1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 /* array of desc.bNumEndpoint endpoints associated with this 81 * interface setting. these will be in no particular order. 82 */ 83 struct usb_host_endpoint *endpoint; 84 85 char *string; /* iInterface string, if present */ 86 unsigned char *extra; /* Extra descriptors */ 87 int extralen; 88}; 89 90enum usb_interface_condition { 91 USB_INTERFACE_UNBOUND = 0, 92 USB_INTERFACE_BINDING, 93 USB_INTERFACE_BOUND, 94 USB_INTERFACE_UNBINDING, 95}; 96 97/** 98 * struct usb_interface - what usb device drivers talk to 99 * @altsetting: array of interface structures, one for each alternate 100 * setting that may be selected. Each one includes a set of 101 * endpoint configurations. They will be in no particular order. 102 * @cur_altsetting: the current altsetting. 103 * @num_altsetting: number of altsettings defined. 104 * @intf_assoc: interface association descriptor 105 * @minor: the minor number assigned to this interface, if this 106 * interface is bound to a driver that uses the USB major number. 107 * If this interface does not use the USB major, this field should 108 * be unused. The driver should set this value in the probe() 109 * function of the driver, after it has been assigned a minor 110 * number from the USB core by calling usb_register_dev(). 111 * @condition: binding state of the interface: not bound, binding 112 * (in probe()), bound to a driver, or unbinding (in disconnect()) 113 * @sysfs_files_created: sysfs attributes exist 114 * @ep_devs_created: endpoint child pseudo-devices exist 115 * @unregistering: flag set when the interface is being unregistered 116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 117 * capability during autosuspend. 118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 119 * has been deferred. 120 * @needs_binding: flag set when the driver should be re-probed or unbound 121 * following a reset or suspend operation it doesn't support. 122 * @dev: driver model's view of this device 123 * @usb_dev: if an interface is bound to the USB major, this will point 124 * to the sysfs representation for that device. 125 * @pm_usage_cnt: PM usage counter for this interface 126 * @reset_ws: Used for scheduling resets from atomic context. 127 * @reset_running: set to 1 if the interface is currently running a 128 * queued reset so that usb_cancel_queued_reset() doesn't try to 129 * remove from the workqueue when running inside the worker 130 * thread. See __usb_queue_reset_device(). 131 * @resetting_device: USB core reset the device, so use alt setting 0 as 132 * current; needs bandwidth alloc after reset. 133 * 134 * USB device drivers attach to interfaces on a physical device. Each 135 * interface encapsulates a single high level function, such as feeding 136 * an audio stream to a speaker or reporting a change in a volume control. 137 * Many USB devices only have one interface. The protocol used to talk to 138 * an interface's endpoints can be defined in a usb "class" specification, 139 * or by a product's vendor. The (default) control endpoint is part of 140 * every interface, but is never listed among the interface's descriptors. 141 * 142 * The driver that is bound to the interface can use standard driver model 143 * calls such as dev_get_drvdata() on the dev member of this structure. 144 * 145 * Each interface may have alternate settings. The initial configuration 146 * of a device sets altsetting 0, but the device driver can change 147 * that setting using usb_set_interface(). Alternate settings are often 148 * used to control the use of periodic endpoints, such as by having 149 * different endpoints use different amounts of reserved USB bandwidth. 150 * All standards-conformant USB devices that use isochronous endpoints 151 * will use them in non-default settings. 152 * 153 * The USB specification says that alternate setting numbers must run from 154 * 0 to one less than the total number of alternate settings. But some 155 * devices manage to mess this up, and the structures aren't necessarily 156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 157 * look up an alternate setting in the altsetting array based on its number. 158 */ 159struct usb_interface { 160 /* array of alternate settings for this interface, 161 * stored in no particular order */ 162 struct usb_host_interface *altsetting; 163 164 struct usb_host_interface *cur_altsetting; /* the currently 165 * active alternate setting */ 166 unsigned num_altsetting; /* number of alternate settings */ 167 168 /* If there is an interface association descriptor then it will list 169 * the associated interfaces */ 170 struct usb_interface_assoc_descriptor *intf_assoc; 171 172 int minor; /* minor number this interface is 173 * bound to */ 174 enum usb_interface_condition condition; /* state of binding */ 175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 176 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 177 unsigned unregistering:1; /* unregistration is in progress */ 178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 180 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 181 unsigned reset_running:1; 182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 183 184 struct device dev; /* interface specific device info */ 185 struct device *usb_dev; 186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 187 struct work_struct reset_ws; /* for resets in atomic context */ 188}; 189#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 190 191static inline void *usb_get_intfdata(struct usb_interface *intf) 192{ 193 return dev_get_drvdata(&intf->dev); 194} 195 196static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 197{ 198 dev_set_drvdata(&intf->dev, data); 199} 200 201struct usb_interface *usb_get_intf(struct usb_interface *intf); 202void usb_put_intf(struct usb_interface *intf); 203 204/* this maximum is arbitrary */ 205#define USB_MAXINTERFACES 32 206#define USB_MAXIADS (USB_MAXINTERFACES/2) 207 208/** 209 * struct usb_interface_cache - long-term representation of a device interface 210 * @num_altsetting: number of altsettings defined. 211 * @ref: reference counter. 212 * @altsetting: variable-length array of interface structures, one for 213 * each alternate setting that may be selected. Each one includes a 214 * set of endpoint configurations. They will be in no particular order. 215 * 216 * These structures persist for the lifetime of a usb_device, unlike 217 * struct usb_interface (which persists only as long as its configuration 218 * is installed). The altsetting arrays can be accessed through these 219 * structures at any time, permitting comparison of configurations and 220 * providing support for the /proc/bus/usb/devices pseudo-file. 221 */ 222struct usb_interface_cache { 223 unsigned num_altsetting; /* number of alternate settings */ 224 struct kref ref; /* reference counter */ 225 226 /* variable-length array of alternate settings for this interface, 227 * stored in no particular order */ 228 struct usb_host_interface altsetting[0]; 229}; 230#define ref_to_usb_interface_cache(r) \ 231 container_of(r, struct usb_interface_cache, ref) 232#define altsetting_to_usb_interface_cache(a) \ 233 container_of(a, struct usb_interface_cache, altsetting[0]) 234 235/** 236 * struct usb_host_config - representation of a device's configuration 237 * @desc: the device's configuration descriptor. 238 * @string: pointer to the cached version of the iConfiguration string, if 239 * present for this configuration. 240 * @intf_assoc: list of any interface association descriptors in this config 241 * @interface: array of pointers to usb_interface structures, one for each 242 * interface in the configuration. The number of interfaces is stored 243 * in desc.bNumInterfaces. These pointers are valid only while the 244 * the configuration is active. 