linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/cache.h>
  37#include <linux/spinlock.h>
  38#include <linux/threads.h>
  39#include <linux/cpumask.h>
  40#include <linux/seqlock.h>
  41#include <linux/lockdep.h>
  42#include <linux/completion.h>
  43#include <linux/debugobjects.h>
  44#include <linux/compiler.h>
  45
  46#ifdef CONFIG_RCU_TORTURE_TEST
  47extern int rcutorture_runnable; /* for sysctl */
  48#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
  49
  50#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
  51extern void rcutorture_record_test_transition(void);
  52extern void rcutorture_record_progress(unsigned long vernum);
  53#else
  54static inline void rcutorture_record_test_transition(void)
  55{
  56}
  57static inline void rcutorture_record_progress(unsigned long vernum)
  58{
  59}
  60#endif
  61
  62#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
  63#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
  64#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  65#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  66
  67/**
  68 * struct rcu_head - callback structure for use with RCU
  69 * @next: next update requests in a list
  70 * @func: actual update function to call after the grace period.
  71 */
  72struct rcu_head {
  73        struct rcu_head *next;
  74        void (*func)(struct rcu_head *head);
  75};
  76
  77/* Exported common interfaces */
  78extern void call_rcu_sched(struct rcu_head *head,
  79                           void (*func)(struct rcu_head *rcu));
  80extern void synchronize_sched(void);
  81extern void rcu_barrier_bh(void);
  82extern void rcu_barrier_sched(void);
  83
  84static inline void __rcu_read_lock_bh(void)
  85{
  86        local_bh_disable();
  87}
  88
  89static inline void __rcu_read_unlock_bh(void)
  90{
  91        local_bh_enable();
  92}
  93
  94#ifdef CONFIG_PREEMPT_RCU
  95
  96extern void __rcu_read_lock(void);
  97extern void __rcu_read_unlock(void);
  98void synchronize_rcu(void);
  99
 100/*
 101 * Defined as a macro as it is a very low level header included from
 102 * areas that don't even know about current.  This gives the rcu_read_lock()
 103 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 104 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 105 */
 106#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 107
 108#else /* #ifdef CONFIG_PREEMPT_RCU */
 109
 110static inline void __rcu_read_lock(void)
 111{
 112        preempt_disable();
 113}
 114
 115static inline void __rcu_read_unlock(void)
 116{
 117        preempt_enable();
 118}
 119
 120static inline void synchronize_rcu(void)
 121{
 122        synchronize_sched();
 123}
 124
 125static inline int rcu_preempt_depth(void)
 126{
 127        return 0;
 128}
 129
 130#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 131
 132/* Internal to kernel */
 133extern void rcu_sched_qs(int cpu);
 134extern void rcu_bh_qs(int cpu);
 135extern void rcu_check_callbacks(int cpu, int user);
 136struct notifier_block;
 137
 138#ifdef CONFIG_NO_HZ
 139
 140extern void rcu_enter_nohz(void);
 141extern void rcu_exit_nohz(void);
 142
 143#else /* #ifdef CONFIG_NO_HZ */
 144
 145static inline void rcu_enter_nohz(void)
 146{
 147}
 148
 149static inline void rcu_exit_nohz(void)
 150{
 151}
 152
 153#endif /* #else #ifdef CONFIG_NO_HZ */
 154
 155#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
 156#include <linux/rcutree.h>
 157#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
 158#include <linux/rcutiny.h>
 159#else
 160#error "Unknown RCU implementation specified to kernel configuration"
 161#endif
 162
 163/*
 164 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 165 * initialization and destruction of rcu_head on the stack. rcu_head structures
 166 * allocated dynamically in the heap or defined statically don't need any
 167 * initialization.
