linux/include/linux/pagemap.h
<<
>>
Prefs
   1#ifndef _LINUX_PAGEMAP_H
   2#define _LINUX_PAGEMAP_H
   3
   4/*
   5 * Copyright 1995 Linus Torvalds
   6 */
   7#include <linux/mm.h>
   8#include <linux/fs.h>
   9#include <linux/list.h>
  10#include <linux/highmem.h>
  11#include <linux/compiler.h>
  12#include <asm/uaccess.h>
  13#include <linux/gfp.h>
  14#include <linux/bitops.h>
  15#include <linux/hardirq.h> /* for in_interrupt() */
  16#include <linux/hugetlb_inline.h>
  17
  18/*
  19 * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
  20 * allocation mode flags.
  21 */
  22enum mapping_flags {
  23        AS_EIO          = __GFP_BITS_SHIFT + 0, /* IO error on async write */
  24        AS_ENOSPC       = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
  25        AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
  26        AS_UNEVICTABLE  = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
  27};
  28
  29static inline void mapping_set_error(struct address_space *mapping, int error)
  30{
  31        if (unlikely(error)) {
  32                if (error == -ENOSPC)
  33                        set_bit(AS_ENOSPC, &mapping->flags);
  34                else
  35                        set_bit(AS_EIO, &mapping->flags);
  36        }
  37}
  38
  39static inline void mapping_set_unevictable(struct address_space *mapping)
  40{
  41        set_bit(AS_UNEVICTABLE, &mapping->flags);
  42}
  43
  44static inline void mapping_clear_unevictable(struct address_space *mapping)
  45{
  46        clear_bit(AS_UNEVICTABLE, &mapping->flags);
  47}
  48
  49static inline int mapping_unevictable(struct address_space *mapping)
  50{
  51        if (mapping)
  52                return test_bit(AS_UNEVICTABLE, &mapping->flags);
  53        return !!mapping;
  54}
  55
  56static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  57{
  58        return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
  59}
  60
  61/*
  62 * This is non-atomic.  Only to be used before the mapping is activated.
  63 * Probably needs a barrier...
  64 */
  65static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
  66{
  67        m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
  68                                (__force unsigned long)mask;
  69}
  70
  71/*
  72 * The page cache can done in larger chunks than
  73 * one page, because it allows for more efficient
  74 * throughput (it can then be mapped into user
  75 * space in smaller chunks for same flexibility).
  76 *
  77 * Or rather, it _will_ be done in larger chunks.
  78 */
  79#define PAGE_CACHE_SHIFT        PAGE_SHIFT
  80#define PAGE_CACHE_SIZE         PAGE_SIZE
  81#define PAGE_CACHE_MASK         PAGE_MASK
  82#define PAGE_CACHE_ALIGN(addr)  (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
  83
  84#define page_cache_get(page)            get_page(page)
  85#define page_cache_release(page)        put_page(page)
  86void release_pages(struct page **pages, int nr, int cold);
  87
  88/*
  89 * speculatively take a reference to a page.
  90 * If the page is free (_count == 0), then _count is untouched, and 0
  91 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
  92 *
  93 * This function must be called inside the same rcu_read_lock() section as has
  94 * been used to lookup the page in the pagecache radix-tree (or page table):
  95 * this allows allocators to use a synchronize_rcu() to stabilize _count.
  96 *
  97 * Unless an RCU grace period has passed, the count of all pages coming out
  98 * of the allocator must be considered unstable. page_count may return higher
  99 * than expected, and put_page must be able to do the right thing when the
 100 * page has been finished with, no matter what it is subsequently allocated
 101 * for (because put_page is what is used here to drop an invalid speculative
 102 * reference).
