linux/kernel/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#include <linux/cgroup.h>
  30#include <linux/ctype.h>
  31#include <linux/errno.h>
  32#include <linux/fs.h>
  33#include <linux/kernel.h>
  34#include <linux/list.h>
  35#include <linux/mm.h>
  36#include <linux/mutex.h>
  37#include <linux/mount.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/rcupdate.h>
  41#include <linux/sched.h>
  42#include <linux/backing-dev.h>
  43#include <linux/seq_file.h>
  44#include <linux/slab.h>
  45#include <linux/magic.h>
  46#include <linux/spinlock.h>
  47#include <linux/string.h>
  48#include <linux/sort.h>
  49#include <linux/kmod.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/cgroupstats.h>
  53#include <linux/hash.h>
  54#include <linux/namei.h>
  55#include <linux/pid_namespace.h>
  56#include <linux/idr.h>
  57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58#include <linux/eventfd.h>
  59#include <linux/poll.h>
  60#include <linux/flex_array.h> /* used in cgroup_attach_proc */
  61
  62#include <asm/atomic.h>
  63
  64static DEFINE_MUTEX(cgroup_mutex);
  65
  66/*
  67 * Generate an array of cgroup subsystem pointers. At boot time, this is
  68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  69 * registered after that. The mutable section of this array is protected by
  70 * cgroup_mutex.
  71 */
  72#define SUBSYS(_x) &_x ## _subsys,
  73static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  74#include <linux/cgroup_subsys.h>
  75};
  76
  77#define MAX_CGROUP_ROOT_NAMELEN 64
  78
  79/*
  80 * A cgroupfs_root represents the root of a cgroup hierarchy,
  81 * and may be associated with a superblock to form an active
  82 * hierarchy
  83 */
  84struct cgroupfs_root {
  85        struct super_block *sb;
  86
  87        /*
  88         * The bitmask of subsystems intended to be attached to this
  89         * hierarchy
  90         */
  91        unsigned long subsys_bits;
  92
  93        /* Unique id for this hierarchy. */
  94        int hierarchy_id;
  95
  96        /* The bitmask of subsystems currently attached to this hierarchy */
  97        unsigned long actual_subsys_bits;
  98
  99        /* A list running through the attached subsystems */
 100        struct list_head subsys_list;
 101
 102        /* The root cgroup for this hierarchy */
 103        struct cgroup top_cgroup;
 104
 105        /* Tracks how many cgroups are currently defined in hierarchy.*/
 106        int number_of_cgroups;
 107
 108        /* A list running through the active hierarchies */
 109        struct list_head root_list;
 110
 111        /* Hierarchy-specific flags */
 112        unsigned long flags;
 113
 114        /* The path to use for release notifications. */
 115        char release_agent_path[PATH_MAX];
 116
 117        /* The name for this hierarchy - may be empty */
 118        char name[MAX_CGROUP_ROOT_NAMELEN];
 119};
 120
 121/*
 122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 123 * subsystems that are otherwise unattached - it never has more than a
 124 * single cgroup, and all tasks are part of that cgroup.
 125 */
 126static struct cgroupfs_root rootnode;
 127
 128/*
 129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 130 * cgroup_subsys->use_id != 0.
 131 */
 132#define CSS_ID_MAX      (65535)
 133struct css_id {
 134        /*
 135         * The css to which this ID points. This pointer is set to valid value
 136         * after cgroup is populated. If cgroup is removed, this will be NULL.
 137         * This pointer is expected to be RCU-safe because destroy()
 138         * is called after synchronize_rcu(). But for safe use, css_is_removed()
 139         * css_tryget() should be used for avoiding race.
 140         */
 141        struct cgroup_subsys_state __rcu *css;
 142        /*
 143         * ID of this css.
 144         */
 145        unsigned short id;
 146        /*
 147         * Depth in hierarchy which this ID belongs to.
 148         */
 149        unsigned short depth;
 150        /*
 151         * ID is freed by RCU. (and lookup routine is RCU safe.)
 152         */
 153        struct rcu_head rcu_head;
 154        /*
 155         * Hierarchy of CSS ID belongs to.
 156         */
 157        unsigned short stack[0]; /* Array of Length (depth+1) */
 158};
 159
 160/*
 161 * cgroup_event represents events which userspace want to receive.
 162 */
 163struct cgroup_event {
 164        /*
 165         * Cgroup which the event belongs to.
 166         */
 167        struct cgroup *cgrp;
 168        /*
 169         * Control file which the event associated.
 170         */
 171        struct cftype *cft;
 172        /*
 173         * eventfd to signal userspace about the event.
 174         */
 175        struct eventfd_ctx *eventfd;
 176        /*
 177         * Each of these stored in a list by the cgroup.
 178         */
 179        struct list_head list;
 180        /*
 181         * All fields below needed to unregister event when
 182         * userspace closes eventfd.
 183         */
 184        poll_table pt;
 185        wait_queue_head_t *wqh;
 186        wait_queue_t wait;
 187        struct work_struct remove;
 188};
 189
 190/* The list of hierarchy roots */
 191
 192static LIST_HEAD(roots);
 193static int root_count;
 194
 195static DEFINE_IDA(hierarchy_ida);
 196static int next_hierarchy_id;
 197static DEFINE_SPINLOCK(hierarchy_id_lock);
 198
 199/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 200#define dummytop (&rootnode.top_cgroup)
 201
 202/* This flag indicates whether tasks in the fork and exit paths should
 203 * check for fork/exit handlers to call. This avoids us having to do
 204 * extra work in the fork/exit path if none of the subsystems need to
 205 * be called.
 206 */
 207static int need_forkexit_callback __read_mostly;
 208
 209#ifdef CONFIG_PROVE_LOCKING
 210int cgroup_lock_is_held(void)
 211{
 212        return lockdep_is_held(&cgroup_mutex);
 213}
 214#else /* #ifdef CONFIG_PROVE_LOCKING */
 215int cgroup_lock_is_held(void)
 216{
 217        return mutex_is_locked(&cgroup_mutex);
 218}
 219#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
 220
 221EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
 222
 223/* convenient tests for these bits */
 224inline int cgroup_is_removed(const struct cgroup *cgrp)
 225{
 226        return test_bit(CGRP_REMOVED, &cgrp->flags);
 227}
 228
 229/* bits in struct cgroupfs_root flags field */
 230enum {
 231        ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 232};
 233
 234static int cgroup_is_releasable(const struct cgroup *cgrp)
 235{
 236        const int bits =
 237                (1 << CGRP_RELEASABLE) |
 238                (1 << CGRP_NOTIFY_ON_RELEASE);
 239        return (cgrp->flags & bits) == bits;
 240}
 241
 242static int notify_on_release(const struct cgroup *cgrp)
 243{
 244        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 245}
 246
 247static int clone_children(const struct cgroup *cgrp)
 248{
 249        return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 250}
 251
 252/*
 253 * for_each_subsys() allows you to iterate on each subsystem attached to
 254 * an active hierarchy
 255 */
 256#define for_each_subsys(_root, _ss) \
 257list_for_each_entry(_ss, &_root->subsys_list, sibling)
 258
 259/* for_each_active_root() allows you to iterate across the active hierarchies */
 260#define for_each_active_root(_root) \
 261list_for_each_entry(_root, &roots, root_list)
 262
 263/* the list of cgroups eligible for automatic release. Protected by
 264 * release_list_lock */
 265static LIST_HEAD(release_list);
 266static DEFINE_SPINLOCK(release_list_lock);
 267static void cgroup_release_agent(struct work_struct *work);
 268static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 269static void check_for_release(struct cgroup *cgrp);
 270
 271/* Link structure for associating css_set objects with cgroups */
 272struct cg_cgroup_link {
 273        /*
 274         * List running through cg_cgroup_links associated with a
 275         * cgroup, anchored on cgroup->css_sets
 276         */
 277        struct list_head cgrp_link_list;
 278        struct cgroup *cgrp;
 279        /*
 280         * List running through cg_cgroup_links pointing at a
 281         * single css_set object, anchored on css_set->cg_links
 282         */
 283        struct list_head cg_link_list;
 284        struct css_set *cg;
 285};
 286
 287/* The default css_set - used by init and its children prior to any
 288 * hierarchies being mounted. It contains a pointer to the root state
 289 * for each subsystem. Also used to anchor the list of css_sets. Not
 290 * reference-counted, to improve performance when child cgroups
 291 * haven't been created.
 292 */
 293
 294static struct css_set init_css_set;
 295static struct cg_cgroup_link init_css_set_link;
 296
 297static int cgroup_init_idr(struct cgroup_subsys *ss,
 298                           struct cgroup_subsys_state *css);
 299
 300/* css_set_lock protects the list of css_set objects, and the
 301 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 302 * due to cgroup_iter_start() */
 303static DEFINE_RWLOCK(css_set_lock);
 304static int css_set_count;
 305
 306/*
 307 * hash table for cgroup groups. This improves the performance to find
 308 * an existing css_set. This hash doesn't (currently) take into
 309 * account cgroups in empty hierarchies.
 310 */
 311#define CSS_SET_HASH_BITS       7
 312#define CSS_SET_TABLE_SIZE      (1 << CSS_SET_HASH_BITS)
 313static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
 314
 315static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
 316{
 317        int i;
 318        int index;
 319        unsigned long tmp = 0UL;
 320
 321        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
 322                tmp += (unsigned long)css[i];
 323        tmp = (tmp >> 16) ^ tmp;
 324
 325        index = hash_long(tmp, CSS_SET_HASH_BITS);
 326
 327        return &css_set_table[index];
 328}
 329
 330/* We don't maintain the lists running through each css_set to its
 331 * task until after the first call to cgroup_iter_start(). This
 332 * reduces the fork()/exit() overhead for people who have cgroups
 333 * compiled into their kernel but not actually in use */
 334static int use_task_css_set_links __read_mostly;
 335
 336static void __put_css_set(struct css_set *cg, int taskexit)
 337{
 338        struct cg_cgroup_link *link;
 339        struct cg_cgroup_link *saved_link;
 340        /*
 341         * Ensure that the refcount doesn't hit zero while any readers
 342         * can see it. Similar to atomic_dec_and_lock(), but for an
 343         * rwlock
 344         */
 345        if (atomic_add_unless(&cg->refcount, -1, 1))
 346                return;
 347        write_lock(&css_set_lock);
 348        if (!atomic_dec_and_test(&cg->refcount)) {
 349                write_unlock(&css_set_lock);
 350                return;
 351        }
 352
 353        /* This css_set is dead. unlink it and release cgroup refcounts */
 354        hlist_del(&cg->hlist);
 355        css_set_count--;
 356
 357        list_for_each_entry_safe(link, saved_link, &cg->cg_links,
 358                                 cg_link_list) {
 359                struct cgroup *cgrp = link->cgrp;
 360                list_del(&link->cg_link_list);
 361                list_del(&link->cgrp_link_list);
 362                if (atomic_dec_and_test(&cgrp->count) &&
 363                    notify_on_release(cgrp)) {
 364                        if (taskexit)
 365                                set_bit(CGRP_RELEASABLE, &cgrp->flags);
 366                        check_for_release(cgrp);
 367                }
 368
 369                kfree(link);
 370        }
 371
 372        write_unlock(&css_set_lock);
 373        kfree_rcu(cg, rcu_head);
 374}
 375
 376/*
 377 * refcounted get/put for css_set objects
 378 */
 379static inline void get_css_set(struct css_set *cg)
 380{
 381        atomic_inc(&cg->refcount);
 382}
 383
 384static inline void put_css_set(struct css_set *cg)
 385{
 386        __put_css_set(cg, 0);
 387}
 388
 389static inline void put_css_set_taskexit(struct css_set *cg)
 390{
 391        __put_css_set(cg, 1);
 392}
 393
 394/*
 395 * compare_css_sets - helper function for find_existing_css_set().
 396 * @cg: candidate css_set being tested
 397 * @old_cg: existing css_set for a task
 398 * @new_cgrp: cgroup that's being entered by the task
 399 * @template: desired set of css pointers in css_set (pre-calculated)
 400 *
 401 * Returns true if "cg" matches "old_cg" except for the hierarchy
 402 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 403 */
 404static bool compare_css_sets(struct css_set *cg,
 405                             struct css_set *old_cg,
 406                             struct cgroup *new_cgrp,
 407                             struct cgroup_subsys_state *template[])
 408{
 409        struct list_head *l1, *l2;
 410
 411        if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 412                /* Not all subsystems matched */
 413                return false;
 414        }
 415
 416        /*
 417         * Compare cgroup pointers in order to distinguish between
 418         * different cgroups in heirarchies with no subsystems. We
 419         * could get by with just this check alone (and skip the
 420         * memcmp above) but on most setups the memcmp check will
 421         * avoid the need for this more expensive check on almost all
 422         * candidates.
 423         */
 424
 425        l1 = &cg->cg_links;
 426        l2 = &old_cg->cg_links;
 427        while (1) {
 428                struct cg_cgroup_link *cgl1, *cgl2;
 429                struct cgroup *cg1, *cg2;
 430
 431                l1 = l1->next;
 432                l2 = l2->next;
 433                /* See if we reached the end - both lists are equal length. */
 434                if (l1 == &cg->cg_links) {
 435                        BUG_ON(l2 != &old_cg->cg_links);
 436                        break;
 437                } else {
 438                        BUG_ON(l2 == &old_cg->cg_links);
 439                }
 440                /* Locate the cgroups associated with these links. */
 441                cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
 442                cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
 443                cg1 = cgl1->cgrp;
 444                cg2 = cgl2->cgrp;
 445                /* Hierarchies should be linked in the same order. */
 446                BUG_ON(cg1->root != cg2->root);
 447
 448                /*
 449                 * If this hierarchy is the hierarchy of the cgroup
 450                 * that's changing, then we need to check that this
 451                 * css_set points to the new cgroup; if it's any other
 452                 * hierarchy, then this css_set should point to the
 453                 * same cgroup as the old css_set.
 454                 */
 455                if (cg1->root == new_cgrp->root) {
 456                        if (cg1 != new_cgrp)
 457                                return false;
 458                } else {
 459                        if (cg1 != cg2)
 460                                return false;
 461                }
 462        }
 463        return true;
 464}
 465
 466/*
 467 * find_existing_css_set() is a helper for
 468 * find_css_set(), and checks to see whether an existing
 469 * css_set is suitable.
 470 *
 471 * oldcg: the cgroup group that we're using before the cgroup
 472 * transition
 473 *
 474 * cgrp: the cgroup that we're moving into
 475 *
 476 * template: location in which to build the desired set of subsystem
 477 * state objects for the new cgroup group
 478 */
 479static struct css_set *find_existing_css_set(
 480        struct css_set *oldcg,
 481        struct cgroup *cgrp,
 482        struct cgroup_subsys_state *template[])
 483{
 484        int i;
 485        struct cgroupfs_root *root = cgrp->root;
 486        struct hlist_head *hhead;
 487        struct hlist_node *node;
 488        struct css_set *cg;
 489
 490        /*
 491         * Build the set of subsystem state objects that we want to see in the
 492         * new css_set. while subsystems can change globally, the entries here
 493         * won't change, so no need for locking.
 494         */
 495        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 496                if (root->subsys_bits & (1UL << i)) {
 497                        /* Subsystem is in this hierarchy. So we want
 498                         * the subsystem state from the new
 499                         * cgroup */
 500                        template[i] = cgrp->subsys[i];
 501                } else {
 502                        /* Subsystem is not in this hierarchy, so we
 503                         * don't want to change the subsystem state */
 504                        template[i] = oldcg->subsys[i];
 505                }
 506        }
 507
 508        hhead = css_set_hash(template);
 509        hlist_for_each_entry(cg, node, hhead, hlist) {
 510                if (!compare_css_sets(cg, oldcg, cgrp, template))
 511                        continue;
 512
 513                /* This css_set matches what we need */
 514                return cg;
 515        }
 516
 517        /* No existing cgroup group matched */
 518        return NULL;
 519}
 520
 521static void free_cg_links(struct list_head *tmp)
 522{
 523        struct cg_cgroup_link *link;
 524        struct cg_cgroup_link *saved_link;
 525
 526        list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
 527                list_del(&link->cgrp_link_list);
 528                kfree(link);
 529        }
 530}
 531
 532/*
 533 * allocate_cg_links() allocates "count" cg_cgroup_link structures
 534 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 535 * success or a negative error
 536 */
 537static int allocate_cg_links(int count, struct list_head *tmp)
 538{
 539        struct cg_cgroup_link *link;
 540        int i;
 541        INIT_LIST_HEAD(tmp);
 542        for (i = 0; i < count; i++) {
 543                link = kmalloc(sizeof(*link), GFP_KERNEL);
 544                if (!link) {
 545                        free_cg_links(tmp);
 546                        return -ENOMEM;
 547                }
 548                list_add(&link->cgrp_link_list, tmp);
 549        }
 550        return 0;
 551}
 552
 553/**
 554 * link_css_set - a helper function to link a css_set to a cgroup
 555 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 556 * @cg: the css_set to be linked
 557 * @cgrp: the destination cgroup
 558 */
 559static void link_css_set(struct list_head *tmp_cg_links,
 560                         struct css_set *cg, struct cgroup *cgrp)
 561{
 562        struct cg_cgroup_link *link;
 563
 564        BUG_ON(list_empty(tmp_cg_links));
 565        link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
 566                                cgrp_link_list);
 567        link->cg = cg;
 568        link->cgrp = cgrp;
 569        atomic_inc(&cgrp->count);
 570        list_move(&link->cgrp_link_list, &cgrp->css_sets);
 571        /*
 572         * Always add links to the tail of the list so that the list
 573         * is sorted by order of hierarchy creation
 574         */
 575        list_add_tail(&link->cg_link_list, &cg->cg_links);
 576}
 577
 578/*
 579 * find_css_set() takes an existing cgroup group and a
 580 * cgroup object, and returns a css_set object that's
 581 * equivalent to the old group, but with the given cgroup
 582 * substituted into the appropriate hierarchy. Must be called with
 583 * cgroup_mutex held
 584 */
 585static struct css_set *find_css_set(
 586        struct css_set *oldcg, struct cgroup *cgrp)
 587{
 588        struct css_set *res;
 589        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 590
 591        struct list_head tmp_cg_links;
 592
 593        struct hlist_head *hhead;
 594        struct cg_cgroup_link *link;
 595
 596        /* First see if we already have a cgroup group that matches
 597         * the desired set */
 598        read_lock(&css_set_lock);
 599        res = find_existing_css_set(oldcg, cgrp, template);
 600        if (res)
 601                get_css_set(res);
 602        read_unlock(&css_set_lock);
 603
 604        if (res)
 605                return res;
 606
 607        res = kmalloc(sizeof(*res), GFP_KERNEL);
 608        if (!res)
 609                return NULL;
 610
 611        /* Allocate all the cg_cgroup_link objects that we'll need */
 612        if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 613                kfree(res);
 614                return NULL;
 615        }
 616
 617        atomic_set(&res->refcount, 1);
 618        INIT_LIST_HEAD(&res->cg_links);
 619        INIT_LIST_HEAD(&res->tasks);
 620        INIT_HLIST_NODE(&res->hlist);
 621
 622        /* Copy the set of subsystem state objects generated in
 623         * find_existing_css_set() */
 624        memcpy(res->subsys, template, sizeof(res->subsys));
 625
 626        write_lock(&css_set_lock);
 627        /* Add reference counts and links from the new css_set. */
 628        list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
 629                struct cgroup *c = link->cgrp;
 630                if (c->root == cgrp->root)
 631                        c = cgrp;
 632                link_css_set(&tmp_cg_links, res, c);
 633        }
 634
 635        BUG_ON(!list_empty(&tmp_cg_links));
 636
 637        css_set_count++;
 638
 639        /* Add this cgroup group to the hash table */
 640        hhead = css_set_hash(res->subsys);
 641        hlist_add_head(&res->hlist, hhead);
 642
 643        write_unlock(&css_set_lock);
 644
 645        return res;
 646}
 647
 648/*
 649 * Return the cgroup for "task" from the given hierarchy. Must be
 650 * called with cgroup_mutex held.
 651 */
 652static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 653                                            struct cgroupfs_root *root)
 654{
 655        struct css_set *css;
 656        struct cgroup *res = NULL;
 657
 658        BUG_ON(!mutex_is_locked(&cgroup_mutex));
 659        read_lock(&css_set_lock);
 660        /*
 661         * No need to lock the task - since we hold cgroup_mutex the
 662         * task can't change groups, so the only thing that can happen
 663         * is that it exits and its css is set back to init_css_set.
