performed
 730                 * in one buffer.
 731                 */
 732                start_blk = head_blk - num_scan_bblks;
 733                if ((error = xlog_find_verify_cycle(log,
 734                                                start_blk, num_scan_bblks,
 735                                                stop_on_cycle, &new_blk)))
 736                        goto bp_err;
 737                if (new_blk != -1)
 738                        head_blk = new_blk;
 739        } else {                /* need to read 2 parts of log */
 740                /*
 741                 * We are going to scan backwards in the log in two parts.
 742                 * First we scan the physical end of the log.  In this part
 743                 * of the log, we are looking for blocks with cycle number
 744                 * last_half_cycle - 1.
 745                 * If we find one, then we know that the log starts there, as
 746                 * we've found a hole that didn't get written in going around
 747                 * the end of the physical log.  The simple case for this is
 748                 *        x + 1 ... | x ... | x - 1 | x
 749                 *        <---------> less than scan distance
 750                 * If all of the blocks at the end of the log have cycle number
 751                 * last_half_cycle, then we check the blocks at the start of
 752                 * the log looking for occurrences of last_half_cycle.  If we
 753                 * find one, then our current estimate for the location of the
 754                 * first occurrence of last_half_cycle is wrong and we move
 755                 * back to the hole we've found.  This case looks like
 756                 *        x + 1 ... | x | x + 1 | x ...
 757                 *                               ^ binary search stopped here
 758                 * Another case we need to handle that only occurs in 256k
 759                 * logs is
 760                 *        x + 1 ... | x ... | x+1 | x ...
 761                 *                   ^ binary search stops here
 762                 * In a 256k log, the scan at the end of the log will see the
 763                 * x + 1 blocks.  We need to skip past those since that is
 764                 * certainly not the head of the log.  By searching for
 765                 * last_half_cycle-1 we accomplish that.
 766                 */
 767                ASSERT(head_blk <= INT_MAX &&
 768                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 769                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 770                if ((error = xlog_find_verify_cycle(log, start_blk,
 771                                        num_scan_bblks - (int)head_blk,
 772                                        (stop_on_cycle - 1), &new_blk)))
 773                        goto bp_err;
 774                if (new_blk != -1) {
 775                        head_blk = new_blk;
 776                        goto validate_head;
 777                }
 778
 779                /*
 780                 * Scan beginning of log now.  The last part of the physical
 781                 * log is good.  This scan needs to verify that it doesn't find
 782                 * the last_half_cycle.
 783                 */
 784                start_blk = 0;
 785                ASSERT(head_blk <= INT_MAX);
 786                if ((error = xlog_find_verify_cycle(log,
 787                                        start_blk, (int)head_blk,
 788                                        stop_on_cycle, &new_blk)))
 789                        goto bp_err;
 790                if (new_blk != -1)
 791                        head_blk = new_blk;
 792        }
 793
 794validate_head:
 795        /*
 796         * Now we need to make sure head_blk is not pointing to a block in
 797         * the middle of a log record.
 798         */
 799        num_scan_bblks = XLOG_REC_SHIFT(log);
 800        if (head_blk >= num_scan_bblks) {
 801                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 802
 803                /* start ptr at last block ptr before head_blk */
 804                if ((error = xlog_find_verify_log_record(log, start_blk,
 805                                                        &head_blk, 0)) == -1) {
 806                        error = XFS_ERROR(EIO);
 807                        goto bp_err;
 808                } else if (error)
 809                        goto bp_err;
 810        } else {
 811                start_blk = 0;
 812                ASSERT(head_blk <= INT_MAX);
 813                if ((error = xlog_find_verify_log_record(log, start_blk,
 814                                                        &head_blk, 0)) == -1) {
 815                        /* We hit the beginning of the log during our search */
 816                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 817                        new_blk = log_bbnum;
 818                        ASSERT(start_blk <= INT_MAX &&
 819                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 820                        ASSERT(head_blk <= INT_MAX);
 821                        if ((error = xlog_find_verify_log_record(log,
 822                                                        start_blk, &new_blk,
 823                                                        (int)head_blk)) == -1) {
 824                                error = XFS_ERROR(EIO);
 825                                goto bp_err;
 826                        } else if (error)
 827                                goto bp_err;
 828                        if (new_blk != log_bbnum)
 829                                head_blk = new_blk;
 830                } else if (error)
 831                        goto bp_err;
 832        }
 833
 834        xlog_put_bp(bp);
 835        if (head_blk == log_bbnum)
 836                *return_head_blk = 0;
 837        else
 838                *return_head_blk = head_blk;
 839        /*
 840         * When returning here, we have a good block number.  Bad block
 841         * means that during a previous crash, we didn't have a clean break
 842         * from cycle number N to cycle number N-1.  In this case, we need
 843         * to find the first block with cycle number N-1.
 844         */
 845        return 0;
 846
 847 bp_err:
 848        xlog_put_bp(bp);
 849
 850        if (error)
 851                xfs_warn(log->l_mp, "failed to find log head");
 852        return error;
 853}
 854
 855/*
 856 * Find the sync block number or the tail of the log.
 857 *
 858 * This will be the block number of the last record to have its
 859 * associated buffers synced to disk.  Every log record header has
 860 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 861 * to get a sync block number.  The only concern is to figure out which
 862 * log record header to believe.
 863 *
 864 * The following algorithm uses the log record header with the largest
 865 * lsn.  The entire log record does not need to be valid.  We only care
 866 * that the header is valid.
 867 *
 868 * We could speed up search by using current head_blk buffer, but it is not
 869 * available.
 870 */
 871STATIC int
 872xlog_find_tail(
 873        xlog_t                  *log,
 874        xfs_daddr_t             *head_blk,
 875        xfs_daddr_t             *tail_blk)
 876{
 877        xlog_rec_header_t       *rhead;
 878        xlog_op_header_t        *op_head;
 879        xfs_caddr_t             offset = NULL;
 880        xfs_buf_t               *bp;
 881        int                     error, i, found;
 882        xfs_daddr_t             umount_data_blk;
 883        xfs_daddr_t             after_umount_blk;
 884        xfs_lsn_t               tail_lsn;
 885        int                     hblks;
 886
 887        found = 0;
 888
 889        /*
 890         * Find previous log record
 891         */
 892        if ((error = xlog_find_head(log, head_blk)))
 893                return error;
 894
 895        bp = xlog_get_bp(log, 1);
 896        if (!bp)
 897                return ENOMEM;
 898        if (*head_blk == 0) {                           /* special case */
 899                error = xlog_bread(log, 0, 1, bp, &offset);
 900                if (error)
 901                        goto done;
 902
 903                if (xlog_get_cycle(offset) == 0) {
 904                        *tail_blk = 0;
 905                        /* leave all other log inited values alone */
 906                        goto done;
 907                }
 908        }
 909
 910        /*
 911         * Search backwards looking for log record header block
 912         */
 913        ASSERT(*head_blk < INT_MAX);
 914        for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 915                error = xlog_bread(log, i, 1, bp, &offset);
 916                if (error)
 917                        goto done;
 918
 919                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
 920                        found = 1;
 921                        break;
 922                }
 923        }
 924        /*
 925         * If we haven't found the log record header block, start looking
 926         * again from the end of the physical log.  XXXmiken: There should be
 927         * a check here to make sure we didn't search more than N blocks in
 928         * the previous code.
 929         */
 930        if (!found) {
 931                for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 932                        error = xlog_bread(log, i, 1, bp, &offset);
 933                        if (error)
 934                                goto done;
 935
 936                        if (XLOG_HEADER_MAGIC_NUM ==
 937                            be32_to_cpu(*(__be32 *)offset)) {
 938                                found = 2;
 939                                break;
 940                        }
 941                }
 942        }
 943        if (!found) {
 944                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 945                ASSERT(0);
 946                return XFS_ERROR(EIO);
 947        }
 948
 949        /* find blk_no of tail of log */
 950        rhead = (xlog_rec_header_t *)offset;
 951        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 952
 953        /*
 954         * Reset log values according to the state of the log when we
 955         * crashed.  In the case where head_blk == 0, we bump curr_cycle
 956         * one because the next write starts a new cycle rather than
 957         * continuing the cycle of the last good log record.  At this
 958         * point we have guaranteed that all partial log records have been
 959         * accounted for.  Therefore, we know that the last good log record
 960         * written was complete and ended exactly on the end boundary
 961         * of the physical log.
 962         */
 963        log->l_prev_block = i;
 964        log->l_curr_block = (int)*head_blk;
 965        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 966        if (found == 2)
 967                log->l_curr_cycle++;
 968        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 969        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 970        xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
 971                                        BBTOB(log->l_curr_block));
 972        xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
 973                                        BBTOB(log->l_curr_block));
 974
 975        /*
 976         * Look for unmount record.  If we find it, then we know there
 977         * was a clean unmount.  Since 'i' could be the last block in
 978         * the physical log, we convert to a log block before comparing
 979         * to the head_blk.
 980         *
 981         * Save the current tail lsn to use to pass to
 982         * xlog_clear_stale_blocks() below.  We won't want to clear the
 983         * unmount record if there is one, so we pass the lsn of the
 984         * unmount record rather than the block after it.
 985         */
 986        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 987                int     h_size = be32_to_cpu(rhead->h_size);
 988                int     h_version = be32_to_cpu(rhead->h_version);
 989
 990                if ((h_version & XLOG_VERSION_2) &&
 991                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 992                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 993                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
 994                                hblks++;
 995                } else {
 996                        hblks = 1;
 997                }
 998        } else {
 999                hblks = 1;
1000        }
1001        after_umount_blk = (i + hblks + (int)
1002                BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1003        tail_lsn = atomic64_read(&log->l_tail_lsn);
1004        if (*head_blk == after_umount_blk &&
1005            be32_to_cpu(rhead->h_num_logops) == 1) {
1006                umount_data_blk = (i + hblks) % log->l_logBBsize;
1007                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008                if (error)
1009                        goto done;
1010
1011                op_head = (xlog_op_header_t *)offset;
1012                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013                        /*
1014                         * Set tail and last sync so that newly written
1015                         * log records will point recovery to after the
1016                         * current unmount record.
1017                         */
1018                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019                                        log->l_curr_cycle, after_umount_blk);
1020                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021                                        log->l_curr_cycle, after_umount_blk);
1022                        *tail_blk = after_umount_blk;
1023
1024                        /*
1025                         * Note that the unmount was clean. If the unmount
1026                         * was not clean, we need to know this to rebuild the
1027                         * superblock counters from the perag headers if we
1028                         * have a filesystem using non-persistent counters.
1029                         */
1030                        log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1031                }
1032        }
1033
1034        /*
1035         * Make sure that there are no blocks in front of the head
1036         * with the same cycle number as the head.  This can happen
1037         * because we allow multiple outstanding log writes concurrently,
1038         * and the later writes might make it out before earlier ones.
1039         *
1040         * We use the lsn from before modifying it so that we'll never
1041         * overwrite the unmount record after a clean unmount.
1042         *
1043         * Do this only if we are going to recover the filesystem
1044         *
1045         * NOTE: This used to say "if (!readonly)"
1046         * However on Linux, we can & do recover a read-only filesystem.
1047         * We only skip recovery if NORECOVERY is specified on mount,
1048         * in which case we would not be here.
1049         *
1050         * But... if the -device- itself is readonly, just skip this.
1051         * We can't recover this device anyway, so it won't matter.