 168 */
 169#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 170extern void init_rcu_head_on_stack(struct rcu_head *head);
 171extern void destroy_rcu_head_on_stack(struct rcu_head *head);
 172#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 173static inline void init_rcu_head_on_stack(struct rcu_head *head)
 174{
 175}
 176
 177static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 178{
 179}
 180#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 181
 182#ifdef CONFIG_DEBUG_LOCK_ALLOC
 183
 184extern struct lockdep_map rcu_lock_map;
 185# define rcu_read_acquire() \
 186                lock_acquire(&rcu_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
 187# define rcu_read_release()     lock_release(&rcu_lock_map, 1, _THIS_IP_)
 188
 189extern struct lockdep_map rcu_bh_lock_map;
 190# define rcu_read_acquire_bh() \
 191                lock_acquire(&rcu_bh_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
 192# define rcu_read_release_bh()  lock_release(&rcu_bh_lock_map, 1, _THIS_IP_)
 193
 194extern struct lockdep_map rcu_sched_lock_map;
 195# define rcu_read_acquire_sched() \
 196                lock_acquire(&rcu_sched_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
 197# define rcu_read_release_sched() \
 198                lock_release(&rcu_sched_lock_map, 1, _THIS_IP_)
 199
 200extern int debug_lockdep_rcu_enabled(void);
 201
 202/**
 203 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 204 *
 205 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 206 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 207 * this assumes we are in an RCU read-side critical section unless it can
 208 * prove otherwise.  This is useful for debug checks in functions that
 209 * require that they be called within an RCU read-side critical section.
 210 *
 211 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 212 * and while lockdep is disabled.
 213 */
 214static inline int rcu_read_lock_held(void)
 215{
 216        if (!debug_lockdep_rcu_enabled())
 217                return 1;
 218        return lock_is_held(&rcu_lock_map);
 219}
 220
 221/*
 222 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
 223 * hell.
 224 */
 225extern int rcu_read_lock_bh_held(void);
 226
 227/**
 228 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 229 *
 230 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 231 * RCU-sched read-side critical section.  In absence of
 232 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 233 * critical section unless it can prove otherwise.  Note that disabling
 234 * of preemption (including disabling irqs) counts as an RCU-sched
 235 * read-side critical section.  This is useful for debug checks in functions
 236 * that required that they be called within an RCU-sched read-side
 237 * critical section.
 238 *
 239 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 240 * and while lockdep is disabled.
 241 */
 242#ifdef CONFIG_PREEMPT
 243static inline int rcu_read_lock_sched_held(void)
 244{
 245        int lockdep_opinion = 0;
 246
 247        if (!debug_lockdep_rcu_enabled())
 248                return 1;
 249        if (debug_locks)
 250                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 251        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
 252}
 253#else /* #ifdef CONFIG_PREEMPT */
 254static inline int rcu_read_lock_sched_held(void)
 255{
 256        return 1;
 257}
 258#endif /* #else #ifdef CONFIG_PREEMPT */
 259
 260#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 261
 262# define rcu_read_acquire()             do { } while (0)
 263# define rcu_read_release()             do { } while (0)
 264# define rcu_read_acquire_bh()          do { } while (0)
 265# define rcu_read_release_bh()          do { } while (0)
 266# define rcu_read_acquire_sched()       do { } while (0)
 267# define rcu_read_release_sched()       do { } while (0)
 268
 269static inline int rcu_read_lock_held(void)
 270{
 271        return 1;
 272}
 273
 274static inline int rcu_read_lock_bh_held(void)
 275{
 276        return 1;
 277}
 278
 279#ifdef CONFIG_PREEMPT
 280static inline int rcu_read_lock_sched_held(void)
 281{
 282        return preempt_count() != 0 || irqs_disabled();
 283}
 284#else /* #ifdef CONFIG_PREEMPT */
 285static inline int rcu_read_lock_sched_held(void)
 286{
 287        return 1;
 288}
 289#endif /* #else #ifdef CONFIG_PREEMPT */
 290
 291#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 292
 293#ifdef CONFIG_PROVE_RCU
 294
 295extern int rcu_my_thread_group_empty(void);
 296
 297/**
 298 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 299 * @c: condition to check
 300 */
 301#define rcu_lockdep_assert(c)                                           \
 302        do {                                                            \
 303                static bool __warned;                                   \
 304                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
 305                        __warned = true;                                \
 306                        lockdep_rcu_dereference(__FILE__, __LINE__);    \
 307                }                                                       \
 308        } while (0)
 309
 310#else /* #ifdef CONFIG_PROVE_RCU */
 311
 312#define rcu_lockdep_assert(c) do { } while (0)
 313
 314#endif /* #else #ifdef CONFIG_PROVE_RCU */
 315
 316/*
 317 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 318 * and rcu_assign_pointer().  Some of these could be folded into their
 319 * callers, but they are left separate in order to ease introduction of
 320 * multiple flavors of pointers to match the multiple flavors of RCU
 321 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 322 * the future.