 664         */
 665        css = task->cgroups;
 666        if (css == &init_css_set) {
 667                res = &root->top_cgroup;
 668        } else {
 669                struct cg_cgroup_link *link;
 670                list_for_each_entry(link, &css->cg_links, cg_link_list) {
 671                        struct cgroup *c = link->cgrp;
 672                        if (c->root == root) {
 673                                res = c;
 674                                break;
 675                        }
 676                }
 677        }
 678        read_unlock(&css_set_lock);
 679        BUG_ON(!res);
 680        return res;
 681}
 682
 683/*
 684 * There is one global cgroup mutex. We also require taking
 685 * task_lock() when dereferencing a task's cgroup subsys pointers.
 686 * See "The task_lock() exception", at the end of this comment.
 687 *
 688 * A task must hold cgroup_mutex to modify cgroups.
 689 *
 690 * Any task can increment and decrement the count field without lock.
 691 * So in general, code holding cgroup_mutex can't rely on the count
 692 * field not changing.  However, if the count goes to zero, then only
 693 * cgroup_attach_task() can increment it again.  Because a count of zero
 694 * means that no tasks are currently attached, therefore there is no
 695 * way a task attached to that cgroup can fork (the other way to
 696 * increment the count).  So code holding cgroup_mutex can safely
 697 * assume that if the count is zero, it will stay zero. Similarly, if
 698 * a task holds cgroup_mutex on a cgroup with zero count, it
 699 * knows that the cgroup won't be removed, as cgroup_rmdir()
 700 * needs that mutex.
 701 *
 702 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 703 * (usually) take cgroup_mutex.  These are the two most performance
 704 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 705 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 706 * is taken, and if the cgroup count is zero, a usermode call made
 707 * to the release agent with the name of the cgroup (path relative to
 708 * the root of cgroup file system) as the argument.
 709 *
 710 * A cgroup can only be deleted if both its 'count' of using tasks
 711 * is zero, and its list of 'children' cgroups is empty.  Since all
 712 * tasks in the system use _some_ cgroup, and since there is always at
 713 * least one task in the system (init, pid == 1), therefore, top_cgroup
 714 * always has either children cgroups and/or using tasks.  So we don't
 715 * need a special hack to ensure that top_cgroup cannot be deleted.
 716 *
 717 *      The task_lock() exception
 718 *
 719 * The need for this exception arises from the action of
 720 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 721 * another.  It does so using cgroup_mutex, however there are
 722 * several performance critical places that need to reference
 723 * task->cgroup without the expense of grabbing a system global
 724 * mutex.  Therefore except as noted below, when dereferencing or, as
 725 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
 726 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 727 * the task_struct routinely used for such matters.
 728 *
 729 * P.S.  One more locking exception.  RCU is used to guard the
 730 * update of a tasks cgroup pointer by cgroup_attach_task()
 731 */
 732
 733/**
 734 * cgroup_lock - lock out any changes to cgroup structures
 735 *
 736 */
 737void cgroup_lock(void)
 738{
 739        mutex_lock(&cgroup_mutex);
 740}
 741EXPORT_SYMBOL_GPL(cgroup_lock);
 742
 743/**
 744 * cgroup_unlock - release lock on cgroup changes
 745 *
 746 * Undo the lock taken in a previous cgroup_lock() call.
 747 */
 748void cgroup_unlock(void)
 749{
 750        mutex_unlock(&cgroup_mutex);
 751}
 752EXPORT_SYMBOL_GPL(cgroup_unlock);
 753
 754/*
 755 * A couple of forward declarations required, due to cyclic reference loop:
 756 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 757 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 758 * -> cgroup_mkdir.
 759 */
 760
 761static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
 762static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
 763static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 764static int cgroup_populate_dir(struct cgroup *cgrp);
 765static const struct inode_operations cgroup_dir_inode_operations;
 766static const struct file_operations proc_cgroupstats_operations;
 767
 768static struct backing_dev_info cgroup_backing_dev_info = {
 769        .name           = "cgroup",
 770        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
 771};
 772
 773static int alloc_css_id(struct cgroup_subsys *ss,
 774                        struct cgroup *parent, struct cgroup *child);
 775
 776static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
 777{
 778        struct inode *inode = new_inode(sb);
 779
 780        if (inode) {
 781                inode->i_ino = get_next_ino();
 782                inode->i_mode = mode;
 783                inode->i_uid = current_fsuid();
 784                inode->i_gid = current_fsgid();
 785                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 786                inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 787        }
 788        return inode;
 789}
 790
 791/*
 792 * Call subsys's pre_destroy handler.
 793 * This is called before css refcnt check.
 794 */
 795static int cgroup_call_pre_destroy(struct cgroup *cgrp)
 796{
 797        struct cgroup_subsys *ss;
 798        int ret = 0;
 799
 800        for_each_subsys(cgrp->root, ss)
 801                if (ss->pre_destroy) {
 802                        ret = ss->pre_destroy(ss, cgrp);
 803                        if (ret)
 804                                break;
 805                }
 806
 807        return ret;
 808}
 809
 810static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 811{
 812        /* is dentry a directory ? if so, kfree() associated cgroup */
 813        if (S_ISDIR(inode->i_mode)) {
 814                struct cgroup *cgrp = dentry->d_fsdata;
 815                struct cgroup_subsys *ss;
 816                BUG_ON(!(cgroup_is_removed(cgrp)));
 817                /* It's possible for external users to be holding css
 818                 * reference counts on a cgroup; css_put() needs to
 819                 * be able to access the cgroup after decrementing
 820                 * the reference count in order to know if it needs to
 821                 * queue the cgroup to be handled by the release
 822                 * agent */
 823                synchronize_rcu();
 824
 825                mutex_lock(&cgroup_mutex);
 826                /*
 827                 * Release the subsystem state objects.
 828                 */
 829                for_each_subsys(cgrp->root, ss)
 830                        ss->destroy(ss, cgrp);
 831
 832                cgrp->root->number_of_cgroups--;
 833                mutex_unlock(&cgroup_mutex);
 834
 835                /*
 836                 * Drop the active superblock reference that we took when we
 837                 * created the cgroup
 838                 */
 839                deactivate_super(cgrp->root->sb);
 840
 841                /*
 842                 * if we're getting rid of the cgroup, refcount should ensure
 843                 * that there are no pidlists left.
 844                 */
 845                BUG_ON(!list_empty(&cgrp->pidlists));
 846
 847                kfree_rcu(cgrp, rcu_head);
 848        }
 849        iput(inode);
 850}
 851
 852static int cgroup_delete(const struct dentry *d)
 853{
 854        return 1;
 855}
 856
 857static void remove_dir(struct dentry *d)
 858{
 859        struct dentry *parent = dget(d->d_parent);
 860
 861        d_delete(d);
 862        simple_rmdir(parent->d_inode, d);
 863        dput(parent);
 864}
 865
 866static void cgroup_clear_directory(struct dentry *dentry)
 867{
 868        struct list_head *node;
 869
 870        BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
 871        spin_lock(&dentry->d_lock);
 872        node = dentry->d_subdirs.next;
 873        while (node != &dentry->d_subdirs) {
 874                struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
 875
 876                spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 877                list_del_init(node);
 878                if (d->d_inode) {
 879                        /* This should never be called on a cgroup
 880                         * directory with child cgroups */
 881                        BUG_ON(d->d_inode->i_mode & S_IFDIR);
 882                        dget_dlock(d);
 883                        spin_unlock(&d->d_lock);
 884                        spin_unlock(&dentry->d_lock);
 885                        d_delete(d);
 886                        simple_unlink(dentry->d_inode, d);
 887                        dput(d);
 888                        spin_lock(&dentry->d_lock);
 889                } else
 890                        spin_unlock(&d->d_lock);
 891                node = dentry->d_subdirs.next;
 892        }
 893        spin_unlock(&dentry->d_lock);
 894}
 895
 896/*
 897 * NOTE : the dentry must have been dget()'ed
 898 */
 899static void cgroup_d_remove_dir(struct dentry *dentry)
 900{
 901        struct dentry *parent;
 902
 903        cgroup_clear_directory(dentry);
 904
 905        parent = dentry->d_parent;
 906        spin_lock(&parent->d_lock);
 907        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 908        list_del_init(&dentry->d_u.d_child);
 909        spin_unlock(&dentry->d_lock);
 910        spin_unlock(&parent->d_lock);
 911        remove_dir(dentry);
 912}
 913
 914/*
 915 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 916 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 917 * reference to css->refcnt. In general, this refcnt is expected to goes down
 918 * to zero, soon.
 919 *
 920 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
 921 */
 922DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
 923
 924static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
 925{
 926        if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
 927                wake_up_all(&cgroup_rmdir_waitq);
 928}
 929
 930void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
 931{
 932        css_get(css);
 933}
 934
 935void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
 936{
 937        cgroup_wakeup_rmdir_waiter(css->cgroup);
 938        css_put(css);
 939}
 940
 941/*
 942 * Call with cgroup_mutex held. Drops reference counts on modules, including
 943 * any duplicate ones that parse_cgroupfs_options took. If this function
 944 * returns an error, no reference counts are touched.
 945 */
 946static int rebind_subsystems(struct cgroupfs_root *root,
 947                              unsigned long final_bits)
 948{
 949        unsigned long added_bits, removed_bits;
 950        struct cgroup *cgrp = &root->top_cgroup;
 951        int i;
 952
 953        BUG_ON(!mutex_is_locked(&cgroup_mutex));
 954
 955        removed_bits = root->actual_subsys_bits & ~final_bits;
 956        added_bits = final_bits & ~root->actual_subsys_bits;
 957        /* Check that any added subsystems are currently free */
 958        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 959                unsigned long bit = 1UL << i;
 960                struct cgroup_subsys *ss = subsys[i];
 961                if (!(bit & added_bits))
 962                        continue;
 963                /*
 964                 * Nobody should tell us to do a subsys that doesn't exist:
 965                 * parse_cgroupfs_options should catch that case and refcounts
 966                 * ensure that subsystems won't disappear once selected.
 967                 */
 968                BUG_ON(ss == NULL);
 969                if (ss->root != &rootnode) {
 970                        /* Subsystem isn't free */
 971                        return -EBUSY;
 972                }
 973        }
 974
 975        /* Currently we don't handle adding/removing subsystems when
 976         * any child cgroups exist. This is theoretically supportable
 977         * but involves complex error handling, so it's being left until
 978         * later */
 979        if (root->number_of_cgroups > 1)
 980                return -EBUSY;
 981
 982        /* Process each subsystem */
 983        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 984                struct cgroup_subsys *ss = subsys[i];
 985                unsigned long bit = 1UL << i;
 986                if (bit & added_bits) {
 987                        /* We're binding this subsystem to this hierarchy */
 988                        BUG_ON(ss == NULL);
 989                        BUG_ON(cgrp->subsys[i]);
 990                        BUG_ON(!dummytop->subsys[i]);
 991                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
 992                        mutex_lock(&ss->hierarchy_mutex);
 993                        cgrp->subsys[i] = dummytop->subsys[i];
 994                        cgrp->subsys[i]->cgroup = cgrp;
 995                        list_move(&ss->sibling, &root->subsys_list);
 996                        ss->root = root;
 997                        if (ss->bind)
 998                                ss->bind(ss, cgrp);
 999                        mutex_unlock(&ss->hierarchy_mutex);
1000                        /* refcount was already taken, and we're keeping it */
1001                } else if (bit & removed_bits) {
1002                        /* We're removing this subsystem */
1003                        BUG_ON(ss == NULL);
1004                        BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1005                        BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1006                        mutex_lock(&ss->hierarchy_mutex);
1007                        if (ss->bind)
1008                                ss->bind(ss, dummytop);
1009                        dummytop->subsys[i]->cgroup = dummytop;
1010                        cgrp->subsys[i] = NULL;
1011                        subsys[i]->root = &rootnode;
1012                        list_move(&ss->sibling, &rootnode.subsys_list);
1013                        mutex_unlock(&ss->hierarchy_mutex);
1014                        /* subsystem is now free - drop reference on module */
1015                        module_put(ss->module);
1016                } else if (bit & final_bits) {
1017                        /* Subsystem state should already exist */
1018                        BUG_ON(ss == NULL);
1019                        BUG_ON(!cgrp->subsys[i]);
1020                        /*
1021                         * a refcount was taken, but we already had one, so
1022                         * drop the extra reference.
1023                         */
1024                        module_put(ss->module);
1025#ifdef CONFIG_MODULE_UNLOAD
1026                        BUG_ON(ss->module && !module_refcount(ss->module));
1027#endif
1028                } else {
1029                        /* Subsystem state shouldn't exist */
1030                        BUG_ON(cgrp->subsys[i]);
1031                }
1032        }
1033        root->subsys_bits = root->actual_subsys_bits = final_bits;
1034        synchronize_rcu();
1035
1036        return 0;
1037}
1038
1039static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1040{
1041        struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1042        struct cgroup_subsys *ss;
1043
1044        mutex_lock(&cgroup_mutex);
1045        for_each_subsys(root, ss)
1046                seq_printf(seq, ",%s", ss->name);
1047        if (test_bit(ROOT_NOPREFIX, &root->flags))
1048                seq_puts(seq, ",noprefix");
1049        if (strlen(root->release_agent_path))
1050                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1051        if (clone_children(&root->top_cgroup))
1052                seq_puts(seq, ",clone_children");
1053        if (strlen(root->name))
1054                seq_printf(seq, ",name=%s", root->name);
1055        mutex_unlock(&cgroup_mutex);
1056        return 0;
1057}
1058
1059struct cgroup_sb_opts {
1060        unsigned long subsys_bits;
1061        unsigned long flags;
1062        char *release_agent;
1063        bool clone_children;
1064        char *name;
1065        /* User explicitly requested empty subsystem */
1066        bool none;
1067
1068        struct cgroupfs_root *new_root;
1069
1070};
1071
1072/*
1073 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1074 * with cgroup_mutex held to protect the subsys[] array. This function takes
1075 * refcounts on subsystems to be used, unless it returns error, in which case
1076 * no refcounts are taken.
1077 */
1078static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1079{
1080        char *token, *o = data;
1081        bool all_ss = false, one_ss = false;
1082        unsigned long mask = (unsigned long)-1;
1083        int i;
1084        bool module_pin_failed = false;
1085
1086        BUG_ON(!mutex_is_locked(&cgroup_mutex));
1087
1088#ifdef CONFIG_CPUSETS
1089        mask = ~(1UL << cpuset_subsys_id);
1090#endif
1091
1092        memset(opts, 0, sizeof(*opts));
1093
1094        while ((token = strsep(&o, ",")) != NULL) {
1095                if (!*token)
1096                        return -EINVAL;
1097                if (!strcmp(token, "none")) {
1098                        /* Explicitly have no subsystems */
1099                        opts->none = true;
1100                        continue;
1101                }
1102                if (!strcmp(token, "all")) {
1103                        /* Mutually exclusive option 'all' + subsystem name */
1104                        if (one_ss)
1105                                return -EINVAL;
1106                        all_ss = true;
1107                        continue;
1108                }
1109                if (!strcmp(token, "noprefix")) {
1110                        set_bit(ROOT_NOPREFIX, &opts->flags);
1111                        continue;
1112                }
1113                if (!strcmp(token, "clone_children")) {
1114                        opts->clone_children = true;
1115                        continue;
1116                }
1117                if (!strncmp(token, "release_agent=", 14)) {
1118                        /* Specifying two release agents is forbidden */
1119                        if (opts->release_agent)
1120                                return -EINVAL;
1121                        opts->release_agent =
1122                                kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1123                        if (!opts->release_agent)
1124                                return -ENOMEM;
1125                        continue;
1126                }
1127                if (!strncmp(token, "name=", 5)) {
1128                        const char *name = token + 5;
1129                        /* Can't specify an empty name */
1130                        if (!strlen(name))
1131                                return -EINVAL;
1132                        /* Must match [\w.-]+ */
1133                        for (i = 0; i < strlen(name); i++) {
1134                                char c = name[i];
1135                                if (isalnum(c))
1136                                        continue;
1137                                if ((c == '.') || (c == '-') || (c == '_'))
1138                                        continue;
1139                                return -EINVAL;
1140                        }
1141                        /* Specifying two names is forbidden */
1142                        if (opts->name)
1143                                return -EINVAL;
1144                        opts->name = kstrndup(name,
1145                                              MAX_CGROUP_ROOT_NAMELEN - 1,
1146                                              GFP_KERNEL);
1147                        if (!opts->name)
1148                                return -ENOMEM;
1149
1150                        continue;
1151                }
1152
1153                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1154                        struct cgroup_subsys *ss = subsys[i];
1155                        if (ss == NULL)
1156                                continue;
1157                        if (strcmp(token, ss->name))
1158                                continue;
1159                        if (ss->disabled)
1160                                continue;
1161
1162                        /* Mutually exclusive option 'all' + subsystem name */
1163                        if (all_ss)
1164                                return -EINVAL;
1165                        set_bit(i, &opts->subsys_bits);
1166                        one_ss = true;
1167
1168                        break;
1169                }
1170                if (i == CGROUP_SUBSYS_COUNT)
1171                        return -ENOENT;
1172        }
1173
1174        /*
1175         * If the 'all' option was specified select all the subsystems,
1176         * otherwise 'all, 'none' and a subsystem name options were not
1177         * specified, let's default to 'all'
1178         */
1179        if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1180                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1181                        struct cgroup_subsys *ss = subsys[i];
1182                        if (ss == NULL)
1183                                continue;
1184                        if (ss->disabled)
1185                                continue;
1186                        set_bit(i, &opts->subsys_bits);
1187                }
1188        }
1189
1190        /* Consistency checks */
1191
1192        /*
1193         * Option noprefix was introduced just for backward compatibility
1194         * with the old cpuset, so we allow noprefix only if mounting just
1195         * the cpuset subsystem.
1196         */
1197        if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1198            (opts->subsys_bits & mask))
1199                return -EINVAL;
1200
1201
1202        /* Can't specify "none" and some subsystems */
1203        if (opts->subsys_bits && opts->none)
1204                return -EINVAL;
1205
1206        /*
1207         * We either have to specify by name or by subsystems. (So all
1208         * empty hierarchies must have a name).
1209         */
1210        if (!opts->subsys_bits && !opts->name)
1211                return -EINVAL;
1212
1213        /*
1214         * Grab references on all the modules we'll need, so the subsystems
1215         * don't dance around before rebind_subsystems attaches them. This may
1216         * take duplicate reference counts on a subsystem that's already used,
1217         * but rebind_subsystems handles this case.
1218         */
1219        for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1220                unsigned long bit = 1UL << i;
1221
1222                if (!(bit & opts->subsys_bits))
1223                        continue;
1224                if (!try_module_get(subsys[i]->module)) {
1225                        module_pin_failed = true;
1226                        break;
1227                }
1228        }
1229        if (module_pin_failed) {
1230                /*
1231                 * oops, one of the modules was going away. this means that we
1232                 * raced with a module_delete call, and to the user this is
1233                 * essentially a "subsystem doesn't exist" case.