1052         */
1053        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054                error = xlog_clear_stale_blocks(log, tail_lsn);
1055
1056done:
1057        xlog_put_bp(bp);
1058
1059        if (error)
1060                xfs_warn(log->l_mp, "failed to locate log tail");
1061        return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough.  You can then search linearly through
1069 * the X blocks.  This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0.  It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 *      0  => the log is completely written to
1077 *      -1 => use *blk_no as the first block of the log
1078 *      >0 => error has occurred
1079 */
1080STATIC int
1081xlog_find_zeroed(
1082        xlog_t          *log,
1083        xfs_daddr_t     *blk_no)
1084{
1085        xfs_buf_t       *bp;
1086        xfs_caddr_t     offset;
1087        uint            first_cycle, last_cycle;
1088        xfs_daddr_t     new_blk, last_blk, start_blk;
1089        xfs_daddr_t     num_scan_bblks;
1090        int             error, log_bbnum = log->l_logBBsize;
1091
1092        *blk_no = 0;
1093
1094        /* check totally zeroed log */
1095        bp = xlog_get_bp(log, 1);
1096        if (!bp)
1097                return ENOMEM;
1098        error = xlog_bread(log, 0, 1, bp, &offset);
1099        if (error)
1100                goto bp_err;
1101
1102        first_cycle = xlog_get_cycle(offset);
1103        if (first_cycle == 0) {         /* completely zeroed log */
1104                *blk_no = 0;
1105                xlog_put_bp(bp);
1106                return -1;
1107        }
1108
1109        /* check partially zeroed log */
1110        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111        if (error)
1112                goto bp_err;
1113
1114        last_cycle = xlog_get_cycle(offset);
1115        if (last_cycle != 0) {          /* log completely written to */
1116                xlog_put_bp(bp);
1117                return 0;
1118        } else if (first_cycle != 1) {
1119                /*
1120                 * If the cycle of the last block is zero, the cycle of
1121                 * the first block must be 1. If it's not, maybe we're
1122                 * not looking at a log... Bail out.
1123                 */
1124                xfs_warn(log->l_mp,
1125                        "Log inconsistent or not a log (last==0, first!=1)");
1126                return XFS_ERROR(EINVAL);
1127        }
1128
1129        /* we have a partially zeroed log */
1130        last_blk = log_bbnum-1;
1131        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132                goto bp_err;
1133
1134        /*
1135         * Validate the answer.  Because there is no way to guarantee that
1136         * the entire log is made up of log records which are the same size,
1137         * we scan over the defined maximum blocks.  At this point, the maximum
1138         * is not chosen to mean anything special.   XXXmiken
1139         */
1140        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141        ASSERT(num_scan_bblks <= INT_MAX);
1142
1143        if (last_blk < num_scan_bblks)
1144                num_scan_bblks = last_blk;
1145        start_blk = last_blk - num_scan_bblks;
1146
1147        /*
1148         * We search for any instances of cycle number 0 that occur before
1149         * our current estimate of the head.  What we're trying to detect is
1150         *        1 ... | 0 | 1 | 0...
1151         *                       ^ binary search ends here
1152         */
1153        if ((error = xlog_find_verify_cycle(log, start_blk,
1154                                         (int)num_scan_bblks, 0, &new_blk)))
1155                goto bp_err;
1156        if (new_blk != -1)
1157                last_blk = new_blk;
1158
1159        /*
1160         * Potentially backup over partial log record write.  We don't need
1161         * to search the end of the log because we know it is zero.
1162         */
1163        if ((error = xlog_find_verify_log_record(log, start_blk,
1164                                &last_blk, 0)) == -1) {
1165            error = XFS_ERROR(EIO);
1166            goto bp_err;
1167        } else if (error)
1168            goto bp_err;
1169
1170        *blk_no = last_blk;
1171bp_err:
1172        xlog_put_bp(bp);
1173        if (error)
1174                return error;
1175        return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185        xlog_t                  *log,
1186        xfs_caddr_t             buf,
1187        int                     cycle,
1188        int                     block,
1189        int                     tail_cycle,
1190        int                     tail_block)
1191{
1192        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1193
1194        memset(buf, 0, BBSIZE);
1195        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196        recp->h_cycle = cpu_to_be32(cycle);
1197        recp->h_version = cpu_to_be32(
1198                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207        xlog_t          *log,
1208        int             cycle,
1209        int             start_block,
1210        int             blocks,
1211        int             tail_cycle,
1212        int             tail_block)
1213{
1214        xfs_caddr_t     offset;
1215        xfs_buf_t       *bp;
1216        int             balign, ealign;
1217        int             sectbb = log->l_sectBBsize;
1218        int             end_block = start_block + blocks;
1219        int             bufblks;
1220        int             error = 0;
1221        int             i, j = 0;
1222
1223        /*
1224         * Greedily allocate a buffer big enough to handle the full
1225         * range of basic blocks to be written.  If that fails, try
1226         * a smaller size.  We need to be able to write at least a
1227         * log sector, or we're out of luck.
1228         */
1229        bufblks = 1 << ffs(blocks);
1230        while (!(bp = xlog_get_bp(log, bufblks))) {
1231                bufblks >>= 1;
1232                if (bufblks < sectbb)
1233                        return ENOMEM;
1234        }
1235
1236        /* We may need to do a read at the start to fill in part of
1237         * the buffer in the starting sector not covered by the first
1238         * write below.
1239         */
1240        balign = round_down(start_block, sectbb);
1241        if (balign != start_block) {
1242                error = xlog_bread_noalign(log, start_block, 1, bp);
1243                if (error)
1244                        goto out_put_bp;
1245
1246                j = start_block - balign;
1247        }
1248
1249        for (i = start_block; i < end_block; i += bufblks) {
1250                int             bcount, endcount;
1251
1252                bcount = min(bufblks, end_block - start_block);
1253                endcount = bcount - j;
1254
1255                /* We may need to do a read at the end to fill in part of
1256                 * the buffer in the final sector not covered by the write.
1257                 * If this is the same sector as the above read, skip it.
1258                 */
1259                ealign = round_down(end_block, sectbb);
1260                if (j == 0 && (start_block + endcount > ealign)) {
1261                        offset = XFS_BUF_PTR(bp) + BBTOB(ealign - start_block);
1262                        error = xlog_bread_offset(log, ealign, sectbb,
1263                                                        bp, offset);
1264                        if (error)
1265                                break;
1266
1267                }
1268
1269                offset = xlog_align(log, start_block, endcount, bp);
1270                for (; j < endcount; j++) {
1271                        xlog_add_record(log, offset, cycle, i+j,
1272                                        tail_cycle, tail_block);
1273                        offset += BBSIZE;
1274                }
1275                error = xlog_bwrite(log, start_block, endcount, bp);
1276                if (error)
1277                        break;
1278                start_block += endcount;
1279                j = 0;
1280        }
1281
1282 out_put_bp:
1283        xlog_put_bp(bp);
1284        return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head.  We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number.  We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log.  Doing so would leave the log without
1300 * any valid log records in it until a new one was written.  If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305        xlog_t          *log,
1306        xfs_lsn_t       tail_lsn)
1307{
1308        int             tail_cycle, head_cycle;
1309        int             tail_block, head_block;
1310        int             tail_distance, max_distance;
1311        int             distance;
1312        int             error;
1313
1314        tail_cycle = CYCLE_LSN(tail_lsn);
1315        tail_block = BLOCK_LSN(tail_lsn);
1316        head_cycle = log->l_curr_cycle;
1317        head_block = log->l_curr_block;
1318
1319        /*
1320         * Figure out the distance between the new head of the log
1321         * and the tail.  We want to write over any blocks beyond the
1322         * head that we may have written just before the crash, but
1323         * we don't want to overwrite the tail of the log.
1324         */
1325        if (head_cycle == tail_cycle) {
1326                /*
1327                 * The tail is behind the head in the physical log,
1328                 * so the distance from the head to the tail is the
1329                 * distance from the head to the end of the log plus
1330                 * the distance from the beginning of the log to the
1331                 * tail.
1332                 */
1333                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335                                         XFS_ERRLEVEL_LOW, log->l_mp);
1336                        return XFS_ERROR(EFSCORRUPTED);
1337                }
1338                tail_distance = tail_block + (log->l_logBBsize - head_block);
1339        } else {
1340                /*
1341                 * The head is behind the tail in the physical log,
1342                 * so the distance from the head to the tail is just
1343                 * the tail block minus the head block.
1344                 */
1345                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347                                         XFS_ERRLEVEL_LOW, log->l_mp);
1348                        return XFS_ERROR(EFSCORRUPTED);
1349                }
1350                tail_distance = tail_block - head_block;
1351        }
1352
1353        /*
1354         * If the head is right up against the tail, we can't clear
1355         * anything.
1356         */
1357        if (tail_distance <= 0) {
1358                ASSERT(tail_distance == 0);
1359                return 0;
1360        }
1361
1362        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363        /*
1364         * Take the smaller of the maximum amount of outstanding I/O
1365         * we could have and the distance to the tail to clear out.
1366         * We take the smaller so that we don't overwrite the tail and
1367         * we don't waste all day writing from the head to the tail
1368         * for no reason.
1369         */
1370        max_distance = MIN(max_distance, tail_distance);
1371
1372        if ((head_block + max_distance) <= log->l_logBBsize) {
1373                /*
1374                 * We can stomp all the blocks we need to without
1375                 * wrapping around the end of the log.  Just do it
1376                 * in a single write.  Use the cycle number of the
1377                 * current cycle minus one so that the log will look like:
1378                 *     n ... | n - 1 ...
1379                 */
1380                error = xlog_write_log_records(log, (head_cycle - 1),
1381                                head_block, max_distance, tail_cycle,
1382                                tail_block);
1383                if (error)
1384                        return error;
1385        } else {
1386                /*
1387                 * We need to wrap around the end of the physical log in
1388                 * order to clear all the blocks.  Do it in two separate
1389                 * I/Os.  The first write should be from the head to the
1390                 * end of the physical log, and it should use the current
1391                 * cycle number minus one just like above.
1392                 */
1393                distance = log->l_logBBsize - head_block;
1394                error = xlog_write_log_records(log, (head_cycle - 1),
1395                                head_block, distance, tail_cycle,
1396                                tail_block);
1397
1398                if (error)
1399                        return error;
1400
1401                /*
1402                 * Now write the blocks at the start of the physical log.
1403                 * This writes the remainder of the blocks we want to clear.
1404                 * It uses the current cycle number since we're now on the
1405                 * same cycle as the head so that we get:
1406                 *    n ... n ... | n - 1 ...