245 * @intf_cache: array of pointers to usb_interface_cache structures, one 246 * for each interface in the configuration. These structures exist 247 * for the entire life of the device. 248 * @extra: pointer to buffer containing all extra descriptors associated 249 * with this configuration (those preceding the first interface 250 * descriptor). 251 * @extralen: length of the extra descriptors buffer. 252 * 253 * USB devices may have multiple configurations, but only one can be active 254 * at any time. Each encapsulates a different operational environment; 255 * for example, a dual-speed device would have separate configurations for 256 * full-speed and high-speed operation. The number of configurations 257 * available is stored in the device descriptor as bNumConfigurations. 258 * 259 * A configuration can contain multiple interfaces. Each corresponds to 260 * a different function of the USB device, and all are available whenever 261 * the configuration is active. The USB standard says that interfaces 262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 263 * of devices get this wrong. In addition, the interface array is not 264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 265 * look up an interface entry based on its number. 266 * 267 * Device drivers should not attempt to activate configurations. The choice 268 * of which configuration to install is a policy decision based on such 269 * considerations as available power, functionality provided, and the user's 270 * desires (expressed through userspace tools). However, drivers can call 271 * usb_reset_configuration() to reinitialize the current configuration and 272 * all its interfaces. 273 */ 274struct usb_host_config { 275 struct usb_config_descriptor desc; 276 277 char *string; /* iConfiguration string, if present */ 278 279 /* List of any Interface Association Descriptors in this 280 * configuration. */ 281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 282 283 /* the interfaces associated with this configuration, 284 * stored in no particular order */ 285 struct usb_interface *interface[USB_MAXINTERFACES]; 286 287 /* Interface information available even when this is not the 288 * active configuration */ 289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 290 291 unsigned char *extra; /* Extra descriptors */ 292 int extralen; 293}; 294 295int __usb_get_extra_descriptor(char *buffer, unsigned size, 296 unsigned char type, void **ptr); 297#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 298 __usb_get_extra_descriptor((ifpoint)->extra, \ 299 (ifpoint)->extralen, \ 300 type, (void **)ptr) 301 302/* ----------------------------------------------------------------------- */ 303 304/* USB device number allocation bitmap */ 305struct usb_devmap { 306 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 307}; 308 309/* 310 * Allocated per bus (tree of devices) we have: 311 */ 312struct usb_bus { 313 struct device *controller; /* host/master side hardware */ 314 int busnum; /* Bus number (in order of reg) */ 315 const char *bus_name; /* stable id (PCI slot_name etc) */ 316 u8 uses_dma; /* Does the host controller use DMA? */ 317 u8 uses_pio_for_control; /* 318 * Does the host controller use PIO 319 * for control transfers? 320 */ 321 u8 otg_port; /* 0, or number of OTG/HNP port */ 322 unsigned is_b_host:1; /* true during some HNP roleswitches */ 323 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 324 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 325 326 int devnum_next; /* Next open device number in 327 * round-robin allocation */ 328 329 struct usb_devmap devmap; /* device address allocation map */ 330 struct usb_device *root_hub; /* Root hub */ 331 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 332 struct list_head bus_list; /* list of busses */ 333 334 int bandwidth_allocated; /* on this bus: how much of the time 335 * reserved for periodic (intr/iso) 336 * requests is used, on average? 337 * Units: microseconds/frame. 338 * Limits: Full/low speed reserve 90%, 339 * while high speed reserves 80%. 340 */ 341 int bandwidth_int_reqs; /* number of Interrupt requests */ 342 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 343 344#ifdef CONFIG_USB_DEVICEFS 345 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 346#endif 347 348#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 349 struct mon_bus *mon_bus; /* non-null when associated */ 350 int monitored; /* non-zero when monitored */ 351#endif 352}; 353 354/* ----------------------------------------------------------------------- */ 355 356/* This is arbitrary. 357 * From USB 2.0 spec Table 11-13, offset 7, a hub can 358 * have up to 255 ports. The most yet reported is 10. 359 * 360 * Current Wireless USB host hardware (Intel i1480 for example) allows 361 * up to 22 devices to connect. Upcoming hardware might raise that 362 * limit. Because the arrays need to add a bit for hub status data, we 363 * do 31, so plus one evens out to four bytes. 364 */ 365#define USB_MAXCHILDREN (31) 366 367struct usb_tt; 368 369/** 370 * struct usb_device - kernel's representation of a USB device 371 * @devnum: device number; address on a USB bus 372 * @devpath: device ID string for use in messages (e.g., /port/...) 373 * @route: tree topology hex string for use with xHCI 374 * @state: device state: configured, not attached, etc. 375 * @speed: device speed: high/full/low (or error) 376 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 377 * @ttport: device port on that tt hub 378 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 379 * @parent: our hub, unless we're the root 380 * @bus: bus we're part of 381 * @ep0: endpoint 0 data (default control pipe) 382 * @dev: generic device interface 383 * @descriptor: USB device descriptor 384 * @config: all of the device's configs 385 * @actconfig: the active configuration 386 * @ep_in: array of IN endpoints 387 * @ep_out: array of OUT endpoints 388 * @rawdescriptors: raw descriptors for each config 389 * @bus_mA: Current available from the bus 390 * @portnum: parent port number (origin 1) 391 * @level: number of USB hub ancestors 392 * @can_submit: URBs may be submitted 393 * @persist_enabled: USB_PERSIST enabled for this device 394 * @have_langid: whether string_langid is valid 395 * @authorized: policy has said we can use it; 396 * (user space) policy determines if we authorize this device to be 397 * used or not. By default, wired USB devices are authorized. 398 * WUSB devices are not, until we authorize them from user space. 399 * FIXME -- complete doc 400 * @authenticated: Crypto authentication passed 401 * @wusb: device is Wireless USB 402 * @string_langid: language ID for strings 403 * @product: iProduct string, if present (static) 404 * @manufacturer: iManufacturer string, if present (static) 405 * @serial: iSerialNumber string, if present (static) 406 * @filelist: usbfs files that are open to this device 407 * @usb_classdev: USB class device that was created for usbfs device 408 * access from userspace 409 * @usbfs_dentry: usbfs dentry entry for the device 410 * @maxchild: number of ports if hub 411 * @children: child devices - USB devices that are attached to this hub 412 * @quirks: quirks of the whole device 413 * @urbnum: number of URBs submitted for the whole device 414 * @active_duration: total time device is not suspended 415 * @connect_time: time device was first connected 416 * @do_remote_wakeup: remote wakeup should be enabled 417 * @reset_resume: needs reset instead of resume 418 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 419 * specific data for the device. 420 * @slot_id: Slot ID assigned by xHCI 421 * 422 * Notes: 423 * Usbcore drivers should not set usbdev->state directly. Instead use 424 * usb_set_device_state(). 