1234                 */
1235                for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1236                        /* drop refcounts only on the ones we took */
1237                        unsigned long bit = 1UL << i;
1238
1239                        if (!(bit & opts->subsys_bits))
1240                                continue;
1241                        module_put(subsys[i]->module);
1242                }
1243                return -ENOENT;
1244        }
1245
1246        return 0;
1247}
1248
1249static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1250{
1251        int i;
1252        for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1253                unsigned long bit = 1UL << i;
1254
1255                if (!(bit & subsys_bits))
1256                        continue;
1257                module_put(subsys[i]->module);
1258        }
1259}
1260
1261static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1262{
1263        int ret = 0;
1264        struct cgroupfs_root *root = sb->s_fs_info;
1265        struct cgroup *cgrp = &root->top_cgroup;
1266        struct cgroup_sb_opts opts;
1267
1268        mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1269        mutex_lock(&cgroup_mutex);
1270
1271        /* See what subsystems are wanted */
1272        ret = parse_cgroupfs_options(data, &opts);
1273        if (ret)
1274                goto out_unlock;
1275
1276        /* Don't allow flags or name to change at remount */
1277        if (opts.flags != root->flags ||
1278            (opts.name && strcmp(opts.name, root->name))) {
1279                ret = -EINVAL;
1280                drop_parsed_module_refcounts(opts.subsys_bits);
1281                goto out_unlock;
1282        }
1283
1284        ret = rebind_subsystems(root, opts.subsys_bits);
1285        if (ret) {
1286                drop_parsed_module_refcounts(opts.subsys_bits);
1287                goto out_unlock;
1288        }
1289
1290        /* (re)populate subsystem files */
1291        cgroup_populate_dir(cgrp);
1292
1293        if (opts.release_agent)
1294                strcpy(root->release_agent_path, opts.release_agent);
1295 out_unlock:
1296        kfree(opts.release_agent);
1297        kfree(opts.name);
1298        mutex_unlock(&cgroup_mutex);
1299        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1300        return ret;
1301}
1302
1303static const struct super_operations cgroup_ops = {
1304        .statfs = simple_statfs,
1305        .drop_inode = generic_delete_inode,
1306        .show_options = cgroup_show_options,
1307        .remount_fs = cgroup_remount,
1308};
1309
1310static void init_cgroup_housekeeping(struct cgroup *cgrp)
1311{
1312        INIT_LIST_HEAD(&cgrp->sibling);
1313        INIT_LIST_HEAD(&cgrp->children);
1314        INIT_LIST_HEAD(&cgrp->css_sets);
1315        INIT_LIST_HEAD(&cgrp->release_list);
1316        INIT_LIST_HEAD(&cgrp->pidlists);
1317        mutex_init(&cgrp->pidlist_mutex);
1318        INIT_LIST_HEAD(&cgrp->event_list);
1319        spin_lock_init(&cgrp->event_list_lock);
1320}
1321
1322static void init_cgroup_root(struct cgroupfs_root *root)
1323{
1324        struct cgroup *cgrp = &root->top_cgroup;
1325        INIT_LIST_HEAD(&root->subsys_list);
1326        INIT_LIST_HEAD(&root->root_list);
1327        root->number_of_cgroups = 1;
1328        cgrp->root = root;
1329        cgrp->top_cgroup = cgrp;
1330        init_cgroup_housekeeping(cgrp);
1331}
1332
1333static bool init_root_id(struct cgroupfs_root *root)
1334{
1335        int ret = 0;
1336
1337        do {
1338                if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1339                        return false;
1340                spin_lock(&hierarchy_id_lock);
1341                /* Try to allocate the next unused ID */
1342                ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1343                                        &root->hierarchy_id);
1344                if (ret == -ENOSPC)
1345                        /* Try again starting from 0 */
1346                        ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1347                if (!ret) {
1348                        next_hierarchy_id = root->hierarchy_id + 1;
1349                } else if (ret != -EAGAIN) {
1350                        /* Can only get here if the 31-bit IDR is full ... */
1351                        BUG_ON(ret);
1352                }
1353                spin_unlock(&hierarchy_id_lock);
1354        } while (ret);
1355        return true;
1356}
1357
1358static int cgroup_test_super(struct super_block *sb, void *data)
1359{
1360        struct cgroup_sb_opts *opts = data;
1361        struct cgroupfs_root *root = sb->s_fs_info;
1362
1363        /* If we asked for a name then it must match */
1364        if (opts->name && strcmp(opts->name, root->name))
1365                return 0;
1366
1367        /*
1368         * If we asked for subsystems (or explicitly for no
1369         * subsystems) then they must match
1370         */
1371        if ((opts->subsys_bits || opts->none)
1372            && (opts->subsys_bits != root->subsys_bits))
1373                return 0;
1374
1375        return 1;
1376}
1377
1378static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1379{
1380        struct cgroupfs_root *root;
1381
1382        if (!opts->subsys_bits && !opts->none)
1383                return NULL;
1384
1385        root = kzalloc(sizeof(*root), GFP_KERNEL);
1386        if (!root)
1387                return ERR_PTR(-ENOMEM);
1388
1389        if (!init_root_id(root)) {
1390                kfree(root);
1391                return ERR_PTR(-ENOMEM);
1392        }
1393        init_cgroup_root(root);
1394
1395        root->subsys_bits = opts->subsys_bits;
1396        root->flags = opts->flags;
1397        if (opts->release_agent)
1398                strcpy(root->release_agent_path, opts->release_agent);
1399        if (opts->name)
1400                strcpy(root->name, opts->name);
1401        if (opts->clone_children)
1402                set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1403        return root;
1404}
1405
1406static void cgroup_drop_root(struct cgroupfs_root *root)
1407{
1408        if (!root)
1409                return;
1410
1411        BUG_ON(!root->hierarchy_id);
1412        spin_lock(&hierarchy_id_lock);
1413        ida_remove(&hierarchy_ida, root->hierarchy_id);
1414        spin_unlock(&hierarchy_id_lock);
1415        kfree(root);
1416}
1417
1418static int cgroup_set_super(struct super_block *sb, void *data)
1419{
1420        int ret;
1421        struct cgroup_sb_opts *opts = data;
1422
1423        /* If we don't have a new root, we can't set up a new sb */
1424        if (!opts->new_root)
1425                return -EINVAL;
1426
1427        BUG_ON(!opts->subsys_bits && !opts->none);
1428
1429        ret = set_anon_super(sb, NULL);
1430        if (ret)
1431                return ret;
1432
1433        sb->s_fs_info = opts->new_root;
1434        opts->new_root->sb = sb;
1435
1436        sb->s_blocksize = PAGE_CACHE_SIZE;
1437        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1438        sb->s_magic = CGROUP_SUPER_MAGIC;
1439        sb->s_op = &cgroup_ops;
1440
1441        return 0;
1442}
1443
1444static int cgroup_get_rootdir(struct super_block *sb)
1445{
1446        static const struct dentry_operations cgroup_dops = {
1447                .d_iput = cgroup_diput,
1448                .d_delete = cgroup_delete,
1449        };
1450
1451        struct inode *inode =
1452                cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1453        struct dentry *dentry;
1454
1455        if (!inode)
1456                return -ENOMEM;
1457
1458        inode->i_fop = &simple_dir_operations;
1459        inode->i_op = &cgroup_dir_inode_operations;
1460        /* directories start off with i_nlink == 2 (for "." entry) */
1461        inc_nlink(inode);
1462        dentry = d_alloc_root(inode);
1463        if (!dentry) {
1464                iput(inode);
1465                return -ENOMEM;
1466        }
1467        sb->s_root = dentry;
1468        /* for everything else we want ->d_op set */
1469        sb->s_d_op = &cgroup_dops;
1470        return 0;
1471}
1472
1473static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1474                         int flags, const char *unused_dev_name,
1475                         void *data)
1476{
1477        struct cgroup_sb_opts opts;
1478        struct cgroupfs_root *root;
1479        int ret = 0;
1480        struct super_block *sb;
1481        struct cgroupfs_root *new_root;
1482
1483        /* First find the desired set of subsystems */
1484        mutex_lock(&cgroup_mutex);
1485        ret = parse_cgroupfs_options(data, &opts);
1486        mutex_unlock(&cgroup_mutex);
1487        if (ret)
1488                goto out_err;
1489
1490        /*
1491         * Allocate a new cgroup root. We may not need it if we're
1492         * reusing an existing hierarchy.
1493         */
1494        new_root = cgroup_root_from_opts(&opts);
1495        if (IS_ERR(new_root)) {
1496                ret = PTR_ERR(new_root);
1497                goto drop_modules;
1498        }
1499        opts.new_root = new_root;
1500
1501        /* Locate an existing or new sb for this hierarchy */
1502        sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1503        if (IS_ERR(sb)) {
1504                ret = PTR_ERR(sb);
1505                cgroup_drop_root(opts.new_root);
1506                goto drop_modules;
1507        }
1508
1509        root = sb->s_fs_info;
1510        BUG_ON(!root);
1511        if (root == opts.new_root) {
1512                /* We used the new root structure, so this is a new hierarchy */
1513                struct list_head tmp_cg_links;
1514                struct cgroup *root_cgrp = &root->top_cgroup;
1515                struct inode *inode;
1516                struct cgroupfs_root *existing_root;
1517                int i;
1518
1519                BUG_ON(sb->s_root != NULL);
1520
1521                ret = cgroup_get_rootdir(sb);
1522                if (ret)
1523                        goto drop_new_super;
1524                inode = sb->s_root->d_inode;
1525
1526                mutex_lock(&inode->i_mutex);
1527                mutex_lock(&cgroup_mutex);
1528
1529                if (strlen(root->name)) {
1530                        /* Check for name clashes with existing mounts */
1531                        for_each_active_root(existing_root) {
1532                                if (!strcmp(existing_root->name, root->name)) {
1533                                        ret = -EBUSY;
1534                                        mutex_unlock(&cgroup_mutex);
1535                                        mutex_unlock(&inode->i_mutex);
1536                                        goto drop_new_super;
1537                                }
1538                        }
1539                }
1540
1541                /*
1542                 * We're accessing css_set_count without locking
1543                 * css_set_lock here, but that's OK - it can only be
1544                 * increased by someone holding cgroup_lock, and
1545                 * that's us. The worst that can happen is that we
1546                 * have some link structures left over
1547                 */
1548                ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1549                if (ret) {
1550                        mutex_unlock(&cgroup_mutex);
1551                        mutex_unlock(&inode->i_mutex);
1552                        goto drop_new_super;
1553                }
1554
1555                ret = rebind_subsystems(root, root->subsys_bits);
1556                if (ret == -EBUSY) {
1557                        mutex_unlock(&cgroup_mutex);
1558                        mutex_unlock(&inode->i_mutex);
1559                        free_cg_links(&tmp_cg_links);
1560                        goto drop_new_super;
1561                }
1562                /*
1563                 * There must be no failure case after here, since rebinding
1564                 * takes care of subsystems' refcounts, which are explicitly
1565                 * dropped in the failure exit path.
1566                 */
1567
1568                /* EBUSY should be the only error here */
1569                BUG_ON(ret);
1570
1571                list_add(&root->root_list, &roots);
1572                root_count++;
1573
1574                sb->s_root->d_fsdata = root_cgrp;
1575                root->top_cgroup.dentry = sb->s_root;
1576
1577                /* Link the top cgroup in this hierarchy into all
1578                 * the css_set objects */
1579                write_lock(&css_set_lock);
1580                for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1581                        struct hlist_head *hhead = &css_set_table[i];
1582                        struct hlist_node *node;
1583                        struct css_set *cg;
1584
1585                        hlist_for_each_entry(cg, node, hhead, hlist)
1586                                link_css_set(&tmp_cg_links, cg, root_cgrp);
1587                }
1588                write_unlock(&css_set_lock);
1589
1590                free_cg_links(&tmp_cg_links);
1591
1592                BUG_ON(!list_empty(&root_cgrp->sibling));
1593                BUG_ON(!list_empty(&root_cgrp->children));
1594                BUG_ON(root->number_of_cgroups != 1);
1595
1596                cgroup_populate_dir(root_cgrp);
1597                mutex_unlock(&cgroup_mutex);
1598                mutex_unlock(&inode->i_mutex);
1599        } else {
1600                /*
1601                 * We re-used an existing hierarchy - the new root (if
1602                 * any) is not needed
1603                 */
1604                cgroup_drop_root(opts.new_root);
1605                /* no subsys rebinding, so refcounts don't change */
1606                drop_parsed_module_refcounts(opts.subsys_bits);
1607        }
1608
1609        kfree(opts.release_agent);
1610        kfree(opts.name);
1611        return dget(sb->s_root);
1612
1613 drop_new_super:
1614        deactivate_locked_super(sb);
1615 drop_modules:
1616        drop_parsed_module_refcounts(opts.subsys_bits);
1617 out_err:
1618        kfree(opts.release_agent);
1619        kfree(opts.name);
1620        return ERR_PTR(ret);
1621}
1622
1623static void cgroup_kill_sb(struct super_block *sb) {
1624        struct cgroupfs_root *root = sb->s_fs_info;
1625        struct cgroup *cgrp = &root->top_cgroup;
1626        int ret;
1627        struct cg_cgroup_link *link;
1628        struct cg_cgroup_link *saved_link;
1629
1630        BUG_ON(!root);
1631
1632        BUG_ON(root->number_of_cgroups != 1);
1633        BUG_ON(!list_empty(&cgrp->children));
1634        BUG_ON(!list_empty(&cgrp->sibling));
1635
1636        mutex_lock(&cgroup_mutex);
1637
1638        /* Rebind all subsystems back to the default hierarchy */
1639        ret = rebind_subsystems(root, 0);
1640        /* Shouldn't be able to fail ... */
1641        BUG_ON(ret);
1642
1643        /*
1644         * Release all the links from css_sets to this hierarchy's
1645         * root cgroup
1646         */
1647        write_lock(&css_set_lock);
1648
1649        list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1650                                 cgrp_link_list) {
1651                list_del(&link->cg_link_list);
1652                list_del(&link->cgrp_link_list);
1653                kfree(link);
1654        }
1655        write_unlock(&css_set_lock);
1656
1657        if (!list_empty(&root->root_list)) {
1658                list_del(&root->root_list);
1659                root_count--;
1660        }
1661
1662        mutex_unlock(&cgroup_mutex);
1663
1664        kill_litter_super(sb);
1665        cgroup_drop_root(root);
1666}
1667
1668static struct file_system_type cgroup_fs_type = {
1669        .name = "cgroup",
1670        .mount = cgroup_mount,
1671        .kill_sb = cgroup_kill_sb,
1672};
1673
1674static struct kobject *cgroup_kobj;
1675
1676static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1677{
1678        return dentry->d_fsdata;
1679}
1680
1681static inline struct cftype *__d_cft(struct dentry *dentry)
1682{
1683        return dentry->d_fsdata;
1684}
1685
1686/**
1687 * cgroup_path - generate the path of a cgroup
1688 * @cgrp: the cgroup in question
1689 * @buf: the buffer to write the path into
1690 * @buflen: the length of the buffer
1691 *
1692 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1693 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1694 * -errno on error.
1695 */
1696int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1697{
1698        char *start;
1699        struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1700                                                      rcu_read_lock_held() ||
1701                                                      cgroup_lock_is_held());
1702
1703        if (!dentry || cgrp == dummytop) {
1704                /*
1705                 * Inactive subsystems have no dentry for their root
1706                 * cgroup
1707                 */
1708                strcpy(buf, "/");
1709                return 0;
1710        }
1711
1712        start = buf + buflen;
1713
1714        *--start = '\0';
1715        for (;;) {
1716                int len = dentry->d_name.len;
1717
1718                if ((start -= len) < buf)
1719                        return -ENAMETOOLONG;
1720                memcpy(start, dentry->d_name.name, len);
1721                cgrp = cgrp->parent;
1722                if (!cgrp)
1723                        break;
1724
1725                dentry = rcu_dereference_check(cgrp->dentry,
1726                                               rcu_read_lock_held() ||
1727                                               cgroup_lock_is_held());
1728                if (!cgrp->parent)
1729                        continue;
1730                if (--start < buf)
1731                        return -ENAMETOOLONG;
1732                *start = '/';
1733        }
1734        memmove(buf, start, buf + buflen - start);
1735        return 0;
1736}
1737EXPORT_SYMBOL_GPL(cgroup_path);
1738
1739/*
1740 * cgroup_task_migrate - move a task from one cgroup to another.
1741 *
1742 * 'guarantee' is set if the caller promises that a new css_set for the task
1743 * will already exist. If not set, this function might sleep, and can fail with
1744 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1745 */
1746static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1747                               struct task_struct *tsk, bool guarantee)
1748{
1749        struct css_set *oldcg;
1750        struct css_set *newcg;
1751
1752        /*
1753         * get old css_set. we need to take task_lock and refcount it, because
1754         * an exiting task can change its css_set to init_css_set and drop its
1755         * old one without taking cgroup_mutex.
1756         */
1757        task_lock(tsk);
1758        oldcg = tsk->cgroups;
1759        get_css_set(oldcg);
1760        task_unlock(tsk);
1761
1762        /* locate or allocate a new css_set for this task. */
1763        if (guarantee) {
1764                /* we know the css_set we want already exists. */
1765                struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1766                read_lock(&css_set_lock);
1767                newcg = find_existing_css_set(oldcg, cgrp, template);
1768                BUG_ON(!newcg);
1769                get_css_set(newcg);
1770                read_unlock(&css_set_lock);
1771        } else {
1772                might_sleep();
1773                /* find_css_set will give us newcg already referenced. */
1774                newcg = find_css_set(oldcg, cgrp);
1775                if (!newcg) {
1776                        put_css_set(oldcg);
1777                        return -ENOMEM;
1778                }
1779        }
1780        put_css_set(oldcg);
1781
1782        /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1783        task_lock(tsk);
1784        if (tsk->flags & PF_EXITING) {
1785                task_unlock(tsk);
1786                put_css_set(newcg);
1787                return -ESRCH;
1788        }
1789        rcu_assign_pointer(tsk->cgroups, newcg);
1790        task_unlock(tsk);
1791
1792        /* Update the css_set linked lists if we're using them */
1793        write_lock(&css_set_lock);
1794        if (!list_empty(&tsk->cg_list))
1795                list_move(&tsk->cg_list, &newcg->tasks);
1796        write_unlock(&css_set_lock);
1797
1798        /*
1799         * We just gained a reference on oldcg by taking it from the task. As
1800         * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1801         * it here; it will be freed under RCU.
1802         */
1803        put_css_set(oldcg);
1804
1805        set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1806        return 0;
1807}
1808
1809/**
1810 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1811 * @cgrp: the cgroup the task is attaching to
1812 * @tsk: the task to be attached
1813 *
1814 * Call holding cgroup_mutex. May take task_lock of
1815 * the task 'tsk' during call.
1816 */
1817int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1818{
1819        int retval;
1820        struct cgroup_subsys *ss, *failed_ss = NULL;
1821        struct cgroup *oldcgrp;
1822        struct cgroupfs_root *root = cgrp->root;
1823
1824        /* Nothing to do if the task is already in that cgroup */
1825        oldcgrp = task_cgroup_from_root(tsk, root);
1826        if (cgrp == oldcgrp)
1827                return 0;
1828
1829        for_each_subsys(root, ss) {
1830                if (ss->can_attach) {
1831                        retval = ss->can_attach(ss, cgrp, tsk);
1832                        if (retval) {
1833                                /*
1834                                 * Remember on which subsystem the can_attach()
1835                                 * failed, so that we only call cancel_attach()
1836                                 * against the subsystems whose can_attach()
1837                                 * succeeded. (See below)
1838                                 */
1839                                failed_ss = ss;
1840                                goto out;
1841                        }
1842                }
1843                if (ss->can_attach_task) {
1844                        retval = ss->can_attach_task(cgrp, tsk);
1845                        if (retval) {
1846                                failed_ss = ss;
1847                                goto out;
1848                        }
1849                }
1850        }
1851
1852        retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1853        if (retval)
1854                goto out;
1855
1856        for_each_subsys(root, ss) {
1857                if (ss->pre_attach)
1858                        ss->pre_attach(cgrp);
1859                if (ss->attach_task)
1860                        ss->attach_task(cgrp, tsk);
1861                if (ss->attach)
1862                        ss->attach(ss, cgrp, oldcgrp, tsk);
1863        }
1864
1865        synchronize_rcu();
1866
1867        /*
1868         * wake up rmdir() waiter. the rmdir should fail since the cgroup
1869         * is no longer empty.
1870         */
1871        cgroup_wakeup_rmdir_waiter(cgrp);
1872out:
1873        if (retval) {
1874                for_each_subsys(root, ss) {
1875                        if (ss == failed_ss)
1876                                /*
1877                                 * This subsystem was the one that failed the
1878                                 * can_attach() check earlier, so we don't need
1879                                 * to call cancel_attach() against it or any
1880                                 * remaining subsystems.
1881                                 */
1882                                break;
1883                        if (ss->cancel_attach)
1884                                ss->cancel_attach(ss, cgrp, tsk);
1885                }
1886        }
1887        return retval;
1888}
1889
1890/**
1891 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1892 * @from: attach to all cgroups of a given task
1893 * @tsk: the task to be attached
1894 */
1895int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1896{
1897        struct cgroupfs_root *root;
1898        int retval = 0;
1899
1900        cgroup_lock();
1901        for_each_active_root(root) {
1902                struct cgroup *from_cg = task_cgroup_from_root(from, root);
1903
1904                retval = cgroup_attach_task(from_cg, tsk);
1905                if (retval)
1906                        break;
1907        }
1908        cgroup_unlock();
1909
1910        return retval;
1911}
1912EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1913
1914/*
1915 * cgroup_attach_proc works in two stages, the first of which prefetches all
1916 * new css_sets needed (to make sure we have enough memory before committing
1917 * to the move) and stores them in a list of entries of the following type.
1918 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1919 */
1920struct cg_list_entry {
1921        struct css_set *cg;
1922        struct list_head links;
1923};
1924
1925static bool css_set_check_fetched(struct cgroup *cgrp,
1926                                  struct task_struct *tsk, struct css_set *cg,
1927                                  struct list_head *newcg_list)
1928{
1929        struct css_set *newcg;
1930        struct cg_list_entry *cg_entry;
1931        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1932
1933        read_lock(&css_set_lock);
1934        newcg = find_existing_css_set(cg, cgrp, template);
1935        if (newcg)
1936                get_css_set(newcg);
1937        read_unlock(&css_set_lock);
1938
1939        /* doesn't exist at all? */
1940        if (!newcg)
1941                return false;
1942        /* see if it's already in the list */
1943        list_for_each_entry(cg_entry, newcg_list, links) {
1944                if (cg_entry->cg == newcg) {
1945                        put_css_set(newcg);
1946                        return true;
1947                }
1948        }
1949
1950        /* not found */
1951        put_css_set(newcg);
1952        return false;
1953}
1954
1955/*
1956 * Find the new css_set and store it in the list in preparation for moving the
1957 * given task to the given cgroup. Returns 0 or -ENOMEM.