1407                 *    ^^^^^ blocks we're writing
1408                 */
1409                distance = max_distance - (log->l_logBBsize - head_block);
1410                error = xlog_write_log_records(log, head_cycle, 0, distance,
1411                                tail_cycle, tail_block);
1412                if (error)
1413                        return error;
1414        }
1415
1416        return 0;
1417}
1418
1419/******************************************************************************
1420 *
1421 *              Log recover routines
1422 *
1423 ******************************************************************************
1424 */
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
1428        struct hlist_head       *head,
1429        xlog_tid_t              tid)
1430{
1431        xlog_recover_t          *trans;
1432        struct hlist_node       *n;
1433
1434        hlist_for_each_entry(trans, n, head, r_list) {
1435                if (trans->r_log_tid == tid)
1436                        return trans;
1437        }
1438        return NULL;
1439}
1440
1441STATIC void
1442xlog_recover_new_tid(
1443        struct hlist_head       *head,
1444        xlog_tid_t              tid,
1445        xfs_lsn_t               lsn)
1446{
1447        xlog_recover_t          *trans;
1448
1449        trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450        trans->r_log_tid   = tid;
1451        trans->r_lsn       = lsn;
1452        INIT_LIST_HEAD(&trans->r_itemq);
1453
1454        INIT_HLIST_NODE(&trans->r_list);
1455        hlist_add_head(&trans->r_list, head);
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
1460        struct list_head        *head)
1461{
1462        xlog_recover_item_t     *item;
1463
1464        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465        INIT_LIST_HEAD(&item->ri_list);
1466        list_add_tail(&item->ri_list, head);
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
1471        struct log              *log,
1472        xlog_recover_t          *trans,
1473        xfs_caddr_t             dp,
1474        int                     len)
1475{
1476        xlog_recover_item_t     *item;
1477        xfs_caddr_t             ptr, old_ptr;
1478        int                     old_len;
1479
1480        if (list_empty(&trans->r_itemq)) {
1481                /* finish copying rest of trans header */
1482                xlog_recover_add_item(&trans->r_itemq);
1483                ptr = (xfs_caddr_t) &trans->r_theader +
1484                                sizeof(xfs_trans_header_t) - len;
1485                memcpy(ptr, dp, len); /* d, s, l */
1486                return 0;
1487        }
1488        /* take the tail entry */
1489        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1490
1491        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492        old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
1494        ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495        memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496        item->ri_buf[item->ri_cnt-1].i_len += len;
1497        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499        return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region.  It could be
1504 * a whole region or it could be the first part of a new region.  Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned.  Therefore, we
1509 * either have both fields or we have neither field.  In the case we have
1510 * neither field, the data part of the region is zero length.  We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later.  If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
1517        struct log              *log,
1518        xlog_recover_t          *trans,
1519        xfs_caddr_t             dp,
1520        int                     len)
1521{
1522        xfs_inode_log_format_t  *in_f;                  /* any will do */
1523        xlog_recover_item_t     *item;
1524        xfs_caddr_t             ptr;
1525
1526        if (!len)
1527                return 0;
1528        if (list_empty(&trans->r_itemq)) {
1529                /* we need to catch log corruptions here */
1530                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531                        xfs_warn(log->l_mp, "%s: bad header magic number",
1532                                __func__);
1533                        ASSERT(0);
1534                        return XFS_ERROR(EIO);
1535                }
1536                if (len == sizeof(xfs_trans_header_t))
1537                        xlog_recover_add_item(&trans->r_itemq);
1538                memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539                return 0;
1540        }
1541
1542        ptr = kmem_alloc(len, KM_SLEEP);
1543        memcpy(ptr, dp, len);
1544        in_f = (xfs_inode_log_format_t *)ptr;
1545
1546        /* take the tail entry */
1547        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548        if (item->ri_total != 0 &&
1549             item->ri_total == item->ri_cnt) {
1550                /* tail item is in use, get a new one */
1551                xlog_recover_add_item(&trans->r_itemq);
1552                item = list_entry(trans->r_itemq.prev,
1553                                        xlog_recover_item_t, ri_list);
1554        }
1555
1556        if (item->ri_total == 0) {              /* first region to be added */
1557                if (in_f->ilf_size == 0 ||
1558                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559                        xfs_warn(log->l_mp,
1560                "bad number of regions (%d) in inode log format",
1561                                  in_f->ilf_size);
1562                        ASSERT(0);
1563                        return XFS_ERROR(EIO);
1564                }
1565
1566                item->ri_total = in_f->ilf_size;
1567                item->ri_buf =
1568                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569                                    KM_SLEEP);
1570        }
1571        ASSERT(item->ri_total > item->ri_cnt);
1572        /* Description region is ri_buf[0] */
1573        item->ri_buf[item->ri_cnt].i_addr = ptr;
1574        item->ri_buf[item->ri_cnt].i_len  = len;
1575        item->ri_cnt++;
1576        trace_xfs_log_recover_item_add(log, trans, item, 0);
1577        return 0;
1578}
1579
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1586STATIC int
1587xlog_recover_reorder_trans(
1588        struct log              *log,
1589        xlog_recover_t          *trans,
1590        int                     pass)
1591{
1592        xlog_recover_item_t     *item, *n;
1593        LIST_HEAD(sort_list);
1594
1595        list_splice_init(&trans->r_itemq, &sort_list);
1596        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1598
1599                switch (ITEM_TYPE(item)) {
1600                case XFS_LI_BUF:
1601                        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602                                trace_xfs_log_recover_item_reorder_head(log,
1603                                                        trans, item, pass);
1604                                list_move(&item->ri_list, &trans->r_itemq);
1605                                break;
1606                        }
1607                case XFS_LI_INODE:
1608                case XFS_LI_DQUOT:
1609                case XFS_LI_QUOTAOFF:
1610                case XFS_LI_EFD:
1611                case XFS_LI_EFI:
1612                        trace_xfs_log_recover_item_reorder_tail(log,
1613                                                        trans, item, pass);
1614                        list_move_tail(&item->ri_list, &trans->r_itemq);
1615                        break;
1616                default:
1617                        xfs_warn(log->l_mp,
1618                                "%s: unrecognized type of log operation",
1619                                __func__);
1620                        ASSERT(0);
1621                        return XFS_ERROR(EIO);
1622                }
1623        }
1624        ASSERT(list_empty(&sort_list));
1625        return 0;
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass.  For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times.  In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
1640STATIC int
1641xlog_recover_buffer_pass1(
1642        struct log              *log,
1643        xlog_recover_item_t     *item)
1644{
1645        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1646        struct list_head        *bucket;
1647        struct xfs_buf_cancel   *bcp;
1648
1649        /*
1650         * If this isn't a cancel buffer item, then just return.
1651         */
1652        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654                return 0;
1655        }
1656
1657        /*
1658         * Insert an xfs_buf_cancel record into the hash table of them.
1659         * If there is already an identical record, bump its reference count.
1660         */
1661        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662        list_for_each_entry(bcp, bucket, bc_list) {
1663                if (bcp->bc_blkno == buf_f->blf_blkno &&
1664                    bcp->bc_len == buf_f->blf_len) {
1665                        bcp->bc_refcount++;
1666                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667                        return 0;
1668                }
1669        }
1670
1671        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672        bcp->bc_blkno = buf_f->blf_blkno;
1673        bcp->bc_len = buf_f->blf_len;
1674        bcp->bc_refcount = 1;
1675        list_add_tail(&bcp->bc_list, bucket);
1676
1677        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678        return 0;
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table.  If it does then return 1
1684 * so that it will be cancelled, otherwise return 0.  If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
1696        struct log              *log,
1697        xfs_daddr_t             blkno,
1698        uint                    len,
1699        ushort                  flags)
1700{
1701        struct list_head        *bucket;
1702        struct xfs_buf_cancel   *bcp;
1703
1704        if (log->l_buf_cancel_table == NULL) {
1705                /*
1706                 * There is nothing in the table built in pass one,
1707                 * so this buffer must not be cancelled.
1708                 */
1709                ASSERT(!(flags & XFS_BLF_CANCEL));
1710                return 0;
1711        }
1712
1713        /*
1714         * Search for an entry in the  cancel table that matches our buffer.
1715         */
1716        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717        list_for_each_entry(bcp, bucket, bc_list) {
1718                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719                        goto found;
1720        }
1721
1722        /*
1723         * We didn't find a corresponding entry in the table, so return 0 so
1724         * that the buffer is NOT cancelled.
1725         */
1726        ASSERT(!(flags & XFS_BLF_CANCEL));
1727        return 0;
1728
1729found:
1730        /*
1731         * We've go a match, so return 1 so that the recovery of this buffer
1732         * is cancelled.  If this buffer is actually a buffer cancel log
1733         * item, then decrement the refcount on the one in the table and
1734         * remove it if this is the last reference.
1735         */
1736        if (flags & XFS_BLF_CANCEL) {
1737                if (--bcp->bc_refcount == 0) {
1738                        list_del(&bcp->bc_list);
1739                        kmem_free(bcp);
1740                }
1741        }
1742        return 1;
1743}
1744
1745/*
1746 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1751 *
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes.  In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
1759        struct xfs_mount        *mp,
1760        xlog_recover_item_t     *item,
1761        struct xfs_buf          *bp,
1762        xfs_buf_log_format_t    *buf_f)
1763{
1764        int                     i;
1765        int                     item_index = 0;
1766        int                     bit = 0;
1767        int                     nbits = 0;
1768        int                     reg_buf_offset = 0;
1769        int                     reg_buf_bytes = 0;
1770        int                     next_unlinked_offset;
1771        int                     inodes_per_buf;
1772        xfs_agino_t             *logged_nextp;
1773        xfs_agino_t             *buffer_nextp;
1774
1775        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1777        inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778        for (i = 0; i < inodes_per_buf; i++) {
1779                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780                        offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782                while (next_unlinked_offset >=
1783                       (reg_buf_offset + reg_buf_bytes)) {
1784                        /*
1785                         * The next di_next_unlinked field is beyond
1786                         * the current logged region.  Find the next
1787                         * logged region that contains or is beyond
1788                         * the current di_next_unlinked field.
1789                         */
1790                        bit += nbits;
1791                        bit = xfs_next_bit(buf_f->blf_data_map,
1792                                           buf_f->blf_map_size, bit);
1793
1794                        /*
1795                         * If there are no more logged regions in the
1796                         * buffer, then we're done.
1797                         */
1798                        if (bit == -1)
1799                                return 0;
1800
1801                        nbits = xfs_contig_bits(buf_f->blf_data_map,
1802                                                buf_f->blf_map_size, bit);
1803                        ASSERT(nbits > 0);
1804                        reg_buf_offset = bit << XFS_BLF_SHIFT;
1805                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806                        item_index++;
1807                }
1808
1809                /*
1810                 * If the current logged region starts after the current
1811                 * di_next_unlinked field, then move on to the next
1812                 * di_next_unlinked field.
1813                 */
1814                if (next_unlinked_offset < reg_buf_offset)
1815                        continue;
1816
1817                ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819                ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1820
1821                /*
1822                 * The current logged region contains a copy of the
1823                 * current di_next_unlinked field.  Extract its value
1824                 * and copy it to the buffer copy.
1825                 */
1826                logged_nextp = item->ri_buf[item_index].i_addr +
1827                                next_unlinked_offset - reg_buf_offset;
1828                if (unlikely(*logged_nextp == 0)) {
1829                        xfs_alert(mp,
1830                "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831                "Trying to replay bad (0) inode di_next_unlinked field.",
1832                                item, bp);
1833                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834                                         XFS_ERRLEVEL_LOW, mp);
1835                        return XFS_ERROR(EFSCORRUPTED);
1836                }
1837
1838                buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839                                              next_unlinked_offset);
1840                *buffer_nextp = *logged_nextp;
1841        }
1842
1843        return 0;
1844}
1845
1846/*
1847 * Perform a 'normal' buffer recovery.  Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer.  The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1852STATIC void
1853xlog_recover_do_reg_buffer(
1854        struct xfs_mount        *mp,
1855        xlog_recover_item_t     *item,
1856        struct xfs_buf          *bp,
1857        xfs_buf_log_format_t    *buf_f)
1858{
1859        int                     i;
1860        int                     bit;
1861        int                     nbits;
1862        int                     error;
1863
1864        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1866        bit = 0;
1867        i = 1;  /* 0 is the buf format structure */
1868        while (1) {
1869                bit = xfs_next_bit(buf_f->blf_data_map,
1870                                   buf_f->blf_map_size, bit);
1871                if (bit == -1)
1872                        break;
1873                nbits = xfs_contig_bits(buf_f->blf_data_map,
1874                                        buf_f->blf_map_size, bit);
1875                ASSERT(nbits > 0);
1876                ASSERT(item->ri_buf[i].i_addr != NULL);
1877                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878                ASSERT(XFS_BUF_COUNT(bp) >=
1879                       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1880
1881                /*
1882                 * Do a sanity check if this is a dquot buffer. Just checking
1883                 * the first dquot in the buffer should do. XXXThis is
1884                 * probably a good thing to do for other buf types also.
1885                 */
1886                error = 0;
1887                if (buf_f->blf_flags &
1888                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889                        if (item->ri_buf[i].i_addr == NULL) {
1890                                xfs_alert(mp,
1891                                        "XFS: NULL dquot in %s.", __func__);
1892                                goto next;
1893                        }
1894                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895                                xfs_alert(mp,
1896                                        "XFS: dquot too small (%d) in %s.",
1897                                        item->ri_buf[i].i_len, __func__);
1898                                goto next;
1899                        }
1900                        error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901                                               -1, 0, XFS_QMOPT_DOWARN,
1902                                               "dquot_buf_recover");
1903                        if (error)
1904                                goto next;
1905                }
1906
1907                memcpy(xfs_buf_offset(bp,
1908                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
1909                        item->ri_buf[i].i_addr,         /* source */
1910                        nbits<<XFS_BLF_SHIFT);          /* length */
1911 next:
1912                i++;
1913                bit += nbits;
1914        }
1915
1916        /* Shouldn't be any more regions */
1917        ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
1925        struct xfs_mount *mp,
1926        xfs_disk_dquot_t *ddq,
1927        xfs_dqid_t       id,
1928        uint             type,    /* used only when IO_dorepair is true */
1929        uint             flags,
1930        char             *str)
1931{
1932        xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1933        int             errs = 0;
1934
1935        /*
1936         * We can encounter an uninitialized dquot buffer for 2 reasons:
1937         * 1. If we crash while deleting the quotainode(s), and those blks got
1938         *    used for user data. This is because we take the path of regular
1939         *    file deletion; however, the size field of quotainodes is never
1940         *    updated, so all the tricks that we play in itruncate_finish
1941         *    don't quite matter.