425 */ 426struct usb_device { 427 int devnum; 428 char devpath[16]; 429 u32 route; 430 enum usb_device_state state; 431 enum usb_device_speed speed; 432 433 struct usb_tt *tt; 434 int ttport; 435 436 unsigned int toggle[2]; 437 438 struct usb_device *parent; 439 struct usb_bus *bus; 440 struct usb_host_endpoint ep0; 441 442 struct device dev; 443 444 struct usb_device_descriptor descriptor; 445 struct usb_host_config *config; 446 447 struct usb_host_config *actconfig; 448 struct usb_host_endpoint *ep_in[16]; 449 struct usb_host_endpoint *ep_out[16]; 450 451 char **rawdescriptors; 452 453 unsigned short bus_mA; 454 u8 portnum; 455 u8 level; 456 457 unsigned can_submit:1; 458 unsigned persist_enabled:1; 459 unsigned have_langid:1; 460 unsigned authorized:1; 461 unsigned authenticated:1; 462 unsigned wusb:1; 463 int string_langid; 464 465 /* static strings from the device */ 466 char *product; 467 char *manufacturer; 468 char *serial; 469 470 struct list_head filelist; 471#ifdef CONFIG_USB_DEVICE_CLASS 472 struct device *usb_classdev; 473#endif 474#ifdef CONFIG_USB_DEVICEFS 475 struct dentry *usbfs_dentry; 476#endif 477 478 int maxchild; 479 struct usb_device *children[USB_MAXCHILDREN]; 480 481 u32 quirks; 482 atomic_t urbnum; 483 484 unsigned long active_duration; 485 486#ifdef CONFIG_PM 487 unsigned long connect_time; 488 489 unsigned do_remote_wakeup:1; 490 unsigned reset_resume:1; 491#endif 492 struct wusb_dev *wusb_dev; 493 int slot_id; 494}; 495#define to_usb_device(d) container_of(d, struct usb_device, dev) 496 497static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 498{ 499 return to_usb_device(intf->dev.parent); 500} 501 502extern struct usb_device *usb_get_dev(struct usb_device *dev); 503extern void usb_put_dev(struct usb_device *dev); 504 505/* USB device locking */ 506#define usb_lock_device(udev) device_lock(&(udev)->dev) 507#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 508#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 509extern int usb_lock_device_for_reset(struct usb_device *udev, 510 const struct usb_interface *iface); 511 512/* USB port reset for device reinitialization */ 513extern int usb_reset_device(struct usb_device *dev); 514extern void usb_queue_reset_device(struct usb_interface *dev); 515 516 517/* USB autosuspend and autoresume */ 518#ifdef CONFIG_USB_SUSPEND 519extern void usb_enable_autosuspend(struct usb_device *udev); 520extern void usb_disable_autosuspend(struct usb_device *udev); 521 522extern int usb_autopm_get_interface(struct usb_interface *intf); 523extern void usb_autopm_put_interface(struct usb_interface *intf); 524extern int usb_autopm_get_interface_async(struct usb_interface *intf); 525extern void usb_autopm_put_interface_async(struct usb_interface *intf); 526extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 527extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 528 529static inline void usb_mark_last_busy(struct usb_device *udev) 530{ 531 pm_runtime_mark_last_busy(&udev->dev); 532} 533 534#else 535 536static inline int usb_enable_autosuspend(struct usb_device *udev) 537{ return 0; } 538static inline int usb_disable_autosuspend(struct usb_device *udev) 539{ return 0; } 540 541static inline int usb_autopm_get_interface(struct usb_interface *intf) 542{ return 0; } 543static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 544{ return 0; } 545 546static inline void usb_autopm_put_interface(struct usb_interface *intf) 547{ } 548static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 549{ } 550static inline void usb_autopm_get_interface_no_resume( 551 struct usb_interface *intf) 552{ } 553static inline void usb_autopm_put_interface_no_suspend( 554 struct usb_interface *intf) 555{ } 556static inline void usb_mark_last_busy(struct usb_device *udev) 557{ } 558#endif 559 560/*-------------------------------------------------------------------------*/ 561 562/* for drivers using iso endpoints */ 563extern int usb_get_current_frame_number(struct usb_device *usb_dev); 564 565/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 566extern int usb_alloc_streams(struct usb_interface *interface, 567 struct usb_host_endpoint **eps, unsigned int num_eps, 568 unsigned int num_streams, gfp_t mem_flags); 569 570/* Reverts a group of bulk endpoints back to not using stream IDs. */ 571extern void usb_free_streams(struct usb_interface *interface, 572 struct usb_host_endpoint **eps, unsigned int num_eps, 573 gfp_t mem_flags); 574 575/* used these for multi-interface device registration */ 576extern int usb_driver_claim_interface(struct usb_driver *driver, 577 struct usb_interface *iface, void *priv); 578 579/** 580 * usb_interface_claimed - returns true iff an interface is claimed 581 * @iface: the interface being checked 582 * 583 * Returns true (nonzero) iff the interface is claimed, else false (zero). 584 * Callers must own the driver model's usb bus readlock. So driver 585 * probe() entries don't need extra locking, but other call contexts 586 * may need to explicitly claim that lock. 587 * 588 */ 589static inline int usb_interface_claimed(struct usb_interface *iface) 590{ 591 return (iface->dev.driver != NULL); 592} 593 594extern void usb_driver_release_interface(struct usb_driver *driver, 595 struct usb_interface *iface); 596const struct usb_device_id *usb_match_id(struct usb_interface *interface, 597 const struct usb_device_id *id); 598extern int usb_match_one_id(struct usb_interface *interface, 599 const struct usb_device_id *id); 600 601extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 602 int minor); 603extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 604 unsigned ifnum); 605extern struct usb_host_interface *usb_altnum_to_altsetting( 606 const struct usb_interface *intf, unsigned int altnum); 607extern struct usb_host_interface *usb_find_alt_setting( 608 struct usb_host_config *config, 609 unsigned int iface_num, 610 unsigned int alt_num); 611 612 613/** 614 * usb_make_path - returns stable device path in the usb tree 615 * @dev: the device whose path is being constructed 616 * @buf: where to put the string 617 * @size: how big is "buf"? 618 * 619 * Returns length of the string (> 0) or negative if size was too small. 620 * 621 * This identifier is intended to be "stable", reflecting physical paths in 622 * hardware such as physical bus addresses for host controllers or ports on 623 * USB hubs. That makes it stay the same until systems are physically 624 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 625 * controllers. Adding and removing devices, including virtual root hubs 626 * in host controller driver modules, does not change these path identifiers; 627 * neither does rebooting or re-enumerating. These are more useful identifiers 628 * than changeable ("unstable") ones like bus numbers or device addresses. 629 * 630 * With a partial exception for devices connected to USB 2.0 root hubs, these 631 * identifiers are also predictable. So long as the device tree isn't changed, 632 * plugging any USB device into a given hub port always gives it the same path. 633 * Because of the use of "companion" controllers, devices connected to ports on 634 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 635 * high speed, and a different one if they are full or low speed. 636 */ 637static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 638{ 639 int actual; 640 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 641 dev->devpath); 642 return (actual >= (int)size) ? -1 : actual; 643} 644 645/*-------------------------------------------------------------------------*/ 646 647#define USB_DEVICE_ID_MATCH_DEVICE \ 648 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 649#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 650 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 651#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 652 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 653#define USB_DEVICE_ID_MATCH_DEV_INFO \ 654 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 655 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 656 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 657#define USB_DEVICE_ID_MATCH_INT_INFO \ 658 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 659 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 660 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 661 662/** 663 * USB_DEVICE - macro used to describe a specific usb device 664 * @vend: the 16 bit USB Vendor ID 665 * @prod: the 16 bit USB Product ID 666 * 667 * This macro is used to create a struct usb_device_id that matches a 668 * specific device. 