linux/kernel/timer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/timer.c
   3 *
   4 *  Kernel internal timers, basic process system calls
   5 *
   6 *  Copyright (C) 1991, 1992  Linus Torvalds
   7 *
   8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   9 *
  10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13 *              serialize accesses to xtime/lost_ticks).
  14 *                              Copyright (C) 1998  Andrea Arcangeli
  15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  16 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20 */
  21
  22#include <linux/kernel_stat.h>
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/percpu.h>
  26#include <linux/init.h>
  27#include <linux/mm.h>
  28#include <linux/swap.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/notifier.h>
  31#include <linux/thread_info.h>
  32#include <linux/time.h>
  33#include <linux/jiffies.h>
  34#include <linux/posix-timers.h>
  35#include <linux/cpu.h>
  36#include <linux/syscalls.h>
  37#include <linux/delay.h>
  38#include <linux/tick.h>
  39#include <linux/kallsyms.h>
  40#include <linux/irq_work.h>
  41#include <linux/sched.h>
  42#include <linux/slab.h>
  43
  44#include <asm/uaccess.h>
  45#include <asm/unistd.h>
  46#include <asm/div64.h>
  47#include <asm/timex.h>
  48#include <asm/io.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/timer.h>
  52
  53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  54
  55EXPORT_SYMBOL(jiffies_64);
  56
  57/*
  58 * per-CPU timer vector definitions:
  59 */
  60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  62#define TVN_SIZE (1 << TVN_BITS)
  63#define TVR_SIZE (1 << TVR_BITS)
  64#define TVN_MASK (TVN_SIZE - 1)
  65#define TVR_MASK (TVR_SIZE - 1)
  66
  67struct tvec {
  68        struct list_head vec[TVN_SIZE];
  69};
  70
  71struct tvec_root {
  72        struct list_head vec[TVR_SIZE];
  73};
  74
  75struct tvec_base {
  76        spinlock_t lock;
  77        struct timer_list *running_timer;
  78        unsigned long timer_jiffies;
  79        unsigned long next_timer;
  80        struct tvec_root tv1;
  81        struct tvec tv2;
  82        struct tvec tv3;
  83        struct tvec tv4;
  84        struct tvec tv5;
  85} ____cacheline_aligned;
  86
  87struct tvec_base boot_tvec_bases;
  88EXPORT_SYMBOL(boot_tvec_bases);
  89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  90
  91/* Functions below help us manage 'deferrable' flag */
  92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  93{
  94        return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  95}
  96
  97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  98{
  99        return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
 100}
 101
 102static inline void timer_set_deferrable(struct timer_list *timer)
 103{
 104        timer->base = TBASE_MAKE_DEFERRED(timer->base);
 105}
 106
 107static inline void
 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
 109{
 110        timer->base = (struct tvec_base *)((unsigned long)(new_base) |
 111                                      tbase_get_deferrable(timer->base));
 112}
 113
 114static unsigned long round_jiffies_common(unsigned long j, int cpu,
 115                bool force_up)
 116{
 117        int rem;
 118        unsigned long original = j;
 119
 120        /*
 121         * We don't want all cpus firing their timers at once hitting the
 122         * same lock or cachelines, so we skew each extra cpu with an extra
 123         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 124         * already did this.
 125         * The skew is done by adding 3*cpunr, then round, then subtract this
 126         * extra offset again.
 127         */
 128        j += cpu * 3;
 129
 130        rem = j % HZ;
 131
 132        /*
 133         * If the target jiffie is just after a whole second (which can happen
 134         * due to delays of the timer irq, long irq off times etc etc) then
 135         * we should round down to the whole second, not up. Use 1/4th second
 136         * as cutoff for this rounding as an extreme upper bound for this.
 137         * But never round down if @force_up is set.
 138         */
 139        if (rem < HZ/4 && !force_up) /* round down */
 140                j = j - rem;
 141        else /* round up */
 142                j = j - rem + HZ;
 143
 144        /* now that we have rounded, subtract the extra skew again */
 145        j -= cpu * 3;
 146
 147        if (j <= jiffies) /* rounding ate our timeout entirely; */
 148                return original;
 149        return j;
 150}
 151
 152/**
 153 * __round_jiffies - function to round jiffies to a full second
 154 * @j: the time in (absolute) jiffies that should be rounded
 155 * @cpu: the processor number on which the timeout will happen
 156 *
 157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 158 * up or down to (approximately) full seconds. This is useful for timers
 159 * for which the exact time they fire does not matter too much, as long as
 160 * they fire approximately every X seconds.
 161 *
 162 * By rounding these timers to whole seconds, all such timers will fire
 163 * at the same time, rather than at various times spread out. The goal
 164 * of this is to have the CPU wake up less, which saves power.
 165 *
 166 * The exact rounding is skewed for each processor to avoid all
 167 * processors firing at the exact same time, which could lead
 168 * to lock contention or spurious cache line bouncing.
 169 *
 170 * The return value is the rounded version of the @j parameter.
 171 */
 172unsigned long __round_jiffies(unsigned long j, int cpu)
 173{
 174        return round_jiffies_common(j, cpu, false);
 175}
 176EXPORT_SYMBOL_GPL(__round_jiffies);
 177
 178/**
 179 * __round_jiffies_relative - function to round jiffies to a full second
 180 * @j: the time in (relative) jiffies that should be rounded
 181 * @cpu: the processor number on which the timeout will happen
 182 *
 183 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 184 * up or down to (approximately) full seconds. This is useful for timers
 185 * for which the exact time they fire does not matter too much, as long as
 186 * they fire approximately every X seconds.
 187 *
 188 * By rounding these timers to whole seconds, all such timers will fire
 189 * at the same time, rather than at various times spread out. The goal
 190 * of this is to have the CPU wake up less, which saves power.
 191 *
 192 * The exact rounding is skewed for each processor to avoid all
 193 * processors firing at the exact same time, which could lead
 194 * to lock contention or spurious cache line bouncing.
 195 *
 196 * The return value is the rounded version of the @j parameter.
 197 */
 198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 199{
 200        unsigned long j0 = jiffies;
 201
 202        /* Use j0 because jiffies might change while we run */
 203        return round_jiffies_common(j + j0, cpu, false) - j0;
 204}
 205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 206
 207/**
 208 * round_jiffies - function to round jiffies to a full second
 209 * @j: the time in (absolute) jiffies that should be rounded
 210 *
 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
 212 * up or down to (approximately) full seconds. This is useful for timers
 213 * for which the exact time they fire does not matter too much, as long as
 214 * they fire approximately every X seconds.
 215 *
 216 * By rounding these timers to whole seconds, all such timers will fire
 217 * at the same time, rather than at various times spread out. The goal
 218 * of this is to have the CPU wake up less, which saves power.
 219 *
 220 * The return value is the rounded version of the @j parameter.
 221 */
 222unsigned long round_jiffies(unsigned long j)
 223{
 224        return round_jiffies_common(j, raw_smp_processor_id(), false);
 225}
 226EXPORT_SYMBOL_GPL(round_jiffies);
 227
 228/**
 229 * round_jiffies_relative - function to round jiffies to a full second
 230 * @j: the time in (relative) jiffies that should be rounded
 231 *
 232 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 233 * up or down to (approximately) full seconds. This is useful for timers
 234 * for which the exact time they fire does not matter too much, as long as
 235 * they fire approximately every X seconds.
