linux/mm/bootmem.c
<<
>>
Prefs
   1/*
   2 *  bootmem - A boot-time physical memory allocator and configurator
   3 *
   4 *  Copyright (C) 1999 Ingo Molnar
   5 *                1999 Kanoj Sarcar, SGI
   6 *                2008 Johannes Weiner
   7 *
   8 * Access to this subsystem has to be serialized externally (which is true
   9 * for the boot process anyway).
  10 */
  11#include <linux/init.h>
  12#include <linux/pfn.h>
  13#include <linux/slab.h>
  14#include <linux/bootmem.h>
  15#include <linux/module.h>
  16#include <linux/kmemleak.h>
  17#include <linux/range.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/bug.h>
  21#include <asm/io.h>
  22#include <asm/processor.h>
  23
  24#include "internal.h"
  25
  26#ifndef CONFIG_NEED_MULTIPLE_NODES
  27struct pglist_data __refdata contig_page_data = {
  28        .bdata = &bootmem_node_data[0]
  29};
  30EXPORT_SYMBOL(contig_page_data);
  31#endif
  32
  33unsigned long max_low_pfn;
  34unsigned long min_low_pfn;
  35unsigned long max_pfn;
  36
  37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  38
  39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  40
  41static int bootmem_debug;
  42
  43static int __init bootmem_debug_setup(char *buf)
  44{
  45        bootmem_debug = 1;
  46        return 0;
  47}
  48early_param("bootmem_debug", bootmem_debug_setup);
  49
  50#define bdebug(fmt, args...) ({                         \
  51        if (unlikely(bootmem_debug))                    \
  52                printk(KERN_INFO                        \
  53                        "bootmem::%s " fmt,             \
  54                        __func__, ## args);             \
  55})
  56
  57static unsigned long __init bootmap_bytes(unsigned long pages)
  58{
  59        unsigned long bytes = (pages + 7) / 8;
  60
  61        return ALIGN(bytes, sizeof(long));
  62}
  63
  64/**
  65 * bootmem_bootmap_pages - calculate bitmap size in pages
  66 * @pages: number of pages the bitmap has to represent
  67 */
  68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  69{
  70        unsigned long bytes = bootmap_bytes(pages);
  71
  72        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
  73}
  74
  75/*
  76 * link bdata in order
  77 */
  78static void __init link_bootmem(bootmem_data_t *bdata)
  79{
  80        struct list_head *iter;
  81
  82        list_for_each(iter, &bdata_list) {
  83                bootmem_data_t *ent;
  84
  85                ent = list_entry(iter, bootmem_data_t, list);
  86                if (bdata->node_min_pfn < ent->node_min_pfn)
  87                        break;
  88        }
  89        list_add_tail(&bdata->list, iter);
  90}
  91
  92/*
  93 * Called once to set up the allocator itself.
  94 */
  95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
  96        unsigned long mapstart, unsigned long start, unsigned long end)
  97{
  98        unsigned long mapsize;
  99
 100        mminit_validate_memmodel_limits(&start, &end);
 101        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 102        bdata->node_min_pfn = start;
 103        bdata->node_low_pfn = end;
 104        link_bootmem(bdata);
 105
 106        /*
 107         * Initially all pages are reserved - setup_arch() has to
 108         * register free RAM areas explicitly.
 109         */
 110        mapsize = bootmap_bytes(end - start);
 111        memset(bdata->node_bootmem_map, 0xff, mapsize);
 112
 113        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 114                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 115
 116        return mapsize;
 117}
 118
 119/**
 120 * init_bootmem_node - register a node as boot memory
 121 * @pgdat: node to register
 122 * @freepfn: pfn where the bitmap for this node is to be placed
 123 * @startpfn: first pfn on the node
 124 * @endpfn: first pfn after the node
 125 *
 126 * Returns the number of bytes needed to hold the bitmap for this node.
 127 */
 128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 129                                unsigned long startpfn, unsigned long endpfn)
 130{
 131        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 132}
 133
 134/**
 135 * init_bootmem - register boot memory
 136 * @start: pfn where the bitmap is to be placed
 137 * @pages: number of available physical pages
 138 *
 139 * Returns the number of bytes needed to hold the bitmap.
 140 */
 141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 142{
 143        max_low_pfn = pages;
 144        min_low_pfn = start;
 145        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 146}
 147
 148/*
 149 * free_bootmem_late - free bootmem pages directly to page allocator
 150 * @addr: starting address of the range
 151 * @size: size of the range in bytes
 152 *
 153 * This is only useful when the bootmem allocator has already been torn
 154 * down, but we are still initializing the system.  Pages are given directly
 155 * to the page allocator, no bootmem metadata is updated because it is gone.