 323 */
 324
 325#ifdef __CHECKER__
 326#define rcu_dereference_sparse(p, space) \
 327        ((void)(((typeof(*p) space *)p) == p))
 328#else /* #ifdef __CHECKER__ */
 329#define rcu_dereference_sparse(p, space)
 330#endif /* #else #ifdef __CHECKER__ */
 331
 332#define __rcu_access_pointer(p, space) \
 333        ({ \
 334                typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
 335                rcu_dereference_sparse(p, space); \
 336                ((typeof(*p) __force __kernel *)(_________p1)); \
 337        })
 338#define __rcu_dereference_check(p, c, space) \
 339        ({ \
 340                typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
 341                rcu_lockdep_assert(c); \
 342                rcu_dereference_sparse(p, space); \
 343                smp_read_barrier_depends(); \
 344                ((typeof(*p) __force __kernel *)(_________p1)); \
 345        })
 346#define __rcu_dereference_protected(p, c, space) \
 347        ({ \
 348                rcu_lockdep_assert(c); \
 349                rcu_dereference_sparse(p, space); \
 350                ((typeof(*p) __force __kernel *)(p)); \
 351        })
 352
 353#define __rcu_access_index(p, space) \
 354        ({ \
 355                typeof(p) _________p1 = ACCESS_ONCE(p); \
 356                rcu_dereference_sparse(p, space); \
 357                (_________p1); \
 358        })
 359#define __rcu_dereference_index_check(p, c) \
 360        ({ \
 361                typeof(p) _________p1 = ACCESS_ONCE(p); \
 362                rcu_lockdep_assert(c); \
 363                smp_read_barrier_depends(); \
 364                (_________p1); \
 365        })
 366#define __rcu_assign_pointer(p, v, space) \
 367        ({ \
 368                if (!__builtin_constant_p(v) || \
 369                    ((v) != NULL)) \
 370                        smp_wmb(); \
 371                (p) = (typeof(*v) __force space *)(v); \
 372        })
 373
 374
 375/**
 376 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 377 * @p: The pointer to read
 378 *
 379 * Return the value of the specified RCU-protected pointer, but omit the
 380 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 381 * when the value of this pointer is accessed, but the pointer is not
 382 * dereferenced, for example, when testing an RCU-protected pointer against
 383 * NULL.  Although rcu_access_pointer() may also be used in cases where
 384 * update-side locks prevent the value of the pointer from changing, you
 385 * should instead use rcu_dereference_protected() for this use case.
 386 */
 387#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 388
 389/**
 390 * rcu_dereference_check() - rcu_dereference with debug checking
 391 * @p: The pointer to read, prior to dereferencing
 392 * @c: The conditions under which the dereference will take place
 393 *
 394 * Do an rcu_dereference(), but check that the conditions under which the
 395 * dereference will take place are correct.  Typically the conditions
 396 * indicate the various locking conditions that should be held at that
 397 * point.  The check should return true if the conditions are satisfied.
 398 * An implicit check for being in an RCU read-side critical section
 399 * (rcu_read_lock()) is included.
 400 *
 401 * For example:
 402 *
 403 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 404 *
 405 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 406 * if either rcu_read_lock() is held, or that the lock required to replace
 407 * the bar struct at foo->bar is held.