 236 *
 237 * By rounding these timers to whole seconds, all such timers will fire
 238 * at the same time, rather than at various times spread out. The goal
 239 * of this is to have the CPU wake up less, which saves power.
 240 *
 241 * The return value is the rounded version of the @j parameter.
 242 */
 243unsigned long round_jiffies_relative(unsigned long j)
 244{
 245        return __round_jiffies_relative(j, raw_smp_processor_id());
 246}
 247EXPORT_SYMBOL_GPL(round_jiffies_relative);
 248
 249/**
 250 * __round_jiffies_up - function to round jiffies up to a full second
 251 * @j: the time in (absolute) jiffies that should be rounded
 252 * @cpu: the processor number on which the timeout will happen
 253 *
 254 * This is the same as __round_jiffies() except that it will never
 255 * round down.  This is useful for timeouts for which the exact time
 256 * of firing does not matter too much, as long as they don't fire too
 257 * early.
 258 */
 259unsigned long __round_jiffies_up(unsigned long j, int cpu)
 260{
 261        return round_jiffies_common(j, cpu, true);
 262}
 263EXPORT_SYMBOL_GPL(__round_jiffies_up);
 264
 265/**
 266 * __round_jiffies_up_relative - function to round jiffies up to a full second
 267 * @j: the time in (relative) jiffies that should be rounded
 268 * @cpu: the processor number on which the timeout will happen
 269 *
 270 * This is the same as __round_jiffies_relative() except that it will never
 271 * round down.  This is useful for timeouts for which the exact time
 272 * of firing does not matter too much, as long as they don't fire too
 273 * early.
 274 */
 275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 276{
 277        unsigned long j0 = jiffies;
 278
 279        /* Use j0 because jiffies might change while we run */
 280        return round_jiffies_common(j + j0, cpu, true) - j0;
 281}
 282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 283
 284/**
 285 * round_jiffies_up - function to round jiffies up to a full second
 286 * @j: the time in (absolute) jiffies that should be rounded
 287 *
 288 * This is the same as round_jiffies() except that it will never
 289 * round down.  This is useful for timeouts for which the exact time
 290 * of firing does not matter too much, as long as they don't fire too
 291 * early.
 292 */
 293unsigned long round_jiffies_up(unsigned long j)
 294{
 295        return round_jiffies_common(j, raw_smp_processor_id(), true);
 296}
 297EXPORT_SYMBOL_GPL(round_jiffies_up);
 298
 299/**
 300 * round_jiffies_up_relative - function to round jiffies up to a full second
 301 * @j: the time in (relative) jiffies that should be rounded
 302 *
 303 * This is the same as round_jiffies_relative() except that it will never
 304 * round down.  This is useful for timeouts for which the exact time
 305 * of firing does not matter too much, as long as they don't fire too
 306 * early.
 307 */
 308unsigned long round_jiffies_up_relative(unsigned long j)
 309{
 310        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 311}
 312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 313
 314/**
 315 * set_timer_slack - set the allowed slack for a timer
 316 * @timer: the timer to be modified
 317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 318 *
 319 * Set the amount of time, in jiffies, that a certain timer has
 320 * in terms of slack. By setting this value, the timer subsystem
 321 * will schedule the actual timer somewhere between
 322 * the time mod_timer() asks for, and that time plus the slack.
 323 *
 324 * By setting the slack to -1, a percentage of the delay is used
 325 * instead.
 326 */
 327void set_timer_slack(struct timer_list *timer, int slack_hz)
 328{
 329        timer->slack = slack_hz;
 330}
 331EXPORT_SYMBOL_GPL(set_timer_slack);
 332
 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
 334{
 335        unsigned long expires = timer->expires;
 336        unsigned long idx = expires - base->timer_jiffies;
 337        struct list_head *vec;
 338
 339        if (idx < TVR_SIZE) {
 340                int i = expires & TVR_MASK;
 341                vec = base->tv1.vec + i;
 342        } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
 343                int i = (expires >> TVR_BITS) & TVN_MASK;
 344                vec = base->tv2.vec + i;
 345        } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
 346                int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
 347                vec = base->tv3.vec + i;
 348        } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
 349                int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
 350                vec = base->tv4.vec + i;
 351        } else if ((signed long) idx < 0) {
 352                /*
 353                 * Can happen if you add a timer with expires == jiffies,
 354                 * or you set a timer to go off in the past
 355                 */
 356                vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
 357        } else {
 358                int i;
 359                /* If the timeout is larger than 0xffffffff on 64-bit
 360                 * architectures then we use the maximum timeout:
 361                 */
 362                if (idx > 0xffffffffUL) {
 363                        idx = 0xffffffffUL;
 364                        expires = idx + base->timer_jiffies;
 365                }
 366                i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
 367                vec = base->tv5.vec + i;
 368        }
 369        /*
 370         * Timers are FIFO:
 371         */
 372        list_add_tail(&timer->entry, vec);
 373}
 374
 375#ifdef CONFIG_TIMER_STATS
 376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
 377{
 378        if (timer->start_site)
 379                return;
 380
 381        timer->start_site = addr;
 382        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 383        timer->start_pid = current->pid;
 384}
 385
 386static void timer_stats_account_timer(struct timer_list *timer)
 387{
 388        unsigned int flag = 0;
 389
 390        if (likely(!timer->start_site))
 391                return;
 392        if (unlikely(tbase_get_deferrable(timer->base)))
 393                flag |= TIMER_STATS_FLAG_DEFERRABLE;
 394
 395        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 396                                 timer->function, timer->start_comm, flag);
 397}
 398
 399#else
 400static void timer_stats_account_timer(struct timer_list *timer) {}
 401#endif
 402
 403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 404
 405static struct debug_obj_descr timer_debug_descr;
 406
 407static void *timer_debug_hint(void *addr)
 408{
 409        return ((struct timer_list *) addr)->function;
 410}
 411
 412/*
 413 * fixup_init is called when:
 414 * - an active object is initialized
 415 */
 416static int timer_fixup_init(void *addr, enum debug_obj_state state)
 417{
 418        struct timer_list *timer = addr;
 419
 420        switch (state) {
 421        case ODEBUG_STATE_ACTIVE:
 422                del_timer_sync(timer);
 423                debug_object_init(timer, &timer_debug_descr);
 424                return 1;
 425        default:
 426                return 0;
 427        }
 428}
 429
 430/*
 431 * fixup_activate is called when:
 432 * - an active object is activated
 433 * - an unknown object is activated (might be a statically initialized object)
 434 */
 435static int timer_fixup_activate(void *addr, enum debug_obj_state state)
 436{
 437        struct timer_list *timer = addr;
 438
 439        switch (state) {
 440
 441        case ODEBUG_STATE_NOTAVAILABLE:
 442                /*
 443                 * This is not really a fixup. The timer was
 444                 * statically initialized. We just make sure that it
 445                 * is tracked in the object tracker.
