linux/kernel/time/clocksource.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/clocksource.c
   3 *
   4 * This file contains the functions which manage clocksource drivers.
   5 *
   6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 *
  22 * TODO WishList:
  23 *   o Allow clocksource drivers to be unregistered
  24 */
  25
  26#include <linux/clocksource.h>
  27#include <linux/sysdev.h>
  28#include <linux/init.h>
  29#include <linux/module.h>
  30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  31#include <linux/tick.h>
  32#include <linux/kthread.h>
  33
  34void timecounter_init(struct timecounter *tc,
  35                      const struct cyclecounter *cc,
  36                      u64 start_tstamp)
  37{
  38        tc->cc = cc;
  39        tc->cycle_last = cc->read(cc);
  40        tc->nsec = start_tstamp;
  41}
  42EXPORT_SYMBOL_GPL(timecounter_init);
  43
  44/**
  45 * timecounter_read_delta - get nanoseconds since last call of this function
  46 * @tc:         Pointer to time counter
  47 *
  48 * When the underlying cycle counter runs over, this will be handled
  49 * correctly as long as it does not run over more than once between
  50 * calls.
  51 *
  52 * The first call to this function for a new time counter initializes
  53 * the time tracking and returns an undefined result.
  54 */
  55static u64 timecounter_read_delta(struct timecounter *tc)
  56{
  57        cycle_t cycle_now, cycle_delta;
  58        u64 ns_offset;
  59
  60        /* read cycle counter: */
  61        cycle_now = tc->cc->read(tc->cc);
  62
  63        /* calculate the delta since the last timecounter_read_delta(): */
  64        cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
  65
  66        /* convert to nanoseconds: */
  67        ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
  68
  69        /* update time stamp of timecounter_read_delta() call: */
  70        tc->cycle_last = cycle_now;
  71
  72        return ns_offset;
  73}
  74
  75u64 timecounter_read(struct timecounter *tc)
  76{
  77        u64 nsec;
  78
  79        /* increment time by nanoseconds since last call */
  80        nsec = timecounter_read_delta(tc);
  81        nsec += tc->nsec;
  82        tc->nsec = nsec;
  83
  84        return nsec;
  85}
  86EXPORT_SYMBOL_GPL(timecounter_read);
  87
  88u64 timecounter_cyc2time(struct timecounter *tc,
  89                         cycle_t cycle_tstamp)
  90{
  91        u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
  92        u64 nsec;
  93
  94        /*
  95         * Instead of always treating cycle_tstamp as more recent
  96         * than tc->cycle_last, detect when it is too far in the
  97         * future and treat it as old time stamp instead.
  98         */
  99        if (cycle_delta > tc->cc->mask / 2) {
 100                cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
 101                nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
 102        } else {
 103                nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
 104        }
 105
 106        return nsec;
 107}
 108EXPORT_SYMBOL_GPL(timecounter_cyc2time);
 109
 110/**
 111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
 112 * @mult:       pointer to mult variable
 113 * @shift:      pointer to shift variable
 114 * @from:       frequency to convert from
 115 * @to:         frequency to convert to
 116 * @maxsec:     guaranteed runtime conversion range in seconds
 117 *
 118 * The function evaluates the shift/mult pair for the scaled math
 119 * operations of clocksources and clockevents.
 120 *
 121 * @to and @from are frequency values in HZ. For clock sources @to is
 122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
 123 * event @to is the counter frequency and @from is NSEC_PER_SEC.
 124 *
 125 * The @maxsec conversion range argument controls the time frame in
 126 * seconds which must be covered by the runtime conversion with the
 127 * calculated mult and shift factors. This guarantees that no 64bit
 128 * overflow happens when the input value of the conversion is
 129 * multiplied with the calculated mult factor. Larger ranges may
 130 * reduce the conversion accuracy by chosing smaller mult and shift
 131 * factors.