 408 *
 409 * Note that the list of conditions may also include indications of when a lock
 410 * need not be held, for example during initialisation or destruction of the
 411 * target struct:
 412 *
 413 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 414 *                                            atomic_read(&foo->usage) == 0);
 415 *
 416 * Inserts memory barriers on architectures that require them
 417 * (currently only the Alpha), prevents the compiler from refetching
 418 * (and from merging fetches), and, more importantly, documents exactly
 419 * which pointers are protected by RCU and checks that the pointer is
 420 * annotated as __rcu.
 421 */
 422#define rcu_dereference_check(p, c) \
 423        __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
 424
 425/**
 426 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 427 * @p: The pointer to read, prior to dereferencing
 428 * @c: The conditions under which the dereference will take place
 429 *
 430 * This is the RCU-bh counterpart to rcu_dereference_check().
 431 */
 432#define rcu_dereference_bh_check(p, c) \
 433        __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
 434
 435/**
 436 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 437 * @p: The pointer to read, prior to dereferencing
 438 * @c: The conditions under which the dereference will take place
 439 *
 440 * This is the RCU-sched counterpart to rcu_dereference_check().
 441 */
 442#define rcu_dereference_sched_check(p, c) \
 443        __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
 444                                __rcu)
 445
 446#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 447
 448/**
 449 * rcu_access_index() - fetch RCU index with no dereferencing
 450 * @p: The index to read
 451 *
 452 * Return the value of the specified RCU-protected index, but omit the
 453 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 454 * when the value of this index is accessed, but the index is not
 455 * dereferenced, for example, when testing an RCU-protected index against
 456 * -1.  Although rcu_access_index() may also be used in cases where
 457 * update-side locks prevent the value of the index from changing, you
 458 * should instead use rcu_dereference_index_protected() for this use case.
 459 */
 460#define rcu_access_index(p) __rcu_access_index((p), __rcu)
 461
 462/**
 463 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 464 * @p: The pointer to read, prior to dereferencing
 465 * @c: The conditions under which the dereference will take place
 466 *
 467 * Similar to rcu_dereference_check(), but omits the sparse checking.
 468 * This allows rcu_dereference_index_check() to be used on integers,
 469 * which can then be used as array indices.  Attempting to use
 470 * rcu_dereference_check() on an integer will give compiler warnings
 471 * because the sparse address-space mechanism relies on dereferencing
 472 * the RCU-protected pointer.  Dereferencing integers is not something
 473 * that even gcc will put up with.
 474 *
 475 * Note that this function does not implicitly check for RCU read-side
 476 * critical sections.  If this function gains lots of uses, it might
 477 * make sense to provide versions for each flavor of RCU, but it does
 478 * not make sense as of early 2010.
 479 */
 480#define rcu_dereference_index_check(p, c) \
 481        __rcu_dereference_index_check((p), (c))
 482
 483/**
 484 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 485 * @p: The pointer to read, prior to dereferencing
 486 * @c: The conditions under which the dereference will take place
 487 *
 488 * Return the value of the specified RCU-protected pointer, but omit
 489 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 490 * is useful in cases where update-side locks prevent the value of the
 491 * pointer from changing.  Please note that this primitive does -not-
 492 * prevent the compiler from repeating this reference or combining it
 493 * with other references, so it should not be used without protection
 494 * of appropriate locks.
 495 *
 496 * This function is only for update-side use.  Using this function
 497 * when protected only by rcu_read_lock() will result in infrequent
 498 * but very ugly failures.
 499 */
 500#define rcu_dereference_protected(p, c) \
 501        __rcu_dereference_protected((p), (c), __rcu)
 502
 503/**
 504 * rcu_dereference_bh_protected() - fetch RCU-bh pointer when updates prevented
 505 * @p: The pointer to read, prior to dereferencing
 506 * @c: The conditions under which the dereference will take place
 507 *
 508 * This is the RCU-bh counterpart to rcu_dereference_protected().
 509 */
 510#define rcu_dereference_bh_protected(p, c) \
 511        __rcu_dereference_protected((p), (c), __rcu)
 512
 513/**
 514 * rcu_dereference_sched_protected() - fetch RCU-sched pointer when updates prevented
 515 * @p: The pointer to read, prior to dereferencing
 516 * @c: The conditions under which the dereference will take place
 517 *
 518 * This is the RCU-sched counterpart to rcu_dereference_protected().