1942         *
1943         * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944         *    But the allocation will be replayed so we'll end up with an
1945         *    uninitialized quota block.
1946         *
1947         * This is all fine; things are still consistent, and we haven't lost
1948         * any quota information. Just don't complain about bad dquot blks.
1949         */
1950        if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1951                if (flags & XFS_QMOPT_DOWARN)
1952                        xfs_alert(mp,
1953                        "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954                        str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955                errs++;
1956        }
1957        if (ddq->d_version != XFS_DQUOT_VERSION) {
1958                if (flags & XFS_QMOPT_DOWARN)
1959                        xfs_alert(mp,
1960                        "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961                        str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962                errs++;
1963        }
1964
1965        if (ddq->d_flags != XFS_DQ_USER &&
1966            ddq->d_flags != XFS_DQ_PROJ &&
1967            ddq->d_flags != XFS_DQ_GROUP) {
1968                if (flags & XFS_QMOPT_DOWARN)
1969                        xfs_alert(mp,
1970                        "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971                        str, id, ddq->d_flags);
1972                errs++;
1973        }
1974
1975        if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976                if (flags & XFS_QMOPT_DOWARN)
1977                        xfs_alert(mp,
1978                        "%s : ondisk-dquot 0x%p, ID mismatch: "
1979                        "0x%x expected, found id 0x%x",
1980                        str, ddq, id, be32_to_cpu(ddq->d_id));
1981                errs++;
1982        }
1983
1984        if (!errs && ddq->d_id) {
1985                if (ddq->d_blk_softlimit &&
1986                    be64_to_cpu(ddq->d_bcount) >=
1987                                be64_to_cpu(ddq->d_blk_softlimit)) {
1988                        if (!ddq->d_btimer) {
1989                                if (flags & XFS_QMOPT_DOWARN)
1990                                        xfs_alert(mp,
1991                        "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1993                                errs++;
1994                        }
1995                }
1996                if (ddq->d_ino_softlimit &&
1997                    be64_to_cpu(ddq->d_icount) >=
1998                                be64_to_cpu(ddq->d_ino_softlimit)) {
1999                        if (!ddq->d_itimer) {
2000                                if (flags & XFS_QMOPT_DOWARN)
2001                                        xfs_alert(mp,
2002                        "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
2004                                errs++;
2005                        }
2006                }
2007                if (ddq->d_rtb_softlimit &&
2008                    be64_to_cpu(ddq->d_rtbcount) >=
2009                                be64_to_cpu(ddq->d_rtb_softlimit)) {
2010                        if (!ddq->d_rtbtimer) {
2011                                if (flags & XFS_QMOPT_DOWARN)
2012                                        xfs_alert(mp,
2013                        "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
2015                                errs++;
2016                        }
2017                }
2018        }
2019
2020        if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021                return errs;
2022
2023        if (flags & XFS_QMOPT_DOWARN)
2024                xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025
2026        /*
2027         * Typically, a repair is only requested by quotacheck.
2028         */
2029        ASSERT(id != -1);
2030        ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031        memset(d, 0, sizeof(xfs_dqblk_t));
2032
2033        d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034        d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035        d->dd_diskdq.d_flags = type;
2036        d->dd_diskdq.d_id = cpu_to_be32(id);
2037
2038        return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049        xfs_mount_t             *mp,
2050        xlog_t                  *log,
2051        xlog_recover_item_t     *item,
2052        xfs_buf_t               *bp,
2053        xfs_buf_log_format_t    *buf_f)
2054{
2055        uint                    type;
2056
2057        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
2059        /*
2060         * Filesystems are required to send in quota flags at mount time.
2061         */
2062        if (mp->m_qflags == 0) {
2063                return;
2064        }
2065
2066        type = 0;
2067        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068                type |= XFS_DQ_USER;
2069        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070                type |= XFS_DQ_PROJ;
2071        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072                type |= XFS_DQ_GROUP;
2073        /*
2074         * This type of quotas was turned off, so ignore this buffer
2075         */
2076        if (log->l_quotaoffs_flag & type)
2077                return;
2078
2079        xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently.  Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields.  This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery.  During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
2106xlog_recover_buffer_pass2(
2107        xlog_t                  *log,
2108        xlog_recover_item_t     *item)
2109{
2110        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2111        xfs_mount_t             *mp = log->l_mp;
2112        xfs_buf_t               *bp;
2113        int                     error;
2114        uint                    buf_flags;
2115
2116        /*
2117         * In this pass we only want to recover all the buffers which have
2118         * not been cancelled and are not cancellation buffers themselves.
2119         */
2120        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121                        buf_f->blf_len, buf_f->blf_flags)) {
2122                trace_xfs_log_recover_buf_cancel(log, buf_f);
2123                return 0;
2124        }
2125
2126        trace_xfs_log_recover_buf_recover(log, buf_f);
2127
2128        buf_flags = XBF_LOCK;
2129        if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130                buf_flags |= XBF_MAPPED;
2131
2132        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133                          buf_flags);
2134        if (XFS_BUF_ISERROR(bp)) {
2135                xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2136                                  bp, buf_f->blf_blkno);
2137                error = XFS_BUF_GETERROR(bp);
2138                xfs_buf_relse(bp);
2139                return error;
2140        }
2141
2142        error = 0;
2143        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2144                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2145        } else if (buf_f->blf_flags &
2146                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2147                xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2148        } else {
2149                xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2150        }
2151        if (error)
2152                return XFS_ERROR(error);
2153
2154        /*
2155         * Perform delayed write on the buffer.  Asynchronous writes will be
2156         * slower when taking into account all the buffers to be flushed.
2157         *
2158         * Also make sure that only inode buffers with good sizes stay in
2159         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2160         * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2161         * buffers in the log can be a different size if the log was generated
2162         * by an older kernel using unclustered inode buffers or a newer kernel
2163         * running with a different inode cluster size.  Regardless, if the
2164         * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2165         * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2166         * the buffer out of the buffer cache so that the buffer won't
2167         * overlap with future reads of those inodes.
2168         */
2169        if (XFS_DINODE_MAGIC ==
2170            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2171            (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2172                        (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2173                XFS_BUF_STALE(bp);
2174                error = xfs_bwrite(mp, bp);
2175        } else {
2176                ASSERT(bp->b_target->bt_mount == mp);
2177                XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2178                xfs_bdwrite(mp, bp);
2179        }
2180
2181        return (error);
2182}
2183
2184STATIC int
2185xlog_recover_inode_pass2(
2186        xlog_t                  *log,
2187        xlog_recover_item_t     *item)
2188{
2189        xfs_inode_log_format_t  *in_f;
2190        xfs_mount_t             *mp = log->l_mp;
2191        xfs_buf_t               *bp;
2192        xfs_dinode_t            *dip;
2193        int                     len;
2194        xfs_caddr_t             src;
2195        xfs_caddr_t             dest;
2196        int                     error;
2197        int                     attr_index;
2198        uint                    fields;
2199        xfs_icdinode_t          *dicp;
2200        int                     need_free = 0;
2201
2202        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2203                in_f = item->ri_buf[0].i_addr;
2204        } else {
2205                in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2206                need_free = 1;
2207                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2208                if (error)
2209                        goto error;
2210        }
2211
2212        /*
2213         * Inode buffers can be freed, look out for it,
2214         * and do not replay the inode.
2215         */
2216        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2217                                        in_f->ilf_len, 0)) {
2218                error = 0;
2219                trace_xfs_log_recover_inode_cancel(log, in_f);
2220                goto error;
2221        }
2222        trace_xfs_log_recover_inode_recover(log, in_f);
2223
2224        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2225                          XBF_LOCK);
2226        if (XFS_BUF_ISERROR(bp)) {
2227                xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2228                                  bp, in_f->ilf_blkno);
2229                error = XFS_BUF_GETERROR(bp);
2230                xfs_buf_relse(bp);
2231                goto error;
2232        }
2233        error = 0;
2234        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2235        dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2236
2237        /*
2238         * Make sure the place we're flushing out to really looks
2239         * like an inode!
2240         */
2241        if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2242                xfs_buf_relse(bp);
2243                xfs_alert(mp,
2244        "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2245                        __func__, dip, bp, in_f->ilf_ino);
2246                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2247                                 XFS_ERRLEVEL_LOW, mp);
2248                error = EFSCORRUPTED;
2249                goto error;
2250        }
2251        dicp = item->ri_buf[1].i_addr;
2252        if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2253                xfs_buf_relse(bp);
2254                xfs_alert(mp,
2255                        "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2256                        __func__, item, in_f->ilf_ino);
2257                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2258                                 XFS_ERRLEVEL_LOW, mp);
2259                error = EFSCORRUPTED;
2260                goto error;
2261        }
2262
2263        /* Skip replay when the on disk inode is newer than the log one */
2264        if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2265                /*
2266                 * Deal with the wrap case, DI_MAX_FLUSH is less
2267                 * than smaller numbers
2268                 */
2269                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2270                    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2271                        /* do nothing */
2272                } else {
2273                        xfs_buf_relse(bp);
2274                        trace_xfs_log_recover_inode_skip(log, in_f);
2275                        error = 0;
2276                        goto error;
2277                }
2278        }
2279        /* Take the opportunity to reset the flush iteration count */
2280        dicp->di_flushiter = 0;
2281
2282        if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2283                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2284                    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2285                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2286                                         XFS_ERRLEVEL_LOW, mp, dicp);
2287                        xfs_buf_relse(bp);
2288                        xfs_alert(mp,
2289                "%s: Bad regular inode log record, rec ptr 0x%p, "
2290                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2291                                __func__, item, dip, bp, in_f->ilf_ino);
2292                        error = EFSCORRUPTED;
2293                        goto error;
2294                }
2295        } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2296                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2297                    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2298                    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2299                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2300                                             XFS_ERRLEVEL_LOW, mp, dicp);
2301                        xfs_buf_relse(bp);
2302                        xfs_alert(mp,
2303                "%s: Bad dir inode log record, rec ptr 0x%p, "
2304                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2305                                __func__, item, dip, bp, in_f->ilf_ino);
2306                        error = EFSCORRUPTED;
2307                        goto error;
2308                }
2309        }
2310        if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2311                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2312                                     XFS_ERRLEVEL_LOW, mp, dicp);
2313                xfs_buf_relse(bp);
2314                xfs_alert(mp,
2315        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2316        "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2317                        __func__, item, dip, bp, in_f->ilf_ino,
2318                        dicp->di_nextents + dicp->di_anextents,
2319                        dicp->di_nblocks);
2320                error = EFSCORRUPTED;
2321                goto error;
2322        }
2323        if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2324                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2325                                     XFS_ERRLEVEL_LOW, mp, dicp);
2326                xfs_buf_relse(bp);
2327                xfs_alert(mp,
2328        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2329        "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2330                        item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2331                error = EFSCORRUPTED;
2332                goto error;
2333        }
2334        if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2335                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2336                                     XFS_ERRLEVEL_LOW, mp, dicp);
2337                xfs_buf_relse(bp);
2338                xfs_alert(mp,
2339                        "%s: Bad inode log record length %d, rec ptr 0x%p",
2340                        __func__, item->ri_buf[1].i_len, item);
2341                error = EFSCORRUPTED;
2342                goto error;
2343        }
2344
2345        /* The core is in in-core format */
2346        xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2347
2348        /* the rest is in on-disk format */
2349        if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2350                memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2351                        item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2352                        item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2353        }
2354
2355        fields = in_f->ilf_fields;
2356        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2357        case XFS_ILOG_DEV:
2358                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2359                break;
2360        case XFS_ILOG_UUID:
2361                memcpy(XFS_DFORK_DPTR(dip),
2362                       &in_f->ilf_u.ilfu_uuid,
2363                       sizeof(uuid_t));
2364                break;
2365        }
2366
2367        if (in_f->ilf_size == 2)
2368                goto write_inode_buffer;
2369        len = item->ri_buf[2].i_len;
2370        src = item->ri_buf[2].i_addr;
2371        ASSERT(in_f->ilf_size <= 4);
2372        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2373        ASSERT(!(fields & XFS_ILOG_DFORK) ||
2374               (len == in_f->ilf_dsize));
2375
2376        switch (fields & XFS_ILOG_DFORK) {
2377        case XFS_ILOG_DDATA:
2378        case XFS_ILOG_DEXT:
2379                memcpy(XFS_DFORK_DPTR(dip), src, len);
2380                break;
2381
2382        case XFS_ILOG_DBROOT:
2383                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2384                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2385                                 XFS_DFORK_DSIZE(dip, mp));
2386                break;
2387
2388        default:
2389                /*
2390                 * There are no data fork flags set.