 132 */
 133void
 134clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
 135{
 136        u64 tmp;
 137        u32 sft, sftacc= 32;
 138
 139        /*
 140         * Calculate the shift factor which is limiting the conversion
 141         * range:
 142         */
 143        tmp = ((u64)maxsec * from) >> 32;
 144        while (tmp) {
 145                tmp >>=1;
 146                sftacc--;
 147        }
 148
 149        /*
 150         * Find the conversion shift/mult pair which has the best
 151         * accuracy and fits the maxsec conversion range:
 152         */
 153        for (sft = 32; sft > 0; sft--) {
 154                tmp = (u64) to << sft;
 155                tmp += from / 2;
 156                do_div(tmp, from);
 157                if ((tmp >> sftacc) == 0)
 158                        break;
 159        }
 160        *mult = tmp;
 161        *shift = sft;
 162}
 163
 164/*[Clocksource internal variables]---------
 165 * curr_clocksource:
 166 *      currently selected clocksource.
 167 * clocksource_list:
 168 *      linked list with the registered clocksources
 169 * clocksource_mutex:
 170 *      protects manipulations to curr_clocksource and the clocksource_list
 171 * override_name:
 172 *      Name of the user-specified clocksource.
 173 */
 174static struct clocksource *curr_clocksource;
 175static LIST_HEAD(clocksource_list);
 176static DEFINE_MUTEX(clocksource_mutex);
 177static char override_name[32];
 178static int finished_booting;
 179
 180#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
 181static void clocksource_watchdog_work(struct work_struct *work);
 182
 183static LIST_HEAD(watchdog_list);
 184static struct clocksource *watchdog;
 185static struct timer_list watchdog_timer;
 186static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 187static DEFINE_SPINLOCK(watchdog_lock);
 188static int watchdog_running;
 189
 190static int clocksource_watchdog_kthread(void *data);
 191static void __clocksource_change_rating(struct clocksource *cs, int rating);
 192
 193/*
 194 * Interval: 0.5sec Threshold: 0.0625s
 195 */
 196#define WATCHDOG_INTERVAL (HZ >> 1)
 197#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 198
 199static void clocksource_watchdog_work(struct work_struct *work)
 200{
 201        /*
 202         * If kthread_run fails the next watchdog scan over the
 203         * watchdog_list will find the unstable clock again.
 204         */
 205        kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 206}
 207
 208static void __clocksource_unstable(struct clocksource *cs)
 209{
 210        cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 211        cs->flags |= CLOCK_SOURCE_UNSTABLE;
 212        if (finished_booting)
 213                schedule_work(&watchdog_work);
 214}
 215
 216static void clocksource_unstable(struct clocksource *cs, int64_t delta)
 217{
 218        printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
 219               cs->name, delta);
 220        __clocksource_unstable(cs);
 221}
 222
 223/**
 224 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 225 * @cs:         clocksource to be marked unstable
 226 *
 227 * This function is called instead of clocksource_change_rating from
 228 * cpu hotplug code to avoid a deadlock between the clocksource mutex
 229 * and the cpu hotplug mutex. It defers the update of the clocksource
 230 * to the watchdog thread.
 231 */
 232void clocksource_mark_unstable(struct clocksource *cs)
 233{
 234        unsigned long flags;
 235
 236        spin_lock_irqsave(&watchdog_lock, flags);
 237        if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 238                if (list_empty(&cs->wd_list))
 239                        list_add(&cs->wd_list, &watchdog_list);
 240                __clocksource_unstable(cs);
 241        }
 242        spin_unlock_irqrestore(&watchdog_lock, flags);
 243}
 244
 245static void clocksource_watchdog(unsigned long data)
 246{
 247        struct clocksource *cs;
 248        cycle_t csnow, wdnow;
 249        int64_t wd_nsec, cs_nsec;
 250        int next_cpu;
 251
 252        spin_lock(&watchdog_lock);
 253        if (!watchdog_running)
 254                goto out;
 255
 256        list_for_each_entry(cs, &watchdog_list, wd_list) {
 257
 258                /* Clocksource already marked unstable? */
 259                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 260                        if (finished_booting)
 261                                schedule_work(&watchdog_work);
 262                        continue;
 263                }
 264
 265                local_irq_disable();
 266                csnow = cs->read(cs);
 267                wdnow = watchdog->read(watchdog);
 268                local_irq_enable();
 269
 270                /* Clocksource initialized ? */
 271                if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
 272                        cs->flags |= CLOCK_SOURCE_WATCHDOG;
 273                        cs->wd_last = wdnow;
 274                        cs->cs_last = csnow;
 275                        continue;
 276                }
 277
 278                wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
 279                                             watchdog->mult, watchdog->shift);
 280
 281                cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
 282                                             cs->mask, cs->mult, cs->shift);
 283                cs->cs_last = csnow;
 284                cs->wd_last = wdnow;
 285
 286                /* Check the deviation from the watchdog clocksource. */
 287                if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 288                        clocksource_unstable(cs, cs_nsec - wd_nsec);
 289                        continue;
 290                }
 291
 292                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 293                    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 294                    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 295                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 296                        /*
 297                         * We just marked the clocksource as highres-capable,
 298                         * notify the rest of the system as well so that we
 299                         * transition into high-res mode:
 300                         */
 301                        tick_clock_notify();
 302                }
 303        }
 304
 305        /*
 306         * Cycle through CPUs to check if the CPUs stay synchronized
 307         * to each other.