 519 */
 520#define rcu_dereference_sched_protected(p, c) \
 521        __rcu_dereference_protected((p), (c), __rcu)
 522
 523
 524/**
 525 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 526 * @p: The pointer to read, prior to dereferencing
 527 *
 528 * This is a simple wrapper around rcu_dereference_check().
 529 */
 530#define rcu_dereference(p) rcu_dereference_check(p, 0)
 531
 532/**
 533 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 534 * @p: The pointer to read, prior to dereferencing
 535 *
 536 * Makes rcu_dereference_check() do the dirty work.
 537 */
 538#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 539
 540/**
 541 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 542 * @p: The pointer to read, prior to dereferencing
 543 *
 544 * Makes rcu_dereference_check() do the dirty work.
 545 */
 546#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 547
 548/**
 549 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 550 *
 551 * When synchronize_rcu() is invoked on one CPU while other CPUs
 552 * are within RCU read-side critical sections, then the
 553 * synchronize_rcu() is guaranteed to block until after all the other
 554 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 555 * on one CPU while other CPUs are within RCU read-side critical
 556 * sections, invocation of the corresponding RCU callback is deferred
 557 * until after the all the other CPUs exit their critical sections.
 558 *
 559 * Note, however, that RCU callbacks are permitted to run concurrently
 560 * with new RCU read-side critical sections.  One way that this can happen
 561 * is via the following sequence of events: (1) CPU 0 enters an RCU
 562 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 563 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 564 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 565 * callback is invoked.  This is legal, because the RCU read-side critical
 566 * section that was running concurrently with the call_rcu() (and which
 567 * therefore might be referencing something that the corresponding RCU
 568 * callback would free up) has completed before the corresponding
 569 * RCU callback is invoked.
 570 *
 571 * RCU read-side critical sections may be nested.  Any deferred actions
 572 * will be deferred until the outermost RCU read-side critical section
 573 * completes.
 574 *
 575 * You can avoid reading and understanding the next paragraph by
 576 * following this rule: don't put anything in an rcu_read_lock() RCU
 577 * read-side critical section that would block in a !PREEMPT kernel.
 578 * But if you want the full story, read on!
 579 *
 580 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
 581 * is illegal to block while in an RCU read-side critical section.  In
 582 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
 583 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
 584 * be preempted, but explicit blocking is illegal.  Finally, in preemptible
 585 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
 586 * RCU read-side critical sections may be preempted and they may also
 587 * block, but only when acquiring spinlocks that are subject to priority
 588 * inheritance.
 589 */
 590static inline void rcu_read_lock(void)
 591{
 592        __rcu_read_lock();
 593        __acquire(RCU);
 594        rcu_read_acquire();
 595}
 596
 597/*
 598 * So where is rcu_write_lock()?  It does not exist, as there is no
 599 * way for writers to lock out RCU readers.  This is a feature, not
 600 * a bug -- this property is what provides RCU's performance benefits.
 601 * Of course, writers must coordinate with each other.  The normal
 602 * spinlock primitives work well for this, but any other technique may be
 603 * used as well.  RCU does not care how the writers keep out of each
 604 * others' way, as long as they do so.
 605 */
 606
 607/**
 608 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 609 *
 610 * See rcu_read_lock() for more information.
 611 */
 612static inline void rcu_read_unlock(void)
 613{
 614        rcu_read_release();
 615        __release(RCU);
 616        __rcu_read_unlock();
 617}
 618
 619/**
 620 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 621 *
 622 * This is equivalent of rcu_read_lock(), but to be used when updates
 623 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 624 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 625 * softirq handler to be a quiescent state, a process in RCU read-side
 626 * critical section must be protected by disabling softirqs. Read-side
 627 * critical sections in interrupt context can use just rcu_read_lock(),
 628 * though this should at least be commented to avoid confusing people
 629 * reading the code.