669 */ 670#define USB_DEVICE(vend, prod) \ 671 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 672 .idVendor = (vend), \ 673 .idProduct = (prod) 674/** 675 * USB_DEVICE_VER - describe a specific usb device with a version range 676 * @vend: the 16 bit USB Vendor ID 677 * @prod: the 16 bit USB Product ID 678 * @lo: the bcdDevice_lo value 679 * @hi: the bcdDevice_hi value 680 * 681 * This macro is used to create a struct usb_device_id that matches a 682 * specific device, with a version range. 683 */ 684#define USB_DEVICE_VER(vend, prod, lo, hi) \ 685 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 686 .idVendor = (vend), \ 687 .idProduct = (prod), \ 688 .bcdDevice_lo = (lo), \ 689 .bcdDevice_hi = (hi) 690 691/** 692 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 693 * @vend: the 16 bit USB Vendor ID 694 * @prod: the 16 bit USB Product ID 695 * @pr: bInterfaceProtocol value 696 * 697 * This macro is used to create a struct usb_device_id that matches a 698 * specific interface protocol of devices. 699 */ 700#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 701 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 702 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 703 .idVendor = (vend), \ 704 .idProduct = (prod), \ 705 .bInterfaceProtocol = (pr) 706 707/** 708 * USB_DEVICE_INFO - macro used to describe a class of usb devices 709 * @cl: bDeviceClass value 710 * @sc: bDeviceSubClass value 711 * @pr: bDeviceProtocol value 712 * 713 * This macro is used to create a struct usb_device_id that matches a 714 * specific class of devices. 715 */ 716#define USB_DEVICE_INFO(cl, sc, pr) \ 717 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 718 .bDeviceClass = (cl), \ 719 .bDeviceSubClass = (sc), \ 720 .bDeviceProtocol = (pr) 721 722/** 723 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 724 * @cl: bInterfaceClass value 725 * @sc: bInterfaceSubClass value 726 * @pr: bInterfaceProtocol value 727 * 728 * This macro is used to create a struct usb_device_id that matches a 729 * specific class of interfaces. 730 */ 731#define USB_INTERFACE_INFO(cl, sc, pr) \ 732 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 733 .bInterfaceClass = (cl), \ 734 .bInterfaceSubClass = (sc), \ 735 .bInterfaceProtocol = (pr) 736 737/** 738 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 739 * @vend: the 16 bit USB Vendor ID 740 * @prod: the 16 bit USB Product ID 741 * @cl: bInterfaceClass value 742 * @sc: bInterfaceSubClass value 743 * @pr: bInterfaceProtocol value 744 * 745 * This macro is used to create a struct usb_device_id that matches a 746 * specific device with a specific class of interfaces. 747 * 748 * This is especially useful when explicitly matching devices that have 749 * vendor specific bDeviceClass values, but standards-compliant interfaces. 750 */ 751#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 752 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 753 | USB_DEVICE_ID_MATCH_DEVICE, \ 754 .idVendor = (vend), \ 755 .idProduct = (prod), \ 756 .bInterfaceClass = (cl), \ 757 .bInterfaceSubClass = (sc), \ 758 .bInterfaceProtocol = (pr) 759 760/* ----------------------------------------------------------------------- */ 761 762/* Stuff for dynamic usb ids */ 763struct usb_dynids { 764 spinlock_t lock; 765 struct list_head list; 766}; 767 768struct usb_dynid { 769 struct list_head node; 770 struct usb_device_id id; 771}; 772 773extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 774 struct device_driver *driver, 775 const char *buf, size_t count); 776 777/** 778 * struct usbdrv_wrap - wrapper for driver-model structure 779 * @driver: The driver-model core driver structure. 780 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 781 */ 782struct usbdrv_wrap { 783 struct device_driver driver; 784 int for_devices; 785}; 786 787/** 788 * struct usb_driver - identifies USB interface driver to usbcore 789 * @name: The driver name should be unique among USB drivers, 790 * and should normally be the same as the module name. 791 * @probe: Called to see if the driver is willing to manage a particular 792 * interface on a device. If it is, probe returns zero and uses 793 * usb_set_intfdata() to associate driver-specific data with the 794 * interface. It may also use usb_set_interface() to specify the 795 * appropriate altsetting. If unwilling to manage the interface, 796 * return -ENODEV, if genuine IO errors occurred, an appropriate 797 * negative errno value. 798 * @disconnect: Called when the interface is no longer accessible, usually 799 * because its device has been (or is being) disconnected or the 800 * driver module is being unloaded. 801 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 802 * the "usbfs" filesystem. This lets devices provide ways to 803 * expose information to user space regardless of where they 804 * do (or don't) show up otherwise in the filesystem. 805 * @suspend: Called when the device is going to be suspended by the system. 806 * @resume: Called when the device is being resumed by the system. 807 * @reset_resume: Called when the suspended device has been reset instead 808 * of being resumed. 809 * @pre_reset: Called by usb_reset_device() when the device is about to be 810 * reset. This routine must not return until the driver has no active 811 * URBs for the device, and no more URBs may be submitted until the 812 * post_reset method is called. 813 * @post_reset: Called by usb_reset_device() after the device 814 * has been reset 815 * @id_table: USB drivers use ID table to support hotplugging. 816 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 817 * or your driver's probe function will never get called. 818 * @dynids: used internally to hold the list of dynamically added device 819 * ids for this driver. 820 * @drvwrap: Driver-model core structure wrapper. 821 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 822 * added to this driver by preventing the sysfs file from being created. 823 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 824 * for interfaces bound to this driver. 825 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 826 * endpoints before calling the driver's disconnect method. 827 * 828 * USB interface drivers must provide a name, probe() and disconnect() 829 * methods, and an id_table. Other driver fields are optional. 830 * 831 * The id_table is used in hotplugging. It holds a set of descriptors, 832 * and specialized data may be associated with each entry. That table 833 * is used by both user and kernel mode hotplugging support. 834 * 835 * The probe() and disconnect() methods are called in a context where 836 * they can sleep, but they should avoid abusing the privilege. Most 837 * work to connect to a device should be done when the device is opened, 838 * and undone at the last close. The disconnect code needs to address 839 * concurrency issues with respect to open() and close() methods, as 840 * well as forcing all pending I/O requests to complete (by unlinking 841 * them as necessary, and blocking until the unlinks complete). 