1958 */
1959static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1960                            struct list_head *newcg_list)
1961{
1962        struct css_set *newcg;
1963        struct cg_list_entry *cg_entry;
1964
1965        /* ensure a new css_set will exist for this thread */
1966        newcg = find_css_set(cg, cgrp);
1967        if (!newcg)
1968                return -ENOMEM;
1969        /* add it to the list */
1970        cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1971        if (!cg_entry) {
1972                put_css_set(newcg);
1973                return -ENOMEM;
1974        }
1975        cg_entry->cg = newcg;
1976        list_add(&cg_entry->links, newcg_list);
1977        return 0;
1978}
1979
1980/**
1981 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1982 * @cgrp: the cgroup to attach to
1983 * @leader: the threadgroup leader task_struct of the group to be attached
1984 *
1985 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1986 * take task_lock of each thread in leader's threadgroup individually in turn.
1987 */
1988int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1989{
1990        int retval, i, group_size;
1991        struct cgroup_subsys *ss, *failed_ss = NULL;
1992        bool cancel_failed_ss = false;
1993        /* guaranteed to be initialized later, but the compiler needs this */
1994        struct cgroup *oldcgrp = NULL;
1995        struct css_set *oldcg;
1996        struct cgroupfs_root *root = cgrp->root;
1997        /* threadgroup list cursor and array */
1998        struct task_struct *tsk;
1999        struct flex_array *group;
2000        /*
2001         * we need to make sure we have css_sets for all the tasks we're
2002         * going to move -before- we actually start moving them, so that in
2003         * case we get an ENOMEM we can bail out before making any changes.
2004         */
2005        struct list_head newcg_list;
2006        struct cg_list_entry *cg_entry, *temp_nobe;
2007
2008        /*
2009         * step 0: in order to do expensive, possibly blocking operations for
2010         * every thread, we cannot iterate the thread group list, since it needs
2011         * rcu or tasklist locked. instead, build an array of all threads in the
2012         * group - threadgroup_fork_lock prevents new threads from appearing,
2013         * and if threads exit, this will just be an over-estimate.
2014         */
2015        group_size = get_nr_threads(leader);
2016        /* flex_array supports very large thread-groups better than kmalloc. */
2017        group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2018                                 GFP_KERNEL);
2019        if (!group)
2020                return -ENOMEM;
2021        /* pre-allocate to guarantee space while iterating in rcu read-side. */
2022        retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2023        if (retval)
2024                goto out_free_group_list;
2025
2026        /* prevent changes to the threadgroup list while we take a snapshot. */
2027        rcu_read_lock();
2028        if (!thread_group_leader(leader)) {
2029                /*
2030                 * a race with de_thread from another thread's exec() may strip
2031                 * us of our leadership, making while_each_thread unsafe to use
2032                 * on this task. if this happens, there is no choice but to
2033                 * throw this task away and try again (from cgroup_procs_write);
2034                 * this is "double-double-toil-and-trouble-check locking".
2035                 */
2036                rcu_read_unlock();
2037                retval = -EAGAIN;
2038                goto out_free_group_list;
2039        }
2040        /* take a reference on each task in the group to go in the array. */
2041        tsk = leader;
2042        i = 0;
2043        do {
2044                /* as per above, nr_threads may decrease, but not increase. */
2045                BUG_ON(i >= group_size);
2046                get_task_struct(tsk);
2047                /*
2048                 * saying GFP_ATOMIC has no effect here because we did prealloc
2049                 * earlier, but it's good form to communicate our expectations.
2050                 */
2051                retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2052                BUG_ON(retval != 0);
2053                i++;
2054        } while_each_thread(leader, tsk);
2055        /* remember the number of threads in the array for later. */
2056        group_size = i;
2057        rcu_read_unlock();
2058
2059        /*
2060         * step 1: check that we can legitimately attach to the cgroup.
2061         */
2062        for_each_subsys(root, ss) {
2063                if (ss->can_attach) {
2064                        retval = ss->can_attach(ss, cgrp, leader);
2065                        if (retval) {
2066                                failed_ss = ss;
2067                                goto out_cancel_attach;
2068                        }
2069                }
2070                /* a callback to be run on every thread in the threadgroup. */
2071                if (ss->can_attach_task) {
2072                        /* run on each task in the threadgroup. */
2073                        for (i = 0; i < group_size; i++) {
2074                                tsk = flex_array_get_ptr(group, i);
2075                                retval = ss->can_attach_task(cgrp, tsk);
2076                                if (retval) {
2077                                        failed_ss = ss;
2078                                        cancel_failed_ss = true;
2079                                        goto out_cancel_attach;
2080                                }
2081                        }
2082                }
2083        }
2084
2085        /*
2086         * step 2: make sure css_sets exist for all threads to be migrated.
2087         * we use find_css_set, which allocates a new one if necessary.
2088         */
2089        INIT_LIST_HEAD(&newcg_list);
2090        for (i = 0; i < group_size; i++) {
2091                tsk = flex_array_get_ptr(group, i);
2092                /* nothing to do if this task is already in the cgroup */
2093                oldcgrp = task_cgroup_from_root(tsk, root);
2094                if (cgrp == oldcgrp)
2095                        continue;
2096                /* get old css_set pointer */
2097                task_lock(tsk);
2098                if (tsk->flags & PF_EXITING) {
2099                        /* ignore this task if it's going away */
2100                        task_unlock(tsk);
2101                        continue;
2102                }
2103                oldcg = tsk->cgroups;
2104                get_css_set(oldcg);
2105                task_unlock(tsk);
2106                /* see if the new one for us is already in the list? */
2107                if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2108                        /* was already there, nothing to do. */
2109                        put_css_set(oldcg);
2110                } else {
2111                        /* we don't already have it. get new one. */
2112                        retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2113                        put_css_set(oldcg);
2114                        if (retval)
2115                                goto out_list_teardown;
2116                }
2117        }
2118
2119        /*
2120         * step 3: now that we're guaranteed success wrt the css_sets, proceed
2121         * to move all tasks to the new cgroup, calling ss->attach_task for each
2122         * one along the way. there are no failure cases after here, so this is
2123         * the commit point.
2124         */
2125        for_each_subsys(root, ss) {
2126                if (ss->pre_attach)
2127                        ss->pre_attach(cgrp);
2128        }
2129        for (i = 0; i < group_size; i++) {
2130                tsk = flex_array_get_ptr(group, i);
2131                /* leave current thread as it is if it's already there */
2132                oldcgrp = task_cgroup_from_root(tsk, root);
2133                if (cgrp == oldcgrp)
2134                        continue;
2135                /* attach each task to each subsystem */
2136                for_each_subsys(root, ss) {
2137                        if (ss->attach_task)
2138                                ss->attach_task(cgrp, tsk);
2139                }
2140                /* if the thread is PF_EXITING, it can just get skipped. */
2141                retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2142                BUG_ON(retval != 0 && retval != -ESRCH);
2143        }
2144        /* nothing is sensitive to fork() after this point. */
2145
2146        /*
2147         * step 4: do expensive, non-thread-specific subsystem callbacks.
2148         * TODO: if ever a subsystem needs to know the oldcgrp for each task
2149         * being moved, this call will need to be reworked to communicate that.
2150         */
2151        for_each_subsys(root, ss) {
2152                if (ss->attach)
2153                        ss->attach(ss, cgrp, oldcgrp, leader);
2154        }
2155
2156        /*
2157         * step 5: success! and cleanup
2158         */
2159        synchronize_rcu();
2160        cgroup_wakeup_rmdir_waiter(cgrp);
2161        retval = 0;
2162out_list_teardown:
2163        /* clean up the list of prefetched css_sets. */
2164        list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2165                list_del(&cg_entry->links);
2166                put_css_set(cg_entry->cg);
2167                kfree(cg_entry);
2168        }
2169out_cancel_attach:
2170        /* same deal as in cgroup_attach_task */
2171        if (retval) {
2172                for_each_subsys(root, ss) {
2173                        if (ss == failed_ss) {
2174                                if (cancel_failed_ss && ss->cancel_attach)
2175                                        ss->cancel_attach(ss, cgrp, leader);
2176                                break;
2177                        }
2178                        if (ss->cancel_attach)
2179                                ss->cancel_attach(ss, cgrp, leader);
2180                }
2181        }
2182        /* clean up the array of referenced threads in the group. */
2183        for (i = 0; i < group_size; i++) {
2184                tsk = flex_array_get_ptr(group, i);
2185                put_task_struct(tsk);
2186        }
2187out_free_group_list:
2188        flex_array_free(group);
2189        return retval;
2190}
2191
2192/*
2193 * Find the task_struct of the task to attach by vpid and pass it along to the
2194 * function to attach either it or all tasks in its threadgroup. Will take
2195 * cgroup_mutex; may take task_lock of task.
2196 */
2197static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2198{
2199        struct task_struct *tsk;
2200        const struct cred *cred = current_cred(), *tcred;
2201        int ret;
2202
2203        if (!cgroup_lock_live_group(cgrp))
2204                return -ENODEV;
2205
2206        if (pid) {
2207                rcu_read_lock();
2208                tsk = find_task_by_vpid(pid);
2209                if (!tsk) {
2210                        rcu_read_unlock();
2211                        cgroup_unlock();
2212                        return -ESRCH;
2213                }
2214                if (threadgroup) {
2215                        /*
2216                         * RCU protects this access, since tsk was found in the
2217                         * tid map. a race with de_thread may cause group_leader
2218                         * to stop being the leader, but cgroup_attach_proc will
2219                         * detect it later.
2220                         */
2221                        tsk = tsk->group_leader;
2222                } else if (tsk->flags & PF_EXITING) {
2223                        /* optimization for the single-task-only case */
2224                        rcu_read_unlock();
2225                        cgroup_unlock();
2226                        return -ESRCH;
2227                }
2228
2229                /*
2230                 * even if we're attaching all tasks in the thread group, we
2231                 * only need to check permissions on one of them.
2232                 */
2233                tcred = __task_cred(tsk);
2234                if (cred->euid &&
2235                    cred->euid != tcred->uid &&
2236                    cred->euid != tcred->suid) {
2237                        rcu_read_unlock();
2238                        cgroup_unlock();
2239                        return -EACCES;
2240                }
2241                get_task_struct(tsk);
2242                rcu_read_unlock();
2243        } else {
2244                if (threadgroup)
2245                        tsk = current->group_leader;
2246                else
2247                        tsk = current;
2248                get_task_struct(tsk);
2249        }
2250
2251        if (threadgroup) {
2252                threadgroup_fork_write_lock(tsk);
2253                ret = cgroup_attach_proc(cgrp, tsk);
2254                threadgroup_fork_write_unlock(tsk);
2255        } else {
2256                ret = cgroup_attach_task(cgrp, tsk);
2257        }
2258        put_task_struct(tsk);
2259        cgroup_unlock();
2260        return ret;
2261}
2262
2263static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2264{
2265        return attach_task_by_pid(cgrp, pid, false);
2266}
2267
2268static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2269{
2270        int ret;
2271        do {
2272                /*
2273                 * attach_proc fails with -EAGAIN if threadgroup leadership
2274                 * changes in the middle of the operation, in which case we need
2275                 * to find the task_struct for the new leader and start over.
2276                 */
2277                ret = attach_task_by_pid(cgrp, tgid, true);
2278        } while (ret == -EAGAIN);
2279        return ret;
2280}
2281
2282/**
2283 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2284 * @cgrp: the cgroup to be checked for liveness
2285 *
2286 * On success, returns true; the lock should be later released with
2287 * cgroup_unlock(). On failure returns false with no lock held.
2288 */
2289bool cgroup_lock_live_group(struct cgroup *cgrp)
2290{
2291        mutex_lock(&cgroup_mutex);
2292        if (cgroup_is_removed(cgrp)) {
2293                mutex_unlock(&cgroup_mutex);
2294                return false;
2295        }
2296        return true;
2297}
2298EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2299
2300static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2301                                      const char *buffer)
2302{
2303        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2304        if (strlen(buffer) >= PATH_MAX)
2305                return -EINVAL;
2306        if (!cgroup_lock_live_group(cgrp))
2307                return -ENODEV;
2308        strcpy(cgrp->root->release_agent_path, buffer);
2309        cgroup_unlock();
2310        return 0;
2311}
2312
2313static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2314                                     struct seq_file *seq)
2315{
2316        if (!cgroup_lock_live_group(cgrp))
2317                return -ENODEV;
2318        seq_puts(seq, cgrp->root->release_agent_path);
2319        seq_putc(seq, '\n');
2320        cgroup_unlock();
2321        return 0;
2322}
2323
2324/* A buffer size big enough for numbers or short strings */
2325#define CGROUP_LOCAL_BUFFER_SIZE 64
2326
2327static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2328                                struct file *file,
2329                                const char __user *userbuf,
2330                                size_t nbytes, loff_t *unused_ppos)
2331{
2332        char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2333        int retval = 0;
2334        char *end;
2335
2336        if (!nbytes)
2337                return -EINVAL;
2338        if (nbytes >= sizeof(buffer))
2339                return -E2BIG;
2340        if (copy_from_user(buffer, userbuf, nbytes))
2341                return -EFAULT;
2342
2343        buffer[nbytes] = 0;     /* nul-terminate */
2344        if (cft->write_u64) {
2345                u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2346                if (*end)
2347                        return -EINVAL;
2348                retval = cft->write_u64(cgrp, cft, val);
2349        } else {
2350                s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2351                if (*end)
2352                        return -EINVAL;
2353                retval = cft->write_s64(cgrp, cft, val);
2354        }
2355        if (!retval)
2356                retval = nbytes;
2357        return retval;
2358}
2359
2360static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2361                                   struct file *file,
2362                                   const char __user *userbuf,
2363                                   size_t nbytes, loff_t *unused_ppos)
2364{
2365        char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2366        int retval = 0;
2367        size_t max_bytes = cft->max_write_len;
2368        char *buffer = local_buffer;
2369
2370        if (!max_bytes)
2371                max_bytes = sizeof(local_buffer) - 1;
2372        if (nbytes >= max_bytes)
2373                return -E2BIG;
2374        /* Allocate a dynamic buffer if we need one */
2375        if (nbytes >= sizeof(local_buffer)) {
2376                buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2377                if (buffer == NULL)
2378                        return -ENOMEM;
2379        }
2380        if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2381                retval = -EFAULT;
2382                goto out;
2383        }
2384
2385        buffer[nbytes] = 0;     /* nul-terminate */
2386        retval = cft->write_string(cgrp, cft, strstrip(buffer));
2387        if (!retval)
2388                retval = nbytes;
2389out:
2390        if (buffer != local_buffer)
2391                kfree(buffer);
2392        return retval;
2393}
2394
2395static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2396                                                size_t nbytes, loff_t *ppos)
2397{
2398        struct cftype *cft = __d_cft(file->f_dentry);
2399        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2400
2401        if (cgroup_is_removed(cgrp))
2402                return -ENODEV;
2403        if (cft->write)
2404                return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2405        if (cft->write_u64 || cft->write_s64)
2406                return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2407        if (cft->write_string)
2408                return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2409        if (cft->trigger) {
2410                int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2411                return ret ? ret : nbytes;
2412        }
2413        return -EINVAL;
2414}
2415
2416static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2417                               struct file *file,
2418                               char __user *buf, size_t nbytes,
2419                               loff_t *ppos)
2420{
2421        char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2422        u64 val = cft->read_u64(cgrp, cft);
2423        int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2424
2425        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2426}
2427
2428static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2429                               struct file *file,
2430                               char __user *buf, size_t nbytes,
2431                               loff_t *ppos)
2432{
2433        char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2434        s64 val = cft->read_s64(cgrp, cft);
2435        int len = sprintf(tmp, "%lld\n", (long long) val);
2436
2437        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2438}
2439
2440static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2441                                   size_t nbytes, loff_t *ppos)
2442{
2443        struct cftype *cft = __d_cft(file->f_dentry);
2444        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2445
2446        if (cgroup_is_removed(cgrp))
2447                return -ENODEV;
2448
2449        if (cft->read)
2450                return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2451        if (cft->read_u64)
2452                return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2453        if (cft->read_s64)
2454                return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2455        return -EINVAL;
2456}
2457
2458/*
2459 * seqfile ops/methods for returning structured data. Currently just
2460 * supports string->u64 maps, but can be extended in future.
2461 */
2462
2463struct cgroup_seqfile_state {
2464        struct cftype *cft;
2465        struct cgroup *cgroup;
2466};
2467
2468static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2469{
2470        struct seq_file *sf = cb->state;
2471        return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2472}
2473
2474static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2475{
2476        struct cgroup_seqfile_state *state = m->private;
2477        struct cftype *cft = state->cft;
2478        if (cft->read_map) {
2479                struct cgroup_map_cb cb = {
2480                        .fill = cgroup_map_add,
2481                        .state = m,
2482                };
2483                return cft->read_map(state->cgroup, cft, &cb);
2484        }
2485        return cft->read_seq_string(state->cgroup, cft, m);
2486}
2487
2488static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2489{
2490        struct seq_file *seq = file->private_data;
2491        kfree(seq->private);
2492        return single_release(inode, file);
2493}
2494
2495static const struct file_operations cgroup_seqfile_operations = {
2496        .read = seq_read,
2497        .write = cgroup_file_write,
2498        .llseek = seq_lseek,
2499        .release = cgroup_seqfile_release,
2500};
2501
2502static int cgroup_file_open(struct inode *inode, struct file *file)
2503{
2504        int err;
2505        struct cftype *cft;
2506
2507        err = generic_file_open(inode, file);
2508        if (err)
2509                return err;
2510        cft = __d_cft(file->f_dentry);
2511
2512        if (cft->read_map || cft->read_seq_string) {
2513                struct cgroup_seqfile_state *state =
2514                        kzalloc(sizeof(*state), GFP_USER);
2515                if (!state)
2516                        return -ENOMEM;
2517                state->cft = cft;
2518                state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2519                file->f_op = &cgroup_seqfile_operations;
2520                err = single_open(file, cgroup_seqfile_show, state);
2521                if (err < 0)
2522                        kfree(state);
2523        } else if (cft->open)
2524                err = cft->open(inode, file);
2525        else
2526                err = 0;
2527
2528        return err;
2529}
2530
2531static int cgroup_file_release(struct inode *inode, struct file *file)
2532{
2533        struct cftype *cft = __d_cft(file->f_dentry);
2534        if (cft->release)
2535                return cft->release(inode, file);
2536        return 0;
2537}
2538
2539/*
2540 * cgroup_rename - Only allow simple rename of directories in place.
2541 */
2542static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2543                            struct inode *new_dir, struct dentry *new_dentry)
2544{
2545        if (!S_ISDIR(old_dentry->d_inode->i_mode))
2546                return -ENOTDIR;
2547        if (new_dentry->d_inode)
2548                return -EEXIST;
2549        if (old_dir != new_dir)
2550                return -EIO;
2551        return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2552}
2553
2554static const struct file_operations cgroup_file_operations = {
2555        .read = cgroup_file_read,
2556        .write = cgroup_file_write,
2557        .llseek = generic_file_llseek,
2558        .open = cgroup_file_open,
2559        .release = cgroup_file_release,
2560};
2561
2562static const struct inode_operations cgroup_dir_inode_operations = {
2563        .lookup = cgroup_lookup,
2564        .mkdir = cgroup_mkdir,
2565        .rmdir = cgroup_rmdir,
2566        .rename = cgroup_rename,
2567};
2568
2569static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2570{
2571        if (dentry->d_name.len > NAME_MAX)
2572                return ERR_PTR(-ENAMETOOLONG);
2573        d_add(dentry, NULL);
2574        return NULL;
2575}
2576
2577/*
2578 * Check if a file is a control file
2579 */
2580static inline struct cftype *__file_cft(struct file *file)
2581{
2582        if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2583                return ERR_PTR(-EINVAL);
2584        return __d_cft(file->f_dentry);
2585}
2586
2587static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2588                                struct super_block *sb)
2589{
2590        struct inode *inode;
2591
2592        if (!dentry)
2593                return -ENOENT;
2594        if (dentry->d_inode)
2595                return -EEXIST;
2596
2597        inode = cgroup_new_inode(mode, sb);
2598        if (!inode)
2599                return -ENOMEM;
2600
2601        if (S_ISDIR(mode)) {
2602                inode->i_op = &cgroup_dir_inode_operations;
2603                inode->i_fop = &simple_dir_operations;
2604
2605                /* start off with i_nlink == 2 (for "." entry) */
2606                inc_nlink(inode);
2607
2608                /* start with the directory inode held, so that we can
2609                 * populate it without racing with another mkdir */
2610                mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2611        } else if (S_ISREG(mode)) {
2612                inode->i_size = 0;
2613                inode->i_fop = &cgroup_file_operations;
2614        }
2615        d_instantiate(dentry, inode);
2616        dget(dentry);   /* Extra count - pin the dentry in core */
2617        return 0;
2618}
2619
2620/*
2621 * cgroup_create_dir - create a directory for an object.