 446                 */
 447                if (timer->entry.next == NULL &&
 448                    timer->entry.prev == TIMER_ENTRY_STATIC) {
 449                        debug_object_init(timer, &timer_debug_descr);
 450                        debug_object_activate(timer, &timer_debug_descr);
 451                        return 0;
 452                } else {
 453                        WARN_ON_ONCE(1);
 454                }
 455                return 0;
 456
 457        case ODEBUG_STATE_ACTIVE:
 458                WARN_ON(1);
 459
 460        default:
 461                return 0;
 462        }
 463}
 464
 465/*
 466 * fixup_free is called when:
 467 * - an active object is freed
 468 */
 469static int timer_fixup_free(void *addr, enum debug_obj_state state)
 470{
 471        struct timer_list *timer = addr;
 472
 473        switch (state) {
 474        case ODEBUG_STATE_ACTIVE:
 475                del_timer_sync(timer);
 476                debug_object_free(timer, &timer_debug_descr);
 477                return 1;
 478        default:
 479                return 0;
 480        }
 481}
 482
 483static struct debug_obj_descr timer_debug_descr = {
 484        .name           = "timer_list",
 485        .debug_hint     = timer_debug_hint,
 486        .fixup_init     = timer_fixup_init,
 487        .fixup_activate = timer_fixup_activate,
 488        .fixup_free     = timer_fixup_free,
 489};
 490
 491static inline void debug_timer_init(struct timer_list *timer)
 492{
 493        debug_object_init(timer, &timer_debug_descr);
 494}
 495
 496static inline void debug_timer_activate(struct timer_list *timer)
 497{
 498        debug_object_activate(timer, &timer_debug_descr);
 499}
 500
 501static inline void debug_timer_deactivate(struct timer_list *timer)
 502{
 503        debug_object_deactivate(timer, &timer_debug_descr);
 504}
 505
 506static inline void debug_timer_free(struct timer_list *timer)
 507{
 508        debug_object_free(timer, &timer_debug_descr);
 509}
 510
 511static void __init_timer(struct timer_list *timer,
 512                         const char *name,
 513                         struct lock_class_key *key);
 514
 515void init_timer_on_stack_key(struct timer_list *timer,
 516                             const char *name,
 517                             struct lock_class_key *key)
 518{
 519        debug_object_init_on_stack(timer, &timer_debug_descr);
 520        __init_timer(timer, name, key);
 521}
 522EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 523
 524void destroy_timer_on_stack(struct timer_list *timer)
 525{
 526        debug_object_free(timer, &timer_debug_descr);
 527}
 528EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 529
 530#else
 531static inline void debug_timer_init(struct timer_list *timer) { }
 532static inline void debug_timer_activate(struct timer_list *timer) { }
 533static inline void debug_timer_deactivate(struct timer_list *timer) { }
 534#endif
 535
 536static inline void debug_init(struct timer_list *timer)
 537{
 538        debug_timer_init(timer);
 539        trace_timer_init(timer);
 540}
 541
 542static inline void
 543debug_activate(struct timer_list *timer, unsigned long expires)
 544{
 545        debug_timer_activate(timer);
 546        trace_timer_start(timer, expires);
 547}
 548
 549static inline void debug_deactivate(struct timer_list *timer)
 550{
 551        debug_timer_deactivate(timer);
 552        trace_timer_cancel(timer);
 553}
 554
 555static void __init_timer(struct timer_list *timer,
 556                         const char *name,
 557                         struct lock_class_key *key)
 558{
 559        timer->entry.next = NULL;
 560        timer->base = __raw_get_cpu_var(tvec_bases);
 561        timer->slack = -1;
 562#ifdef CONFIG_TIMER_STATS
 563        timer->start_site = NULL;
 564        timer->start_pid = -1;
 565        memset(timer->start_comm, 0, TASK_COMM_LEN);
 566#endif
 567        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 568}
 569
 570void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
 571                                         const char *name,
 572                                         struct lock_class_key *key,
 573                                         void (*function)(unsigned long),
 574                                         unsigned long data)
 575{
 576        timer->function = function;
 577        timer->data = data;
 578        init_timer_on_stack_key(timer, name, key);
 579        timer_set_deferrable(timer);
 580}
 581EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
 582
 583/**
 584 * init_timer_key - initialize a timer
 585 * @timer: the timer to be initialized
 586 * @name: name of the timer
 587 * @key: lockdep class key of the fake lock used for tracking timer
 588 *       sync lock dependencies
 589 *
 590 * init_timer_key() must be done to a timer prior calling *any* of the
 591 * other timer functions.
 592 */
 593void init_timer_key(struct timer_list *timer,
 594                    const char *name,
 595                    struct lock_class_key *key)
 596{
 597        debug_init(timer);
 598        __init_timer(timer, name, key);
 599}
 600EXPORT_SYMBOL(init_timer_key);
 601
 602void init_timer_deferrable_key(struct timer_list *timer,
 603                               const char *name,
 604                               struct lock_class_key *key)
 605{
 606        init_timer_key(timer, name, key);
 607        timer_set_deferrable(timer);
 608}
 609EXPORT_SYMBOL(init_timer_deferrable_key);
 610
 611static inline void detach_timer(struct timer_list *timer,
 612                                int clear_pending)
 613{
 614        struct list_head *entry = &timer->entry;
 615
 616        debug_deactivate(timer);
 617
 618        __list_del(entry->prev, entry->next);
 619        if (clear_pending)
 620                entry->next = NULL;
 621        entry->prev = LIST_POISON2;
 622}
 623
 624/*
 625 * We are using hashed locking: holding per_cpu(tvec_bases).lock
 626 * means that all timers which are tied to this base via timer->base are
 627 * locked, and the base itself is locked too.
 628 *
 629 * So __run_timers/migrate_timers can safely modify all timers which could
 630 * be found on ->tvX lists.
 631 *
 632 * When the timer's base is locked, and the timer removed from list, it is
 633 * possible to set timer->base = NULL and drop the lock: the timer remains
 634 * locked.
 635 */
 636static struct tvec_base *lock_timer_base(struct timer_list *timer,
 637                                        unsigned long *flags)
 638        __acquires(timer->base->lock)
 639{
 640        struct tvec_base *base;
 641
 642        for (;;) {
 643                struct tvec_base *prelock_base = timer->base;
 644                base = tbase_get_base(prelock_base);
 645                if (likely(base != NULL)) {
 646                        spin_lock_irqsave(&base->lock, *flags);
 647                        if (likely(prelock_base == timer->base))
 648                                return base;
 649                        /* The timer has migrated to another CPU */
 650                        spin_unlock_irqrestore(&base->lock, *flags);
 651                }
 652                cpu_relax();
 653        }
 654}
 655
 656static inline int
 657__mod_timer(struct timer_list *timer, unsigned long expires,
 658                                                bool pending_only, int pinned)
 659{
 660        struct tvec_base *base, *new_base;
 661        unsigned long flags;
 662        int ret = 0 , cpu;
 663
 664        timer_stats_timer_set_start_info(timer);
 665        BUG_ON(!timer->function);
 666
 667        base = lock_timer_base(timer, &flags);
 668
 669        if (timer_pending(timer)) {
 670                detach_timer(timer, 0);
 671                if (timer->expires == base->next_timer &&
 672                    !tbase_get_deferrable(timer->base))
 673                        base->next_timer = base->timer_jiffies;
 674                ret = 1;
 675        } else {
 676                if (pending_only)
 677                        goto out_unlock;
 678        }
 679
 680        debug_activate(timer, expires);
 681
 682        cpu = smp_processor_id();
 683
 684#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
 685        if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
 686                cpu = get_nohz_timer_target();
 687#endif
 688        new_base = per_cpu(tvec_bases, cpu);
 689
 690        if (base != new_base) {
 691                /*
 692                 * We are trying to schedule the timer on the local CPU.