842 */ 843struct usb_driver { 844 const char *name; 845 846 int (*probe) (struct usb_interface *intf, 847 const struct usb_device_id *id); 848 849 void (*disconnect) (struct usb_interface *intf); 850 851 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 852 void *buf); 853 854 int (*suspend) (struct usb_interface *intf, pm_message_t message); 855 int (*resume) (struct usb_interface *intf); 856 int (*reset_resume)(struct usb_interface *intf); 857 858 int (*pre_reset)(struct usb_interface *intf); 859 int (*post_reset)(struct usb_interface *intf); 860 861 const struct usb_device_id *id_table; 862 863 struct usb_dynids dynids; 864 struct usbdrv_wrap drvwrap; 865 unsigned int no_dynamic_id:1; 866 unsigned int supports_autosuspend:1; 867 unsigned int soft_unbind:1; 868}; 869#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 870 871/** 872 * struct usb_device_driver - identifies USB device driver to usbcore 873 * @name: The driver name should be unique among USB drivers, 874 * and should normally be the same as the module name. 875 * @probe: Called to see if the driver is willing to manage a particular 876 * device. If it is, probe returns zero and uses dev_set_drvdata() 877 * to associate driver-specific data with the device. If unwilling 878 * to manage the device, return a negative errno value. 879 * @disconnect: Called when the device is no longer accessible, usually 880 * because it has been (or is being) disconnected or the driver's 881 * module is being unloaded. 882 * @suspend: Called when the device is going to be suspended by the system. 883 * @resume: Called when the device is being resumed by the system. 884 * @drvwrap: Driver-model core structure wrapper. 885 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 886 * for devices bound to this driver. 887 * 888 * USB drivers must provide all the fields listed above except drvwrap. 889 */ 890struct usb_device_driver { 891 const char *name; 892 893 int (*probe) (struct usb_device *udev); 894 void (*disconnect) (struct usb_device *udev); 895 896 int (*suspend) (struct usb_device *udev, pm_message_t message); 897 int (*resume) (struct usb_device *udev, pm_message_t message); 898 struct usbdrv_wrap drvwrap; 899 unsigned int supports_autosuspend:1; 900}; 901#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 902 drvwrap.driver) 903 904extern struct bus_type usb_bus_type; 905 906/** 907 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 908 * @name: the usb class device name for this driver. Will show up in sysfs. 909 * @devnode: Callback to provide a naming hint for a possible 910 * device node to create. 911 * @fops: pointer to the struct file_operations of this driver. 912 * @minor_base: the start of the minor range for this driver. 913 * 914 * This structure is used for the usb_register_dev() and 915 * usb_unregister_dev() functions, to consolidate a number of the 916 * parameters used for them. 917 */ 918struct usb_class_driver { 919 char *name; 920 char *(*devnode)(struct device *dev, mode_t *mode); 921 const struct file_operations *fops; 922 int minor_base; 923}; 924 925/* 926 * use these in module_init()/module_exit() 927 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 928 */ 929extern int usb_register_driver(struct usb_driver *, struct module *, 930 const char *); 931static inline int usb_register(struct usb_driver *driver) 932{ 933 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 934} 935extern void usb_deregister(struct usb_driver *); 936 937extern int usb_register_device_driver(struct usb_device_driver *, 938 struct module *); 939extern void usb_deregister_device_driver(struct usb_device_driver *); 940 941extern int usb_register_dev(struct usb_interface *intf, 942 struct usb_class_driver *class_driver); 943extern void usb_deregister_dev(struct usb_interface *intf, 944 struct usb_class_driver *class_driver); 945 946extern int usb_disabled(void); 947 948/* ----------------------------------------------------------------------- */ 949 950/* 951 * URB support, for asynchronous request completions 952 */ 953 954/* 955 * urb->transfer_flags: 956 * 957 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 958 */ 959#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 960#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 961 * ignored */ 962#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 963#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 964#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 965#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 966 * needed */ 967#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 968 969/* The following flags are used internally by usbcore and HCDs */ 970#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 971#define URB_DIR_OUT 0 972#define URB_DIR_MASK URB_DIR_IN 973 974#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 975#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 976#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 977#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 978#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 979#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 980#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 981#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 982 983struct usb_iso_packet_descriptor { 984 unsigned int offset; 985 unsigned int length; /* expected length */ 986 unsigned int actual_length; 987 int status; 988}; 989 990struct urb; 991 992struct usb_anchor { 993 struct list_head urb_list; 994 wait_queue_head_t wait; 995 spinlock_t lock; 996 unsigned int poisoned:1; 997}; 998 999static inline void init_usb_anchor(struct usb_anchor *anchor) 1000{
1001 INIT_LIST_HEAD(&anchor->urb_list); 1002 init_waitqueue_head(&anchor->wait); 1003 spin_lock_init(&anchor->lock); 1004} 1005 1006typedef void (*usb_complete_t)(struct urb *); 1007 1008/** 1009 * struct urb - USB Request Block 1010 * @urb_list: For use by current owner of the URB. 1011 * @anchor_list: membership in the list of an anchor 1012 * @anchor: to anchor URBs to a common mooring 1013 * @ep: Points to the endpoint's data structure. Will eventually 1014 * replace @pipe. 1015 * @pipe: Holds endpoint number, direction, type, and more. 1016 * Create these values with the eight macros available; 1017 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1018 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1019 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1020 * numbers range from zero to fifteen. Note that "in" endpoint two 1021 * is a different endpoint (and pipe) from "out" endpoint two. 1022 * The current configuration controls the existence, type, and 1023 * maximum packet size of any given endpoint. 1024 * @stream_id: the endpoint's stream ID for bulk streams 1025 * @dev: Identifies the USB device to perform the request. 1026 * @status: This is read in non-iso completion functions to get the 1027 * status of the particular request. ISO requests only use it 1028 * to tell whether the URB was unlinked; detailed status for 1029 * each frame is in the fields of the iso_frame-desc. 1030 * @transfer_flags: A variety of flags may be used to affect how URB 1031 * submission, unlinking, or operation are handled. Different 1032 * kinds of URB can use different flags. 1033 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1034 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1035 * (however, do not leave garbage in transfer_buffer even then). 1036 * This buffer must be suitable for DMA; allocate it with 1037 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1038 * of this buffer will be modified. This buffer is used for the data 1039 * stage of control transfers. 1040 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1041 * the device driver is saying that it provided this DMA address, 1042 * which the host controller driver should use in preference to the 1043 * transfer_buffer. 