 308         */
 309        next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 310        if (next_cpu >= nr_cpu_ids)
 311                next_cpu = cpumask_first(cpu_online_mask);
 312        watchdog_timer.expires += WATCHDOG_INTERVAL;
 313        add_timer_on(&watchdog_timer, next_cpu);
 314out:
 315        spin_unlock(&watchdog_lock);
 316}
 317
 318static inline void clocksource_start_watchdog(void)
 319{
 320        if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 321                return;
 322        init_timer(&watchdog_timer);
 323        watchdog_timer.function = clocksource_watchdog;
 324        watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 325        add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 326        watchdog_running = 1;
 327}
 328
 329static inline void clocksource_stop_watchdog(void)
 330{
 331        if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 332                return;
 333        del_timer(&watchdog_timer);
 334        watchdog_running = 0;
 335}
 336
 337static inline void clocksource_reset_watchdog(void)
 338{
 339        struct clocksource *cs;
 340
 341        list_for_each_entry(cs, &watchdog_list, wd_list)
 342                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 343}
 344
 345static void clocksource_resume_watchdog(void)
 346{
 347        unsigned long flags;
 348
 349        /*
 350         * We use trylock here to avoid a potential dead lock when
 351         * kgdb calls this code after the kernel has been stopped with
 352         * watchdog_lock held. When watchdog_lock is held we just
 353         * return and accept, that the watchdog might trigger and mark
 354         * the monitored clock source (usually TSC) unstable.
 355         *
 356         * This does not affect the other caller clocksource_resume()
 357         * because at this point the kernel is UP, interrupts are
 358         * disabled and nothing can hold watchdog_lock.
 359         */
 360        if (!spin_trylock_irqsave(&watchdog_lock, flags))
 361                return;
 362        clocksource_reset_watchdog();
 363        spin_unlock_irqrestore(&watchdog_lock, flags);
 364}
 365
 366static void clocksource_enqueue_watchdog(struct clocksource *cs)
 367{
 368        unsigned long flags;
 369
 370        spin_lock_irqsave(&watchdog_lock, flags);
 371        if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 372                /* cs is a clocksource to be watched. */
 373                list_add(&cs->wd_list, &watchdog_list);
 374                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 375        } else {
 376                /* cs is a watchdog. */
 377                if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 378                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 379                /* Pick the best watchdog. */
 380                if (!watchdog || cs->rating > watchdog->rating) {
 381                        watchdog = cs;
 382                        /* Reset watchdog cycles */
 383                        clocksource_reset_watchdog();
 384                }
 385        }
 386        /* Check if the watchdog timer needs to be started. */
 387        clocksource_start_watchdog();
 388        spin_unlock_irqrestore(&watchdog_lock, flags);
 389}
 390
 391static void clocksource_dequeue_watchdog(struct clocksource *cs)
 392{
 393        struct clocksource *tmp;
 394        unsigned long flags;
 395
 396        spin_lock_irqsave(&watchdog_lock, flags);
 397        if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 398                /* cs is a watched clocksource. */
 399                list_del_init(&cs->wd_list);
 400        } else if (cs == watchdog) {
 401                /* Reset watchdog cycles */
 402                clocksource_reset_watchdog();
 403                /* Current watchdog is removed. Find an alternative. */
 404                watchdog = NULL;
 405                list_for_each_entry(tmp, &clocksource_list, list) {
 406                        if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
 407                                continue;
 408                        if (!watchdog || tmp->rating > watchdog->rating)
 409                                watchdog = tmp;
 410                }
 411        }
 412        cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 413        /* Check if the watchdog timer needs to be stopped. */
 414        clocksource_stop_watchdog();