2391                 */
2392                ASSERT((fields & XFS_ILOG_DFORK) == 0);
2393                break;
2394        }
2395
2396        /*
2397         * If we logged any attribute data, recover it.  There may or
2398         * may not have been any other non-core data logged in this
2399         * transaction.
2400         */
2401        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2402                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2403                        attr_index = 3;
2404                } else {
2405                        attr_index = 2;
2406                }
2407                len = item->ri_buf[attr_index].i_len;
2408                src = item->ri_buf[attr_index].i_addr;
2409                ASSERT(len == in_f->ilf_asize);
2410
2411                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2412                case XFS_ILOG_ADATA:
2413                case XFS_ILOG_AEXT:
2414                        dest = XFS_DFORK_APTR(dip);
2415                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2416                        memcpy(dest, src, len);
2417                        break;
2418
2419                case XFS_ILOG_ABROOT:
2420                        dest = XFS_DFORK_APTR(dip);
2421                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2422                                         len, (xfs_bmdr_block_t*)dest,
2423                                         XFS_DFORK_ASIZE(dip, mp));
2424                        break;
2425
2426                default:
2427                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2428                        ASSERT(0);
2429                        xfs_buf_relse(bp);
2430                        error = EIO;
2431                        goto error;
2432                }
2433        }
2434
2435write_inode_buffer:
2436        ASSERT(bp->b_target->bt_mount == mp);
2437        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2438        xfs_bdwrite(mp, bp);
2439error:
2440        if (need_free)
2441                kmem_free(in_f);
2442        return XFS_ERROR(error);
2443}
2444
2445/*
2446 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2447 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2448 * of that type.
2449 */
2450STATIC int
2451xlog_recover_quotaoff_pass1(
2452        xlog_t                  *log,
2453        xlog_recover_item_t     *item)
2454{
2455        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
2456        ASSERT(qoff_f);
2457
2458        /*
2459         * The logitem format's flag tells us if this was user quotaoff,
2460         * group/project quotaoff or both.
2461         */
2462        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2463                log->l_quotaoffs_flag |= XFS_DQ_USER;
2464        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2465                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2466        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2467                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2468
2469        return (0);
2470}
2471
2472/*
2473 * Recover a dquot record
2474 */
2475STATIC int
2476xlog_recover_dquot_pass2(
2477        xlog_t                  *log,
2478        xlog_recover_item_t     *item)
2479{
2480        xfs_mount_t             *mp = log->l_mp;
2481        xfs_buf_t               *bp;
2482        struct xfs_disk_dquot   *ddq, *recddq;
2483        int                     error;
2484        xfs_dq_logformat_t      *dq_f;
2485        uint                    type;
2486
2487
2488        /*
2489         * Filesystems are required to send in quota flags at mount time.
2490         */
2491        if (mp->m_qflags == 0)
2492                return (0);
2493
2494        recddq = item->ri_buf[1].i_addr;
2495        if (recddq == NULL) {
2496                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2497                return XFS_ERROR(EIO);
2498        }
2499        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2500                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2501                        item->ri_buf[1].i_len, __func__);
2502                return XFS_ERROR(EIO);
2503        }
2504
2505        /*
2506         * This type of quotas was turned off, so ignore this record.
2507         */
2508        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2509        ASSERT(type);
2510        if (log->l_quotaoffs_flag & type)
2511                return (0);
2512
2513        /*
2514         * At this point we know that quota was _not_ turned off.
2515         * Since the mount flags are not indicating to us otherwise, this
2516         * must mean that quota is on, and the dquot needs to be replayed.
2517         * Remember that we may not have fully recovered the superblock yet,
2518         * so we can't do the usual trick of looking at the SB quota bits.
2519         *
2520         * The other possibility, of course, is that the quota subsystem was
2521         * removed since the last mount - ENOSYS.
2522         */
2523        dq_f = item->ri_buf[0].i_addr;
2524        ASSERT(dq_f);
2525        error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2526                           "xlog_recover_dquot_pass2 (log copy)");
2527        if (error)
2528                return XFS_ERROR(EIO);
2529        ASSERT(dq_f->qlf_len == 1);
2530
2531        error = xfs_read_buf(mp, mp->m_ddev_targp,
2532                             dq_f->qlf_blkno,
2533                             XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2534                             0, &bp);
2535        if (error) {
2536                xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2537                                  bp, dq_f->qlf_blkno);
2538                return error;
2539        }
2540        ASSERT(bp);
2541        ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2542
2543        /*
2544         * At least the magic num portion should be on disk because this
2545         * was among a chunk of dquots created earlier, and we did some
2546         * minimal initialization then.
2547         */
2548        error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2549                           "xlog_recover_dquot_pass2");
2550        if (error) {
2551                xfs_buf_relse(bp);
2552                return XFS_ERROR(EIO);
2553        }
2554
2555        memcpy(ddq, recddq, item->ri_buf[1].i_len);
2556
2557        ASSERT(dq_f->qlf_size == 2);
2558        ASSERT(bp->b_target->bt_mount == mp);
2559        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2560        xfs_bdwrite(mp, bp);
2561
2562        return (0);
2563}
2564
2565/*
2566 * This routine is called to create an in-core extent free intent
2567 * item from the efi format structure which was logged on disk.
2568 * It allocates an in-core efi, copies the extents from the format
2569 * structure into it, and adds the efi to the AIL with the given
2570 * LSN.
2571 */
2572STATIC int
2573xlog_recover_efi_pass2(
2574        xlog_t                  *log,
2575        xlog_recover_item_t     *item,
2576        xfs_lsn_t               lsn)
2577{
2578        int                     error;
2579        xfs_mount_t             *mp = log->l_mp;
2580        xfs_efi_log_item_t      *efip;
2581        xfs_efi_log_format_t    *efi_formatp;
2582
2583        efi_formatp = item->ri_buf[0].i_addr;
2584
2585        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2586        if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2587                                         &(efip->efi_format)))) {
2588                xfs_efi_item_free(efip);
2589                return error;
2590        }
2591        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2592
2593        spin_lock(&log->l_ailp->xa_lock);
2594        /*
2595         * xfs_trans_ail_update() drops the AIL lock.
2596         */
2597        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2598        return 0;
2599}
2600
2601
2602/*
2603 * This routine is called when an efd format structure is found in
2604 * a committed transaction in the log.  It's purpose is to cancel
2605 * the corresponding efi if it was still in the log.  To do this
2606 * it searches the AIL for the efi with an id equal to that in the
2607 * efd format structure.  If we find it, we remove the efi from the
2608 * AIL and free it.
2609 */
2610STATIC int
2611xlog_recover_efd_pass2(
2612        xlog_t                  *log,
2613        xlog_recover_item_t     *item)
2614{
2615        xfs_efd_log_format_t    *efd_formatp;
2616        xfs_efi_log_item_t      *efip = NULL;
2617        xfs_log_item_t          *lip;
2618        __uint64_t              efi_id;
2619        struct xfs_ail_cursor   cur;
2620        struct xfs_ail          *ailp = log->l_ailp;
2621
2622        efd_formatp = item->ri_buf[0].i_addr;
2623        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2624                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2625               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2626                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2627        efi_id = efd_formatp->efd_efi_id;
2628
2629        /*
2630         * Search for the efi with the id in the efd format structure
2631         * in the AIL.
2632         */
2633        spin_lock(&ailp->xa_lock);
2634        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2635        while (lip != NULL) {
2636                if (lip->li_type == XFS_LI_EFI) {
2637                        efip = (xfs_efi_log_item_t *)lip;
2638                        if (efip->efi_format.efi_id == efi_id) {
2639                                /*
2640                                 * xfs_trans_ail_delete() drops the
2641                                 * AIL lock.
2642                                 */
2643                                xfs_trans_ail_delete(ailp, lip);
2644                                xfs_efi_item_free(efip);
2645                                spin_lock(&ailp->xa_lock);
2646                                break;
2647                        }
2648                }
2649                lip = xfs_trans_ail_cursor_next(ailp, &cur);
2650        }
2651        xfs_trans_ail_cursor_done(ailp, &cur);
2652        spin_unlock(&ailp->xa_lock);
2653
2654        return 0;
2655}
2656
2657/*
2658 * Free up any resources allocated by the transaction
2659 *
2660 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2661 */
2662STATIC void
2663xlog_recover_free_trans(
2664        struct xlog_recover     *trans)
2665{
2666        xlog_recover_item_t     *item, *n;
2667        int                     i;
2668
2669        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2670                /* Free the regions in the item. */
2671                list_del(&item->ri_list);
2672                for (i = 0; i < item->ri_cnt; i++)
2673                        kmem_free(item->ri_buf[i].i_addr);
2674                /* Free the item itself */
2675                kmem_free(item->ri_buf);
2676                kmem_free(item);
2677        }
2678        /* Free the transaction recover structure */
2679        kmem_free(trans);
2680}
2681
2682STATIC int
2683xlog_recover_commit_pass1(
2684        struct log              *log,
2685        struct xlog_recover     *trans,
2686        xlog_recover_item_t     *item)
2687{
2688        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2689
2690        switch (ITEM_TYPE(item)) {
2691        case XFS_LI_BUF:
2692                return xlog_recover_buffer_pass1(log, item);
2693        case XFS_LI_QUOTAOFF:
2694                return xlog_recover_quotaoff_pass1(log, item);
2695        case XFS_LI_INODE:
2696        case XFS_LI_EFI:
2697        case XFS_LI_EFD:
2698        case XFS_LI_DQUOT:
2699                /* nothing to do in pass 1 */
2700                return 0;
2701        default:
2702                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2703                        __func__, ITEM_TYPE(item));
2704                ASSERT(0);
2705                return XFS_ERROR(EIO);
2706        }
2707}
2708
2709STATIC int
2710xlog_recover_commit_pass2(
2711        struct log              *log,
2712        struct xlog_recover     *trans,
2713        xlog_recover_item_t     *item)
2714{
2715        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2716
2717        switch (ITEM_TYPE(item)) {
2718        case XFS_LI_BUF:
2719                return xlog_recover_buffer_pass2(log, item);
2720        case XFS_LI_INODE:
2721                return xlog_recover_inode_pass2(log, item);
2722        case XFS_LI_EFI:
2723                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2724        case XFS_LI_EFD:
2725                return xlog_recover_efd_pass2(log, item);
2726        case XFS_LI_DQUOT:
2727                return xlog_recover_dquot_pass2(log, item);
2728        case XFS_LI_QUOTAOFF:
2729                /* nothing to do in pass2 */
2730                return 0;
2731        default:
2732                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2733                        __func__, ITEM_TYPE(item));
2734                ASSERT(0);
2735                return XFS_ERROR(EIO);
2736        }
2737}
2738
2739/*
2740 * Perform the transaction.