 103 *
 104 * This is the interesting part of the lockless pagecache (and lockless
 105 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
 106 * has the following pattern:
 107 * 1. find page in radix tree
 108 * 2. conditionally increment refcount
 109 * 3. check the page is still in pagecache (if no, goto 1)
 110 *
 111 * Remove-side that cares about stability of _count (eg. reclaim) has the
 112 * following (with tree_lock held for write):
 113 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
 114 * B. remove page from pagecache
 115 * C. free the page
 116 *
 117 * There are 2 critical interleavings that matter:
 118 * - 2 runs before A: in this case, A sees elevated refcount and bails out
 119 * - A runs before 2: in this case, 2 sees zero refcount and retries;
 120 *   subsequently, B will complete and 1 will find no page, causing the
 121 *   lookup to return NULL.
 122 *
 123 * It is possible that between 1 and 2, the page is removed then the exact same
 124 * page is inserted into the same position in pagecache. That's OK: the
 125 * old find_get_page using tree_lock could equally have run before or after
 126 * such a re-insertion, depending on order that locks are granted.
 127 *
 128 * Lookups racing against pagecache insertion isn't a big problem: either 1
 129 * will find the page or it will not. Likewise, the old find_get_page could run
 130 * either before the insertion or afterwards, depending on timing.
 131 */
 132static inline int page_cache_get_speculative(struct page *page)
 133{
 134        VM_BUG_ON(in_interrupt());
 135
 136#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
 137# ifdef CONFIG_PREEMPT
 138        VM_BUG_ON(!in_atomic());
 139# endif
 140        /*
 141         * Preempt must be disabled here - we rely on rcu_read_lock doing
 142         * this for us.
 143         *
 144         * Pagecache won't be truncated from interrupt context, so if we have
 145         * found a page in the radix tree here, we have pinned its refcount by
 146         * disabling preempt, and hence no need for the "speculative get" that
 147         * SMP requires.
 148         */
 149        VM_BUG_ON(page_count(page) == 0);
 150        atomic_inc(&page->_count);
 151
 152#else
 153        if (unlikely(!get_page_unless_zero(page))) {
 154                /*
 155                 * Either the page has been freed, or will be freed.
 156                 * In either case, retry here and the caller should
 157                 * do the right thing (see comments above).
 158                 */
 159                return 0;
 160        }
 161#endif
 162        VM_BUG_ON(PageTail(page));
 163
 164        return 1;
 165}
 166
 167/*
 168 * Same as above, but add instead of inc (could just be merged)
 169 */
 170static inline int page_cache_add_speculative(struct page *page, int count)
 171{
 172        VM_BUG_ON(in_interrupt());
 173
 174#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
 175# ifdef CONFIG_PREEMPT
 176        VM_BUG_ON(!in_atomic());
 177# endif
 178        VM_BUG_ON(page_count(page) == 0);
 179        atomic_add(count, &page->_count);
 180
 181#else
 182        if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
 183                return 0;
 184#endif
 185        VM_BUG_ON(PageCompound(page) && page != compound_head(page));
 186
 187        return 1;
 188}
 189
 190static inline int page_freeze_refs(struct page *page, int count)
 191{
 192        return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
 193}
 194
 195static inline void page_unfreeze_refs(struct page *page, int count)
 196{
 197        VM_BUG_ON(page_count(page) != 0);
 198        VM_BUG_ON(count == 0);
 199
 200        atomic_set(&page->_count, count);
 201}
 202
 203#ifdef CONFIG_NUMA
 204extern struct page *__page_cache_alloc(gfp_t gfp);
 205#else
 206static inline struct page *__page_cache_alloc(gfp_t gfp)
 207{
 208        return alloc_pages(gfp, 0);
 209}
 210#endif
 211
 212static inline struct page *page_cache_alloc(struct address_space *x)
 213{
 214        return __page_cache_alloc(mapping_gfp_mask(x));
 215}
 216
 217static inline struct page *page_cache_alloc_cold(struct address_space *x)
 218{
 219        return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
 220}
 221
 222static inline struct page *page_cache_alloc_readahead(struct address_space *x)
 223{
 224        return __page_cache_alloc(mapping_gfp_mask(x) |
 225                                  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
 226}
 227
 228typedef int filler_t(void *, struct page *);
 229
 230extern struct page * find_get_page(struct address_space *mapping,
 231                                pgoff_t index);
 232extern struct page * find_lock_page(struct address_space *mapping,
 233                                pgoff_t index);
 234extern struct page * find_or_create_page(struct address_space *mapping,
 235                                pgoff_t index, gfp_t gfp_mask);
 236unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 237                        unsigned int nr_pages, struct page **pages);
 238unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
 239                               unsigned int nr_pages, struct page **pages);
 240unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 241                        int tag, unsigned int nr_pages, struct page **pages);
 242
 243struct page *grab_cache_page_write_begin(struct address_space *mapping,
 244                        pgoff_t index, unsigned flags);
 245
 246/*
 247 * Returns locked page at given index in given cache, creating it if needed.