 415        spin_unlock_irqrestore(&watchdog_lock, flags);
 416}
 417
 418static int clocksource_watchdog_kthread(void *data)
 419{
 420        struct clocksource *cs, *tmp;
 421        unsigned long flags;
 422        LIST_HEAD(unstable);
 423
 424        mutex_lock(&clocksource_mutex);
 425        spin_lock_irqsave(&watchdog_lock, flags);
 426        list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
 427                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 428                        list_del_init(&cs->wd_list);
 429                        list_add(&cs->wd_list, &unstable);
 430                }
 431        /* Check if the watchdog timer needs to be stopped. */
 432        clocksource_stop_watchdog();
 433        spin_unlock_irqrestore(&watchdog_lock, flags);
 434
 435        /* Needs to be done outside of watchdog lock */
 436        list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
 437                list_del_init(&cs->wd_list);
 438                __clocksource_change_rating(cs, 0);
 439        }
 440        mutex_unlock(&clocksource_mutex);
 441        return 0;
 442}
 443
 444#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 445
 446static void clocksource_enqueue_watchdog(struct clocksource *cs)
 447{
 448        if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 449                cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 450}
 451
 452static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 453static inline void clocksource_resume_watchdog(void) { }
 454static inline int clocksource_watchdog_kthread(void *data) { return 0; }
 455
 456#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 457
 458/**
 459 * clocksource_suspend - suspend the clocksource(s)
 460 */
 461void clocksource_suspend(void)
 462{
 463        struct clocksource *cs;
 464
 465        list_for_each_entry_reverse(cs, &clocksource_list, list)
 466                if (cs->suspend)
 467                        cs->suspend(cs);
 468}
 469
 470/**
 471 * clocksource_resume - resume the clocksource(s)
 472 */
 473void clocksource_resume(void)
 474{
 475        struct clocksource *cs;
 476
 477        list_for_each_entry(cs, &clocksource_list, list)
 478                if (cs->resume)
 479                        cs->resume(cs);
 480
 481        clocksource_resume_watchdog();
 482}
 483
 484/**
 485 * clocksource_touch_watchdog - Update watchdog
 486 *
 487 * Update the watchdog after exception contexts such as kgdb so as not
 488 * to incorrectly trip the watchdog. This might fail when the kernel
 489 * was stopped in code which holds watchdog_lock.
 490 */
 491void clocksource_touch_watchdog(void)
 492{
 493        clocksource_resume_watchdog();
 494}
 495
 496/**
 497 * clocksource_max_deferment - Returns max time the clocksource can be deferred
 498 * @cs:         Pointer to clocksource
 499 *
 500 */
 501static u64 clocksource_max_deferment(struct clocksource *cs)
 502{
 503        u64 max_nsecs, max_cycles;
 504
 505        /*
 506         * Calculate the maximum number of cycles that we can pass to the
 507         * cyc2ns function without overflowing a 64-bit signed result. The
 508         * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
 509         * is equivalent to the below.
 510         * max_cycles < (2^63)/cs->mult
 511         * max_cycles < 2^(log2((2^63)/cs->mult))
 512         * max_cycles < 2^(log2(2^63) - log2(cs->mult))
 513         * max_cycles < 2^(63 - log2(cs->mult))
 514         * max_cycles < 1 << (63 - log2(cs->mult))
 515         * Please note that we add 1 to the result of the log2 to account for
 516         * any rounding errors, ensure the above inequality is satisfied and
 517         * no overflow will occur.
 518         */
 519        max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
 520
 521        /*
 522         * The actual maximum number of cycles we can defer the clocksource is
 523         * determined by the minimum of max_cycles and cs->mask.
 524         */
 525        max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
 526        max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
 527
 528        /*
 529         * To ensure that the clocksource does not wrap whilst we are idle,
 530         * limit the time the clocksource can be deferred by 12.5%. Please
 531         * note a margin of 12.5% is used because this can be computed with
 532         * a shift, versus say 10% which would require division.