 693                 * However we can't change timer's base while it is running,
 694                 * otherwise del_timer_sync() can't detect that the timer's
 695                 * handler yet has not finished. This also guarantees that
 696                 * the timer is serialized wrt itself.
 697                 */
 698                if (likely(base->running_timer != timer)) {
 699                        /* See the comment in lock_timer_base() */
 700                        timer_set_base(timer, NULL);
 701                        spin_unlock(&base->lock);
 702                        base = new_base;
 703                        spin_lock(&base->lock);
 704                        timer_set_base(timer, base);
 705                }
 706        }
 707
 708        timer->expires = expires;
 709        if (time_before(timer->expires, base->next_timer) &&
 710            !tbase_get_deferrable(timer->base))
 711                base->next_timer = timer->expires;
 712        internal_add_timer(base, timer);
 713
 714out_unlock:
 715        spin_unlock_irqrestore(&base->lock, flags);
 716
 717        return ret;
 718}
 719
 720/**
 721 * mod_timer_pending - modify a pending timer's timeout
 722 * @timer: the pending timer to be modified
 723 * @expires: new timeout in jiffies
 724 *
 725 * mod_timer_pending() is the same for pending timers as mod_timer(),
 726 * but will not re-activate and modify already deleted timers.
 727 *
 728 * It is useful for unserialized use of timers.
 729 */
 730int mod_timer_pending(struct timer_list *timer, unsigned long expires)
 731{
 732        return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
 733}
 734EXPORT_SYMBOL(mod_timer_pending);
 735
 736/*
 737 * Decide where to put the timer while taking the slack into account
 738 *
 739 * Algorithm:
 740 *   1) calculate the maximum (absolute) time
 741 *   2) calculate the highest bit where the expires and new max are different
 742 *   3) use this bit to make a mask
 743 *   4) use the bitmask to round down the maximum time, so that all last
 744 *      bits are zeros
 745 */
 746static inline
 747unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
 748{
 749        unsigned long expires_limit, mask;
 750        int bit;
 751
 752        if (timer->slack >= 0) {
 753                expires_limit = expires + timer->slack;
 754        } else {
 755                long delta = expires - jiffies;
 756
 757                if (delta < 256)
 758                        return expires;
 759
 760                expires_limit = expires + delta / 256;
 761        }
 762        mask = expires ^ expires_limit;
 763        if (mask == 0)
 764                return expires;
 765
 766        bit = find_last_bit(&mask, BITS_PER_LONG);
 767
 768        mask = (1 << bit) - 1;
 769
 770        expires_limit = expires_limit & ~(mask);
 771
 772        return expires_limit;
 773}
 774
 775/**
 776 * mod_timer - modify a timer's timeout
 777 * @timer: the timer to be modified
 778 * @expires: new timeout in jiffies
 779 *
 780 * mod_timer() is a more efficient way to update the expire field of an
 781 * active timer (if the timer is inactive it will be activated)
 782 *
 783 * mod_timer(timer, expires) is equivalent to:
 784 *
 785 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 786 *
 787 * Note that if there are multiple unserialized concurrent users of the
 788 * same timer, then mod_timer() is the only safe way to modify the timeout,
 789 * since add_timer() cannot modify an already running timer.
 790 *
 791 * The function returns whether it has modified a pending timer or not.
 792 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 793 * active timer returns 1.)
 794 */
 795int mod_timer(struct timer_list *timer, unsigned long expires)
 796{
 797        expires = apply_slack(timer, expires);
 798
 799        /*
 800         * This is a common optimization triggered by the
 801         * networking code - if the timer is re-modified
 802         * to be the same thing then just return:
 803         */
 804        if (timer_pending(timer) && timer->expires == expires)
 805                return 1;
 806
 807        return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
 808}
 809EXPORT_SYMBOL(mod_timer);
 810
 811/**
 812 * mod_timer_pinned - modify a timer's timeout
 813 * @timer: the timer to be modified
 814 * @expires: new timeout in jiffies
 815 *
 816 * mod_timer_pinned() is a way to update the expire field of an
 817 * active timer (if the timer is inactive it will be activated)
 818 * and not allow the timer to be migrated to a different CPU.
 819 *
 820 * mod_timer_pinned(timer, expires) is equivalent to:
 821 *
 822 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 823 */
 824int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
 825{
 826        if (timer->expires == expires && timer_pending(timer))
 827                return 1;
 828
 829        return __mod_timer(timer, expires, false, TIMER_PINNED);
 830}
 831EXPORT_SYMBOL(mod_timer_pinned);
 832
 833/**
 834 * add_timer - start a timer
 835 * @timer: the timer to be added
 836 *
 837 * The kernel will do a ->function(->data) callback from the
 838 * timer interrupt at the ->expires point in the future. The
 839 * current time is 'jiffies'.
 840 *
 841 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 842 * fields must be set prior calling this function.
 843 *
 844 * Timers with an ->expires field in the past will be executed in the next
 845 * timer tick.
 846 */
 847void add_timer(struct timer_list *timer)
 848{
 849        BUG_ON(timer_pending(timer));
 850        mod_timer(timer, timer->expires);
 851}
 852EXPORT_SYMBOL(add_timer);
 853
 854/**
 855 * add_timer_on - start a timer on a particular CPU
 856 * @timer: the timer to be added
 857 * @cpu: the CPU to start it on
 858 *
 859 * This is not very scalable on SMP. Double adds are not possible.
 860 */
 861void add_timer_on(struct timer_list *timer, int cpu)
 862{
 863        struct tvec_base *base = per_cpu(tvec_bases, cpu);
 864        unsigned long flags;
 865
 866        timer_stats_timer_set_start_info(timer);
 867        BUG_ON(timer_pending(timer) || !timer->function);
 868        spin_lock_irqsave(&base->lock, flags);
 869        timer_set_base(timer, base);
 870        debug_activate(timer, timer->expires);
 871        if (time_before(timer->expires, base->next_timer) &&
 872            !tbase_get_deferrable(timer->base))
 873                base->next_timer = timer->expires;
 874        internal_add_timer(base, timer);
 875        /*
 876         * Check whether the other CPU is idle and needs to be
 877         * triggered to reevaluate the timer wheel when nohz is
 878         * active. We are protected against the other CPU fiddling
 879         * with the timer by holding the timer base lock. This also
 880         * makes sure that a CPU on the way to idle can not evaluate
 881         * the timer wheel.
 882         */
 883        wake_up_idle_cpu(cpu);
 884        spin_unlock_irqrestore(&base->lock, flags);
 885}
 886EXPORT_SYMBOL_GPL(add_timer_on);
 887
 888/**
 889 * del_timer - deactive a timer.
 890 * @timer: the timer to be deactivated
 891 *
 892 * del_timer() deactivates a timer - this works on both active and inactive
 893 * timers.
 894 *
 895 * The function returns whether it has deactivated a pending timer or not.
 896 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 897 * active timer returns 1.)