2741 *
2742 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2743 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2744 */
2745STATIC int
2746xlog_recover_commit_trans(
2747        struct log              *log,
2748        struct xlog_recover     *trans,
2749        int                     pass)
2750{
2751        int                     error = 0;
2752        xlog_recover_item_t     *item;
2753
2754        hlist_del(&trans->r_list);
2755
2756        error = xlog_recover_reorder_trans(log, trans, pass);
2757        if (error)
2758                return error;
2759
2760        list_for_each_entry(item, &trans->r_itemq, ri_list) {
2761                if (pass == XLOG_RECOVER_PASS1)
2762                        error = xlog_recover_commit_pass1(log, trans, item);
2763                else
2764                        error = xlog_recover_commit_pass2(log, trans, item);
2765                if (error)
2766                        return error;
2767        }
2768
2769        xlog_recover_free_trans(trans);
2770        return 0;
2771}
2772
2773STATIC int
2774xlog_recover_unmount_trans(
2775        struct log              *log,
2776        xlog_recover_t          *trans)
2777{
2778        /* Do nothing now */
2779        xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2780        return 0;
2781}
2782
2783/*
2784 * There are two valid states of the r_state field.  0 indicates that the
2785 * transaction structure is in a normal state.  We have either seen the
2786 * start of the transaction or the last operation we added was not a partial
2787 * operation.  If the last operation we added to the transaction was a
2788 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2789 *
2790 * NOTE: skip LRs with 0 data length.
2791 */
2792STATIC int
2793xlog_recover_process_data(
2794        xlog_t                  *log,
2795        struct hlist_head       rhash[],
2796        xlog_rec_header_t       *rhead,
2797        xfs_caddr_t             dp,
2798        int                     pass)
2799{
2800        xfs_caddr_t             lp;
2801        int                     num_logops;
2802        xlog_op_header_t        *ohead;
2803        xlog_recover_t          *trans;
2804        xlog_tid_t              tid;
2805        int                     error;
2806        unsigned long           hash;
2807        uint                    flags;
2808
2809        lp = dp + be32_to_cpu(rhead->h_len);
2810        num_logops = be32_to_cpu(rhead->h_num_logops);
2811
2812        /* check the log format matches our own - else we can't recover */
2813        if (xlog_header_check_recover(log->l_mp, rhead))
2814                return (XFS_ERROR(EIO));
2815
2816        while ((dp < lp) && num_logops) {
2817                ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2818                ohead = (xlog_op_header_t *)dp;
2819                dp += sizeof(xlog_op_header_t);
2820                if (ohead->oh_clientid != XFS_TRANSACTION &&
2821                    ohead->oh_clientid != XFS_LOG) {
2822                        xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2823                                        __func__, ohead->oh_clientid);
2824                        ASSERT(0);
2825                        return (XFS_ERROR(EIO));
2826                }
2827                tid = be32_to_cpu(ohead->oh_tid);
2828                hash = XLOG_RHASH(tid);
2829                trans = xlog_recover_find_tid(&rhash[hash], tid);
2830                if (trans == NULL) {               /* not found; add new tid */
2831                        if (ohead->oh_flags & XLOG_START_TRANS)
2832                                xlog_recover_new_tid(&rhash[hash], tid,
2833                                        be64_to_cpu(rhead->h_lsn));
2834                } else {
2835                        if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2836                                xfs_warn(log->l_mp, "%s: bad length 0x%x",
2837                                        __func__, be32_to_cpu(ohead->oh_len));
2838                                WARN_ON(1);
2839                                return (XFS_ERROR(EIO));
2840                        }
2841                        flags = ohead->oh_flags & ~XLOG_END_TRANS;
2842                        if (flags & XLOG_WAS_CONT_TRANS)
2843                                flags &= ~XLOG_CONTINUE_TRANS;
2844                        switch (flags) {
2845                        case XLOG_COMMIT_TRANS:
2846                                error = xlog_recover_commit_trans(log,
2847                                                                trans, pass);
2848                                break;
2849                        case XLOG_UNMOUNT_TRANS:
2850                                error = xlog_recover_unmount_trans(log, trans);
2851                                break;
2852                        case XLOG_WAS_CONT_TRANS:
2853                                error = xlog_recover_add_to_cont_trans(log,
2854                                                trans, dp,
2855                                                be32_to_cpu(ohead->oh_len));
2856                                break;
2857                        case XLOG_START_TRANS:
2858                                xfs_warn(log->l_mp, "%s: bad transaction",
2859                                        __func__);
2860                                ASSERT(0);
2861                                error = XFS_ERROR(EIO);
2862                                break;
2863                        case 0:
2864                        case XLOG_CONTINUE_TRANS:
2865                                error = xlog_recover_add_to_trans(log, trans,
2866                                                dp, be32_to_cpu(ohead->oh_len));
2867                                break;
2868                        default:
2869                                xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2870                                        __func__, flags);
2871                                ASSERT(0);
2872                                error = XFS_ERROR(EIO);
2873                                break;
2874                        }
2875                        if (error)
2876                                return error;
2877                }
2878                dp += be32_to_cpu(ohead->oh_len);
2879                num_logops--;
2880        }
2881        return 0;
2882}
2883
2884/*
2885 * Process an extent free intent item that was recovered from
2886 * the log.  We need to free the extents that it describes.
2887 */
2888STATIC int
2889xlog_recover_process_efi(
2890        xfs_mount_t             *mp,
2891        xfs_efi_log_item_t      *efip)
2892{
2893        xfs_efd_log_item_t      *efdp;
2894        xfs_trans_t             *tp;
2895        int                     i;
2896        int                     error = 0;
2897        xfs_extent_t            *extp;
2898        xfs_fsblock_t           startblock_fsb;
2899
2900        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2901
2902        /*
2903         * First check the validity of the extents described by the
2904         * EFI.  If any are bad, then assume that all are bad and
2905         * just toss the EFI.
2906         */
2907        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2908                extp = &(efip->efi_format.efi_extents[i]);
2909                startblock_fsb = XFS_BB_TO_FSB(mp,
2910                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2911                if ((startblock_fsb == 0) ||
2912                    (extp->ext_len == 0) ||
2913                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2914                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2915                        /*
2916                         * This will pull the EFI from the AIL and
2917                         * free the memory associated with it.
2918                         */
2919                        xfs_efi_release(efip, efip->efi_format.efi_nextents);
2920                        return XFS_ERROR(EIO);
2921                }
2922        }
2923
2924        tp = xfs_trans_alloc(mp, 0);
2925        error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2926        if (error)
2927                goto abort_error;
2928        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2929
2930        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2931                extp = &(efip->efi_format.efi_extents[i]);
2932                error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2933                if (error)
2934                        goto abort_error;
2935                xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2936                                         extp->ext_len);
2937        }
2938
2939        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2940        error = xfs_trans_commit(tp, 0);
2941        return error;
2942
2943abort_error:
2944        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2945        return error;
2946}
2947
2948/*
2949 * When this is called, all of the EFIs which did not have
2950 * corresponding EFDs should be in the AIL.  What we do now
2951 * is free the extents associated with each one.
2952 *
2953 * Since we process the EFIs in normal transactions, they
2954 * will be removed at some point after the commit.  This prevents
2955 * us from just walking down the list processing each one.
2956 * We'll use a flag in the EFI to skip those that we've already
2957 * processed and use the AIL iteration mechanism's generation
2958 * count to try to speed this up at least a bit.
2959 *
2960 * When we start, we know that the EFIs are the only things in
2961 * the AIL.  As we process them, however, other items are added
2962 * to the AIL.  Since everything added to the AIL must come after
2963 * everything already in the AIL, we stop processing as soon as
2964 * we see something other than an EFI in the AIL.
2965 */
2966STATIC int
2967xlog_recover_process_efis(
2968        xlog_t                  *log)
2969{
2970        xfs_log_item_t          *lip;
2971        xfs_efi_log_item_t      *efip;
2972        int                     error = 0;
2973        struct xfs_ail_cursor   cur;
2974        struct xfs_ail          *ailp;
2975
2976        ailp = log->l_ailp;
2977        spin_lock(&ailp->xa_lock);
2978        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2979        while (lip != NULL) {
2980                /*
2981                 * We're done when we see something other than an EFI.
2982                 * There should be no EFIs left in the AIL now.
2983                 */
2984                if (lip->li_type != XFS_LI_EFI) {
2985#ifdef DEBUG
2986                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2987                                ASSERT(lip->li_type != XFS_LI_EFI);
2988#endif
2989                        break;
2990                }
2991
2992                /*
2993                 * Skip EFIs that we've already processed.
2994                 */
2995                efip = (xfs_efi_log_item_t *)lip;
2996                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
2997                        lip = xfs_trans_ail_cursor_next(ailp, &cur);
2998                        continue;
2999                }
3000
3001                spin_unlock(&ailp->xa_lock);
3002                error = xlog_recover_process_efi(log->l_mp, efip);
3003                spin_lock(&ailp->xa_lock);
3004                if (error)
3005                        goto out;
3006                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3007        }
3008out:
3009        xfs_trans_ail_cursor_done(ailp, &cur);
3010        spin_unlock(&ailp->xa_lock);
3011        return error;
3012}
3013
3014/*
3015 * This routine performs a transaction to null out a bad inode pointer
3016 * in an agi unlinked inode hash bucket.
3017 */
3018STATIC void
3019xlog_recover_clear_agi_bucket(
3020        xfs_mount_t     *mp,
3021        xfs_agnumber_t  agno,
3022        int             bucket)
3023{
3024        xfs_trans_t     *tp;
3025        xfs_agi_t       *agi;
3026        xfs_buf_t       *agibp;
3027        int             offset;
3028        int             error;
3029
3030        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3031        error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3032                                  0, 0, 0);
3033        if (error)
3034                goto out_abort;
3035
3036        error = xfs_read_agi(mp, tp, agno, &agibp);
3037        if (error)
3038                goto out_abort;
3039
3040        agi = XFS_BUF_TO_AGI(agibp);
3041        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3042        offset = offsetof(xfs_agi_t, agi_unlinked) +
3043                 (sizeof(xfs_agino_t) * bucket);
3044        xfs_trans_log_buf(tp, agibp, offset,
3045                          (offset + sizeof(xfs_agino_t) - 1));
3046
3047        error = xfs_trans_commit(tp, 0);
3048        if (error)
3049                goto out_error;
3050        return;
3051
3052out_abort:
3053        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3054out_error:
3055        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3056        return;
3057}
3058
3059STATIC xfs_agino_t
3060xlog_recover_process_one_iunlink(
3061        struct xfs_mount                *mp,
3062        xfs_agnumber_t                  agno,
3063        xfs_agino_t                     agino,
3064        int                             bucket)
3065{
3066        struct xfs_buf                  *ibp;
3067        struct xfs_dinode               *dip;
3068        struct xfs_inode                *ip;
3069        xfs_ino_t                       ino;
3070        int                             error;
3071
3072        ino = XFS_AGINO_TO_INO(mp, agno, agino);
3073        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3074        if (error)
3075                goto fail;
3076
3077        /*
3078         * Get the on disk inode to find the next inode in the bucket.
3079         */
3080        error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3081        if (error)
3082                goto fail_iput;
3083
3084        ASSERT(ip->i_d.di_nlink == 0);
3085        ASSERT(ip->i_d.di_mode != 0);
3086
3087        /* setup for the next pass */
3088        agino = be32_to_cpu(dip->di_next_unlinked);
3089        xfs_buf_relse(ibp);
3090
3091        /*
3092         * Prevent any DMAPI event from being sent when the reference on
3093         * the inode is dropped.
3094         */
3095        ip->i_d.di_dmevmask = 0;
3096
3097        IRELE(ip);
3098        return agino;
3099
3100 fail_iput:
3101        IRELE(ip);
3102 fail:
3103        /*
3104         * We can't read in the inode this bucket points to, or this inode
3105         * is messed up.  Just ditch this bucket of inodes.  We will lose
3106         * some inodes and space, but at least we won't hang.