 533         */
 534        return max_nsecs - (max_nsecs >> 5);
 535}
 536
 537#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 538
 539/**
 540 * clocksource_select - Select the best clocksource available
 541 *
 542 * Private function. Must hold clocksource_mutex when called.
 543 *
 544 * Select the clocksource with the best rating, or the clocksource,
 545 * which is selected by userspace override.
 546 */
 547static void clocksource_select(void)
 548{
 549        struct clocksource *best, *cs;
 550
 551        if (!finished_booting || list_empty(&clocksource_list))
 552                return;
 553        /* First clocksource on the list has the best rating. */
 554        best = list_first_entry(&clocksource_list, struct clocksource, list);
 555        /* Check for the override clocksource. */
 556        list_for_each_entry(cs, &clocksource_list, list) {
 557                if (strcmp(cs->name, override_name) != 0)
 558                        continue;
 559                /*
 560                 * Check to make sure we don't switch to a non-highres
 561                 * capable clocksource if the tick code is in oneshot
 562                 * mode (highres or nohz)
 563                 */
 564                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 565                    tick_oneshot_mode_active()) {
 566                        /* Override clocksource cannot be used. */
 567                        printk(KERN_WARNING "Override clocksource %s is not "
 568                               "HRT compatible. Cannot switch while in "
 569                               "HRT/NOHZ mode\n", cs->name);
 570                        override_name[0] = 0;
 571                } else
 572                        /* Override clocksource can be used. */
 573                        best = cs;
 574                break;
 575        }
 576        if (curr_clocksource != best) {
 577                printk(KERN_INFO "Switching to clocksource %s\n", best->name);
 578                curr_clocksource = best;
 579                timekeeping_notify(curr_clocksource);
 580        }
 581}
 582
 583#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 584
 585static inline void clocksource_select(void) { }
 586
 587#endif
 588
 589/*
 590 * clocksource_done_booting - Called near the end of core bootup
 591 *
 592 * Hack to avoid lots of clocksource churn at boot time.
 593 * We use fs_initcall because we want this to start before
 594 * device_initcall but after subsys_initcall.
 595 */
 596static int __init clocksource_done_booting(void)
 597{
 598        mutex_lock(&clocksource_mutex);
 599        curr_clocksource = clocksource_default_clock();
 600        mutex_unlock(&clocksource_mutex);
 601
 602        finished_booting = 1;
 603
 604        /*
 605         * Run the watchdog first to eliminate unstable clock sources
 606         */
 607        clocksource_watchdog_kthread(NULL);
 608
 609        mutex_lock(&clocksource_mutex);
 610        clocksource_select();
 611        mutex_unlock(&clocksource_mutex);
 612        return 0;
 613}
 614fs_initcall(clocksource_done_booting);
 615
 616/*
 617 * Enqueue the clocksource sorted by rating
 618 */
 619static void clocksource_enqueue(struct clocksource *cs)
 620{
 621        struct list_head *entry = &clocksource_list;
 622        struct clocksource *tmp;
 623
 624        list_for_each_entry(tmp, &clocksource_list, list)
 625                /* Keep track of the place, where to insert */
 626                if (tmp->rating >= cs->rating)
 627                        entry = &tmp->list;
 628        list_add(&cs->list, entry);
 629}
 630
 631/**
 632 * __clocksource_updatefreq_scale - Used update clocksource with new freq
 633 * @t:          clocksource to be registered
 634 * @scale:      Scale factor multiplied against freq to get clocksource hz
 635 * @freq:       clocksource frequency (cycles per second) divided by scale
 636 *
 637 * This should only be called from the clocksource->enable() method.
 638 *
 639 * This *SHOULD NOT* be called directly! Please use the
 640 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
 641 */
 642void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
 643{
 644        u64 sec;
 645
 646        /*
 647         * Calc the maximum number of seconds which we can run before
 648         * wrapping around. For clocksources which have a mask > 32bit
 649         * we need to limit the max sleep time to have a good
 650         * conversion precision. 10 minutes is still a reasonable
 651         * amount. That results in a shift value of 24 for a
 652         * clocksource with mask >= 40bit and f >= 4GHz. That maps to
 653         * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
 654         * margin as we do in clocksource_max_deferment()
 655         */
 656        sec = (cs->mask - (cs->mask >> 5));
 657        do_div(sec, freq);
 658        do_div(sec, scale);
 659        if (!sec)
 660                sec = 1;
 661        else if (sec > 600 && cs->mask > UINT_MAX)
 662                sec = 600;
 663
 664        clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 665                               NSEC_PER_SEC / scale, sec * scale);
 666        cs->max_idle_ns = clocksource_max_deferment(cs);
 667}
 668EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
 669
 670/**
 671 * __clocksource_register_scale - Used to install new clocksources
 672 * @t:          clocksource to be registered
 673 * @scale:      Scale factor multiplied against freq to get clocksource hz
 674 * @freq:       clocksource frequency (cycles per second) divided by scale
 675 *
 676 * Returns -EBUSY if registration fails, zero otherwise.