 898 */
 899int del_timer(struct timer_list *timer)
 900{
 901        struct tvec_base *base;
 902        unsigned long flags;
 903        int ret = 0;
 904
 905        timer_stats_timer_clear_start_info(timer);
 906        if (timer_pending(timer)) {
 907                base = lock_timer_base(timer, &flags);
 908                if (timer_pending(timer)) {
 909                        detach_timer(timer, 1);
 910                        if (timer->expires == base->next_timer &&
 911                            !tbase_get_deferrable(timer->base))
 912                                base->next_timer = base->timer_jiffies;
 913                        ret = 1;
 914                }
 915                spin_unlock_irqrestore(&base->lock, flags);
 916        }
 917
 918        return ret;
 919}
 920EXPORT_SYMBOL(del_timer);
 921
 922/**
 923 * try_to_del_timer_sync - Try to deactivate a timer
 924 * @timer: timer do del
 925 *
 926 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 927 * exit the timer is not queued and the handler is not running on any CPU.
 928 */
 929int try_to_del_timer_sync(struct timer_list *timer)
 930{
 931        struct tvec_base *base;
 932        unsigned long flags;
 933        int ret = -1;
 934
 935        base = lock_timer_base(timer, &flags);
 936
 937        if (base->running_timer == timer)
 938                goto out;
 939
 940        timer_stats_timer_clear_start_info(timer);
 941        ret = 0;
 942        if (timer_pending(timer)) {
 943                detach_timer(timer, 1);
 944                if (timer->expires == base->next_timer &&
 945                    !tbase_get_deferrable(timer->base))
 946                        base->next_timer = base->timer_jiffies;
 947                ret = 1;
 948        }
 949out:
 950        spin_unlock_irqrestore(&base->lock, flags);
 951
 952        return ret;
 953}
 954EXPORT_SYMBOL(try_to_del_timer_sync);
 955
 956#ifdef CONFIG_SMP
 957/**
 958 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 959 * @timer: the timer to be deactivated
 960 *
 961 * This function only differs from del_timer() on SMP: besides deactivating
 962 * the timer it also makes sure the handler has finished executing on other
 963 * CPUs.
 964 *
 965 * Synchronization rules: Callers must prevent restarting of the timer,
 966 * otherwise this function is meaningless. It must not be called from
 967 * interrupt contexts. The caller must not hold locks which would prevent
 968 * completion of the timer's handler. The timer's handler must not call
 969 * add_timer_on(). Upon exit the timer is not queued and the handler is
 970 * not running on any CPU.
 971 *
 972 * Note: You must not hold locks that are held in interrupt context
 973 *   while calling this function. Even if the lock has nothing to do
 974 *   with the timer in question.  Here's why:
 975 *
 976 *    CPU0                             CPU1
 977 *    ----                             ----
 978 *                                   <SOFTIRQ>
 979 *                                   call_timer_fn();
 980 *                                     base->running_timer = mytimer;
 981 *  spin_lock_irq(somelock);
 982 *                                     <IRQ>
 983 *                                        spin_lock(somelock);
 984 *  del_timer_sync(mytimer);
 985 *   while (base->running_timer == mytimer);
 986 *
 987 * Now del_timer_sync() will never return and never release somelock.
 988 * The interrupt on the other CPU is waiting to grab somelock but
 989 * it has interrupted the softirq that CPU0 is waiting to finish.
 990 *
 991 * The function returns whether it has deactivated a pending timer or not.
 992 */
 993int del_timer_sync(struct timer_list *timer)
 994{
 995#ifdef CONFIG_LOCKDEP
 996        unsigned long flags;
 997
 998        /*
 999         * If lockdep gives a backtrace here, please reference
1000         * the synchronization rules above.
1001         */
1002        local_irq_save(flags);
1003        lock_map_acquire(&timer->lockdep_map);
1004        lock_map_release(&timer->lockdep_map);
1005        local_irq_restore(flags);
1006#endif
1007        /*
1008         * don't use it in hardirq context, because it
1009         * could lead to deadlock.
1010         */
1011        WARN_ON(in_irq());
1012        for (;;) {
1013                int ret = try_to_del_timer_sync(timer);
1014                if (ret >= 0)
1015                        return ret;
1016                cpu_relax();
1017        }
1018}
1019EXPORT_SYMBOL(del_timer_sync);
1020#endif
1021
1022static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1023{
1024        /* cascade all the timers from tv up one level */
1025        struct timer_list *timer, *tmp;
1026        struct list_head tv_list;
1027
1028        list_replace_init(tv->vec + index, &tv_list);
1029
1030        /*
1031         * We are removing _all_ timers from the list, so we
1032         * don't have to detach them individually.
1033         */
1034        list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1035                BUG_ON(tbase_get_base(timer->base) != base);
1036                internal_add_timer(base, timer);
1037        }
1038
1039        return index;
1040}
1041
1042static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1043                          unsigned long data)
1044{
1045        int preempt_count = preempt_count();
1046
1047#ifdef CONFIG_LOCKDEP
1048        /*
1049         * It is permissible to free the timer from inside the
1050         * function that is called from it, this we need to take into
1051         * account for lockdep too. To avoid bogus "held lock freed"
1052         * warnings as well as problems when looking into
1053         * timer->lockdep_map, make a copy and use that here.
1054         */
1055        struct lockdep_map lockdep_map = timer->lockdep_map;
1056#endif
1057        /*
1058         * Couple the lock chain with the lock chain at
1059         * del_timer_sync() by acquiring the lock_map around the fn()
1060         * call here and in del_timer_sync().
1061         */
1062        lock_map_acquire(&lockdep_map);
1063
1064        trace_timer_expire_entry(timer);
1065        fn(data);
1066        trace_timer_expire_exit(timer);
1067
1068        lock_map_release(&lockdep_map);
1069
1070        if (preempt_count != preempt_count()) {
1071                WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1072                          fn, preempt_count, preempt_count());
1073                /*
1074                 * Restore the preempt count. That gives us a decent
1075                 * chance to survive and extract information. If the
1076                 * callback kept a lock held, bad luck, but not worse
1077                 * than the BUG() we had.
1078                 */
1079                preempt_count() = preempt_count;
1080        }
1081}
1082
1083#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1084
1085/**
1086 * __run_timers - run all expired timers (if any) on this CPU.
1087 * @base: the timer vector to be processed.
1088 *
1089 * This function cascades all vectors and executes all expired timer
1090 * vectors.
1091 */
1092static inline void __run_timers(struct tvec_base *base)
1093{
1094        struct timer_list *timer;
1095
1096        spin_lock_irq(&base->lock);
1097        while (time_after_eq(jiffies, base->timer_jiffies)) {
1098                struct list_head work_list;
1099                struct list_head *head = &work_list;
1100                int index = base->timer_jiffies & TVR_MASK;
1101
1102                /*
1103                 * Cascade timers:
1104                 */
1105                if (!index &&
1106                        (!cascade(base, &base->tv2, INDEX(0))) &&
1107                                (!cascade(base, &base->tv3, INDEX(1))) &&
1108                                        !cascade(base, &base->tv4, INDEX(2)))
1109                        cascade(base, &base->tv5, INDEX(3));
1110                ++base->timer_jiffies;
1111                list_replace_init(base->tv1.vec + index, &work_list);
1112                while (!list_empty(head)) {
1113                        void (*fn)(unsigned long);
1114                        unsigned long data;
1115
1116                        timer = list_first_entry(head, struct timer_list,entry);
1117                        fn = timer->function;
1118                        data = timer->data;
1119
1120                        timer_stats_account_timer(timer);
1121
1122                        base->running_timer = timer;
1123                        detach_timer(timer, 1);
1124
1125                        spin_unlock_irq(&base->lock);
1126                        call_timer_fn(timer, fn, data);
1127                        spin_lock_irq(&base->lock);
1128                }
1129        }
1130        base->running_timer = NULL;
1131        spin_unlock_irq(&base->lock);
1132}
1133
1134#ifdef CONFIG_NO_HZ
1135/*
1136 * Find out when the next timer event is due to happen. This
1137 * is used on S/390 to stop all activity when a CPU is idle.