 156 */
 157void __init free_bootmem_late(unsigned long addr, unsigned long size)
 158{
 159        unsigned long cursor, end;
 160
 161        kmemleak_free_part(__va(addr), size);
 162
 163        cursor = PFN_UP(addr);
 164        end = PFN_DOWN(addr + size);
 165
 166        for (; cursor < end; cursor++) {
 167                __free_pages_bootmem(pfn_to_page(cursor), 0);
 168                totalram_pages++;
 169        }
 170}
 171
 172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 173{
 174        int aligned;
 175        struct page *page;
 176        unsigned long start, end, pages, count = 0;
 177
 178        if (!bdata->node_bootmem_map)
 179                return 0;
 180
 181        start = bdata->node_min_pfn;
 182        end = bdata->node_low_pfn;
 183
 184        /*
 185         * If the start is aligned to the machines wordsize, we might
 186         * be able to free pages in bulks of that order.
 187         */
 188        aligned = !(start & (BITS_PER_LONG - 1));
 189
 190        bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
 191                bdata - bootmem_node_data, start, end, aligned);
 192
 193        while (start < end) {
 194                unsigned long *map, idx, vec;
 195
 196                map = bdata->node_bootmem_map;
 197                idx = start - bdata->node_min_pfn;
 198                vec = ~map[idx / BITS_PER_LONG];
 199
 200                if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
 201                        int order = ilog2(BITS_PER_LONG);
 202
 203                        __free_pages_bootmem(pfn_to_page(start), order);
 204                        count += BITS_PER_LONG;
 205                } else {
 206                        unsigned long off = 0;
 207
 208                        while (vec && off < BITS_PER_LONG) {
 209                                if (vec & 1) {
 210                                        page = pfn_to_page(start + off);
 211                                        __free_pages_bootmem(page, 0);
 212                                        count++;
 213                                }
 214                                vec >>= 1;
 215                                off++;
 216                        }
 217                }
 218                start += BITS_PER_LONG;
 219        }
 220
 221        page = virt_to_page(bdata->node_bootmem_map);
 222        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 223        pages = bootmem_bootmap_pages(pages);
 224        count += pages;
 225        while (pages--)
 226                __free_pages_bootmem(page++, 0);
 227
 228        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 229
 230        return count;
 231}
 232
 233/**
 234 * free_all_bootmem_node - release a node's free pages to the buddy allocator
 235 * @pgdat: node to be released
 236 *
 237 * Returns the number of pages actually released.
 238 */
 239unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
 240{
 241        register_page_bootmem_info_node(pgdat);
 242        return free_all_bootmem_core(pgdat->bdata);
 243}
 244
 245/**
 246 * free_all_bootmem - release free pages to the buddy allocator
 247 *
 248 * Returns the number of pages actually released.
 249 */
 250unsigned long __init free_all_bootmem(void)
 251{
 252        unsigned long total_pages = 0;
 253        bootmem_data_t *bdata;
 254
 255        list_for_each_entry(bdata, &bdata_list, list)
 256                total_pages += free_all_bootmem_core(bdata);
 257
 258        return total_pages;
 259}
 260
 261static void __init __free(bootmem_data_t *bdata,
 262                        unsigned long sidx, unsigned long eidx)
 263{
 264        unsigned long idx;
 265
 266        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 267                sidx + bdata->node_min_pfn,
 268                eidx + bdata->node_min_pfn);
 269
 270        if (bdata->hint_idx > sidx)
 271                bdata->hint_idx = sidx;
 272
 273        for (idx = sidx; idx < eidx; idx++)
 274                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 275                        BUG();
 276}
 277
 278static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 279                        unsigned long eidx, int flags)
 280{
 281        unsigned long idx;
 282        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 283
 284        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 285                bdata - bootmem_node_data,
 286                sidx + bdata->node_min_pfn,
 287                eidx + bdata->node_min_pfn,
 288                flags);
 289
 290        for (idx = sidx; idx < eidx; idx++)
 291                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 292                        if (exclusive) {
 293                                __free(bdata, sidx, idx);
 294                                return -EBUSY;
 295                        }
 296                        bdebug("silent double reserve of PFN %lx\n",
 297                                idx + bdata->node_min_pfn);
 298                }
 299        return 0;
 300}
 301
 302static int __init mark_bootmem_node(bootmem_data_t *bdata,
 303                                unsigned long start, unsigned long end,
 304                                int reserve, int flags)
 305{
 306        unsigned long sidx, eidx;
 307
 308        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 309                bdata - bootmem_node_data, start, end, reserve, flags);
 310
 311        BUG_ON(start < bdata->node_min_pfn);
 312        BUG_ON(end > bdata->node_low_pfn);
 313
 314        sidx = start - bdata->node_min_pfn;
 315        eidx = end - bdata->node_min_pfn;
 316
 317        if (reserve)
 318                return __reserve(bdata, sidx, eidx, flags);
 319        else
 320                __free(bdata, sidx, eidx);
 321        return 0;
 322}
 323
 324static int __init mark_bootmem(unsigned long start, unsigned long end,
 325                                int reserve, int flags)
 326{
 327        unsigned long pos;
 328        bootmem_data_t *bdata;
 329
 330        pos = start;
 331        list_for_each_entry(bdata, &bdata_list, list) {
 332                int err;
 333                unsigned long max;
 334
 335                if (pos < bdata->node_min_pfn ||
 336                    pos >= bdata->node_low_pfn) {
 337                        BUG_ON(pos != start);
 338                        continue;
 339                }
 340
 341                max = min(bdata->node_low_pfn, end);
 342
 343                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 344                if (reserve && err) {
 345                        mark_bootmem(start, pos, 0, 0);
 346                        return err;
 347                }
 348
 349                if (max == end)
 350                        return 0;
 351                pos = bdata->node_low_pfn;
 352        }
 353        BUG();
 354}
 355
 356/**
 357 * free_bootmem_node - mark a page range as usable
 358 * @pgdat: node the range resides on
 359 * @physaddr: starting address of the range
 360 * @size: size of the range in bytes
 361 *
 362 * Partial pages will be considered reserved and left as they are.