 630 */
 631static inline void rcu_read_lock_bh(void)
 632{
 633        __rcu_read_lock_bh();
 634        __acquire(RCU_BH);
 635        rcu_read_acquire_bh();
 636}
 637
 638/*
 639 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 640 *
 641 * See rcu_read_lock_bh() for more information.
 642 */
 643static inline void rcu_read_unlock_bh(void)
 644{
 645        rcu_read_release_bh();
 646        __release(RCU_BH);
 647        __rcu_read_unlock_bh();
 648}
 649
 650/**
 651 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 652 *
 653 * This is equivalent of rcu_read_lock(), but to be used when updates
 654 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 655 * Read-side critical sections can also be introduced by anything that
 656 * disables preemption, including local_irq_disable() and friends.
 657 */
 658static inline void rcu_read_lock_sched(void)
 659{
 660        preempt_disable();
 661        __acquire(RCU_SCHED);
 662        rcu_read_acquire_sched();
 663}
 664
 665/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 666static inline notrace void rcu_read_lock_sched_notrace(void)
 667{
 668        preempt_disable_notrace();
 669        __acquire(RCU_SCHED);
 670}
 671
 672/*
 673 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 674 *
 675 * See rcu_read_lock_sched for more information.
 676 */
 677static inline void rcu_read_unlock_sched(void)
 678{
 679        rcu_read_release_sched();
 680        __release(RCU_SCHED);
 681        preempt_enable();
 682}
 683
 684/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 685static inline notrace void rcu_read_unlock_sched_notrace(void)
 686{
 687        __release(RCU_SCHED);
 688        preempt_enable_notrace();
 689}
 690
 691/**
 692 * rcu_assign_pointer() - assign to RCU-protected pointer
 693 * @p: pointer to assign to
 694 * @v: value to assign (publish)
 695 *
 696 * Assigns the specified value to the specified RCU-protected
 697 * pointer, ensuring that any concurrent RCU readers will see
 698 * any prior initialization.  Returns the value assigned.
 699 *
 700 * Inserts memory barriers on architectures that require them
 701 * (pretty much all of them other than x86), and also prevents
 702 * the compiler from reordering the code that initializes the
 703 * structure after the pointer assignment.  More importantly, this
 704 * call documents which pointers will be dereferenced by RCU read-side
 705 * code.
 706 */
 707#define rcu_assign_pointer(p, v) \
 708        __rcu_assign_pointer((p), (v), __rcu)
 709
 710/**
 711 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 712 *
 713 * Initialize an RCU-protected pointer in such a way to avoid RCU-lockdep
 714 * splats.
 715 */
 716#define RCU_INIT_POINTER(p, v) \
 717                p = (typeof(*v) __force __rcu *)(v)
 718
 719/* Infrastructure to implement the synchronize_() primitives. */
 720
 721struct rcu_synchronize {
 722        struct rcu_head head;
 723        struct completion completion;
 724};
 725
 726extern void wakeme_after_rcu(struct rcu_head  *head);
 727
 728#ifdef CONFIG_PREEMPT_RCU
 729
 730/**
 731 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 732 * @head: structure to be used for queueing the RCU updates.
 733 * @func: actual callback function to be invoked after the grace period
 734 *
 735 * The callback function will be invoked some time after a full grace
 736 * period elapses, in other words after all pre-existing RCU read-side
 737 * critical sections have completed.  However, the callback function
 738 * might well execute concurrently with RCU read-side critical sections
 739 * that started after call_rcu() was invoked.  RCU read-side critical
 740 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 741 * and may be nested.
 742 */
 743extern void call_rcu(struct rcu_head *head,
 744                              void (*func)(struct rcu_head *head));
 745
 746#else /* #ifdef CONFIG_PREEMPT_RCU */
 747
 748/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 749#define call_rcu        call_rcu_sched
 750
 751#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 752
 753/**
 754 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 755 * @head: structure to be used for queueing the RCU updates.