1138 * This function needs to be called with interrupts disabled.
1139 */
1140static unsigned long __next_timer_interrupt(struct tvec_base *base)
1141{
1142        unsigned long timer_jiffies = base->timer_jiffies;
1143        unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1144        int index, slot, array, found = 0;
1145        struct timer_list *nte;
1146        struct tvec *varray[4];
1147
1148        /* Look for timer events in tv1. */
1149        index = slot = timer_jiffies & TVR_MASK;
1150        do {
1151                list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1152                        if (tbase_get_deferrable(nte->base))
1153                                continue;
1154
1155                        found = 1;
1156                        expires = nte->expires;
1157                        /* Look at the cascade bucket(s)? */
1158                        if (!index || slot < index)
1159                                goto cascade;
1160                        return expires;
1161                }
1162                slot = (slot + 1) & TVR_MASK;
1163        } while (slot != index);
1164
1165cascade:
1166        /* Calculate the next cascade event */
1167        if (index)
1168                timer_jiffies += TVR_SIZE - index;
1169        timer_jiffies >>= TVR_BITS;
1170
1171        /* Check tv2-tv5. */
1172        varray[0] = &base->tv2;
1173        varray[1] = &base->tv3;
1174        varray[2] = &base->tv4;
1175        varray[3] = &base->tv5;
1176
1177        for (array = 0; array < 4; array++) {
1178                struct tvec *varp = varray[array];
1179
1180                index = slot = timer_jiffies & TVN_MASK;
1181                do {
1182                        list_for_each_entry(nte, varp->vec + slot, entry) {
1183                                if (tbase_get_deferrable(nte->base))
1184                                        continue;
1185
1186                                found = 1;
1187                                if (time_before(nte->expires, expires))
1188                                        expires = nte->expires;
1189                        }
1190                        /*
1191                         * Do we still search for the first timer or are
1192                         * we looking up the cascade buckets ?
1193                         */
1194                        if (found) {
1195                                /* Look at the cascade bucket(s)? */
1196                                if (!index || slot < index)
1197                                        break;
1198                                return expires;
1199                        }
1200                        slot = (slot + 1) & TVN_MASK;
1201                } while (slot != index);
1202
1203                if (index)
1204                        timer_jiffies += TVN_SIZE - index;
1205                timer_jiffies >>= TVN_BITS;
1206        }
1207        return expires;
1208}
1209
1210/*
1211 * Check, if the next hrtimer event is before the next timer wheel
1212 * event:
1213 */
1214static unsigned long cmp_next_hrtimer_event(unsigned long now,
1215                                            unsigned long expires)
1216{
1217        ktime_t hr_delta = hrtimer_get_next_event();
1218        struct timespec tsdelta;
1219        unsigned long delta;
1220
1221        if (hr_delta.tv64 == KTIME_MAX)
1222                return expires;
1223
1224        /*
1225         * Expired timer available, let it expire in the next tick
1226         */
1227        if (hr_delta.tv64 <= 0)
1228                return now + 1;
1229
1230        tsdelta = ktime_to_timespec(hr_delta);
1231        delta = timespec_to_jiffies(&tsdelta);
1232
1233        /*
1234         * Limit the delta to the max value, which is checked in
1235         * tick_nohz_stop_sched_tick():
1236         */
1237        if (delta > NEXT_TIMER_MAX_DELTA)
1238                delta = NEXT_TIMER_MAX_DELTA;
1239
1240        /*
1241         * Take rounding errors in to account and make sure, that it
1242         * expires in the next tick. Otherwise we go into an endless
1243         * ping pong due to tick_nohz_stop_sched_tick() retriggering
1244         * the timer softirq
1245         */
1246        if (delta < 1)
1247                delta = 1;
1248        now += delta;
1249        if (time_before(now, expires))
1250                return now;
1251        return expires;
1252}
1253
1254/**
1255 * get_next_timer_interrupt - return the jiffy of the next pending timer
1256 * @now: current time (in jiffies)
1257 */
1258unsigned long get_next_timer_interrupt(unsigned long now)
1259{
1260        struct tvec_base *base = __this_cpu_read(tvec_bases);
1261        unsigned long expires;
1262
1263        /*
1264         * Pretend that there is no timer pending if the cpu is offline.
1265         * Possible pending timers will be migrated later to an active cpu.
1266         */
1267        if (cpu_is_offline(smp_processor_id()))
1268                return now + NEXT_TIMER_MAX_DELTA;
1269        spin_lock(&base->lock);
1270        if (time_before_eq(base->next_timer, base->timer_jiffies))
1271                base->next_timer = __next_timer_interrupt(base);
1272        expires = base->next_timer;
1273        spin_unlock(&base->lock);
1274
1275        if (time_before_eq(expires, now))
1276                return now;
1277
1278        return cmp_next_hrtimer_event(now, expires);
1279}
1280#endif
1281
1282/*
1283 * Called from the timer interrupt handler to charge one tick to the current
1284 * process.  user_tick is 1 if the tick is user time, 0 for system.
1285 */
1286void update_process_times(int user_tick)
1287{
1288        struct task_struct *p = current;
1289        int cpu = smp_processor_id();
1290
1291        /* Note: this timer irq context must be accounted for as well. */
1292        account_process_tick(p, user_tick);
1293        run_local_timers();
1294        rcu_check_callbacks(cpu, user_tick);
1295        printk_tick();
1296#ifdef CONFIG_IRQ_WORK
1297        if (in_irq())
1298                irq_work_run();
1299#endif
1300        scheduler_tick();
1301        run_posix_cpu_timers(p);
1302}
1303
1304/*
1305 * This function runs timers and the timer-tq in bottom half context.
1306 */
1307static void run_timer_softirq(struct softirq_action *h)
1308{
1309        struct tvec_base *base = __this_cpu_read(tvec_bases);
1310
1311        hrtimer_run_pending();
1312
1313        if (time_after_eq(jiffies, base->timer_jiffies))
1314                __run_timers(base);
1315}
1316
1317/*
1318 * Called by the local, per-CPU timer interrupt on SMP.
1319 */
1320void run_local_timers(void)
1321{
1322        hrtimer_run_queues();
1323        raise_softirq(TIMER_SOFTIRQ);
1324}
1325
1326#ifdef __ARCH_WANT_SYS_ALARM
1327
1328/*
1329 * For backwards compatibility?  This can be done in libc so Alpha
1330 * and all newer ports shouldn't need it.