1044 * @sg: scatter gather buffer list 1045 * @num_sgs: number of entries in the sg list 1046 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1047 * be broken up into chunks according to the current maximum packet 1048 * size for the endpoint, which is a function of the configuration 1049 * and is encoded in the pipe. When the length is zero, neither 1050 * transfer_buffer nor transfer_dma is used. 1051 * @actual_length: This is read in non-iso completion functions, and 1052 * it tells how many bytes (out of transfer_buffer_length) were 1053 * transferred. It will normally be the same as requested, unless 1054 * either an error was reported or a short read was performed. 1055 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1056 * short reads be reported as errors. 1057 * @setup_packet: Only used for control transfers, this points to eight bytes 1058 * of setup data. Control transfers always start by sending this data 1059 * to the device. Then transfer_buffer is read or written, if needed. 1060 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1061 * this field; setup_packet must point to a valid buffer. 1062 * @start_frame: Returns the initial frame for isochronous transfers. 1063 * @number_of_packets: Lists the number of ISO transfer buffers. 1064 * @interval: Specifies the polling interval for interrupt or isochronous 1065 * transfers. The units are frames (milliseconds) for full and low 1066 * speed devices, and microframes (1/8 millisecond) for highspeed 1067 * and SuperSpeed devices. 1068 * @error_count: Returns the number of ISO transfers that reported errors. 1069 * @context: For use in completion functions. This normally points to 1070 * request-specific driver context. 1071 * @complete: Completion handler. This URB is passed as the parameter to the 1072 * completion function. The completion function may then do what 1073 * it likes with the URB, including resubmitting or freeing it. 1074 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1075 * collect the transfer status for each buffer. 1076 * 1077 * This structure identifies USB transfer requests. URBs must be allocated by 1078 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1079 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1080 * are submitted using usb_submit_urb(), and pending requests may be canceled 1081 * using usb_unlink_urb() or usb_kill_urb(). 1082 * 1083 * Data Transfer Buffers: 1084 * 1085 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1086 * taken from the general page pool. That is provided by transfer_buffer 1087 * (control requests also use setup_packet), and host controller drivers 1088 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1089 * mapping operations can be expensive on some platforms (perhaps using a dma 1090 * bounce buffer or talking to an IOMMU), 1091 * although they're cheap on commodity x86 and ppc hardware. 1092 * 1093 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1094 * which tells the host controller driver that no such mapping is needed for 1095 * the transfer_buffer since 1096 * the device driver is DMA-aware. For example, a device driver might 1097 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1098 * When this transfer flag is provided, host controller drivers will 1099 * attempt to use the dma address found in the transfer_dma 1100 * field rather than determining a dma address themselves. 1101 * 1102 * Note that transfer_buffer must still be set if the controller 1103 * does not support DMA (as indicated by bus.uses_dma) and when talking 1104 * to root hub. If you have to trasfer between highmem zone and the device 1105 * on such controller, create a bounce buffer or bail out with an error. 1106 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1107 * capable, assign NULL to it, so that usbmon knows not to use the value. 1108 * The setup_packet must always be set, so it cannot be located in highmem. 1109 * 1110 * Initialization: 1111 * 1112 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1113 * zero), and complete fields. All URBs must also initialize 1114 * transfer_buffer and transfer_buffer_length. They may provide the 1115 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1116 * to be treated as errors; that flag is invalid for write requests. 1117 * 1118 * Bulk URBs may 1119 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1120 * should always terminate with a short packet, even if it means adding an 1121 * extra zero length packet. 1122 * 1123 * Control URBs must provide a valid pointer in the setup_packet field. 1124 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1125 * beforehand. 1126 * 1127 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1128 * or, for highspeed devices, 125 microsecond units) 1129 * to poll for transfers. After the URB has been submitted, the interval 1130 * field reflects how the transfer was actually scheduled. 1131 * The polling interval may be more frequent than requested. 1132 * For example, some controllers have a maximum interval of 32 milliseconds, 1133 * while others support intervals of up to 1024 milliseconds. 1134 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1135 * endpoints, as well as high speed interrupt endpoints, the encoding of 1136 * the transfer interval in the endpoint descriptor is logarithmic. 1137 * Device drivers must convert that value to linear units themselves.) 1138 * 1139 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1140 * the host controller to schedule the transfer as soon as bandwidth 1141 * utilization allows, and then set start_frame to reflect the actual frame 1142 * selected during submission. Otherwise drivers must specify the start_frame 1143 * and handle the case where the transfer can't begin then. However, drivers 1144 * won't know how bandwidth is currently allocated, and while they can 1145 * find the current frame using usb_get_current_frame_number () they can't 1146 * know the range for that frame number. (Ranges for frame counter values 1147 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1148 * 1149 * Isochronous URBs have a different data transfer model, in part because 1150 * the quality of service is only "best effort". Callers provide specially 1151 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1152 * at the end. Each such packet is an individual ISO transfer. Isochronous 1153 * URBs are normally queued, submitted by drivers to arrange that 1154 * transfers are at least double buffered, and then explicitly resubmitted 1155 * in completion handlers, so 1156 * that data (such as audio or video) streams at as constant a rate as the 1157 * host controller scheduler can support. 1158 * 1159 * Completion Callbacks: 1160 * 1161 * The completion callback is made in_interrupt(), and one of the first 1162 * things that a completion handler should do is check the status field. 1163 * The status field is provided for all URBs. It is used to report 1164 * unlinked URBs, and status for all non-ISO transfers. It should not 1165 * be examined before the URB is returned to the completion handler. 1166 * 1167 * The context field is normally used to link URBs back to the relevant 1168 * driver or request state. 1169 * 1170 * When the completion callback is invoked for non-isochronous URBs, the 1171 * actual_length field tells how many bytes were transferred. This field 1172 * is updated even when the URB terminated with an error or was unlinked. 1173 * 1174 * ISO transfer status is reported in the status and actual_length fields 1175 * of the iso_frame_desc array, and the number of errors is reported in 1176 * error_count. Completion callbacks for ISO transfers will normally 1177 * (re)submit URBs to ensure a constant transfer rate. 1178 * 1179 * Note that even fields marked "public" should not be touched by the driver 1180 * when the urb is owned by the hcd, that is, since the call to 1181 * usb_submit_urb() till the entry into the completion routine. 