 363 *
 364 * The range must reside completely on the specified node.
 365 */
 366void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 367                              unsigned long size)
 368{
 369        unsigned long start, end;
 370
 371        kmemleak_free_part(__va(physaddr), size);
 372
 373        start = PFN_UP(physaddr);
 374        end = PFN_DOWN(physaddr + size);
 375
 376        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 377}
 378
 379/**
 380 * free_bootmem - mark a page range as usable
 381 * @addr: starting address of the range
 382 * @size: size of the range in bytes
 383 *
 384 * Partial pages will be considered reserved and left as they are.
 385 *
 386 * The range must be contiguous but may span node boundaries.
 387 */
 388void __init free_bootmem(unsigned long addr, unsigned long size)
 389{
 390        unsigned long start, end;
 391
 392        kmemleak_free_part(__va(addr), size);
 393
 394        start = PFN_UP(addr);
 395        end = PFN_DOWN(addr + size);
 396
 397        mark_bootmem(start, end, 0, 0);
 398}
 399
 400/**
 401 * reserve_bootmem_node - mark a page range as reserved
 402 * @pgdat: node the range resides on
 403 * @physaddr: starting address of the range
 404 * @size: size of the range in bytes
 405 * @flags: reservation flags (see linux/bootmem.h)
 406 *
 407 * Partial pages will be reserved.
 408 *
 409 * The range must reside completely on the specified node.
 410 */
 411int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 412                                 unsigned long size, int flags)
 413{
 414        unsigned long start, end;
 415
 416        start = PFN_DOWN(physaddr);
 417        end = PFN_UP(physaddr + size);
 418
 419        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 420}
 421
 422/**
 423 * reserve_bootmem - mark a page range as usable
 424 * @addr: starting address of the range
 425 * @size: size of the range in bytes
 426 * @flags: reservation flags (see linux/bootmem.h)
 427 *
 428 * Partial pages will be reserved.
 429 *
 430 * The range must be contiguous but may span node boundaries.
 431 */
 432int __init reserve_bootmem(unsigned long addr, unsigned long size,
 433                            int flags)
 434{
 435        unsigned long start, end;
 436
 437        start = PFN_DOWN(addr);
 438        end = PFN_UP(addr + size);
 439
 440        return mark_bootmem(start, end, 1, flags);
 441}
 442
 443int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
 444                                   int flags)
 445{
 446        return reserve_bootmem(phys, len, flags);
 447}
 448
 449static unsigned long __init align_idx(struct bootmem_data *bdata,
 450                                      unsigned long idx, unsigned long step)
 451{
 452        unsigned long base = bdata->node_min_pfn;
 453
 454        /*
 455         * Align the index with respect to the node start so that the
 456         * combination of both satisfies the requested alignment.
 457         */
 458
 459        return ALIGN(base + idx, step) - base;
 460}
 461
 462static unsigned long __init align_off(struct bootmem_data *bdata,
 463                                      unsigned long off, unsigned long align)
 464{
 465        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 466
 467        /* Same as align_idx for byte offsets */
 468
 469        return ALIGN(base + off, align) - base;
 470}
 471
 472static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
 473                                        unsigned long size, unsigned long align,
 474                                        unsigned long goal, unsigned long limit)
 475{
 476        unsigned long fallback = 0;
 477        unsigned long min, max, start, sidx, midx, step;
 478
 479        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 480                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 481                align, goal, limit);
 482
 483        BUG_ON(!size);
 484        BUG_ON(align & (align - 1));
 485        BUG_ON(limit && goal + size > limit);
 486
 487        if (!bdata->node_bootmem_map)
 488                return NULL;
 489
 490        min = bdata->node_min_pfn;
 491        max = bdata->node_low_pfn;
 492
 493        goal >>= PAGE_SHIFT;
 494        limit >>= PAGE_SHIFT;
 495
 496        if (limit && max > limit)
 497                max = limit;
 498        if (max <= min)
 499                return NULL;
 500
 501        step = max(align >> PAGE_SHIFT, 1UL);
 502
 503        if (goal && min < goal && goal < max)
 504                start = ALIGN(goal, step);
 505        else
 506                start = ALIGN(min, step);
 507
 508        sidx = start - bdata->node_min_pfn;
 509        midx = max - bdata->node_min_pfn;
 510
 511        if (bdata->hint_idx > sidx) {
 512                /*
 513                 * Handle the valid case of sidx being zero and still
 514                 * catch the fallback below.