 248 */
 249static inline struct page *grab_cache_page(struct address_space *mapping,
 250                                                                pgoff_t index)
 251{
 252        return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
 253}
 254
 255extern struct page * grab_cache_page_nowait(struct address_space *mapping,
 256                                pgoff_t index);
 257extern struct page * read_cache_page_async(struct address_space *mapping,
 258                                pgoff_t index, filler_t *filler,
 259                                void *data);
 260extern struct page * read_cache_page(struct address_space *mapping,
 261                                pgoff_t index, filler_t *filler,
 262                                void *data);
 263extern struct page * read_cache_page_gfp(struct address_space *mapping,
 264                                pgoff_t index, gfp_t gfp_mask);
 265extern int read_cache_pages(struct address_space *mapping,
 266                struct list_head *pages, filler_t *filler, void *data);
 267
 268static inline struct page *read_mapping_page_async(
 269                                                struct address_space *mapping,
 270                                                     pgoff_t index, void *data)
 271{
 272        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 273        return read_cache_page_async(mapping, index, filler, data);
 274}
 275
 276static inline struct page *read_mapping_page(struct address_space *mapping,
 277                                             pgoff_t index, void *data)
 278{
 279        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 280        return read_cache_page(mapping, index, filler, data);
 281}
 282
 283/*
 284 * Return byte-offset into filesystem object for page.
 285 */
 286static inline loff_t page_offset(struct page *page)
 287{
 288        return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
 289}
 290
 291extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 292                                     unsigned long address);
 293
 294static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
 295                                        unsigned long address)
 296{
 297        pgoff_t pgoff;
 298        if (unlikely(is_vm_hugetlb_page(vma)))
 299                return linear_hugepage_index(vma, address);
 300        pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
 301        pgoff += vma->vm_pgoff;
 302        return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 303}
 304
 305extern void __lock_page(struct page *page);
 306extern int __lock_page_killable(struct page *page);
 307extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 308                                unsigned int flags);
 309extern void unlock_page(struct page *page);
 310
 311static inline void __set_page_locked(struct page *page)
 312{
 313        __set_bit(PG_locked, &page->flags);
 314}
 315
 316static inline void __clear_page_locked(struct page *page)
 317{
 318        __clear_bit(PG_locked, &page->flags);
 319}
 320
 321static inline int trylock_page(struct page *page)
 322{
 323        return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
 324}
 325
 326/*
 327 * lock_page may only be called if we have the page's inode pinned.
 328 */
 329static inline void lock_page(struct page *page)
 330{
 331        might_sleep();
 332        if (!trylock_page(page))
 333                __lock_page(page);
 334}
 335
 336/*
 337 * lock_page_killable is like lock_page but can be interrupted by fatal
 338 * signals.  It returns 0 if it locked the page and -EINTR if it was
 339 * killed while waiting.
 340 */
 341static inline int lock_page_killable(struct page *page)
 342{
 343        might_sleep();
 344        if (!trylock_page(page))
 345                return __lock_page_killable(page);
 346        return 0;
 347}
 348
 349/*
 350 * lock_page_or_retry - Lock the page, unless this would block and the
 351 * caller indicated that it can handle a retry.