 756 * @func: actual callback function to be invoked after the grace period
 757 *
 758 * The callback function will be invoked some time after a full grace
 759 * period elapses, in other words after all currently executing RCU
 760 * read-side critical sections have completed. call_rcu_bh() assumes
 761 * that the read-side critical sections end on completion of a softirq
 762 * handler. This means that read-side critical sections in process
 763 * context must not be interrupted by softirqs. This interface is to be
 764 * used when most of the read-side critical sections are in softirq context.
 765 * RCU read-side critical sections are delimited by :
 766 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 767 *  OR
 768 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 769 *  These may be nested.
 770 */
 771extern void call_rcu_bh(struct rcu_head *head,
 772                        void (*func)(struct rcu_head *head));
 773
 774/*
 775 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
 776 * by call_rcu() and rcu callback execution, and are therefore not part of the
 777 * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
 778 */
 779
 780#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 781# define STATE_RCU_HEAD_READY   0
 782# define STATE_RCU_HEAD_QUEUED  1
 783
 784extern struct debug_obj_descr rcuhead_debug_descr;
 785
 786static inline void debug_rcu_head_queue(struct rcu_head *head)
 787{
 788        WARN_ON_ONCE((unsigned long)head & 0x3);
 789        debug_object_activate(head, &rcuhead_debug_descr);
 790        debug_object_active_state(head, &rcuhead_debug_descr,
 791                                  STATE_RCU_HEAD_READY,
 792                                  STATE_RCU_HEAD_QUEUED);
 793}
 794
 795static inline void debug_rcu_head_unqueue(struct rcu_head *head)
 796{
 797        debug_object_active_state(head, &rcuhead_debug_descr,
 798                                  STATE_RCU_HEAD_QUEUED,
 799                                  STATE_RCU_HEAD_READY);
 800        debug_object_deactivate(head, &rcuhead_debug_descr);
 801}
 802#else   /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 803static inline void debug_rcu_head_queue(struct rcu_head *head)
 804{
 805}
 806
 807static inline void debug_rcu_head_unqueue(struct rcu_head *head)
 808{
 809}
 810#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 811
 812static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
 813{
 814        return offset < 4096;
 815}
 816
 817static __always_inline
 818void __kfree_rcu(struct rcu_head *head, unsigned long offset)
 819{
 820        typedef void (*rcu_callback)(struct rcu_head *);
 821
 822        BUILD_BUG_ON(!__builtin_constant_p(offset));
 823
 824        /* See the kfree_rcu() header comment. */
 825        BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
 826
 827        call_rcu(head, (rcu_callback)offset);
 828}
 829
 830extern void kfree(const void *);
 831
 832static inline void __rcu_reclaim(struct rcu_head *head)
 833{
 834        unsigned long offset = (unsigned long)head->func;
 835
 836        if (__is_kfree_rcu_offset(offset))
 837                kfree((void *)head - offset);
 838        else
 839                head->func(head);
 840}
 841
 842/**
 843 * kfree_rcu() - kfree an object after a grace period.
 844 * @ptr:        pointer to kfree
 845 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
 846 *
 847 * Many rcu callbacks functions just call kfree() on the base structure.
 848 * These functions are trivial, but their size adds up, and furthermore
 849 * when they are used in a kernel module, that module must invoke the
 850 * high-latency rcu_barrier() function at module-unload time.
 851 *
 852 * The kfree_rcu() function handles this issue.  Rather than encoding a
 853 * function address in the embedded rcu_head structure, kfree_rcu() instead
 854 * encodes the offset of the rcu_head structure within the base structure.
 855 * Because the functions are not allowed in the low-order 4096 bytes of
 856 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 857 * If the offset is larger than 4095 bytes, a compile-time error will
 858 * be generated in __kfree_rcu().  If this error is triggered, you can
 859 * either fall back to use of call_rcu() or rearrange the structure to
 860 * position the rcu_head structure into the first 4096 bytes.
 861 *
 862 * Note that the allowable offset might decrease in the future, for example,
 863 * to allow something like kmem_cache_free_rcu().
 864 */
 865#define kfree_rcu(ptr, rcu_head)                                        \
 866        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
 867
 868#endif /* __LINUX_RCUPDATE_H */
 869