 677 *
 678 * This *SHOULD NOT* be called directly! Please use the
 679 * clocksource_register_hz() or clocksource_register_khz helper functions.
 680 */
 681int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 682{
 683
 684        /* Initialize mult/shift and max_idle_ns */
 685        __clocksource_updatefreq_scale(cs, scale, freq);
 686
 687        /* Add clocksource to the clcoksource list */
 688        mutex_lock(&clocksource_mutex);
 689        clocksource_enqueue(cs);
 690        clocksource_enqueue_watchdog(cs);
 691        clocksource_select();
 692        mutex_unlock(&clocksource_mutex);
 693        return 0;
 694}
 695EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 696
 697
 698/**
 699 * clocksource_register - Used to install new clocksources
 700 * @t:          clocksource to be registered
 701 *
 702 * Returns -EBUSY if registration fails, zero otherwise.
 703 */
 704int clocksource_register(struct clocksource *cs)
 705{
 706        /* calculate max idle time permitted for this clocksource */
 707        cs->max_idle_ns = clocksource_max_deferment(cs);
 708
 709        mutex_lock(&clocksource_mutex);
 710        clocksource_enqueue(cs);
 711        clocksource_enqueue_watchdog(cs);
 712        clocksource_select();
 713        mutex_unlock(&clocksource_mutex);
 714        return 0;
 715}
 716EXPORT_SYMBOL(clocksource_register);
 717
 718static void __clocksource_change_rating(struct clocksource *cs, int rating)
 719{
 720        list_del(&cs->list);
 721        cs->rating = rating;
 722        clocksource_enqueue(cs);
 723        clocksource_select();
 724}
 725
 726/**
 727 * clocksource_change_rating - Change the rating of a registered clocksource
 728 */
 729void clocksource_change_rating(struct clocksource *cs, int rating)
 730{
 731        mutex_lock(&clocksource_mutex);
 732        __clocksource_change_rating(cs, rating);
 733        mutex_unlock(&clocksource_mutex);
 734}
 735EXPORT_SYMBOL(clocksource_change_rating);
 736
 737/**
 738 * clocksource_unregister - remove a registered clocksource
 739 */
 740void clocksource_unregister(struct clocksource *cs)
 741{
 742        mutex_lock(&clocksource_mutex);
 743        clocksource_dequeue_watchdog(cs);
 744        list_del(&cs->list);
 745        clocksource_select();
 746        mutex_unlock(&clocksource_mutex);
 747}
 748EXPORT_SYMBOL(clocksource_unregister);
 749
 750#ifdef CONFIG_SYSFS
 751/**
 752 * sysfs_show_current_clocksources - sysfs interface for current clocksource
 753 * @dev:        unused
 754 * @buf:        char buffer to be filled with clocksource list
 755 *
 756 * Provides sysfs interface for listing current clocksource.
 757 */
 758static ssize_t
 759sysfs_show_current_clocksources(struct sys_device *dev,
 760                                struct sysdev_attribute *attr, char *buf)
 761{
 762        ssize_t count = 0;
 763
 764        mutex_lock(&clocksource_mutex);
 765        count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
 766        mutex_unlock(&clocksource_mutex);
 767
 768        return count;
 769}
 770
 771/**
 772 * sysfs_override_clocksource - interface for manually overriding clocksource
 773 * @dev:        unused
 774 * @buf:        name of override clocksource
 775 * @count:      length of buffer
 776 *
 777 * Takes input from sysfs interface for manually overriding the default
 778 * clocksource selection.