2622 * @cgrp: the cgroup we create the directory for. It must have a valid
2623 *        ->parent field. And we are going to fill its ->dentry field.
2624 * @dentry: dentry of the new cgroup
2625 * @mode: mode to set on new directory.
2626 */
2627static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2628                                mode_t mode)
2629{
2630        struct dentry *parent;
2631        int error = 0;
2632
2633        parent = cgrp->parent->dentry;
2634        error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2635        if (!error) {
2636                dentry->d_fsdata = cgrp;
2637                inc_nlink(parent->d_inode);
2638                rcu_assign_pointer(cgrp->dentry, dentry);
2639                dget(dentry);
2640        }
2641        dput(dentry);
2642
2643        return error;
2644}
2645
2646/**
2647 * cgroup_file_mode - deduce file mode of a control file
2648 * @cft: the control file in question
2649 *
2650 * returns cft->mode if ->mode is not 0
2651 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2652 * returns S_IRUGO if it has only a read handler
2653 * returns S_IWUSR if it has only a write hander
2654 */
2655static mode_t cgroup_file_mode(const struct cftype *cft)
2656{
2657        mode_t mode = 0;
2658
2659        if (cft->mode)
2660                return cft->mode;
2661
2662        if (cft->read || cft->read_u64 || cft->read_s64 ||
2663            cft->read_map || cft->read_seq_string)
2664                mode |= S_IRUGO;
2665
2666        if (cft->write || cft->write_u64 || cft->write_s64 ||
2667            cft->write_string || cft->trigger)
2668                mode |= S_IWUSR;
2669
2670        return mode;
2671}
2672
2673int cgroup_add_file(struct cgroup *cgrp,
2674                       struct cgroup_subsys *subsys,
2675                       const struct cftype *cft)
2676{
2677        struct dentry *dir = cgrp->dentry;
2678        struct dentry *dentry;
2679        int error;
2680        mode_t mode;
2681
2682        char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2683        if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2684                strcpy(name, subsys->name);
2685                strcat(name, ".");
2686        }
2687        strcat(name, cft->name);
2688        BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2689        dentry = lookup_one_len(name, dir, strlen(name));
2690        if (!IS_ERR(dentry)) {
2691                mode = cgroup_file_mode(cft);
2692                error = cgroup_create_file(dentry, mode | S_IFREG,
2693                                                cgrp->root->sb);
2694                if (!error)
2695                        dentry->d_fsdata = (void *)cft;
2696                dput(dentry);
2697        } else
2698                error = PTR_ERR(dentry);
2699        return error;
2700}
2701EXPORT_SYMBOL_GPL(cgroup_add_file);
2702
2703int cgroup_add_files(struct cgroup *cgrp,
2704                        struct cgroup_subsys *subsys,
2705                        const struct cftype cft[],
2706                        int count)
2707{
2708        int i, err;
2709        for (i = 0; i < count; i++) {
2710                err = cgroup_add_file(cgrp, subsys, &cft[i]);
2711                if (err)
2712                        return err;
2713        }
2714        return 0;
2715}
2716EXPORT_SYMBOL_GPL(cgroup_add_files);
2717
2718/**
2719 * cgroup_task_count - count the number of tasks in a cgroup.
2720 * @cgrp: the cgroup in question
2721 *
2722 * Return the number of tasks in the cgroup.
2723 */
2724int cgroup_task_count(const struct cgroup *cgrp)
2725{
2726        int count = 0;
2727        struct cg_cgroup_link *link;
2728
2729        read_lock(&css_set_lock);
2730        list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2731                count += atomic_read(&link->cg->refcount);
2732        }
2733        read_unlock(&css_set_lock);
2734        return count;
2735}
2736
2737/*
2738 * Advance a list_head iterator.  The iterator should be positioned at
2739 * the start of a css_set
2740 */
2741static void cgroup_advance_iter(struct cgroup *cgrp,
2742                                struct cgroup_iter *it)
2743{
2744        struct list_head *l = it->cg_link;
2745        struct cg_cgroup_link *link;
2746        struct css_set *cg;
2747
2748        /* Advance to the next non-empty css_set */
2749        do {
2750                l = l->next;
2751                if (l == &cgrp->css_sets) {
2752                        it->cg_link = NULL;
2753                        return;
2754                }
2755                link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2756                cg = link->cg;
2757        } while (list_empty(&cg->tasks));
2758        it->cg_link = l;
2759        it->task = cg->tasks.next;
2760}
2761
2762/*
2763 * To reduce the fork() overhead for systems that are not actually
2764 * using their cgroups capability, we don't maintain the lists running
2765 * through each css_set to its tasks until we see the list actually
2766 * used - in other words after the first call to cgroup_iter_start().
2767 *
2768 * The tasklist_lock is not held here, as do_each_thread() and
2769 * while_each_thread() are protected by RCU.
2770 */
2771static void cgroup_enable_task_cg_lists(void)
2772{
2773        struct task_struct *p, *g;
2774        write_lock(&css_set_lock);
2775        use_task_css_set_links = 1;
2776        do_each_thread(g, p) {
2777                task_lock(p);
2778                /*
2779                 * We should check if the process is exiting, otherwise
2780                 * it will race with cgroup_exit() in that the list
2781                 * entry won't be deleted though the process has exited.
2782                 */
2783                if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2784                        list_add(&p->cg_list, &p->cgroups->tasks);
2785                task_unlock(p);
2786        } while_each_thread(g, p);
2787        write_unlock(&css_set_lock);
2788}
2789
2790void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2791{
2792        /*
2793         * The first time anyone tries to iterate across a cgroup,
2794         * we need to enable the list linking each css_set to its
2795         * tasks, and fix up all existing tasks.
2796         */
2797        if (!use_task_css_set_links)
2798                cgroup_enable_task_cg_lists();
2799
2800        read_lock(&css_set_lock);
2801        it->cg_link = &cgrp->css_sets;
2802        cgroup_advance_iter(cgrp, it);
2803}
2804
2805struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2806                                        struct cgroup_iter *it)
2807{
2808        struct task_struct *res;
2809        struct list_head *l = it->task;
2810        struct cg_cgroup_link *link;
2811
2812        /* If the iterator cg is NULL, we have no tasks */
2813        if (!it->cg_link)
2814                return NULL;
2815        res = list_entry(l, struct task_struct, cg_list);
2816        /* Advance iterator to find next entry */
2817        l = l->next;
2818        link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2819        if (l == &link->cg->tasks) {
2820                /* We reached the end of this task list - move on to
2821                 * the next cg_cgroup_link */
2822                cgroup_advance_iter(cgrp, it);
2823        } else {
2824                it->task = l;
2825        }
2826        return res;
2827}
2828
2829void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2830{
2831        read_unlock(&css_set_lock);
2832}
2833
2834static inline int started_after_time(struct task_struct *t1,
2835                                     struct timespec *time,
2836                                     struct task_struct *t2)
2837{
2838        int start_diff = timespec_compare(&t1->start_time, time);
2839        if (start_diff > 0) {
2840                return 1;
2841        } else if (start_diff < 0) {
2842                return 0;
2843        } else {
2844                /*
2845                 * Arbitrarily, if two processes started at the same
2846                 * time, we'll say that the lower pointer value
2847                 * started first. Note that t2 may have exited by now
2848                 * so this may not be a valid pointer any longer, but
2849                 * that's fine - it still serves to distinguish
2850                 * between two tasks started (effectively) simultaneously.
2851                 */
2852                return t1 > t2;
2853        }
2854}
2855
2856/*
2857 * This function is a callback from heap_insert() and is used to order
2858 * the heap.
2859 * In this case we order the heap in descending task start time.
2860 */
2861static inline int started_after(void *p1, void *p2)
2862{
2863        struct task_struct *t1 = p1;
2864        struct task_struct *t2 = p2;
2865        return started_after_time(t1, &t2->start_time, t2);
2866}
2867
2868/**
2869 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2870 * @scan: struct cgroup_scanner containing arguments for the scan
2871 *
2872 * Arguments include pointers to callback functions test_task() and
2873 * process_task().
2874 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2875 * and if it returns true, call process_task() for it also.
2876 * The test_task pointer may be NULL, meaning always true (select all tasks).
2877 * Effectively duplicates cgroup_iter_{start,next,end}()
2878 * but does not lock css_set_lock for the call to process_task().
2879 * The struct cgroup_scanner may be embedded in any structure of the caller's
2880 * creation.
2881 * It is guaranteed that process_task() will act on every task that
2882 * is a member of the cgroup for the duration of this call. This
2883 * function may or may not call process_task() for tasks that exit
2884 * or move to a different cgroup during the call, or are forked or
2885 * move into the cgroup during the call.
2886 *
2887 * Note that test_task() may be called with locks held, and may in some
2888 * situations be called multiple times for the same task, so it should
2889 * be cheap.
2890 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2891 * pre-allocated and will be used for heap operations (and its "gt" member will
2892 * be overwritten), else a temporary heap will be used (allocation of which
2893 * may cause this function to fail).
2894 */
2895int cgroup_scan_tasks(struct cgroup_scanner *scan)
2896{
2897        int retval, i;
2898        struct cgroup_iter it;
2899        struct task_struct *p, *dropped;
2900        /* Never dereference latest_task, since it's not refcounted */
2901        struct task_struct *latest_task = NULL;
2902        struct ptr_heap tmp_heap;
2903        struct ptr_heap *heap;
2904        struct timespec latest_time = { 0, 0 };
2905
2906        if (scan->heap) {
2907                /* The caller supplied our heap and pre-allocated its memory */
2908                heap = scan->heap;
2909                heap->gt = &started_after;
2910        } else {
2911                /* We need to allocate our own heap memory */
2912                heap = &tmp_heap;
2913                retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2914                if (retval)
2915                        /* cannot allocate the heap */
2916                        return retval;
2917        }
2918
2919 again:
2920        /*
2921         * Scan tasks in the cgroup, using the scanner's "test_task" callback
2922         * to determine which are of interest, and using the scanner's
2923         * "process_task" callback to process any of them that need an update.
2924         * Since we don't want to hold any locks during the task updates,
2925         * gather tasks to be processed in a heap structure.
2926         * The heap is sorted by descending task start time.
2927         * If the statically-sized heap fills up, we overflow tasks that
2928         * started later, and in future iterations only consider tasks that
2929         * started after the latest task in the previous pass. This
2930         * guarantees forward progress and that we don't miss any tasks.
2931         */
2932        heap->size = 0;
2933        cgroup_iter_start(scan->cg, &it);
2934        while ((p = cgroup_iter_next(scan->cg, &it))) {
2935                /*
2936                 * Only affect tasks that qualify per the caller's callback,
2937                 * if he provided one
2938                 */
2939                if (scan->test_task && !scan->test_task(p, scan))
2940                        continue;
2941                /*
2942                 * Only process tasks that started after the last task
2943                 * we processed
2944                 */
2945                if (!started_after_time(p, &latest_time, latest_task))
2946                        continue;
2947                dropped = heap_insert(heap, p);
2948                if (dropped == NULL) {
2949                        /*
2950                         * The new task was inserted; the heap wasn't
2951                         * previously full
2952                         */
2953                        get_task_struct(p);
2954                } else if (dropped != p) {
2955                        /*
2956                         * The new task was inserted, and pushed out a
2957                         * different task
2958                         */
2959                        get_task_struct(p);
2960                        put_task_struct(dropped);
2961                }
2962                /*
2963                 * Else the new task was newer than anything already in
2964                 * the heap and wasn't inserted
2965                 */
2966        }
2967        cgroup_iter_end(scan->cg, &it);
2968
2969        if (heap->size) {
2970                for (i = 0; i < heap->size; i++) {
2971                        struct task_struct *q = heap->ptrs[i];
2972                        if (i == 0) {
2973                                latest_time = q->start_time;
2974                                latest_task = q;
2975                        }
2976                        /* Process the task per the caller's callback */
2977                        scan->process_task(q, scan);
2978                        put_task_struct(q);
2979                }
2980                /*
2981                 * If we had to process any tasks at all, scan again
2982                 * in case some of them were in the middle of forking
2983                 * children that didn't get processed.
2984                 * Not the most efficient way to do it, but it avoids
2985                 * having to take callback_mutex in the fork path
2986                 */
2987                goto again;
2988        }
2989        if (heap == &tmp_heap)
2990                heap_free(&tmp_heap);
2991        return 0;
2992}
2993
2994/*
2995 * Stuff for reading the 'tasks'/'procs' files.
2996 *
2997 * Reading this file can return large amounts of data if a cgroup has
2998 * *lots* of attached tasks. So it may need several calls to read(),
2999 * but we cannot guarantee that the information we produce is correct
3000 * unless we produce it entirely atomically.
3001 *
3002 */
3003
3004/*
3005 * The following two functions "fix" the issue where there are more pids
3006 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3007 * TODO: replace with a kernel-wide solution to this problem
3008 */
3009#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3010static void *pidlist_allocate(int count)
3011{
3012        if (PIDLIST_TOO_LARGE(count))
3013                return vmalloc(count * sizeof(pid_t));
3014        else
3015                return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3016}
3017static void pidlist_free(void *p)
3018{
3019        if (is_vmalloc_addr(p))
3020                vfree(p);
3021        else
3022                kfree(p);
3023}
3024static void *pidlist_resize(void *p, int newcount)
3025{
3026        void *newlist;
3027        /* note: if new alloc fails, old p will still be valid either way */
3028        if (is_vmalloc_addr(p)) {
3029                newlist = vmalloc(newcount * sizeof(pid_t));
3030                if (!newlist)
3031                        return NULL;
3032                memcpy(newlist, p, newcount * sizeof(pid_t));
3033                vfree(p);
3034        } else {
3035                newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3036        }
3037        return newlist;
3038}
3039
3040/*
3041 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3042 * If the new stripped list is sufficiently smaller and there's enough memory
3043 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3044 * number of unique elements.
3045 */
3046/* is the size difference enough that we should re-allocate the array? */
3047#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3048static int pidlist_uniq(pid_t **p, int length)
3049{
3050        int src, dest = 1;
3051        pid_t *list = *p;
3052        pid_t *newlist;
3053
3054        /*
3055         * we presume the 0th element is unique, so i starts at 1. trivial
3056         * edge cases first; no work needs to be done for either
3057         */
3058        if (length == 0 || length == 1)
3059                return length;
3060        /* src and dest walk down the list; dest counts unique elements */
3061        for (src = 1; src < length; src++) {
3062                /* find next unique element */
3063                while (list[src] == list[src-1]) {
3064                        src++;
3065                        if (src == length)
3066                                goto after;
3067                }
3068                /* dest always points to where the next unique element goes */
3069                list[dest] = list[src];
3070                dest++;
3071        }
3072after:
3073        /*
3074         * if the length difference is large enough, we want to allocate a
3075         * smaller buffer to save memory. if this fails due to out of memory,
3076         * we'll just stay with what we've got.
3077         */
3078        if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3079                newlist = pidlist_resize(list, dest);
3080                if (newlist)
3081                        *p = newlist;
3082        }
3083        return dest;
3084}
3085
3086static int cmppid(const void *a, const void *b)
3087{
3088        return *(pid_t *)a - *(pid_t *)b;
3089}
3090
3091/*
3092 * find the appropriate pidlist for our purpose (given procs vs tasks)
3093 * returns with the lock on that pidlist already held, and takes care
3094 * of the use count, or returns NULL with no locks held if we're out of
3095 * memory.
3096 */
3097static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3098                                                  enum cgroup_filetype type)
3099{
3100        struct cgroup_pidlist *l;
3101        /* don't need task_nsproxy() if we're looking at ourself */
3102        struct pid_namespace *ns = current->nsproxy->pid_ns;
3103
3104        /*
3105         * We can't drop the pidlist_mutex before taking the l->mutex in case
3106         * the last ref-holder is trying to remove l from the list at the same
3107         * time. Holding the pidlist_mutex precludes somebody taking whichever
3108         * list we find out from under us - compare release_pid_array().
3109         */
3110        mutex_lock(&cgrp->pidlist_mutex);
3111        list_for_each_entry(l, &cgrp->pidlists, links) {
3112                if (l->key.type == type && l->key.ns == ns) {
3113                        /* make sure l doesn't vanish out from under us */
3114                        down_write(&l->mutex);
3115                        mutex_unlock(&cgrp->pidlist_mutex);
3116                        return l;
3117                }
3118        }
3119        /* entry not found; create a new one */
3120        l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3121        if (!l) {
3122                mutex_unlock(&cgrp->pidlist_mutex);
3123                return l;
3124        }
3125        init_rwsem(&l->mutex);
3126        down_write(&l->mutex);
3127        l->key.type = type;
3128        l->key.ns = get_pid_ns(ns);
3129        l->use_count = 0; /* don't increment here */
3130        l->list = NULL;
3131        l->owner = cgrp;
3132        list_add(&l->links, &cgrp->pidlists);
3133        mutex_unlock(&cgrp->pidlist_mutex);
3134        return l;
3135}
3136
3137/*
3138 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3139 */
3140static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3141                              struct cgroup_pidlist **lp)
3142{
3143        pid_t *array;
3144        int length;
3145        int pid, n = 0; /* used for populating the array */
3146        struct cgroup_iter it;
3147        struct task_struct *tsk;
3148        struct cgroup_pidlist *l;
3149
3150        /*
3151         * If cgroup gets more users after we read count, we won't have
3152         * enough space - tough.  This race is indistinguishable to the
3153         * caller from the case that the additional cgroup users didn't
3154         * show up until sometime later on.
3155         */
3156        length = cgroup_task_count(cgrp);
3157        array = pidlist_allocate(length);
3158        if (!array)
3159                return -ENOMEM;
3160        /* now, populate the array */
3161        cgroup_iter_start(cgrp, &it);
3162        while ((tsk = cgroup_iter_next(cgrp, &it))) {
3163                if (unlikely(n == length))
3164                        break;
3165                /* get tgid or pid for procs or tasks file respectively */
3166                if (type == CGROUP_FILE_PROCS)
3167                        pid = task_tgid_vnr(tsk);
3168                else
3169                        pid = task_pid_vnr(tsk);
3170                if (pid > 0) /* make sure to only use valid results */
3171                        array[n++] = pid;
3172        }
3173        cgroup_iter_end(cgrp, &it);
3174        length = n;
3175        /* now sort & (if procs) strip out duplicates */
3176        sort(array, length, sizeof(pid_t), cmppid, NULL);
3177        if (type == CGROUP_FILE_PROCS)
3178                length = pidlist_uniq(&array, length);
3179        l = cgroup_pidlist_find(cgrp, type);
3180        if (!l) {
3181                pidlist_free(array);
3182                return -ENOMEM;
3183        }
3184        /* store array, freeing old if necessary - lock already held */
3185        pidlist_free(l->list);
3186        l->list = array;
3187        l->length = length;
3188        l->use_count++;
3189        up_write(&l->mutex);
3190        *lp = l;
3191        return 0;
3192}
3193
3194/**
3195 * cgroupstats_build - build and fill cgroupstats
3196 * @stats: cgroupstats to fill information into
3197 * @dentry: A dentry entry belonging to the cgroup for which stats have
3198 * been requested.
3199 *
3200 * Build and fill cgroupstats so that taskstats can export it to user
3201 * space.
3202 */
3203int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3204{
3205        int ret = -EINVAL;
3206        struct cgroup *cgrp;
3207        struct cgroup_iter it;
3208        struct task_struct *tsk;
3209
3210        /*
3211         * Validate dentry by checking the superblock operations,
3212         * and make sure it's a directory.
3213         */
3214        if (dentry->d_sb->s_op != &cgroup_ops ||
3215            !S_ISDIR(dentry->d_inode->i_mode))
3216                 goto err;
3217
3218        ret = 0;
3219        cgrp = dentry->d_fsdata;
3220
3221        cgroup_iter_start(cgrp, &it);
3222        while ((tsk = cgroup_iter_next(cgrp, &it))) {
3223                switch (tsk->state) {
3224                case TASK_RUNNING:
3225                        stats->nr_running++;
3226                        break;
3227                case TASK_INTERRUPTIBLE:
3228                        stats->nr_sleeping++;
3229                        break;
3230                case TASK_UNINTERRUPTIBLE:
3231                        stats->nr_uninterruptible++;
3232                        break;
3233                case TASK_STOPPED:
3234                        stats->nr_stopped++;
3235                        break;
3236                default:
3237                        if (delayacct_is_task_waiting_on_io(tsk))
3238                                stats->nr_io_wait++;
3239                        break;
3240                }
3241        }
3242        cgroup_iter_end(cgrp, &it);
3243
3244err:
3245        return ret;
3246}
3247
3248
3249/*
3250 * seq_file methods for the tasks/procs files. The seq_file position is the
3251 * next pid to display; the seq_file iterator is a pointer to the pid
3252 * in the cgroup->l->list array.