1182 */ 1183struct urb { 1184 /* private: usb core and host controller only fields in the urb */ 1185 struct kref kref; /* reference count of the URB */ 1186 void *hcpriv; /* private data for host controller */ 1187 atomic_t use_count; /* concurrent submissions counter */ 1188 atomic_t reject; /* submissions will fail */ 1189 int unlinked; /* unlink error code */ 1190 1191 /* public: documented fields in the urb that can be used by drivers */ 1192 struct list_head urb_list; /* list head for use by the urb's 1193 * current owner */ 1194 struct list_head anchor_list; /* the URB may be anchored */ 1195 struct usb_anchor *anchor; 1196 struct usb_device *dev; /* (in) pointer to associated device */ 1197 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1198 unsigned int pipe; /* (in) pipe information */ 1199 unsigned int stream_id; /* (in) stream ID */ 1200 int status; /* (return) non-ISO status */ 1201 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1202 void *transfer_buffer; /* (in) associated data buffer */ 1203 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1204 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1205 int num_sgs; /* (in) number of entries in the sg list */ 1206 u32 transfer_buffer_length; /* (in) data buffer length */ 1207 u32 actual_length; /* (return) actual transfer length */ 1208 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1209 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1210 int start_frame; /* (modify) start frame (ISO) */ 1211 int number_of_packets; /* (in) number of ISO packets */ 1212 int interval; /* (modify) transfer interval 1213 * (INT/ISO) */ 1214 int error_count; /* (return) number of ISO errors */ 1215 void *context; /* (in) context for completion */ 1216 usb_complete_t complete; /* (in) completion routine */ 1217 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1218 /* (in) ISO ONLY */ 1219}; 1220 1221/* ----------------------------------------------------------------------- */ 1222 1223/** 1224 * usb_fill_control_urb - initializes a control urb 1225 * @urb: pointer to the urb to initialize. 1226 * @dev: pointer to the struct usb_device for this urb. 1227 * @pipe: the endpoint pipe 1228 * @setup_packet: pointer to the setup_packet buffer 1229 * @transfer_buffer: pointer to the transfer buffer 1230 * @buffer_length: length of the transfer buffer 1231 * @complete_fn: pointer to the usb_complete_t function 1232 * @context: what to set the urb context to. 1233 * 1234 * Initializes a control urb with the proper information needed to submit 1235 * it to a device. 1236 */ 1237static inline void usb_fill_control_urb(struct urb *urb, 1238 struct usb_device *dev, 1239 unsigned int pipe, 1240 unsigned char *setup_packet, 1241 void *transfer_buffer, 1242 int buffer_length, 1243 usb_complete_t complete_fn, 1244 void *context) 1245{ 1246 urb->dev = dev; 1247 urb->pipe = pipe; 1248 urb->setup_packet = setup_packet; 1249 urb->transfer_buffer = transfer_buffer; 1250 urb->transfer_buffer_length = buffer_length; 1251 urb->complete = complete_fn; 1252 urb->context = context; 1253} 1254 1255/** 1256 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1257 * @urb: pointer to the urb to initialize. 1258 * @dev: pointer to the struct usb_device for this urb. 1259 * @pipe: the endpoint pipe 1260 * @transfer_buffer: pointer to the transfer buffer 1261 * @buffer_length: length of the transfer buffer 1262 * @complete_fn: pointer to the usb_complete_t function 1263 * @context: what to set the urb context to. 1264 * 1265 * Initializes a bulk urb with the proper information needed to submit it 1266 * to a device. 1267 */ 1268static inline void usb_fill_bulk_urb(struct urb *urb, 1269 struct usb_device *dev, 1270 unsigned int pipe, 1271 void *transfer_buffer, 1272 int buffer_length, 1273 usb_complete_t complete_fn, 1274 void *context) 1275{ 1276 urb->dev = dev; 1277 urb->pipe = pipe; 1278 urb->transfer_buffer = transfer_buffer; 1279 urb->transfer_buffer_length = buffer_length; 1280 urb->complete = complete_fn; 1281 urb->context = context; 1282} 1283 1284/** 1285 * usb_fill_int_urb - macro to help initialize a interrupt urb 1286 * @urb: pointer to the urb to initialize. 1287 * @dev: pointer to the struct usb_device for this urb. 1288 * @pipe: the endpoint pipe 1289 * @transfer_buffer: pointer to the transfer buffer 1290 * @buffer_length: length of the transfer buffer 1291 * @complete_fn: pointer to the usb_complete_t function 1292 * @context: what to set the urb context to. 1293 * @interval: what to set the urb interval to, encoded like 1294 * the endpoint descriptor's bInterval value. 1295 * 1296 * Initializes a interrupt urb with the proper information needed to submit 1297 * it to a device. 1298 * 1299 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1300 * encoding of the endpoint interval, and express polling intervals in 1301 * microframes (eight per millisecond) rather than in frames (one per 1302 * millisecond). 1303 * 1304 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1305 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1306 * through to the host controller, rather than being translated into microframe 1307 * units. 1308 */ 1309static inline void usb_fill_int_urb(struct urb *urb, 1310 struct usb_device *dev, 1311 unsigned int pipe, 1312 void *transfer_buffer, 1313 int buffer_length, 1314 usb_complete_t complete_fn, 1315 void *context, 1316 int interval) 1317{ 1318 urb->dev = dev; 1319 urb->pipe = pipe; 1320 urb->transfer_buffer = transfer_buffer; 1321 urb->transfer_buffer_length = buffer_length; 1322 urb->complete = complete_fn; 1323 urb->context = context; 1324 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1325 urb->interval = 1 << (interval - 1); 1326 else 1327 urb->interval = interval; 1328 urb->start_frame = -1; 1329} 1330 1331extern void usb_init_urb(struct urb *urb); 1332extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1333extern void usb_free_urb(struct urb *urb); 1334#define usb_put_urb usb_free_urb 1335extern struct urb *usb_get_urb(struct urb *urb); 1336extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1337extern int usb_unlink_urb(struct urb *urb); 1338extern void usb_kill_urb(struct urb *urb); 1339extern void usb_poison_urb(struct urb *urb); 1340extern void usb_unpoison_urb(struct urb *urb); 1341extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1342extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1343extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1344extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1345extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1346extern void usb_unanchor_urb(struct urb *urb); 1347extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1348 unsigned int timeout); 1349extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1350extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1351extern int usb_anchor_empty(struct usb_anchor *anchor); 1352 1353/** 1354 * usb_urb_dir_in - check if an URB describes an IN transfer 1355 * @urb: URB to be checked 1356 * 1357 * Returns 1 if @urb describes an IN transfer (device-to-host), 1358 * otherwise 0. 1359 */ 1360static inline int usb_urb_dir_in(struct urb *urb) 1361{ 1362 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1363} 1364 1365/** 1366 * usb_urb_dir_out - check if an URB describes an OUT transfer 1367 * @urb: URB to be checked 1368 * 1369 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1370 * otherwise 0. 