 779 */
 780static ssize_t sysfs_override_clocksource(struct sys_device *dev,
 781                                          struct sysdev_attribute *attr,
 782                                          const char *buf, size_t count)
 783{
 784        size_t ret = count;
 785
 786        /* strings from sysfs write are not 0 terminated! */
 787        if (count >= sizeof(override_name))
 788                return -EINVAL;
 789
 790        /* strip of \n: */
 791        if (buf[count-1] == '\n')
 792                count--;
 793
 794        mutex_lock(&clocksource_mutex);
 795
 796        if (count > 0)
 797                memcpy(override_name, buf, count);
 798        override_name[count] = 0;
 799        clocksource_select();
 800
 801        mutex_unlock(&clocksource_mutex);
 802
 803        return ret;
 804}
 805
 806/**
 807 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
 808 * @dev:        unused
 809 * @buf:        char buffer to be filled with clocksource list
 810 *
 811 * Provides sysfs interface for listing registered clocksources
 812 */
 813static ssize_t
 814sysfs_show_available_clocksources(struct sys_device *dev,
 815                                  struct sysdev_attribute *attr,
 816                                  char *buf)
 817{
 818        struct clocksource *src;
 819        ssize_t count = 0;
 820
 821        mutex_lock(&clocksource_mutex);
 822        list_for_each_entry(src, &clocksource_list, list) {
 823                /*
 824                 * Don't show non-HRES clocksource if the tick code is
 825                 * in one shot mode (highres=on or nohz=on)
 826                 */
 827                if (!tick_oneshot_mode_active() ||
 828                    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 829                        count += snprintf(buf + count,
 830                                  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
 831                                  "%s ", src->name);
 832        }
 833        mutex_unlock(&clocksource_mutex);
 834
 835        count += snprintf(buf + count,
 836                          max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
 837
 838        return count;
 839}
 840
 841/*
 842 * Sysfs setup bits:
 843 */
 844static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
 845                   sysfs_override_clocksource);
 846
 847static SYSDEV_ATTR(available_clocksource, 0444,
 848                   sysfs_show_available_clocksources, NULL);
 849
 850static struct sysdev_class clocksource_sysclass = {
 851        .name = "clocksource",
 852};
 853
 854static struct sys_device device_clocksource = {
 855        .id     = 0,
 856        .cls    = &clocksource_sysclass,
 857};
 858
 859static int __init init_clocksource_sysfs(void)
 860{
 861        int error = sysdev_class_register(&clocksource_sysclass);
 862
 863        if (!error)
 864                error = sysdev_register(&device_clocksource);
 865        if (!error)
 866                error = sysdev_create_file(
 867                                &device_clocksource,
 868                                &attr_current_clocksource);
 869        if (!error)
 870                error = sysdev_create_file(
 871                                &device_clocksource,
 872                                &attr_available_clocksource);
 873        return error;
 874}
 875
 876device_initcall(init_clocksource_sysfs);
 877#endif /* CONFIG_SYSFS */
 878
 879/**
 880 * boot_override_clocksource - boot clock override
 881 * @str:        override name
 882 *
 883 * Takes a clocksource= boot argument and uses it
 884 * as the clocksource override name.
 885 */
 886static int __init boot_override_clocksource(char* str)
 887{
 888        mutex_lock(&clocksource_mutex);
 889        if (str)
 890                strlcpy(override_name, str, sizeof(override_name));
 891        mutex_unlock(&clocksource_mutex);
 892        return 1;
 893}
 894
 895__setup("clocksource=", boot_override_clocksource);
 896
 897/**
 898 * boot_override_clock - Compatibility layer for deprecated boot option
 899 * @str:        override name
 900 *
 901 * DEPRECATED! Takes a clock= boot argument and uses it
 902 * as the clocksource override name
 903 */
 904static int __init boot_override_clock(char* str)
 905{
 906        if (!strcmp(str, "pmtmr")) {
 907                printk("Warning: clock=pmtmr is deprecated. "
 908                        "Use clocksource=acpi_pm.\n");
 909                return boot_override_clocksource("acpi_pm");
 910        }
 911        printk("Warning! clock= boot option is deprecated. "
 912                "Use clocksource=xyz\n");
 913        return boot_override_clocksource(str);
 914}
 915
 916__setup("clock=", boot_override_clock);
 917