3253 */
3254
3255static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3256{
3257        /*
3258         * Initially we receive a position value that corresponds to
3259         * one more than the last pid shown (or 0 on the first call or
3260         * after a seek to the start). Use a binary-search to find the
3261         * next pid to display, if any
3262         */
3263        struct cgroup_pidlist *l = s->private;
3264        int index = 0, pid = *pos;
3265        int *iter;
3266
3267        down_read(&l->mutex);
3268        if (pid) {
3269                int end = l->length;
3270
3271                while (index < end) {
3272                        int mid = (index + end) / 2;
3273                        if (l->list[mid] == pid) {
3274                                index = mid;
3275                                break;
3276                        } else if (l->list[mid] <= pid)
3277                                index = mid + 1;
3278                        else
3279                                end = mid;
3280                }
3281        }
3282        /* If we're off the end of the array, we're done */
3283        if (index >= l->length)
3284                return NULL;
3285        /* Update the abstract position to be the actual pid that we found */
3286        iter = l->list + index;
3287        *pos = *iter;
3288        return iter;
3289}
3290
3291static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3292{
3293        struct cgroup_pidlist *l = s->private;
3294        up_read(&l->mutex);
3295}
3296
3297static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3298{
3299        struct cgroup_pidlist *l = s->private;
3300        pid_t *p = v;
3301        pid_t *end = l->list + l->length;
3302        /*
3303         * Advance to the next pid in the array. If this goes off the
3304         * end, we're done
3305         */
3306        p++;
3307        if (p >= end) {
3308                return NULL;
3309        } else {
3310                *pos = *p;
3311                return p;
3312        }
3313}
3314
3315static int cgroup_pidlist_show(struct seq_file *s, void *v)
3316{
3317        return seq_printf(s, "%d\n", *(int *)v);
3318}
3319
3320/*
3321 * seq_operations functions for iterating on pidlists through seq_file -
3322 * independent of whether it's tasks or procs
3323 */
3324static const struct seq_operations cgroup_pidlist_seq_operations = {
3325        .start = cgroup_pidlist_start,
3326        .stop = cgroup_pidlist_stop,
3327        .next = cgroup_pidlist_next,
3328        .show = cgroup_pidlist_show,
3329};
3330
3331static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3332{
3333        /*
3334         * the case where we're the last user of this particular pidlist will
3335         * have us remove it from the cgroup's list, which entails taking the
3336         * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3337         * pidlist_mutex, we have to take pidlist_mutex first.
3338         */
3339        mutex_lock(&l->owner->pidlist_mutex);
3340        down_write(&l->mutex);
3341        BUG_ON(!l->use_count);
3342        if (!--l->use_count) {
3343                /* we're the last user if refcount is 0; remove and free */
3344                list_del(&l->links);
3345                mutex_unlock(&l->owner->pidlist_mutex);
3346                pidlist_free(l->list);
3347                put_pid_ns(l->key.ns);
3348                up_write(&l->mutex);
3349                kfree(l);
3350                return;
3351        }
3352        mutex_unlock(&l->owner->pidlist_mutex);
3353        up_write(&l->mutex);
3354}
3355
3356static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3357{
3358        struct cgroup_pidlist *l;
3359        if (!(file->f_mode & FMODE_READ))
3360                return 0;
3361        /*
3362         * the seq_file will only be initialized if the file was opened for
3363         * reading; hence we check if it's not null only in that case.
3364         */
3365        l = ((struct seq_file *)file->private_data)->private;
3366        cgroup_release_pid_array(l);
3367        return seq_release(inode, file);
3368}
3369
3370static const struct file_operations cgroup_pidlist_operations = {
3371        .read = seq_read,
3372        .llseek = seq_lseek,
3373        .write = cgroup_file_write,
3374        .release = cgroup_pidlist_release,
3375};
3376
3377/*
3378 * The following functions handle opens on a file that displays a pidlist
3379 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3380 * in the cgroup.
3381 */
3382/* helper function for the two below it */
3383static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3384{
3385        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3386        struct cgroup_pidlist *l;
3387        int retval;
3388
3389        /* Nothing to do for write-only files */
3390        if (!(file->f_mode & FMODE_READ))
3391                return 0;
3392
3393        /* have the array populated */
3394        retval = pidlist_array_load(cgrp, type, &l);
3395        if (retval)
3396                return retval;
3397        /* configure file information */
3398        file->f_op = &cgroup_pidlist_operations;
3399
3400        retval = seq_open(file, &cgroup_pidlist_seq_operations);
3401        if (retval) {
3402                cgroup_release_pid_array(l);
3403                return retval;
3404        }
3405        ((struct seq_file *)file->private_data)->private = l;
3406        return 0;
3407}
3408static int cgroup_tasks_open(struct inode *unused, struct file *file)
3409{
3410        return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3411}
3412static int cgroup_procs_open(struct inode *unused, struct file *file)
3413{
3414        return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3415}
3416
3417static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3418                                            struct cftype *cft)
3419{
3420        return notify_on_release(cgrp);
3421}
3422
3423static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3424                                          struct cftype *cft,
3425                                          u64 val)
3426{
3427        clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3428        if (val)
3429                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3430        else
3431                clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3432        return 0;
3433}
3434
3435/*
3436 * Unregister event and free resources.
3437 *
3438 * Gets called from workqueue.
3439 */
3440static void cgroup_event_remove(struct work_struct *work)
3441{
3442        struct cgroup_event *event = container_of(work, struct cgroup_event,
3443                        remove);
3444        struct cgroup *cgrp = event->cgrp;
3445
3446        event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3447
3448        eventfd_ctx_put(event->eventfd);
3449        kfree(event);
3450        dput(cgrp->dentry);
3451}
3452
3453/*
3454 * Gets called on POLLHUP on eventfd when user closes it.
3455 *
3456 * Called with wqh->lock held and interrupts disabled.
3457 */
3458static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3459                int sync, void *key)
3460{
3461        struct cgroup_event *event = container_of(wait,
3462                        struct cgroup_event, wait);
3463        struct cgroup *cgrp = event->cgrp;
3464        unsigned long flags = (unsigned long)key;
3465
3466        if (flags & POLLHUP) {
3467                __remove_wait_queue(event->wqh, &event->wait);
3468                spin_lock(&cgrp->event_list_lock);
3469                list_del(&event->list);
3470                spin_unlock(&cgrp->event_list_lock);
3471                /*
3472                 * We are in atomic context, but cgroup_event_remove() may
3473                 * sleep, so we have to call it in workqueue.
3474                 */
3475                schedule_work(&event->remove);
3476        }
3477
3478        return 0;
3479}
3480
3481static void cgroup_event_ptable_queue_proc(struct file *file,
3482                wait_queue_head_t *wqh, poll_table *pt)
3483{
3484        struct cgroup_event *event = container_of(pt,
3485                        struct cgroup_event, pt);
3486
3487        event->wqh = wqh;
3488        add_wait_queue(wqh, &event->wait);
3489}
3490
3491/*
3492 * Parse input and register new cgroup event handler.
3493 *
3494 * Input must be in format '<event_fd> <control_fd> <args>'.
3495 * Interpretation of args is defined by control file implementation.
3496 */
3497static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3498                                      const char *buffer)
3499{
3500        struct cgroup_event *event = NULL;
3501        unsigned int efd, cfd;
3502        struct file *efile = NULL;
3503        struct file *cfile = NULL;
3504        char *endp;
3505        int ret;
3506
3507        efd = simple_strtoul(buffer, &endp, 10);
3508        if (*endp != ' ')
3509                return -EINVAL;
3510        buffer = endp + 1;
3511
3512        cfd = simple_strtoul(buffer, &endp, 10);
3513        if ((*endp != ' ') && (*endp != '\0'))
3514                return -EINVAL;
3515        buffer = endp + 1;
3516
3517        event = kzalloc(sizeof(*event), GFP_KERNEL);
3518        if (!event)
3519                return -ENOMEM;
3520        event->cgrp = cgrp;
3521        INIT_LIST_HEAD(&event->list);
3522        init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3523        init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3524        INIT_WORK(&event->remove, cgroup_event_remove);
3525
3526        efile = eventfd_fget(efd);
3527        if (IS_ERR(efile)) {
3528                ret = PTR_ERR(efile);
3529                goto fail;
3530        }
3531
3532        event->eventfd = eventfd_ctx_fileget(efile);
3533        if (IS_ERR(event->eventfd)) {
3534                ret = PTR_ERR(event->eventfd);
3535                goto fail;
3536        }
3537
3538        cfile = fget(cfd);
3539        if (!cfile) {
3540                ret = -EBADF;
3541                goto fail;
3542        }
3543
3544        /* the process need read permission on control file */
3545        ret = file_permission(cfile, MAY_READ);
3546        if (ret < 0)
3547                goto fail;
3548
3549        event->cft = __file_cft(cfile);
3550        if (IS_ERR(event->cft)) {
3551                ret = PTR_ERR(event->cft);
3552                goto fail;
3553        }
3554
3555        if (!event->cft->register_event || !event->cft->unregister_event) {
3556                ret = -EINVAL;
3557                goto fail;
3558        }
3559
3560        ret = event->cft->register_event(cgrp, event->cft,
3561                        event->eventfd, buffer);
3562        if (ret)
3563                goto fail;
3564
3565        if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3566                event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3567                ret = 0;
3568                goto fail;
3569        }
3570
3571        /*
3572         * Events should be removed after rmdir of cgroup directory, but before
3573         * destroying subsystem state objects. Let's take reference to cgroup
3574         * directory dentry to do that.
3575         */
3576        dget(cgrp->dentry);
3577
3578        spin_lock(&cgrp->event_list_lock);
3579        list_add(&event->list, &cgrp->event_list);
3580        spin_unlock(&cgrp->event_list_lock);
3581
3582        fput(cfile);
3583        fput(efile);
3584
3585        return 0;
3586
3587fail:
3588        if (cfile)
3589                fput(cfile);
3590
3591        if (event && event->eventfd && !IS_ERR(event->eventfd))
3592                eventfd_ctx_put(event->eventfd);
3593
3594        if (!IS_ERR_OR_NULL(efile))
3595                fput(efile);
3596
3597        kfree(event);
3598
3599        return ret;
3600}
3601
3602static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3603                                    struct cftype *cft)
3604{
3605        return clone_children(cgrp);
3606}
3607
3608static int cgroup_clone_children_write(struct cgroup *cgrp,
3609                                     struct cftype *cft,
3610                                     u64 val)
3611{
3612        if (val)
3613                set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3614        else
3615                clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3616        return 0;
3617}
3618
3619/*
3620 * for the common functions, 'private' gives the type of file
3621 */
3622/* for hysterical raisins, we can't put this on the older files */
3623#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3624static struct cftype files[] = {
3625        {
3626                .name = "tasks",
3627                .open = cgroup_tasks_open,
3628                .write_u64 = cgroup_tasks_write,
3629                .release = cgroup_pidlist_release,
3630                .mode = S_IRUGO | S_IWUSR,
3631        },
3632        {
3633                .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3634                .open = cgroup_procs_open,
3635                .write_u64 = cgroup_procs_write,
3636                .release = cgroup_pidlist_release,
3637                .mode = S_IRUGO | S_IWUSR,
3638        },
3639        {
3640                .name = "notify_on_release",
3641                .read_u64 = cgroup_read_notify_on_release,
3642                .write_u64 = cgroup_write_notify_on_release,
3643        },
3644        {
3645                .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3646                .write_string = cgroup_write_event_control,
3647                .mode = S_IWUGO,
3648        },
3649        {
3650                .name = "cgroup.clone_children",
3651                .read_u64 = cgroup_clone_children_read,
3652                .write_u64 = cgroup_clone_children_write,
3653        },
3654};
3655
3656static struct cftype cft_release_agent = {
3657        .name = "release_agent",
3658        .read_seq_string = cgroup_release_agent_show,
3659        .write_string = cgroup_release_agent_write,
3660        .max_write_len = PATH_MAX,
3661};
3662
3663static int cgroup_populate_dir(struct cgroup *cgrp)
3664{
3665        int err;
3666        struct cgroup_subsys *ss;
3667
3668        /* First clear out any existing files */
3669        cgroup_clear_directory(cgrp->dentry);
3670
3671        err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3672        if (err < 0)
3673                return err;
3674
3675        if (cgrp == cgrp->top_cgroup) {
3676                if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3677                        return err;
3678        }
3679
3680        for_each_subsys(cgrp->root, ss) {
3681                if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3682                        return err;
3683        }
3684        /* This cgroup is ready now */
3685        for_each_subsys(cgrp->root, ss) {
3686                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3687                /*
3688                 * Update id->css pointer and make this css visible from
3689                 * CSS ID functions. This pointer will be dereferened
3690                 * from RCU-read-side without locks.
3691                 */
3692                if (css->id)
3693                        rcu_assign_pointer(css->id->css, css);
3694        }
3695
3696        return 0;
3697}
3698
3699static void init_cgroup_css(struct cgroup_subsys_state *css,
3700                               struct cgroup_subsys *ss,
3701                               struct cgroup *cgrp)
3702{
3703        css->cgroup = cgrp;
3704        atomic_set(&css->refcnt, 1);
3705        css->flags = 0;
3706        css->id = NULL;
3707        if (cgrp == dummytop)
3708                set_bit(CSS_ROOT, &css->flags);
3709        BUG_ON(cgrp->subsys[ss->subsys_id]);
3710        cgrp->subsys[ss->subsys_id] = css;
3711}
3712
3713static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3714{
3715        /* We need to take each hierarchy_mutex in a consistent order */
3716        int i;
3717
3718        /*
3719         * No worry about a race with rebind_subsystems that might mess up the
3720         * locking order, since both parties are under cgroup_mutex.
3721         */
3722        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3723                struct cgroup_subsys *ss = subsys[i];
3724                if (ss == NULL)
3725                        continue;
3726                if (ss->root == root)
3727                        mutex_lock(&ss->hierarchy_mutex);
3728        }
3729}
3730
3731static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3732{
3733        int i;
3734
3735        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3736                struct cgroup_subsys *ss = subsys[i];
3737                if (ss == NULL)
3738                        continue;
3739                if (ss->root == root)
3740                        mutex_unlock(&ss->hierarchy_mutex);
3741        }
3742}
3743
3744/*
3745 * cgroup_create - create a cgroup
3746 * @parent: cgroup that will be parent of the new cgroup
3747 * @dentry: dentry of the new cgroup
3748 * @mode: mode to set on new inode
3749 *
3750 * Must be called with the mutex on the parent inode held
3751 */
3752static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3753                             mode_t mode)
3754{
3755        struct cgroup *cgrp;
3756        struct cgroupfs_root *root = parent->root;
3757        int err = 0;
3758        struct cgroup_subsys *ss;
3759        struct super_block *sb = root->sb;
3760
3761        cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3762        if (!cgrp)
3763                return -ENOMEM;
3764
3765        /* Grab a reference on the superblock so the hierarchy doesn't
3766         * get deleted on unmount if there are child cgroups.  This
3767         * can be done outside cgroup_mutex, since the sb can't
3768         * disappear while someone has an open control file on the
3769         * fs */
3770        atomic_inc(&sb->s_active);
3771
3772        mutex_lock(&cgroup_mutex);
3773
3774        init_cgroup_housekeeping(cgrp);
3775
3776        cgrp->parent = parent;
3777        cgrp->root = parent->root;
3778        cgrp->top_cgroup = parent->top_cgroup;
3779
3780        if (notify_on_release(parent))
3781                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3782
3783        if (clone_children(parent))
3784                set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3785
3786        for_each_subsys(root, ss) {
3787                struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3788
3789                if (IS_ERR(css)) {
3790                        err = PTR_ERR(css);
3791                        goto err_destroy;
3792                }
3793                init_cgroup_css(css, ss, cgrp);
3794                if (ss->use_id) {
3795                        err = alloc_css_id(ss, parent, cgrp);
3796                        if (err)
3797                                goto err_destroy;
3798                }
3799                /* At error, ->destroy() callback has to free assigned ID. */
3800                if (clone_children(parent) && ss->post_clone)
3801                        ss->post_clone(ss, cgrp);
3802        }
3803
3804        cgroup_lock_hierarchy(root);
3805        list_add(&cgrp->sibling, &cgrp->parent->children);
3806        cgroup_unlock_hierarchy(root);
3807        root->number_of_cgroups++;
3808
3809        err = cgroup_create_dir(cgrp, dentry, mode);
3810        if (err < 0)
3811                goto err_remove;
3812
3813        /* The cgroup directory was pre-locked for us */
3814        BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3815
3816        err = cgroup_populate_dir(cgrp);
3817        /* If err < 0, we have a half-filled directory - oh well ;) */
3818
3819        mutex_unlock(&cgroup_mutex);
3820        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3821
3822        return 0;
3823
3824 err_remove:
3825
3826        cgroup_lock_hierarchy(root);
3827        list_del(&cgrp->sibling);
3828        cgroup_unlock_hierarchy(root);
3829        root->number_of_cgroups--;
3830
3831 err_destroy:
3832
3833        for_each_subsys(root, ss) {
3834                if (cgrp->subsys[ss->subsys_id])
3835                        ss->destroy(ss, cgrp);
3836        }
3837
3838        mutex_unlock(&cgroup_mutex);
3839
3840        /* Release the reference count that we took on the superblock */
3841        deactivate_super(sb);
3842
3843        kfree(cgrp);
3844        return err;
3845}
3846
3847static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3848{
3849        struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3850
3851        /* the vfs holds inode->i_mutex already */
3852        return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3853}
3854
3855static int cgroup_has_css_refs(struct cgroup *cgrp)
3856{
3857        /* Check the reference count on each subsystem. Since we
3858         * already established that there are no tasks in the
3859         * cgroup, if the css refcount is also 1, then there should
3860         * be no outstanding references, so the subsystem is safe to
3861         * destroy. We scan across all subsystems rather than using
3862         * the per-hierarchy linked list of mounted subsystems since
3863         * we can be called via check_for_release() with no
3864         * synchronization other than RCU, and the subsystem linked
3865         * list isn't RCU-safe */
3866        int i;
3867        /*
3868         * We won't need to lock the subsys array, because the subsystems
3869         * we're concerned about aren't going anywhere since our cgroup root
3870         * has a reference on them.
3871         */
3872        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3873                struct cgroup_subsys *ss = subsys[i];
3874                struct cgroup_subsys_state *css;
3875                /* Skip subsystems not present or not in this hierarchy */
3876                if (ss == NULL || ss->root != cgrp->root)
3877                        continue;
3878                css = cgrp->subsys[ss->subsys_id];
3879                /* When called from check_for_release() it's possible
3880                 * that by this point the cgroup has been removed
3881                 * and the css deleted. But a false-positive doesn't
3882                 * matter, since it can only happen if the cgroup
3883                 * has been deleted and hence no longer needs the
3884                 * release agent to be called anyway. */
3885                if (css && (atomic_read(&css->refcnt) > 1))
3886                        return 1;
3887        }
3888        return 0;
3889}
3890
3891/*
3892 * Atomically mark all (or else none) of the cgroup's CSS objects as
3893 * CSS_REMOVED. Return true on success, or false if the cgroup has
3894 * busy subsystems. Call with cgroup_mutex held
3895 */
3896
3897static int cgroup_clear_css_refs(struct cgroup *cgrp)
3898{
3899        struct cgroup_subsys *ss;
3900        unsigned long flags;
3901        bool failed = false;
3902        local_irq_save(flags);
3903        for_each_subsys(cgrp->root, ss) {
3904                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3905                int refcnt;
3906                while (1) {
3907                        /* We can only remove a CSS with a refcnt==1 */
3908                        refcnt = atomic_read(&css->refcnt);
3909                        if (refcnt > 1) {
3910                                failed = true;
3911                                goto done;
3912                        }
3913                        BUG_ON(!refcnt);
3914                        /*
3915                         * Drop the refcnt to 0 while we check other
3916                         * subsystems. This will cause any racing
3917                         * css_tryget() to spin until we set the
3918                         * CSS_REMOVED bits or abort
3919                         */
3920                        if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3921                                break;
3922                        cpu_relax();
3923                }
3924        }
3925 done:
3926        for_each_subsys(cgrp->root, ss) {
3927                struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3928                if (failed) {
3929                        /*
3930                         * Restore old refcnt if we previously managed
3931                         * to clear it from 1 to 0
3932                         */
3933                        if (!atomic_read(&css->refcnt))
3934                                atomic_set(&css->refcnt, 1);
3935                } else {
3936                        /* Commit the fact that the CSS is removed */
3937                        set_bit(CSS_REMOVED, &css->flags);
3938                }
3939        }
3940        local_irq_restore(flags);
3941        return !failed;
3942}
3943
3944static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3945{
3946        struct cgroup *cgrp = dentry->d_fsdata;
3947        struct dentry *d;
3948        struct cgroup *parent;
3949        DEFINE_WAIT(wait);
3950        struct cgroup_event *event, *tmp;
3951        int ret;
3952
3953        /* the vfs holds both inode->i_mutex already */
3954again:
3955        mutex_lock(&cgroup_mutex);
3956        if (atomic_read(&cgrp->count) != 0) {
3957                mutex_unlock(&cgroup_mutex);
3958                return -EBUSY;
3959        }
3960        if (!list_empty(&cgrp->children)) {
3961                mutex_unlock(&cgroup_mutex);
3962                return -EBUSY;
3963        }
3964        mutex_unlock(&cgroup_mutex);
3965
3966        /*
3967         * In general, subsystem has no css->refcnt after pre_destroy(). But
3968         * in racy cases, subsystem may have to get css->refcnt after
3969         * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3970         * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3971         * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3972         * and subsystem's reference count handling. Please see css_get/put
3973         * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3974         */
3975        set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3976
3977        /*
3978         * Call pre_destroy handlers of subsys. Notify subsystems
3979         * that rmdir() request comes.