3107         *
3108         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3109         * clear the inode pointer in the bucket.
3110         */
3111        xlog_recover_clear_agi_bucket(mp, agno, bucket);
3112        return NULLAGINO;
3113}
3114
3115/*
3116 * xlog_iunlink_recover
3117 *
3118 * This is called during recovery to process any inodes which
3119 * we unlinked but not freed when the system crashed.  These
3120 * inodes will be on the lists in the AGI blocks.  What we do
3121 * here is scan all the AGIs and fully truncate and free any
3122 * inodes found on the lists.  Each inode is removed from the
3123 * lists when it has been fully truncated and is freed.  The
3124 * freeing of the inode and its removal from the list must be
3125 * atomic.
3126 */
3127STATIC void
3128xlog_recover_process_iunlinks(
3129        xlog_t          *log)
3130{
3131        xfs_mount_t     *mp;
3132        xfs_agnumber_t  agno;
3133        xfs_agi_t       *agi;
3134        xfs_buf_t       *agibp;
3135        xfs_agino_t     agino;
3136        int             bucket;
3137        int             error;
3138        uint            mp_dmevmask;
3139
3140        mp = log->l_mp;
3141
3142        /*
3143         * Prevent any DMAPI event from being sent while in this function.
3144         */
3145        mp_dmevmask = mp->m_dmevmask;
3146        mp->m_dmevmask = 0;
3147
3148        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3149                /*
3150                 * Find the agi for this ag.
3151                 */
3152                error = xfs_read_agi(mp, NULL, agno, &agibp);
3153                if (error) {
3154                        /*
3155                         * AGI is b0rked. Don't process it.
3156                         *
3157                         * We should probably mark the filesystem as corrupt
3158                         * after we've recovered all the ag's we can....
3159                         */
3160                        continue;
3161                }
3162                agi = XFS_BUF_TO_AGI(agibp);
3163
3164                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3165                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3166                        while (agino != NULLAGINO) {
3167                                /*
3168                                 * Release the agi buffer so that it can
3169                                 * be acquired in the normal course of the
3170                                 * transaction to truncate and free the inode.
3171                                 */
3172                                xfs_buf_relse(agibp);
3173
3174                                agino = xlog_recover_process_one_iunlink(mp,
3175                                                        agno, agino, bucket);
3176
3177                                /*
3178                                 * Reacquire the agibuffer and continue around
3179                                 * the loop. This should never fail as we know
3180                                 * the buffer was good earlier on.
3181                                 */
3182                                error = xfs_read_agi(mp, NULL, agno, &agibp);
3183                                ASSERT(error == 0);
3184                                agi = XFS_BUF_TO_AGI(agibp);
3185                        }
3186                }
3187
3188                /*
3189                 * Release the buffer for the current agi so we can
3190                 * go on to the next one.
3191                 */
3192                xfs_buf_relse(agibp);
3193        }
3194
3195        mp->m_dmevmask = mp_dmevmask;
3196}
3197
3198
3199#ifdef DEBUG
3200STATIC void
3201xlog_pack_data_checksum(
3202        xlog_t          *log,
3203        xlog_in_core_t  *iclog,
3204        int             size)
3205{
3206        int             i;
3207        __be32          *up;
3208        uint            chksum = 0;
3209
3210        up = (__be32 *)iclog->ic_datap;
3211        /* divide length by 4 to get # words */
3212        for (i = 0; i < (size >> 2); i++) {
3213                chksum ^= be32_to_cpu(*up);
3214                up++;
3215        }
3216        iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3217}
3218#else
3219#define xlog_pack_data_checksum(log, iclog, size)
3220#endif
3221
3222/*
3223 * Stamp cycle number in every block
3224 */
3225void
3226xlog_pack_data(
3227        xlog_t                  *log,
3228        xlog_in_core_t          *iclog,
3229        int                     roundoff)
3230{
3231        int                     i, j, k;
3232        int                     size = iclog->ic_offset + roundoff;
3233        __be32                  cycle_lsn;
3234        xfs_caddr_t             dp;
3235
3236        xlog_pack_data_checksum(log, iclog, size);
3237
3238        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3239
3240        dp = iclog->ic_datap;
3241        for (i = 0; i < BTOBB(size) &&
3242                i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3243                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3244                *(__be32 *)dp = cycle_lsn;
3245                dp += BBSIZE;
3246        }
3247
3248        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3249                xlog_in_core_2_t *xhdr = iclog->ic_data;
3250
3251                for ( ; i < BTOBB(size); i++) {
3252                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3253                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3254                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3255                        *(__be32 *)dp = cycle_lsn;
3256                        dp += BBSIZE;
3257                }
3258
3259                for (i = 1; i < log->l_iclog_heads; i++) {
3260                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3261                }
3262        }
3263}
3264
3265STATIC void
3266xlog_unpack_data(
3267        xlog_rec_header_t       *rhead,
3268        xfs_caddr_t             dp,
3269        xlog_t                  *log)
3270{
3271        int                     i, j, k;
3272
3273        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3274                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3275                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3276                dp += BBSIZE;
3277        }
3278
3279        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3280                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3281                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3282                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3283                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3284                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3285                        dp += BBSIZE;
3286                }
3287        }
3288}
3289
3290STATIC int
3291xlog_valid_rec_header(
3292        xlog_t                  *log,
3293        xlog_rec_header_t       *rhead,
3294        xfs_daddr_t             blkno)
3295{
3296        int                     hlen;
3297
3298        if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3299                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3300                                XFS_ERRLEVEL_LOW, log->l_mp);
3301                return XFS_ERROR(EFSCORRUPTED);
3302        }
3303        if (unlikely(
3304            (!rhead->h_version ||
3305            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3306                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3307                        __func__, be32_to_cpu(rhead->h_version));
3308                return XFS_ERROR(EIO);
3309        }
3310
3311        /* LR body must have data or it wouldn't have been written */
3312        hlen = be32_to_cpu(rhead->h_len);
3313        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3314                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3315                                XFS_ERRLEVEL_LOW, log->l_mp);
3316                return XFS_ERROR(EFSCORRUPTED);
3317        }
3318        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3319                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3320                                XFS_ERRLEVEL_LOW, log->l_mp);
3321                return XFS_ERROR(EFSCORRUPTED);
3322        }
3323        return 0;
3324}
3325
3326/*
3327 * Read the log from tail to head and process the log records found.
3328 * Handle the two cases where the tail and head are in the same cycle
3329 * and where the active portion of the log wraps around the end of
3330 * the physical log separately.  The pass parameter is passed through
3331 * to the routines called to process the data and is not looked at
3332 * here.
3333 */
3334STATIC int
3335xlog_do_recovery_pass(
3336        xlog_t                  *log,
3337        xfs_daddr_t             head_blk,
3338        xfs_daddr_t             tail_blk,
3339        int                     pass)
3340{
3341        xlog_rec_header_t       *rhead;
3342        xfs_daddr_t             blk_no;
3343        xfs_caddr_t             offset;
3344        xfs_buf_t               *hbp, *dbp;
3345        int                     error = 0, h_size;
3346        int                     bblks, split_bblks;
3347        int                     hblks, split_hblks, wrapped_hblks;
3348        struct hlist_head       rhash[XLOG_RHASH_SIZE];
3349
3350        ASSERT(head_blk != tail_blk);
3351
3352        /*
3353         * Read the header of the tail block and get the iclog buffer size from
3354         * h_size.  Use this to tell how many sectors make up the log header.
3355         */
3356        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3357                /*
3358                 * When using variable length iclogs, read first sector of
3359                 * iclog header and extract the header size from it.  Get a
3360                 * new hbp that is the correct size.
3361                 */
3362                hbp = xlog_get_bp(log, 1);
3363                if (!hbp)
3364                        return ENOMEM;
3365
3366                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3367                if (error)
3368                        goto bread_err1;
3369
3370                rhead = (xlog_rec_header_t *)offset;
3371                error = xlog_valid_rec_header(log, rhead, tail_blk);
3372                if (error)
3373                        goto bread_err1;
3374                h_size = be32_to_cpu(rhead->h_size);
3375                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3376                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3377                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3378                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
3379                                hblks++;
3380                        xlog_put_bp(hbp);
3381                        hbp = xlog_get_bp(log, hblks);
3382                } else {
3383                        hblks = 1;
3384                }
3385        } else {
3386                ASSERT(log->l_sectBBsize == 1);
3387                hblks = 1;
3388                hbp = xlog_get_bp(log, 1);
3389                h_size = XLOG_BIG_RECORD_BSIZE;
3390        }
3391
3392        if (!hbp)
3393                return ENOMEM;
3394        dbp = xlog_get_bp(log, BTOBB(h_size));
3395        if (!dbp) {
3396                xlog_put_bp(hbp);
3397                return ENOMEM;
3398        }
3399
3400        memset(rhash, 0, sizeof(rhash));
3401        if (tail_blk <= head_blk) {
3402                for (blk_no = tail_blk; blk_no < head_blk; ) {
3403                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3404                        if (error)
3405                                goto bread_err2;
3406
3407                        rhead = (xlog_rec_header_t *)offset;
3408                        error = xlog_valid_rec_header(log, rhead, blk_no);
3409                        if (error)
3410                                goto bread_err2;
3411
3412                        /* blocks in data section */
3413                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3414                        error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3415                                           &offset);
3416                        if (error)
3417                                goto bread_err2;
3418
3419                        xlog_unpack_data(rhead, offset, log);
3420                        if ((error = xlog_recover_process_data(log,
3421                                                rhash, rhead, offset, pass)))
3422                                goto bread_err2;
3423                        blk_no += bblks + hblks;
3424                }
3425        } else {
3426                /*
3427                 * Perform recovery around the end of the physical log.
3428                 * When the head is not on the same cycle number as the tail,
3429                 * we can't do a sequential recovery as above.
3430                 */
3431                blk_no = tail_blk;
3432                while (blk_no < log->l_logBBsize) {
3433                        /*
3434                         * Check for header wrapping around physical end-of-log
3435                         */
3436                        offset = XFS_BUF_PTR(hbp);
3437                        split_hblks = 0;
3438                        wrapped_hblks = 0;
3439                        if (blk_no + hblks <= log->l_logBBsize) {
3440                                /* Read header in one read */
3441                                error = xlog_bread(log, blk_no, hblks, hbp,
3442                                                   &offset);
3443                                if (error)
3444                                        goto bread_err2;
3445                        } else {
3446                                /* This LR is split across physical log end */
3447                                if (blk_no != log->l_logBBsize) {
3448                                        /* some data before physical log end */
3449                                        ASSERT(blk_no <= INT_MAX);
3450                                        split_hblks = log->l_logBBsize - (int)blk_no;
3451                                        ASSERT(split_hblks > 0);
3452                                        error = xlog_bread(log, blk_no,
3453                                                           split_hblks, hbp,
3454                                                           &offset);
3455                                        if (error)
3456                                                goto bread_err2;
3457                                }
3458
3459                                /*
3460                                 * Note: this black magic still works with
3461                                 * large sector sizes (non-512) only because:
3462                                 * - we increased the buffer size originally
3463                                 *   by 1 sector giving us enough extra space
3464                                 *   for the second read;
3465                                 * - the log start is guaranteed to be sector
3466                                 *   aligned;
3467                                 * - we read the log end (LR header start)
3468                                 *   _first_, then the log start (LR header end)
3469                                 *   - order is important.