1331 */
1332SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1333{
1334        return alarm_setitimer(seconds);
1335}
1336
1337#endif
1338
1339#ifndef __alpha__
1340
1341/*
1342 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
1343 * should be moved into arch/i386 instead?
1344 */
1345
1346/**
1347 * sys_getpid - return the thread group id of the current process
1348 *
1349 * Note, despite the name, this returns the tgid not the pid.  The tgid and
1350 * the pid are identical unless CLONE_THREAD was specified on clone() in
1351 * which case the tgid is the same in all threads of the same group.
1352 *
1353 * This is SMP safe as current->tgid does not change.
1354 */
1355SYSCALL_DEFINE0(getpid)
1356{
1357        return task_tgid_vnr(current);
1358}
1359
1360/*
1361 * Accessing ->real_parent is not SMP-safe, it could
1362 * change from under us. However, we can use a stale
1363 * value of ->real_parent under rcu_read_lock(), see
1364 * release_task()->call_rcu(delayed_put_task_struct).
1365 */
1366SYSCALL_DEFINE0(getppid)
1367{
1368        int pid;
1369
1370        rcu_read_lock();
1371        pid = task_tgid_vnr(current->real_parent);
1372        rcu_read_unlock();
1373
1374        return pid;
1375}
1376
1377SYSCALL_DEFINE0(getuid)
1378{
1379        /* Only we change this so SMP safe */
1380        return current_uid();
1381}
1382
1383SYSCALL_DEFINE0(geteuid)
1384{
1385        /* Only we change this so SMP safe */
1386        return current_euid();
1387}
1388
1389SYSCALL_DEFINE0(getgid)
1390{
1391        /* Only we change this so SMP safe */
1392        return current_gid();
1393}
1394
1395SYSCALL_DEFINE0(getegid)
1396{
1397        /* Only we change this so SMP safe */
1398        return  current_egid();
1399}
1400
1401#endif
1402
1403static void process_timeout(unsigned long __data)
1404{
1405        wake_up_process((struct task_struct *)__data);
1406}
1407
1408/**
1409 * schedule_timeout - sleep until timeout
1410 * @timeout: timeout value in jiffies
1411 *
1412 * Make the current task sleep until @timeout jiffies have
1413 * elapsed. The routine will return immediately unless
1414 * the current task state has been set (see set_current_state()).
1415 *
1416 * You can set the task state as follows -
1417 *
1418 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1419 * pass before the routine returns. The routine will return 0
1420 *
1421 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1422 * delivered to the current task. In this case the remaining time
1423 * in jiffies will be returned, or 0 if the timer expired in time
1424 *
1425 * The current task state is guaranteed to be TASK_RUNNING when this
1426 * routine returns.
1427 *
1428 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1429 * the CPU away without a bound on the timeout. In this case the return
1430 * value will be %MAX_SCHEDULE_TIMEOUT.
1431 *
1432 * In all cases the return value is guaranteed to be non-negative.
1433 */
1434signed long __sched schedule_timeout(signed long timeout)
1435{
1436        struct timer_list timer;
1437        unsigned long expire;
1438
1439        switch (timeout)
1440        {
1441        case MAX_SCHEDULE_TIMEOUT:
1442                /*
1443                 * These two special cases are useful to be comfortable
1444                 * in the caller. Nothing more. We could take
1445                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1446                 * but I' d like to return a valid offset (>=0) to allow
1447                 * the caller to do everything it want with the retval.
1448                 */
1449                schedule();
1450                goto out;
1451        default:
1452                /*
1453                 * Another bit of PARANOID. Note that the retval will be
1454                 * 0 since no piece of kernel is supposed to do a check
1455                 * for a negative retval of schedule_timeout() (since it
1456                 * should never happens anyway). You just have the printk()
1457                 * that will tell you if something is gone wrong and where.
1458                 */
1459                if (timeout < 0) {
1460                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1461                                "value %lx\n", timeout);
1462                        dump_stack();
1463                        current->state = TASK_RUNNING;
1464                        goto out;
1465                }
1466        }
1467
1468        expire = timeout + jiffies;
1469
1470        setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1471        __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1472        schedule();
1473        del_singleshot_timer_sync(&timer);
1474
1475        /* Remove the timer from the object tracker */
1476        destroy_timer_on_stack(&timer);
1477
1478        timeout = expire - jiffies;
1479
1480 out:
1481        return timeout < 0 ? 0 : timeout;
1482}
1483EXPORT_SYMBOL(schedule_timeout);
1484
1485/*
1486 * We can use __set_current_state() here because schedule_timeout() calls
1487 * schedule() unconditionally.
1488 */
1489signed long __sched schedule_timeout_interruptible(signed long timeout)
1490{
1491        __set_current_state(TASK_INTERRUPTIBLE);
1492        return schedule_timeout(timeout);
1493}
1494EXPORT_SYMBOL(schedule_timeout_interruptible);
1495
1496signed long __sched schedule_timeout_killable(signed long timeout)
1497{
1498        __set_current_state(TASK_KILLABLE);
1499        return schedule_timeout(timeout);
1500}
1501EXPORT_SYMBOL(schedule_timeout_killable);
1502
1503signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1504{
1505        __set_current_state(TASK_UNINTERRUPTIBLE);
1506        return schedule_timeout(timeout);
1507}
1508EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1509
1510/* Thread ID - the internal kernel "pid" */
1511SYSCALL_DEFINE0(gettid)
1512{
1513        return task_pid_vnr(current);
1514}
1515
1516/**
1517 * do_sysinfo - fill in sysinfo struct
1518 * @info: pointer to buffer to fill
1519 */
1520int do_sysinfo(struct sysinfo *info)
1521{
1522        unsigned long mem_total, sav_total;
1523        unsigned int mem_unit, bitcount;
1524        struct timespec tp;
1525
1526        memset(info, 0, sizeof(struct sysinfo));
1527
1528        ktime_get_ts(&tp);
1529        monotonic_to_bootbased(&tp);
1530        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1531
1532        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1533
1534        info->procs = nr_threads;
1535
1536        si_meminfo(info);
1537        si_swapinfo(info);
1538
1539        /*
1540         * If the sum of all the available memory (i.e. ram + swap)
1541         * is less than can be stored in a 32 bit unsigned long then
1542         * we can be binary compatible with 2.2.x kernels.  If not,
1543         * well, in that case 2.2.x was broken anyways...
1544         *
1545         *  -Erik Andersen <andersee@debian.org>
1546         */
1547
1548        mem_total = info->totalram + info->totalswap;
1549        if (mem_total < info->totalram || mem_total < info->totalswap)
1550                goto out;
1551        bitcount = 0;
1552        mem_unit = info->mem_unit;
1553        while (mem_unit > 1) {
1554                bitcount++;
1555                mem_unit >>= 1;
1556                sav_total = mem_total;
1557                mem_total <<= 1;
1558                if (mem_total < sav_total)
1559                        goto out;
1560        }
1561
1562        /*
1563         * If mem_total did not overflow, multiply all memory values by
1564         * info->mem_unit and set it to 1.  This leaves things compatible
1565         * with 2.2.x, and also retains compatibility with earlier 2.4.x
1566         * kernels...