3980         */
3981        ret = cgroup_call_pre_destroy(cgrp);
3982        if (ret) {
3983                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3984                return ret;
3985        }
3986
3987        mutex_lock(&cgroup_mutex);
3988        parent = cgrp->parent;
3989        if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3990                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3991                mutex_unlock(&cgroup_mutex);
3992                return -EBUSY;
3993        }
3994        prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3995        if (!cgroup_clear_css_refs(cgrp)) {
3996                mutex_unlock(&cgroup_mutex);
3997                /*
3998                 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3999                 * prepare_to_wait(), we need to check this flag.
4000                 */
4001                if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4002                        schedule();
4003                finish_wait(&cgroup_rmdir_waitq, &wait);
4004                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4005                if (signal_pending(current))
4006                        return -EINTR;
4007                goto again;
4008        }
4009        /* NO css_tryget() can success after here. */
4010        finish_wait(&cgroup_rmdir_waitq, &wait);
4011        clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4012
4013        spin_lock(&release_list_lock);
4014        set_bit(CGRP_REMOVED, &cgrp->flags);
4015        if (!list_empty(&cgrp->release_list))
4016                list_del_init(&cgrp->release_list);
4017        spin_unlock(&release_list_lock);
4018
4019        cgroup_lock_hierarchy(cgrp->root);
4020        /* delete this cgroup from parent->children */
4021        list_del_init(&cgrp->sibling);
4022        cgroup_unlock_hierarchy(cgrp->root);
4023
4024        d = dget(cgrp->dentry);
4025
4026        cgroup_d_remove_dir(d);
4027        dput(d);
4028
4029        set_bit(CGRP_RELEASABLE, &parent->flags);
4030        check_for_release(parent);
4031
4032        /*
4033         * Unregister events and notify userspace.
4034         * Notify userspace about cgroup removing only after rmdir of cgroup
4035         * directory to avoid race between userspace and kernelspace
4036         */
4037        spin_lock(&cgrp->event_list_lock);
4038        list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4039                list_del(&event->list);
4040                remove_wait_queue(event->wqh, &event->wait);
4041                eventfd_signal(event->eventfd, 1);
4042                schedule_work(&event->remove);
4043        }
4044        spin_unlock(&cgrp->event_list_lock);
4045
4046        mutex_unlock(&cgroup_mutex);
4047        return 0;
4048}
4049
4050static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4051{
4052        struct cgroup_subsys_state *css;
4053
4054        printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4055
4056        /* Create the top cgroup state for this subsystem */
4057        list_add(&ss->sibling, &rootnode.subsys_list);
4058        ss->root = &rootnode;
4059        css = ss->create(ss, dummytop);
4060        /* We don't handle early failures gracefully */
4061        BUG_ON(IS_ERR(css));
4062        init_cgroup_css(css, ss, dummytop);
4063
4064        /* Update the init_css_set to contain a subsys
4065         * pointer to this state - since the subsystem is
4066         * newly registered, all tasks and hence the
4067         * init_css_set is in the subsystem's top cgroup. */
4068        init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4069
4070        need_forkexit_callback |= ss->fork || ss->exit;
4071
4072        /* At system boot, before all subsystems have been
4073         * registered, no tasks have been forked, so we don't
4074         * need to invoke fork callbacks here. */
4075        BUG_ON(!list_empty(&init_task.tasks));
4076
4077        mutex_init(&ss->hierarchy_mutex);
4078        lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4079        ss->active = 1;
4080
4081        /* this function shouldn't be used with modular subsystems, since they
4082         * need to register a subsys_id, among other things */
4083        BUG_ON(ss->module);
4084}
4085
4086/**
4087 * cgroup_load_subsys: load and register a modular subsystem at runtime
4088 * @ss: the subsystem to load
4089 *
4090 * This function should be called in a modular subsystem's initcall. If the
4091 * subsystem is built as a module, it will be assigned a new subsys_id and set
4092 * up for use. If the subsystem is built-in anyway, work is delegated to the
4093 * simpler cgroup_init_subsys.
4094 */
4095int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4096{
4097        int i;
4098        struct cgroup_subsys_state *css;
4099
4100        /* check name and function validity */
4101        if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4102            ss->create == NULL || ss->destroy == NULL)
4103                return -EINVAL;
4104
4105        /*
4106         * we don't support callbacks in modular subsystems. this check is
4107         * before the ss->module check for consistency; a subsystem that could
4108         * be a module should still have no callbacks even if the user isn't
4109         * compiling it as one.
4110         */
4111        if (ss->fork || ss->exit)
4112                return -EINVAL;
4113
4114        /*
4115         * an optionally modular subsystem is built-in: we want to do nothing,
4116         * since cgroup_init_subsys will have already taken care of it.
4117         */
4118        if (ss->module == NULL) {
4119                /* a few sanity checks */
4120                BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4121                BUG_ON(subsys[ss->subsys_id] != ss);
4122                return 0;
4123        }
4124
4125        /*
4126         * need to register a subsys id before anything else - for example,
4127         * init_cgroup_css needs it.
4128         */
4129        mutex_lock(&cgroup_mutex);
4130        /* find the first empty slot in the array */
4131        for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4132                if (subsys[i] == NULL)
4133                        break;
4134        }
4135        if (i == CGROUP_SUBSYS_COUNT) {
4136                /* maximum number of subsystems already registered! */
4137                mutex_unlock(&cgroup_mutex);
4138                return -EBUSY;
4139        }
4140        /* assign ourselves the subsys_id */
4141        ss->subsys_id = i;
4142        subsys[i] = ss;
4143
4144        /*
4145         * no ss->create seems to need anything important in the ss struct, so
4146         * this can happen first (i.e. before the rootnode attachment).
4147         */
4148        css = ss->create(ss, dummytop);
4149        if (IS_ERR(css)) {
4150                /* failure case - need to deassign the subsys[] slot. */
4151                subsys[i] = NULL;
4152                mutex_unlock(&cgroup_mutex);
4153                return PTR_ERR(css);
4154        }
4155
4156        list_add(&ss->sibling, &rootnode.subsys_list);
4157        ss->root = &rootnode;
4158
4159        /* our new subsystem will be attached to the dummy hierarchy. */
4160        init_cgroup_css(css, ss, dummytop);
4161        /* init_idr must be after init_cgroup_css because it sets css->id. */
4162        if (ss->use_id) {
4163                int ret = cgroup_init_idr(ss, css);
4164                if (ret) {
4165                        dummytop->subsys[ss->subsys_id] = NULL;
4166                        ss->destroy(ss, dummytop);
4167                        subsys[i] = NULL;
4168                        mutex_unlock(&cgroup_mutex);
4169                        return ret;
4170                }
4171        }
4172
4173        /*
4174         * Now we need to entangle the css into the existing css_sets. unlike
4175         * in cgroup_init_subsys, there are now multiple css_sets, so each one
4176         * will need a new pointer to it; done by iterating the css_set_table.
4177         * furthermore, modifying the existing css_sets will corrupt the hash
4178         * table state, so each changed css_set will need its hash recomputed.
4179         * this is all done under the css_set_lock.
4180         */
4181        write_lock(&css_set_lock);
4182        for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4183                struct css_set *cg;
4184                struct hlist_node *node, *tmp;
4185                struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4186
4187                hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4188                        /* skip entries that we already rehashed */
4189                        if (cg->subsys[ss->subsys_id])
4190                                continue;
4191                        /* remove existing entry */
4192                        hlist_del(&cg->hlist);
4193                        /* set new value */
4194                        cg->subsys[ss->subsys_id] = css;
4195                        /* recompute hash and restore entry */
4196                        new_bucket = css_set_hash(cg->subsys);
4197                        hlist_add_head(&cg->hlist, new_bucket);
4198                }
4199        }
4200        write_unlock(&css_set_lock);
4201
4202        mutex_init(&ss->hierarchy_mutex);
4203        lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4204        ss->active = 1;
4205
4206        /* success! */
4207        mutex_unlock(&cgroup_mutex);
4208        return 0;
4209}
4210EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4211
4212/**
4213 * cgroup_unload_subsys: unload a modular subsystem
4214 * @ss: the subsystem to unload
4215 *
4216 * This function should be called in a modular subsystem's exitcall. When this
4217 * function is invoked, the refcount on the subsystem's module will be 0, so
4218 * the subsystem will not be attached to any hierarchy.
4219 */
4220void cgroup_unload_subsys(struct cgroup_subsys *ss)
4221{
4222        struct cg_cgroup_link *link;
4223        struct hlist_head *hhead;
4224
4225        BUG_ON(ss->module == NULL);
4226
4227        /*
4228         * we shouldn't be called if the subsystem is in use, and the use of
4229         * try_module_get in parse_cgroupfs_options should ensure that it
4230         * doesn't start being used while we're killing it off.
4231         */
4232        BUG_ON(ss->root != &rootnode);
4233
4234        mutex_lock(&cgroup_mutex);
4235        /* deassign the subsys_id */
4236        BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4237        subsys[ss->subsys_id] = NULL;
4238
4239        /* remove subsystem from rootnode's list of subsystems */
4240        list_del_init(&ss->sibling);
4241
4242        /*
4243         * disentangle the css from all css_sets attached to the dummytop. as
4244         * in loading, we need to pay our respects to the hashtable gods.
4245         */
4246        write_lock(&css_set_lock);
4247        list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4248                struct css_set *cg = link->cg;
4249
4250                hlist_del(&cg->hlist);
4251                BUG_ON(!cg->subsys[ss->subsys_id]);
4252                cg->subsys[ss->subsys_id] = NULL;
4253                hhead = css_set_hash(cg->subsys);
4254                hlist_add_head(&cg->hlist, hhead);
4255        }
4256        write_unlock(&css_set_lock);
4257
4258        /*
4259         * remove subsystem's css from the dummytop and free it - need to free
4260         * before marking as null because ss->destroy needs the cgrp->subsys
4261         * pointer to find their state. note that this also takes care of
4262         * freeing the css_id.
4263         */
4264        ss->destroy(ss, dummytop);
4265        dummytop->subsys[ss->subsys_id] = NULL;
4266
4267        mutex_unlock(&cgroup_mutex);
4268}
4269EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4270
4271/**
4272 * cgroup_init_early - cgroup initialization at system boot
4273 *
4274 * Initialize cgroups at system boot, and initialize any
4275 * subsystems that request early init.
4276 */
4277int __init cgroup_init_early(void)
4278{
4279        int i;
4280        atomic_set(&init_css_set.refcount, 1);
4281        INIT_LIST_HEAD(&init_css_set.cg_links);
4282        INIT_LIST_HEAD(&init_css_set.tasks);
4283        INIT_HLIST_NODE(&init_css_set.hlist);
4284        css_set_count = 1;
4285        init_cgroup_root(&rootnode);
4286        root_count = 1;
4287        init_task.cgroups = &init_css_set;
4288
4289        init_css_set_link.cg = &init_css_set;
4290        init_css_set_link.cgrp = dummytop;
4291        list_add(&init_css_set_link.cgrp_link_list,
4292                 &rootnode.top_cgroup.css_sets);
4293        list_add(&init_css_set_link.cg_link_list,
4294                 &init_css_set.cg_links);
4295
4296        for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4297                INIT_HLIST_HEAD(&css_set_table[i]);
4298
4299        /* at bootup time, we don't worry about modular subsystems */
4300        for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4301                struct cgroup_subsys *ss = subsys[i];
4302
4303                BUG_ON(!ss->name);
4304                BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4305                BUG_ON(!ss->create);
4306                BUG_ON(!ss->destroy);
4307                if (ss->subsys_id != i) {
4308                        printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4309                               ss->name, ss->subsys_id);
4310                        BUG();
4311                }
4312
4313                if (ss->early_init)
4314                        cgroup_init_subsys(ss);
4315        }
4316        return 0;
4317}
4318
4319/**
4320 * cgroup_init - cgroup initialization
4321 *
4322 * Register cgroup filesystem and /proc file, and initialize
4323 * any subsystems that didn't request early init.
4324 */
4325int __init cgroup_init(void)
4326{
4327        int err;
4328        int i;
4329        struct hlist_head *hhead;
4330
4331        err = bdi_init(&cgroup_backing_dev_info);
4332        if (err)
4333                return err;
4334
4335        /* at bootup time, we don't worry about modular subsystems */
4336        for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4337                struct cgroup_subsys *ss = subsys[i];
4338                if (!ss->early_init)
4339                        cgroup_init_subsys(ss);
4340                if (ss->use_id)
4341                        cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4342        }
4343
4344        /* Add init_css_set to the hash table */
4345        hhead = css_set_hash(init_css_set.subsys);
4346        hlist_add_head(&init_css_set.hlist, hhead);
4347        BUG_ON(!init_root_id(&rootnode));
4348
4349        cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4350        if (!cgroup_kobj) {
4351                err = -ENOMEM;
4352                goto out;
4353        }
4354
4355        err = register_filesystem(&cgroup_fs_type);
4356        if (err < 0) {
4357                kobject_put(cgroup_kobj);
4358                goto out;
4359        }
4360
4361        proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4362
4363out:
4364        if (err)
4365                bdi_destroy(&cgroup_backing_dev_info);
4366
4367        return err;
4368}
4369
4370/*
4371 * proc_cgroup_show()
4372 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4373 *  - Used for /proc/<pid>/cgroup.
4374 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4375 *    doesn't really matter if tsk->cgroup changes after we read it,
4376 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4377 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4378 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4379 *    cgroup to top_cgroup.
4380 */
4381
4382/* TODO: Use a proper seq_file iterator */
4383static int proc_cgroup_show(struct seq_file *m, void *v)
4384{
4385        struct pid *pid;
4386        struct task_struct *tsk;
4387        char *buf;
4388        int retval;
4389        struct cgroupfs_root *root;
4390
4391        retval = -ENOMEM;
4392        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4393        if (!buf)
4394                goto out;
4395
4396        retval = -ESRCH;
4397        pid = m->private;
4398        tsk = get_pid_task(pid, PIDTYPE_PID);
4399        if (!tsk)
4400                goto out_free;
4401
4402        retval = 0;
4403
4404        mutex_lock(&cgroup_mutex);
4405
4406        for_each_active_root(root) {
4407                struct cgroup_subsys *ss;
4408                struct cgroup *cgrp;
4409                int count = 0;
4410
4411                seq_printf(m, "%d:", root->hierarchy_id);
4412                for_each_subsys(root, ss)
4413                        seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4414                if (strlen(root->name))
4415                        seq_printf(m, "%sname=%s", count ? "," : "",
4416                                   root->name);
4417                seq_putc(m, ':');
4418                cgrp = task_cgroup_from_root(tsk, root);
4419                retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4420                if (retval < 0)
4421                        goto out_unlock;
4422                seq_puts(m, buf);
4423                seq_putc(m, '\n');
4424        }
4425
4426out_unlock:
4427        mutex_unlock(&cgroup_mutex);
4428        put_task_struct(tsk);
4429out_free:
4430        kfree(buf);
4431out:
4432        return retval;
4433}
4434
4435static int cgroup_open(struct inode *inode, struct file *file)
4436{
4437        struct pid *pid = PROC_I(inode)->pid;
4438        return single_open(file, proc_cgroup_show, pid);
4439}
4440
4441const struct file_operations proc_cgroup_operations = {
4442        .open           = cgroup_open,
4443        .read           = seq_read,
4444        .llseek         = seq_lseek,
4445        .release        = single_release,
4446};
4447
4448/* Display information about each subsystem and each hierarchy */
4449static int proc_cgroupstats_show(struct seq_file *m, void *v)
4450{
4451        int i;
4452
4453        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4454        /*
4455         * ideally we don't want subsystems moving around while we do this.
4456         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4457         * subsys/hierarchy state.
4458         */
4459        mutex_lock(&cgroup_mutex);
4460        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4461                struct cgroup_subsys *ss = subsys[i];
4462                if (ss == NULL)
4463                        continue;
4464                seq_printf(m, "%s\t%d\t%d\t%d\n",
4465                           ss->name, ss->root->hierarchy_id,
4466                           ss->root->number_of_cgroups, !ss->disabled);
4467        }
4468        mutex_unlock(&cgroup_mutex);
4469        return 0;
4470}
4471
4472static int cgroupstats_open(struct inode *inode, struct file *file)
4473{
4474        return single_open(file, proc_cgroupstats_show, NULL);
4475}
4476
4477static const struct file_operations proc_cgroupstats_operations = {
4478        .open = cgroupstats_open,
4479        .read = seq_read,
4480        .llseek = seq_lseek,
4481        .release = single_release,
4482};
4483
4484/**
4485 * cgroup_fork - attach newly forked task to its parents cgroup.
4486 * @child: pointer to task_struct of forking parent process.
4487 *
4488 * Description: A task inherits its parent's cgroup at fork().
4489 *
4490 * A pointer to the shared css_set was automatically copied in
4491 * fork.c by dup_task_struct().  However, we ignore that copy, since
4492 * it was not made under the protection of RCU or cgroup_mutex, so
4493 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4494 * have already changed current->cgroups, allowing the previously
4495 * referenced cgroup group to be removed and freed.
4496 *
4497 * At the point that cgroup_fork() is called, 'current' is the parent
4498 * task, and the passed argument 'child' points to the child task.
4499 */
4500void cgroup_fork(struct task_struct *child)
4501{
4502        task_lock(current);
4503        child->cgroups = current->cgroups;
4504        get_css_set(child->cgroups);
4505        task_unlock(current);
4506        INIT_LIST_HEAD(&child->cg_list);
4507}
4508
4509/**
4510 * cgroup_fork_callbacks - run fork callbacks
4511 * @child: the new task
4512 *
4513 * Called on a new task very soon before adding it to the
4514 * tasklist. No need to take any locks since no-one can
4515 * be operating on this task.
4516 */
4517void cgroup_fork_callbacks(struct task_struct *child)
4518{
4519        if (need_forkexit_callback) {
4520                int i;
4521                /*
4522                 * forkexit callbacks are only supported for builtin
4523                 * subsystems, and the builtin section of the subsys array is
4524                 * immutable, so we don't need to lock the subsys array here.
4525                 */
4526                for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4527                        struct cgroup_subsys *ss = subsys[i];
4528                        if (ss->fork)
4529                                ss->fork(ss, child);
4530                }
4531        }
4532}
4533
4534/**
4535 * cgroup_post_fork - called on a new task after adding it to the task list
4536 * @child: the task in question
4537 *
4538 * Adds the task to the list running through its css_set if necessary.
4539 * Has to be after the task is visible on the task list in case we race
4540 * with the first call to cgroup_iter_start() - to guarantee that the
4541 * new task ends up on its list.
4542 */
4543void cgroup_post_fork(struct task_struct *child)
4544{
4545        if (use_task_css_set_links) {
4546                write_lock(&css_set_lock);
4547                task_lock(child);
4548                if (list_empty(&child->cg_list))
4549                        list_add(&child->cg_list, &child->cgroups->tasks);
4550                task_unlock(child);
4551                write_unlock(&css_set_lock);
4552        }
4553}
4554/**
4555 * cgroup_exit - detach cgroup from exiting task
4556 * @tsk: pointer to task_struct of exiting process
4557 * @run_callback: run exit callbacks?