 352 */
 353static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
 354                                     unsigned int flags)
 355{
 356        might_sleep();
 357        return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
 358}
 359
 360/*
 361 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
 362 * Never use this directly!
 363 */
 364extern void wait_on_page_bit(struct page *page, int bit_nr);
 365
 366extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
 367
 368static inline int wait_on_page_locked_killable(struct page *page)
 369{
 370        if (PageLocked(page))
 371                return wait_on_page_bit_killable(page, PG_locked);
 372        return 0;
 373}
 374
 375/* 
 376 * Wait for a page to be unlocked.
 377 *
 378 * This must be called with the caller "holding" the page,
 379 * ie with increased "page->count" so that the page won't
 380 * go away during the wait..
 381 */
 382static inline void wait_on_page_locked(struct page *page)
 383{
 384        if (PageLocked(page))
 385                wait_on_page_bit(page, PG_locked);
 386}
 387
 388/* 
 389 * Wait for a page to complete writeback
 390 */
 391static inline void wait_on_page_writeback(struct page *page)
 392{
 393        if (PageWriteback(page))
 394                wait_on_page_bit(page, PG_writeback);
 395}
 396
 397extern void end_page_writeback(struct page *page);
 398
 399/*
 400 * Add an arbitrary waiter to a page's wait queue
 401 */
 402extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
 403
 404/*
 405 * Fault a userspace page into pagetables.  Return non-zero on a fault.
 406 *
 407 * This assumes that two userspace pages are always sufficient.  That's
 408 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
 409 */
 410static inline int fault_in_pages_writeable(char __user *uaddr, int size)
 411{
 412        int ret;
 413
 414        if (unlikely(size == 0))
 415                return 0;
 416
 417        /*
 418         * Writing zeroes into userspace here is OK, because we know that if
 419         * the zero gets there, we'll be overwriting it.
 420         */
 421        ret = __put_user(0, uaddr);
 422        if (ret == 0) {
 423                char __user *end = uaddr + size - 1;
 424
 425                /*
 426                 * If the page was already mapped, this will get a cache miss
 427                 * for sure, so try to avoid doing it.
 428                 */
 429                if (((unsigned long)uaddr & PAGE_MASK) !=
 430                                ((unsigned long)end & PAGE_MASK))
 431                        ret = __put_user(0, end);
 432        }
 433        return ret;
 434}
 435
 436static inline int fault_in_pages_readable(const char __user *uaddr, int size)
 437{
 438        volatile char c;
 439        int ret;
 440
 441        if (unlikely(size == 0))
 442                return 0;
 443
 444        ret = __get_user(c, uaddr);
 445        if (ret == 0) {
 446                const char __user *end = uaddr + size - 1;
 447
 448                if (((unsigned long)uaddr & PAGE_MASK) !=
 449                                ((unsigned long)end & PAGE_MASK)) {
 450                        ret = __get_user(c, end);
 451                        (void)c;
 452                }
 453        }
 454        return ret;
 455}
 456
 457int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 458                                pgoff_t index, gfp_t gfp_mask);
 459int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 460                                pgoff_t index, gfp_t gfp_mask);
 461extern void delete_from_page_cache(struct page *page);
 462extern void __delete_from_page_cache(struct page *page);
 463int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
 464
 465/*
 466 * Like add_to_page_cache_locked, but used to add newly allocated pages:
 467 * the page is new, so we can just run __set_page_locked() against it.
 468 */
 469static inline int add_to_page_cache(struct page *page,
 470                struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
 471{
 472        int error;
 473
 474        __set_page_locked(page);
 475        error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
 476        if (unlikely(error))
 477                __clear_page_locked(page);
 478        return error;
 479}
 480
 481#endif /* _LINUX_PAGEMAP_H */
 482