3470                                 */
3471                                wrapped_hblks = hblks - split_hblks;
3472                                error = xlog_bread_offset(log, 0,
3473                                                wrapped_hblks, hbp,
3474                                                offset + BBTOB(split_hblks));
3475                                if (error)
3476                                        goto bread_err2;
3477                        }
3478                        rhead = (xlog_rec_header_t *)offset;
3479                        error = xlog_valid_rec_header(log, rhead,
3480                                                split_hblks ? blk_no : 0);
3481                        if (error)
3482                                goto bread_err2;
3483
3484                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3485                        blk_no += hblks;
3486
3487                        /* Read in data for log record */
3488                        if (blk_no + bblks <= log->l_logBBsize) {
3489                                error = xlog_bread(log, blk_no, bblks, dbp,
3490                                                   &offset);
3491                                if (error)
3492                                        goto bread_err2;
3493                        } else {
3494                                /* This log record is split across the
3495                                 * physical end of log */
3496                                offset = XFS_BUF_PTR(dbp);
3497                                split_bblks = 0;
3498                                if (blk_no != log->l_logBBsize) {
3499                                        /* some data is before the physical
3500                                         * end of log */
3501                                        ASSERT(!wrapped_hblks);
3502                                        ASSERT(blk_no <= INT_MAX);
3503                                        split_bblks =
3504                                                log->l_logBBsize - (int)blk_no;
3505                                        ASSERT(split_bblks > 0);
3506                                        error = xlog_bread(log, blk_no,
3507                                                        split_bblks, dbp,
3508                                                        &offset);
3509                                        if (error)
3510                                                goto bread_err2;
3511                                }
3512
3513                                /*
3514                                 * Note: this black magic still works with
3515                                 * large sector sizes (non-512) only because:
3516                                 * - we increased the buffer size originally
3517                                 *   by 1 sector giving us enough extra space
3518                                 *   for the second read;
3519                                 * - the log start is guaranteed to be sector
3520                                 *   aligned;
3521                                 * - we read the log end (LR header start)
3522                                 *   _first_, then the log start (LR header end)
3523                                 *   - order is important.
3524                                 */
3525                                error = xlog_bread_offset(log, 0,
3526                                                bblks - split_bblks, hbp,
3527                                                offset + BBTOB(split_bblks));
3528                                if (error)
3529                                        goto bread_err2;
3530                        }
3531                        xlog_unpack_data(rhead, offset, log);
3532                        if ((error = xlog_recover_process_data(log, rhash,
3533                                                        rhead, offset, pass)))
3534                                goto bread_err2;
3535                        blk_no += bblks;
3536                }
3537
3538                ASSERT(blk_no >= log->l_logBBsize);
3539                blk_no -= log->l_logBBsize;
3540
3541                /* read first part of physical log */
3542                while (blk_no < head_blk) {
3543                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3544                        if (error)
3545                                goto bread_err2;
3546
3547                        rhead = (xlog_rec_header_t *)offset;
3548                        error = xlog_valid_rec_header(log, rhead, blk_no);
3549                        if (error)
3550                                goto bread_err2;
3551
3552                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3553                        error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3554                                           &offset);
3555                        if (error)
3556                                goto bread_err2;
3557
3558                        xlog_unpack_data(rhead, offset, log);
3559                        if ((error = xlog_recover_process_data(log, rhash,
3560                                                        rhead, offset, pass)))
3561                                goto bread_err2;
3562                        blk_no += bblks + hblks;
3563                }
3564        }
3565
3566 bread_err2:
3567        xlog_put_bp(dbp);
3568 bread_err1:
3569        xlog_put_bp(hbp);
3570        return error;
3571}
3572
3573/*
3574 * Do the recovery of the log.  We actually do this in two phases.
3575 * The two passes are necessary in order to implement the function
3576 * of cancelling a record written into the log.  The first pass
3577 * determines those things which have been cancelled, and the
3578 * second pass replays log items normally except for those which
3579 * have been cancelled.  The handling of the replay and cancellations
3580 * takes place in the log item type specific routines.
3581 *
3582 * The table of items which have cancel records in the log is allocated
3583 * and freed at this level, since only here do we know when all of
3584 * the log recovery has been completed.
3585 */
3586STATIC int
3587xlog_do_log_recovery(
3588        xlog_t          *log,
3589        xfs_daddr_t     head_blk,
3590        xfs_daddr_t     tail_blk)
3591{
3592        int             error, i;
3593
3594        ASSERT(head_blk != tail_blk);
3595
3596        /*
3597         * First do a pass to find all of the cancelled buf log items.
3598         * Store them in the buf_cancel_table for use in the second pass.
3599         */
3600        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3601                                                 sizeof(struct list_head),
3602                                                 KM_SLEEP);
3603        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3604                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3605
3606        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3607                                      XLOG_RECOVER_PASS1);
3608        if (error != 0) {
3609                kmem_free(log->l_buf_cancel_table);
3610                log->l_buf_cancel_table = NULL;
3611                return error;
3612        }
3613        /*
3614         * Then do a second pass to actually recover the items in the log.
3615         * When it is complete free the table of buf cancel items.
3616         */
3617        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3618                                      XLOG_RECOVER_PASS2);
3619#ifdef DEBUG
3620        if (!error) {
3621                int     i;
3622
3623                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3624                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3625        }
3626#endif  /* DEBUG */
3627
3628        kmem_free(log->l_buf_cancel_table);
3629        log->l_buf_cancel_table = NULL;
3630
3631        return error;
3632}
3633
3634/*
3635 * Do the actual recovery
3636 */
3637STATIC int
3638xlog_do_recover(
3639        xlog_t          *log,
3640        xfs_daddr_t     head_blk,
3641        xfs_daddr_t     tail_blk)
3642{
3643        int             error;
3644        xfs_buf_t       *bp;
3645        xfs_sb_t        *sbp;
3646
3647        /*
3648         * First replay the images in the log.
3649         */
3650        error = xlog_do_log_recovery(log, head_blk, tail_blk);
3651        if (error) {
3652                return error;
3653        }
3654
3655        XFS_bflush(log->l_mp->m_ddev_targp);
3656
3657        /*
3658         * If IO errors happened during recovery, bail out.
3659         */
3660        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3661                return (EIO);
3662        }
3663
3664        /*
3665         * We now update the tail_lsn since much of the recovery has completed
3666         * and there may be space available to use.  If there were no extent
3667         * or iunlinks, we can free up the entire log and set the tail_lsn to
3668         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3669         * lsn of the last known good LR on disk.  If there are extent frees
3670         * or iunlinks they will have some entries in the AIL; so we look at
3671         * the AIL to determine how to set the tail_lsn.
3672         */
3673        xlog_assign_tail_lsn(log->l_mp);
3674
3675        /*
3676         * Now that we've finished replaying all buffer and inode
3677         * updates, re-read in the superblock.
3678         */
3679        bp = xfs_getsb(log->l_mp, 0);
3680        XFS_BUF_UNDONE(bp);
3681        ASSERT(!(XFS_BUF_ISWRITE(bp)));
3682        ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3683        XFS_BUF_READ(bp);
3684        XFS_BUF_UNASYNC(bp);
3685        xfsbdstrat(log->l_mp, bp);
3686        error = xfs_buf_iowait(bp);
3687        if (error) {
3688                xfs_ioerror_alert("xlog_do_recover",
3689                                  log->l_mp, bp, XFS_BUF_ADDR(bp));
3690                ASSERT(0);
3691                xfs_buf_relse(bp);
3692                return error;
3693        }
3694
3695        /* Convert superblock from on-disk format */
3696        sbp = &log->l_mp->m_sb;
3697        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3698        ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3699        ASSERT(xfs_sb_good_version(sbp));
3700        xfs_buf_relse(bp);
3701
3702        /* We've re-read the superblock so re-initialize per-cpu counters */
3703        xfs_icsb_reinit_counters(log->l_mp);
3704
3705        xlog_recover_check_summary(log);
3706
3707        /* Normal transactions can now occur */
3708        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3709        return 0;
3710}
3711
3712/*
3713 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3714 *
3715 * Return error or zero.
3716 */
3717int
3718xlog_recover(
3719        xlog_t          *log)
3720{
3721        xfs_daddr_t     head_blk, tail_blk;
3722        int             error;
3723
3724        /* find the tail of the log */
3725        if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3726                return error;
3727
3728        if (tail_blk != head_blk) {
3729                /* There used to be a comment here:
3730                 *
3731                 * disallow recovery on read-only mounts.  note -- mount
3732                 * checks for ENOSPC and turns it into an intelligent
3733                 * error message.
3734                 * ...but this is no longer true.  Now, unless you specify
3735                 * NORECOVERY (in which case this function would never be
3736                 * called), we just go ahead and recover.  We do this all
3737                 * under the vfs layer, so we can get away with it unless
3738                 * the device itself is read-only, in which case we fail.
3739                 */
3740                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3741                        return error;
3742                }
3743
3744                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3745                                log->l_mp->m_logname ? log->l_mp->m_logname
3746                                                     : "internal");
3747
3748                error = xlog_do_recover(log, head_blk, tail_blk);
3749                log->l_flags |= XLOG_RECOVERY_NEEDED;
3750        }
3751        return error;
3752}
3753
3754/*
3755 * In the first part of recovery we replay inodes and buffers and build
3756 * up the list of extent free items which need to be processed.  Here
3757 * we process the extent free items and clean up the on disk unlinked
3758 * inode lists.  This is separated from the first part of recovery so
3759 * that the root and real-time bitmap inodes can be read in from disk in
3760 * between the two stages.  This is necessary so that we can free space
3761 * in the real-time portion of the file system.
3762 */
3763int
3764xlog_recover_finish(
3765        xlog_t          *log)
3766{
3767        /*
3768         * Now we're ready to do the transactions needed for the
3769         * rest of recovery.  Start with completing all the extent
3770         * free intent records and then process the unlinked inode
3771         * lists.  At this point, we essentially run in normal mode
3772         * except that we're still performing recovery actions
3773         * rather than accepting new requests.
3774         */
3775        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3776                int     error;
3777                error = xlog_recover_process_efis(log);
3778                if (error) {
3779                        xfs_alert(log->l_mp, "Failed to recover EFIs");
3780                        return error;
3781                }
3782                /*
3783                 * Sync the log to get all the EFIs out of the AIL.
3784                 * This isn't absolutely necessary, but it helps in
3785                 * case the unlink transactions would have problems
3786                 * pushing the EFIs out of the way.
3787                 */
3788                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3789
3790                xlog_recover_process_iunlinks(log);
3791
3792                xlog_recover_check_summary(log);
3793
3794                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3795                                log->l_mp->m_logname ? log->l_mp->m_logname
3796                                                     : "internal");
3797                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3798        } else {
3799                xfs_info(log->l_mp, "Ending clean mount");
3800        }
3801        return 0;
3802}
3803
3804
3805#if defined(DEBUG)
3806/*
3807 * Read all of the agf and agi counters and check that they
3808 * are consistent with the superblock counters.
3809 */
3810void
3811xlog_recover_check_summary(
3812        xlog_t          *log)
3813{
3814        xfs_mount_t     *mp;
3815        xfs_agf_t       *agfp;
3816        xfs_buf_t       *agfbp;
3817        xfs_buf_t       *agibp;
3818        xfs_agnumber_t  agno;
3819        __uint64_t      freeblks;
3820        __uint64_t      itotal;
3821        __uint64_t      ifree;
3822        int             error;
3823
3824        mp = log->l_mp;
3825
3826        freeblks = 0LL;
3827        itotal = 0LL;
3828        ifree = 0LL;
3829        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3830                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3831                if (error) {
3832                        xfs_alert(mp, "%s agf read failed agno %d error %d",
3833                                                __func__, agno, error);
3834                } else {
3835                        agfp = XFS_BUF_TO_AGF(agfbp);
3836                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
3837                                    be32_to_cpu(agfp->agf_flcount);
3838                        xfs_buf_relse(agfbp);
3839                }
3840
3841                error = xfs_read_agi(mp, NULL, agno, &agibp);
3842                if (error) {
3843                        xfs_alert(mp, "%s agi read failed agno %d error %d",
3844                                                __func__, agno, error);
3845                } else {
3846                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
3847
3848                        itotal += be32_to_cpu(agi->agi_count);
3849                        ifree += be32_to_cpu(agi->agi_freecount);
3850                        xfs_buf_relse(agibp);
3851                }
3852        }
3853}
3854#endif /* DEBUG */
3855