4558 *
4559 * Description: Detach cgroup from @tsk and release it.
4560 *
4561 * Note that cgroups marked notify_on_release force every task in
4562 * them to take the global cgroup_mutex mutex when exiting.
4563 * This could impact scaling on very large systems.  Be reluctant to
4564 * use notify_on_release cgroups where very high task exit scaling
4565 * is required on large systems.
4566 *
4567 * the_top_cgroup_hack:
4568 *
4569 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4570 *
4571 *    We call cgroup_exit() while the task is still competent to
4572 *    handle notify_on_release(), then leave the task attached to the
4573 *    root cgroup in each hierarchy for the remainder of its exit.
4574 *
4575 *    To do this properly, we would increment the reference count on
4576 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4577 *    code we would add a second cgroup function call, to drop that
4578 *    reference.  This would just create an unnecessary hot spot on
4579 *    the top_cgroup reference count, to no avail.
4580 *
4581 *    Normally, holding a reference to a cgroup without bumping its
4582 *    count is unsafe.   The cgroup could go away, or someone could
4583 *    attach us to a different cgroup, decrementing the count on
4584 *    the first cgroup that we never incremented.  But in this case,
4585 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4586 *    which wards off any cgroup_attach_task() attempts, or task is a failed
4587 *    fork, never visible to cgroup_attach_task.
4588 */
4589void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4590{
4591        struct css_set *cg;
4592        int i;
4593
4594        /*
4595         * Unlink from the css_set task list if necessary.
4596         * Optimistically check cg_list before taking
4597         * css_set_lock
4598         */
4599        if (!list_empty(&tsk->cg_list)) {
4600                write_lock(&css_set_lock);
4601                if (!list_empty(&tsk->cg_list))
4602                        list_del_init(&tsk->cg_list);
4603                write_unlock(&css_set_lock);
4604        }
4605
4606        /* Reassign the task to the init_css_set. */
4607        task_lock(tsk);
4608        cg = tsk->cgroups;
4609        tsk->cgroups = &init_css_set;
4610
4611        if (run_callbacks && need_forkexit_callback) {
4612                /*
4613                 * modular subsystems can't use callbacks, so no need to lock
4614                 * the subsys array
4615                 */
4616                for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4617                        struct cgroup_subsys *ss = subsys[i];
4618                        if (ss->exit) {
4619                                struct cgroup *old_cgrp =
4620                                        rcu_dereference_raw(cg->subsys[i])->cgroup;
4621                                struct cgroup *cgrp = task_cgroup(tsk, i);
4622                                ss->exit(ss, cgrp, old_cgrp, tsk);
4623                        }
4624                }
4625        }
4626        task_unlock(tsk);
4627
4628        if (cg)
4629                put_css_set_taskexit(cg);
4630}
4631
4632/**
4633 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4634 * @cgrp: the cgroup in question
4635 * @task: the task in question
4636 *
4637 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4638 * hierarchy.
4639 *
4640 * If we are sending in dummytop, then presumably we are creating
4641 * the top cgroup in the subsystem.
4642 *
4643 * Called only by the ns (nsproxy) cgroup.
4644 */
4645int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4646{
4647        int ret;
4648        struct cgroup *target;
4649
4650        if (cgrp == dummytop)
4651                return 1;
4652
4653        target = task_cgroup_from_root(task, cgrp->root);
4654        while (cgrp != target && cgrp!= cgrp->top_cgroup)
4655                cgrp = cgrp->parent;
4656        ret = (cgrp == target);
4657        return ret;
4658}
4659
4660static void check_for_release(struct cgroup *cgrp)
4661{
4662        /* All of these checks rely on RCU to keep the cgroup
4663         * structure alive */
4664        if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4665            && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4666                /* Control Group is currently removeable. If it's not
4667                 * already queued for a userspace notification, queue
4668                 * it now */
4669                int need_schedule_work = 0;
4670                spin_lock(&release_list_lock);
4671                if (!cgroup_is_removed(cgrp) &&
4672                    list_empty(&cgrp->release_list)) {
4673                        list_add(&cgrp->release_list, &release_list);
4674                        need_schedule_work = 1;
4675                }
4676                spin_unlock(&release_list_lock);
4677                if (need_schedule_work)
4678                        schedule_work(&release_agent_work);
4679        }
4680}
4681
4682/* Caller must verify that the css is not for root cgroup */
4683void __css_put(struct cgroup_subsys_state *css, int count)
4684{
4685        struct cgroup *cgrp = css->cgroup;
4686        int val;
4687        rcu_read_lock();
4688        val = atomic_sub_return(count, &css->refcnt);
4689        if (val == 1) {
4690                if (notify_on_release(cgrp)) {
4691                        set_bit(CGRP_RELEASABLE, &cgrp->flags);
4692                        check_for_release(cgrp);
4693                }
4694                cgroup_wakeup_rmdir_waiter(cgrp);
4695        }
4696        rcu_read_unlock();
4697        WARN_ON_ONCE(val < 1);
4698}
4699EXPORT_SYMBOL_GPL(__css_put);
4700
4701/*
4702 * Notify userspace when a cgroup is released, by running the
4703 * configured release agent with the name of the cgroup (path
4704 * relative to the root of cgroup file system) as the argument.
4705 *
4706 * Most likely, this user command will try to rmdir this cgroup.
4707 *
4708 * This races with the possibility that some other task will be
4709 * attached to this cgroup before it is removed, or that some other
4710 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
4711 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4712 * unused, and this cgroup will be reprieved from its death sentence,
4713 * to continue to serve a useful existence.  Next time it's released,
4714 * we will get notified again, if it still has 'notify_on_release' set.
4715 *
4716 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4717 * means only wait until the task is successfully execve()'d.  The
4718 * separate release agent task is forked by call_usermodehelper(),
4719 * then control in this thread returns here, without waiting for the
4720 * release agent task.  We don't bother to wait because the caller of
4721 * this routine has no use for the exit status of the release agent
4722 * task, so no sense holding our caller up for that.
4723 */
4724static void cgroup_release_agent(struct work_struct *work)
4725{
4726        BUG_ON(work != &release_agent_work);
4727        mutex_lock(&cgroup_mutex);
4728        spin_lock(&release_list_lock);
4729        while (!list_empty(&release_list)) {
4730                char *argv[3], *envp[3];
4731                int i;
4732                char *pathbuf = NULL, *agentbuf = NULL;
4733                struct cgroup *cgrp = list_entry(release_list.next,
4734                                                    struct cgroup,
4735                                                    release_list);
4736                list_del_init(&cgrp->release_list);
4737                spin_unlock(&release_list_lock);
4738                pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4739                if (!pathbuf)
4740                        goto continue_free;
4741                if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4742                        goto continue_free;
4743                agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4744                if (!agentbuf)
4745                        goto continue_free;
4746
4747                i = 0;
4748                argv[i++] = agentbuf;
4749                argv[i++] = pathbuf;
4750                argv[i] = NULL;
4751
4752                i = 0;
4753                /* minimal command environment */
4754                envp[i++] = "HOME=/";
4755                envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4756                envp[i] = NULL;
4757
4758                /* Drop the lock while we invoke the usermode helper,
4759                 * since the exec could involve hitting disk and hence
4760                 * be a slow process */
4761                mutex_unlock(&cgroup_mutex);
4762                call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4763                mutex_lock(&cgroup_mutex);
4764 continue_free:
4765                kfree(pathbuf);
4766                kfree(agentbuf);
4767                spin_lock(&release_list_lock);
4768        }
4769        spin_unlock(&release_list_lock);
4770        mutex_unlock(&cgroup_mutex);
4771}
4772
4773static int __init cgroup_disable(char *str)
4774{
4775        int i;
4776        char *token;
4777
4778        while ((token = strsep(&str, ",")) != NULL) {
4779                if (!*token)
4780                        continue;
4781                /*
4782                 * cgroup_disable, being at boot time, can't know about module
4783                 * subsystems, so we don't worry about them.
4784                 */
4785                for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4786                        struct cgroup_subsys *ss = subsys[i];
4787
4788                        if (!strcmp(token, ss->name)) {
4789                                ss->disabled = 1;
4790                                printk(KERN_INFO "Disabling %s control group"
4791                                        " subsystem\n", ss->name);
4792                                break;
4793                        }
4794                }
4795        }
4796        return 1;
4797}
4798__setup("cgroup_disable=", cgroup_disable);
4799
4800/*
4801 * Functons for CSS ID.
4802 */
4803
4804/*
4805 *To get ID other than 0, this should be called when !cgroup_is_removed().
4806 */
4807unsigned short css_id(struct cgroup_subsys_state *css)
4808{
4809        struct css_id *cssid;
4810
4811        /*
4812         * This css_id() can return correct value when somone has refcnt
4813         * on this or this is under rcu_read_lock(). Once css->id is allocated,
4814         * it's unchanged until freed.
4815         */
4816        cssid = rcu_dereference_check(css->id,
4817                        rcu_read_lock_held() || atomic_read(&css->refcnt));
4818
4819        if (cssid)
4820                return cssid->id;
4821        return 0;
4822}
4823EXPORT_SYMBOL_GPL(css_id);
4824
4825unsigned short css_depth(struct cgroup_subsys_state *css)
4826{
4827        struct css_id *cssid;
4828
4829        cssid = rcu_dereference_check(css->id,
4830                        rcu_read_lock_held() || atomic_read(&css->refcnt));
4831
4832        if (cssid)
4833                return cssid->depth;
4834        return 0;
4835}
4836EXPORT_SYMBOL_GPL(css_depth);
4837
4838/**
4839 *  css_is_ancestor - test "root" css is an ancestor of "child"
4840 * @child: the css to be tested.
4841 * @root: the css supporsed to be an ancestor of the child.
4842 *
4843 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4844 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4845 * But, considering usual usage, the csses should be valid objects after test.
4846 * Assuming that the caller will do some action to the child if this returns
4847 * returns true, the caller must take "child";s reference count.
4848 * If "child" is valid object and this returns true, "root" is valid, too.
4849 */
4850
4851bool css_is_ancestor(struct cgroup_subsys_state *child,
4852                    const struct cgroup_subsys_state *root)
4853{
4854        struct css_id *child_id;
4855        struct css_id *root_id;
4856        bool ret = true;
4857
4858        rcu_read_lock();
4859        child_id  = rcu_dereference(child->id);
4860        root_id = rcu_dereference(root->id);
4861        if (!child_id
4862            || !root_id
4863            || (child_id->depth < root_id->depth)
4864            || (child_id->stack[root_id->depth] != root_id->id))
4865                ret = false;
4866        rcu_read_unlock();
4867        return ret;
4868}
4869
4870void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4871{
4872        struct css_id *id = css->id;
4873        /* When this is called before css_id initialization, id can be NULL */
4874        if (!id)
4875                return;
4876
4877        BUG_ON(!ss->use_id);
4878
4879        rcu_assign_pointer(id->css, NULL);
4880        rcu_assign_pointer(css->id, NULL);
4881        spin_lock(&ss->id_lock);
4882        idr_remove(&ss->idr, id->id);
4883        spin_unlock(&ss->id_lock);
4884        kfree_rcu(id, rcu_head);
4885}
4886EXPORT_SYMBOL_GPL(free_css_id);
4887
4888/*
4889 * This is called by init or create(). Then, calls to this function are
4890 * always serialized (By cgroup_mutex() at create()).
4891 */
4892
4893static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4894{
4895        struct css_id *newid;
4896        int myid, error, size;
4897
4898        BUG_ON(!ss->use_id);
4899
4900        size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4901        newid = kzalloc(size, GFP_KERNEL);
4902        if (!newid)
4903                return ERR_PTR(-ENOMEM);
4904        /* get id */
4905        if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4906                error = -ENOMEM;
4907                goto err_out;
4908        }
4909        spin_lock(&ss->id_lock);
4910        /* Don't use 0. allocates an ID of 1-65535 */
4911        error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4912        spin_unlock(&ss->id_lock);
4913
4914        /* Returns error when there are no free spaces for new ID.*/
4915        if (error) {
4916                error = -ENOSPC;
4917                goto err_out;
4918        }
4919        if (myid > CSS_ID_MAX)
4920                goto remove_idr;
4921
4922        newid->id = myid;
4923        newid->depth = depth;
4924        return newid;
4925remove_idr:
4926        error = -ENOSPC;
4927        spin_lock(&ss->id_lock);
4928        idr_remove(&ss->idr, myid);
4929        spin_unlock(&ss->id_lock);
4930err_out:
4931        kfree(newid);
4932        return ERR_PTR(error);
4933
4934}
4935
4936static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4937                                            struct cgroup_subsys_state *rootcss)
4938{
4939        struct css_id *newid;
4940
4941        spin_lock_init(&ss->id_lock);
4942        idr_init(&ss->idr);
4943
4944        newid = get_new_cssid(ss, 0);
4945        if (IS_ERR(newid))
4946                return PTR_ERR(newid);
4947
4948        newid->stack[0] = newid->id;
4949        newid->css = rootcss;
4950        rootcss->id = newid;
4951        return 0;
4952}
4953
4954static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4955                        struct cgroup *child)
4956{
4957        int subsys_id, i, depth = 0;
4958        struct cgroup_subsys_state *parent_css, *child_css;
4959        struct css_id *child_id, *parent_id;
4960
4961        subsys_id = ss->subsys_id;
4962        parent_css = parent->subsys[subsys_id];
4963        child_css = child->subsys[subsys_id];
4964        parent_id = parent_css->id;
4965        depth = parent_id->depth + 1;
4966
4967        child_id = get_new_cssid(ss, depth);
4968        if (IS_ERR(child_id))
4969                return PTR_ERR(child_id);
4970
4971        for (i = 0; i < depth; i++)
4972                child_id->stack[i] = parent_id->stack[i];
4973        child_id->stack[depth] = child_id->id;
4974        /*
4975         * child_id->css pointer will be set after this cgroup is available
4976         * see cgroup_populate_dir()
4977         */
4978        rcu_assign_pointer(child_css->id, child_id);
4979
4980        return 0;
4981}
4982
4983/**
4984 * css_lookup - lookup css by id
4985 * @ss: cgroup subsys to be looked into.
4986 * @id: the id
4987 *
4988 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4989 * NULL if not. Should be called under rcu_read_lock()
4990 */
4991struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4992{
4993        struct css_id *cssid = NULL;
4994
4995        BUG_ON(!ss->use_id);
4996        cssid = idr_find(&ss->idr, id);
4997
4998        if (unlikely(!cssid))
4999                return NULL;
5000
5001        return rcu_dereference(cssid->css);
5002}
5003EXPORT_SYMBOL_GPL(css_lookup);
5004
5005/**
5006 * css_get_next - lookup next cgroup under specified hierarchy.
5007 * @ss: pointer to subsystem
5008 * @id: current position of iteration.
5009 * @root: pointer to css. search tree under this.
5010 * @foundid: position of found object.
5011 *
5012 * Search next css under the specified hierarchy of rootid. Calling under
5013 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5014 */
5015struct cgroup_subsys_state *
5016css_get_next(struct cgroup_subsys *ss, int id,
5017             struct cgroup_subsys_state *root, int *foundid)
5018{
5019        struct cgroup_subsys_state *ret = NULL;
5020        struct css_id *tmp;
5021        int tmpid;
5022        int rootid = css_id(root);
5023        int depth = css_depth(root);
5024
5025        if (!rootid)
5026                return NULL;
5027
5028        BUG_ON(!ss->use_id);
5029        /* fill start point for scan */
5030        tmpid = id;
5031        while (1) {
5032                /*
5033                 * scan next entry from bitmap(tree), tmpid is updated after
5034                 * idr_get_next().
5035                 */
5036                spin_lock(&ss->id_lock);
5037                tmp = idr_get_next(&ss->idr, &tmpid);
5038                spin_unlock(&ss->id_lock);
5039
5040                if (!tmp)
5041                        break;
5042                if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5043                        ret = rcu_dereference(tmp->css);
5044                        if (ret) {
5045                                *foundid = tmpid;
5046                                break;
5047                        }
5048                }
5049                /* continue to scan from next id */
5050                tmpid = tmpid + 1;
5051        }
5052        return ret;
5053}
5054
5055/*
5056 * get corresponding css from file open on cgroupfs directory
5057 */
5058struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5059{
5060        struct cgroup *cgrp;
5061        struct inode *inode;
5062        struct cgroup_subsys_state *css;
5063
5064        inode = f->f_dentry->d_inode;
5065        /* check in cgroup filesystem dir */
5066        if (inode->i_op != &cgroup_dir_inode_operations)
5067                return ERR_PTR(-EBADF);
5068
5069        if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5070                return ERR_PTR(-EINVAL);
5071
5072        /* get cgroup */
5073        cgrp = __d_cgrp(f->f_dentry);
5074        css = cgrp->subsys[id];
5075        return css ? css : ERR_PTR(-ENOENT);
5076}
5077
5078#ifdef CONFIG_CGROUP_DEBUG
5079static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5080                                                   struct cgroup *cont)
5081{
5082        struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5083
5084        if (!css)
5085                return ERR_PTR(-ENOMEM);
5086
5087        return css;
5088}
5089
5090static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5091{
5092        kfree(cont->subsys[debug_subsys_id]);
5093}
5094
5095static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5096{
5097        return atomic_read(&cont->count);
5098}
5099
5100static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5101{
5102        return cgroup_task_count(cont);
5103}
5104
5105static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5106{
5107        return (u64)(unsigned long)current->cgroups;
5108}
5109
5110static u64 current_css_set_refcount_read(struct cgroup *cont,
5111                                           struct cftype *cft)
5112{
5113        u64 count;
5114
5115        rcu_read_lock();
5116        count = atomic_read(&current->cgroups->refcount);
5117        rcu_read_unlock();
5118        return count;
5119}
5120
5121static int current_css_set_cg_links_read(struct cgroup *cont,
5122                                         struct cftype *cft,
5123                                         struct seq_file *seq)
5124{
5125        struct cg_cgroup_link *link;
5126        struct css_set *cg;
5127
5128        read_lock(&css_set_lock);
5129        rcu_read_lock();
5130        cg = rcu_dereference(current->cgroups);
5131        list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5132                struct cgroup *c = link->cgrp;
5133                const char *name;
5134
5135                if (c->dentry)
5136                        name = c->dentry->d_name.name;
5137                else
5138                        name = "?";
5139                seq_printf(seq, "Root %d group %s\n",
5140                           c->root->hierarchy_id, name);
5141        }
5142        rcu_read_unlock();
5143        read_unlock(&css_set_lock);
5144        return 0;
5145}
5146
5147#define MAX_TASKS_SHOWN_PER_CSS 25
5148static int cgroup_css_links_read(struct cgroup *cont,
5149                                 struct cftype *cft,
5150                                 struct seq_file *seq)
5151{
5152        struct cg_cgroup_link *link;
5153
5154        read_lock(&css_set_lock);
5155        list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5156                struct css_set *cg = link->cg;
5157                struct task_struct *task;
5158                int count = 0;
5159                seq_printf(seq, "css_set %p\n", cg);
5160                list_for_each_entry(task, &cg->tasks, cg_list) {
5161                        if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5162                                seq_puts(seq, "  ...\n");
5163                                break;
5164                        } else {
5165                                seq_printf(seq, "  task %d\n",
5166                                           task_pid_vnr(task));
5167                        }
5168                }
5169        }
5170        read_unlock(&css_set_lock);
5171        return 0;
5172}
5173
5174static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5175{
5176        return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5177}
5178
5179static struct cftype debug_files[] =  {
5180        {
5181                .name = "cgroup_refcount",
5182                .read_u64 = cgroup_refcount_read,
5183        },
5184        {
5185                .name = "taskcount",
5186                .read_u64 = debug_taskcount_read,
5187        },
5188
5189        {
5190                .name = "current_css_set",
5191                .read_u64 = current_css_set_read,
5192        },
5193
5194        {
5195                .name = "current_css_set_refcount",
5196                .read_u64 = current_css_set_refcount_read,
5197        },
5198
5199        {
5200                .name = "current_css_set_cg_links",
5201                .read_seq_string = current_css_set_cg_links_read,
5202        },
5203
5204        {
5205                .name = "cgroup_css_links",
5206                .read_seq_string = cgroup_css_links_read,
5207        },
5208
5209        {
5210                .name = "releasable",
5211                .read_u64 = releasable_read,
5212        },
5213};
5214
5215static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5216{
5217        return cgroup_add_files(cont, ss, debug_files,
5218                                ARRAY_SIZE(debug_files));
5219}
5220
5221struct cgroup_subsys debug_subsys = {
5222        .name = "debug",
5223        .create = debug_create,
5224        .destroy = debug_destroy,
5225        .populate = debug_populate,
5226        .subsys_id = debug_subsys_id,
5227};
5228#endif /* CONFIG_CGROUP_DEBUG */
5229