1567         */
1568
1569        info->mem_unit = 1;
1570        info->totalram <<= bitcount;
1571        info->freeram <<= bitcount;
1572        info->sharedram <<= bitcount;
1573        info->bufferram <<= bitcount;
1574        info->totalswap <<= bitcount;
1575        info->freeswap <<= bitcount;
1576        info->totalhigh <<= bitcount;
1577        info->freehigh <<= bitcount;
1578
1579out:
1580        return 0;
1581}
1582
1583SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1584{
1585        struct sysinfo val;
1586
1587        do_sysinfo(&val);
1588
1589        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1590                return -EFAULT;
1591
1592        return 0;
1593}
1594
1595static int __cpuinit init_timers_cpu(int cpu)
1596{
1597        int j;
1598        struct tvec_base *base;
1599        static char __cpuinitdata tvec_base_done[NR_CPUS];
1600
1601        if (!tvec_base_done[cpu]) {
1602                static char boot_done;
1603
1604                if (boot_done) {
1605                        /*
1606                         * The APs use this path later in boot
1607                         */
1608                        base = kmalloc_node(sizeof(*base),
1609                                                GFP_KERNEL | __GFP_ZERO,
1610                                                cpu_to_node(cpu));
1611                        if (!base)
1612                                return -ENOMEM;
1613
1614                        /* Make sure that tvec_base is 2 byte aligned */
1615                        if (tbase_get_deferrable(base)) {
1616                                WARN_ON(1);
1617                                kfree(base);
1618                                return -ENOMEM;
1619                        }
1620                        per_cpu(tvec_bases, cpu) = base;
1621                } else {
1622                        /*
1623                         * This is for the boot CPU - we use compile-time
1624                         * static initialisation because per-cpu memory isn't
1625                         * ready yet and because the memory allocators are not
1626                         * initialised either.
1627                         */
1628                        boot_done = 1;
1629                        base = &boot_tvec_bases;
1630                }
1631                tvec_base_done[cpu] = 1;
1632        } else {
1633                base = per_cpu(tvec_bases, cpu);
1634        }
1635
1636        spin_lock_init(&base->lock);
1637
1638        for (j = 0; j < TVN_SIZE; j++) {
1639                INIT_LIST_HEAD(base->tv5.vec + j);
1640                INIT_LIST_HEAD(base->tv4.vec + j);
1641                INIT_LIST_HEAD(base->tv3.vec + j);
1642                INIT_LIST_HEAD(base->tv2.vec + j);
1643        }
1644        for (j = 0; j < TVR_SIZE; j++)
1645                INIT_LIST_HEAD(base->tv1.vec + j);
1646
1647        base->timer_jiffies = jiffies;
1648        base->next_timer = base->timer_jiffies;
1649        return 0;
1650}
1651
1652#ifdef CONFIG_HOTPLUG_CPU
1653static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1654{
1655        struct timer_list *timer;
1656
1657        while (!list_empty(head)) {
1658                timer = list_first_entry(head, struct timer_list, entry);
1659                detach_timer(timer, 0);
1660                timer_set_base(timer, new_base);
1661                if (time_before(timer->expires, new_base->next_timer) &&
1662                    !tbase_get_deferrable(timer->base))
1663                        new_base->next_timer = timer->expires;
1664                internal_add_timer(new_base, timer);
1665        }
1666}
1667
1668static void __cpuinit migrate_timers(int cpu)
1669{
1670        struct tvec_base *old_base;
1671        struct tvec_base *new_base;
1672        int i;
1673
1674        BUG_ON(cpu_online(cpu));
1675        old_base = per_cpu(tvec_bases, cpu);
1676        new_base = get_cpu_var(tvec_bases);
1677        /*
1678         * The caller is globally serialized and nobody else
1679         * takes two locks at once, deadlock is not possible.
1680         */
1681        spin_lock_irq(&new_base->lock);
1682        spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1683
1684        BUG_ON(old_base->running_timer);
1685
1686        for (i = 0; i < TVR_SIZE; i++)
1687                migrate_timer_list(new_base, old_base->tv1.vec + i);
1688        for (i = 0; i < TVN_SIZE; i++) {
1689                migrate_timer_list(new_base, old_base->tv2.vec + i);
1690                migrate_timer_list(new_base, old_base->tv3.vec + i);
1691                migrate_timer_list(new_base, old_base->tv4.vec + i);
1692                migrate_timer_list(new_base, old_base->tv5.vec + i);
1693        }
1694
1695        spin_unlock(&old_base->lock);
1696        spin_unlock_irq(&new_base->lock);
1697        put_cpu_var(tvec_bases);
1698}
1699#endif /* CONFIG_HOTPLUG_CPU */
1700
1701static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1702                                unsigned long action, void *hcpu)
1703{
1704        long cpu = (long)hcpu;
1705        int err;
1706
1707        switch(action) {
1708        case CPU_UP_PREPARE:
1709        case CPU_UP_PREPARE_FROZEN:
1710                err = init_timers_cpu(cpu);
1711                if (err < 0)
1712                        return notifier_from_errno(err);
1713                break;
1714#ifdef CONFIG_HOTPLUG_CPU
1715        case CPU_DEAD:
1716        case CPU_DEAD_FROZEN:
1717                migrate_timers(cpu);
1718                break;
1719#endif
1720        default:
1721                break;
1722        }
1723        return NOTIFY_OK;
1724}
1725
1726static struct notifier_block __cpuinitdata timers_nb = {
1727        .notifier_call  = timer_cpu_notify,
1728};
1729
1730
1731void __init init_timers(void)
1732{
1733        int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1734                                (void *)(long)smp_processor_id());
1735
1736        init_timer_stats();
1737
1738        BUG_ON(err != NOTIFY_OK);
1739        register_cpu_notifier(&timers_nb);
1740        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1741}
1742
1743/**
1744 * msleep - sleep safely even with waitqueue interruptions
1745 * @msecs: Time in milliseconds to sleep for
1746 */
1747void msleep(unsigned int msecs)
1748{
1749        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1750
1751        while (timeout)
1752                timeout = schedule_timeout_uninterruptible(timeout);
1753}
1754
1755EXPORT_SYMBOL(msleep);
1756
1757/**
1758 * msleep_interruptible - sleep waiting for signals
1759 * @msecs: Time in milliseconds to sleep for
1760 */
1761unsigned long msleep_interruptible(unsigned int msecs)
1762{
1763        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1764
1765        while (timeout && !signal_pending(current))
1766                timeout = schedule_timeout_interruptible(timeout);
1767        return jiffies_to_msecs(timeout);
1768}
1769
1770EXPORT_SYMBOL(msleep_interruptible);
1771
1772static int __sched do_usleep_range(unsigned long min, unsigned long max)
1773{
1774        ktime_t kmin;
1775        unsigned long delta;
1776
1777        kmin = ktime_set(0, min * NSEC_PER_USEC);
1778        delta = (max - min) * NSEC_PER_USEC;
1779        return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1780}
1781
1782/**
1783 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1784 * @min: Minimum time in usecs to sleep
1785 * @max: Maximum time in usecs to sleep
1786 */
1787void usleep_range(unsigned long min, unsigned long max)
1788{
1789        __set_current_state(TASK_UNINTERRUPTIBLE);
1790        do_usleep_range(min, max);
1791}
1792EXPORT_SYMBOL(usleep_range);
1793