1371 */ 1372static inline int usb_urb_dir_out(struct urb *urb) 1373{ 1374 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1375} 1376 1377void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1378 gfp_t mem_flags, dma_addr_t *dma); 1379void usb_free_coherent(struct usb_device *dev, size_t size, 1380 void *addr, dma_addr_t dma); 1381 1382#if 0 1383struct urb *usb_buffer_map(struct urb *urb); 1384void usb_buffer_dmasync(struct urb *urb); 1385void usb_buffer_unmap(struct urb *urb); 1386#endif 1387 1388struct scatterlist; 1389int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1390 struct scatterlist *sg, int nents); 1391#if 0 1392void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1393 struct scatterlist *sg, int n_hw_ents); 1394#endif 1395void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1396 struct scatterlist *sg, int n_hw_ents); 1397 1398/*-------------------------------------------------------------------* 1399 * SYNCHRONOUS CALL SUPPORT * 1400 *-------------------------------------------------------------------*/ 1401 1402extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1403 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1404 void *data, __u16 size, int timeout); 1405extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1406 void *data, int len, int *actual_length, int timeout); 1407extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1408 void *data, int len, int *actual_length, 1409 int timeout); 1410 1411/* wrappers around usb_control_msg() for the most common standard requests */ 1412extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1413 unsigned char descindex, void *buf, int size); 1414extern int usb_get_status(struct usb_device *dev, 1415 int type, int target, void *data); 1416extern int usb_string(struct usb_device *dev, int index, 1417 char *buf, size_t size); 1418 1419/* wrappers that also update important state inside usbcore */ 1420extern int usb_clear_halt(struct usb_device *dev, int pipe); 1421extern int usb_reset_configuration(struct usb_device *dev); 1422extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1423extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1424 1425/* this request isn't really synchronous, but it belongs with the others */ 1426extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1427 1428/* 1429 * timeouts, in milliseconds, used for sending/receiving control messages 1430 * they typically complete within a few frames (msec) after they're issued 1431 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1432 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1433 */ 1434#define USB_CTRL_GET_TIMEOUT 5000 1435#define USB_CTRL_SET_TIMEOUT 5000 1436 1437 1438/** 1439 * struct usb_sg_request - support for scatter/gather I/O 1440 * @status: zero indicates success, else negative errno 1441 * @bytes: counts bytes transferred. 1442 * 1443 * These requests are initialized using usb_sg_init(), and then are used 1444 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1445 * members of the request object aren't for driver access. 1446 * 1447 * The status and bytecount values are valid only after usb_sg_wait() 1448 * returns. If the status is zero, then the bytecount matches the total 1449 * from the request. 1450 * 1451 * After an error completion, drivers may need to clear a halt condition 1452 * on the endpoint. 1453 */ 1454struct usb_sg_request { 1455 int status; 1456 size_t bytes; 1457 1458 /* private: 1459 * members below are private to usbcore, 1460 * and are not provided for driver access! 1461 */ 1462 spinlock_t lock; 1463 1464 struct usb_device *dev; 1465 int pipe; 1466 1467 int entries; 1468 struct urb **urbs; 1469 1470 int count; 1471 struct completion complete; 1472}; 1473 1474int usb_sg_init( 1475 struct usb_sg_request *io, 1476 struct usb_device *dev, 1477 unsigned pipe, 1478 unsigned period, 1479 struct scatterlist *sg, 1480 int nents, 1481 size_t length, 1482 gfp_t mem_flags 1483); 1484void usb_sg_cancel(struct usb_sg_request *io); 1485void usb_sg_wait(struct usb_sg_request *io); 1486 1487 1488/* ----------------------------------------------------------------------- */ 1489 1490/* 1491 * For various legacy reasons, Linux has a small cookie that's paired with 1492 * a struct usb_device to identify an endpoint queue. Queue characteristics 1493 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1494 * an unsigned int encoded as: 1495 * 1496 * - direction: bit 7 (0 = Host-to-Device [Out], 1497 * 1 = Device-to-Host [In] ... 1498 * like endpoint bEndpointAddress) 1499 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1500 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1501 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1502 * 10 = control, 11 = bulk) 1503 * 1504 * Given the device address and endpoint descriptor, pipes are redundant. 1505 */ 1506 1507/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1508/* (yet ... they're the values used by usbfs) */ 1509#define PIPE_ISOCHRONOUS 0 1510#define PIPE_INTERRUPT 1 1511#define PIPE_CONTROL 2 1512#define PIPE_BULK 3 1513 1514#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1515#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1516 1517#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1518#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1519 1520#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1521#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1522#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1523#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1524#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1525 1526static inline unsigned int __create_pipe(struct usb_device *dev, 1527 unsigned int endpoint) 1528{ 1529 return (dev->devnum << 8) | (endpoint << 15); 1530} 1531 1532/* Create various pipes... */ 1533#define usb_sndctrlpipe(dev, endpoint) \ 1534 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1535#define usb_rcvctrlpipe(dev, endpoint) \ 1536 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1537#define usb_sndisocpipe(dev, endpoint) \ 1538 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1539#define usb_rcvisocpipe(dev, endpoint) \ 1540 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1541#define usb_sndbulkpipe(dev, endpoint) \ 1542 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1543#define usb_rcvbulkpipe(dev, endpoint) \ 1544 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1545#define usb_sndintpipe(dev, endpoint) \ 1546 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1547#define usb_rcvintpipe(dev, endpoint) \ 1548 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1549 1550static inline struct usb_host_endpoint * 1551usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1552{ 1553 struct usb_host_endpoint **eps; 1554 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1555 return eps[usb_pipeendpoint(pipe)]; 1556} 1557 1558/*-------------------------------------------------------------------------*/ 1559 1560static inline __u16 1561usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1562{ 1563 struct usb_host_endpoint *ep; 1564 unsigned epnum = usb_pipeendpoint(pipe); 1565 1566 if (is_out) { 1567 WARN_ON(usb_pipein(pipe)); 1568 ep = udev->ep_out[epnum]; 1569 } else { 1570 WARN_ON(usb_pipeout(pipe)); 1571 ep = udev->ep_in[epnum]; 1572 } 1573 if (!ep) 1574 return 0; 1575 1576 /* NOTE: only 0x07ff bits are for packet size... */ 1577 return le16_to_cpu(ep->desc.wMaxPacketSize); 1578} 1579 1580/* ----------------------------------------------------------------------- */ 1581 1582/* Events from the usb core */ 1583#define USB_DEVICE_ADD 0x0001 1584#define USB_DEVICE_REMOVE 0x0002 1585#define USB_BUS_ADD 0x0003 1586#define USB_BUS_REMOVE 0x0004 1587extern void usb_register_notify(struct notifier_block *nb); 1588extern void usb_unregister_notify(struct notifier_block *nb); 1589 1590#ifdef DEBUG 1591#define dbg(format, arg...) \ 1592 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg) 1593#else 1594#define dbg(format, arg...) \ 1595do { \ 1596 if (0) \ 1597 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ 1598} while (0) 1599#endif 1600 1601#define err(format, arg...) \ 1602 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg) 1603 1604/* debugfs stuff */ 1605extern struct dentry *usb_debug_root; 1606 1607#endif /* __KERNEL__ */ 1608 1609#endif 1610