 515                 */
 516                fallback = sidx + 1;
 517                sidx = align_idx(bdata, bdata->hint_idx, step);
 518        }
 519
 520        while (1) {
 521                int merge;
 522                void *region;
 523                unsigned long eidx, i, start_off, end_off;
 524find_block:
 525                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 526                sidx = align_idx(bdata, sidx, step);
 527                eidx = sidx + PFN_UP(size);
 528
 529                if (sidx >= midx || eidx > midx)
 530                        break;
 531
 532                for (i = sidx; i < eidx; i++)
 533                        if (test_bit(i, bdata->node_bootmem_map)) {
 534                                sidx = align_idx(bdata, i, step);
 535                                if (sidx == i)
 536                                        sidx += step;
 537                                goto find_block;
 538                        }
 539
 540                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 541                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 542                        start_off = align_off(bdata, bdata->last_end_off, align);
 543                else
 544                        start_off = PFN_PHYS(sidx);
 545
 546                merge = PFN_DOWN(start_off) < sidx;
 547                end_off = start_off + size;
 548
 549                bdata->last_end_off = end_off;
 550                bdata->hint_idx = PFN_UP(end_off);
 551
 552                /*
 553                 * Reserve the area now:
 554                 */
 555                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 556                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 557                        BUG();
 558
 559                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 560                                start_off);
 561                memset(region, 0, size);
 562                /*
 563                 * The min_count is set to 0 so that bootmem allocated blocks
 564                 * are never reported as leaks.
 565                 */
 566                kmemleak_alloc(region, size, 0, 0);
 567                return region;
 568        }
 569
 570        if (fallback) {
 571                sidx = align_idx(bdata, fallback - 1, step);
 572                fallback = 0;
 573                goto find_block;
 574        }
 575
 576        return NULL;
 577}
 578
 579static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
 580                                        unsigned long size, unsigned long align,
 581                                        unsigned long goal, unsigned long limit)
 582{
 583        if (WARN_ON_ONCE(slab_is_available()))
 584                return kzalloc(size, GFP_NOWAIT);
 585
 586#ifdef CONFIG_HAVE_ARCH_BOOTMEM
 587        {
 588                bootmem_data_t *p_bdata;
 589
 590                p_bdata = bootmem_arch_preferred_node(bdata, size, align,
 591                                                        goal, limit);
 592                if (p_bdata)
 593                        return alloc_bootmem_core(p_bdata, size, align,
 594                                                        goal, limit);
 595        }
 596#endif
 597        return NULL;
 598}
 599
 600static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 601                                        unsigned long align,
 602                                        unsigned long goal,
 603                                        unsigned long limit)
 604{
 605        bootmem_data_t *bdata;
 606        void *region;
 607
 608restart:
 609        region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
 610        if (region)
 611                return region;
 612
 613        list_for_each_entry(bdata, &bdata_list, list) {
 614                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 615                        continue;
 616                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 617                        break;
 618
 619                region = alloc_bootmem_core(bdata, size, align, goal, limit);
 620                if (region)
 621                        return region;
 622        }
 623
 624        if (goal) {
 625                goal = 0;
 626                goto restart;
 627        }
 628
 629        return NULL;
 630}
 631
 632/**
 633 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 634 * @size: size of the request in bytes
 635 * @align: alignment of the region
 636 * @goal: preferred starting address of the region
 637 *
 638 * The goal is dropped if it can not be satisfied and the allocation will
 639 * fall back to memory below @goal.
 640 *
 641 * Allocation may happen on any node in the system.
 642 *
 643 * Returns NULL on failure.
 644 */
 645void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 646                                        unsigned long goal)
 647{
 648        unsigned long limit = 0;
 649
 650        return ___alloc_bootmem_nopanic(size, align, goal, limit);
 651}
 652
 653static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 654                                        unsigned long goal, unsigned long limit)
 655{
 656        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 657
 658        if (mem)
 659                return mem;
 660        /*
 661         * Whoops, we cannot satisfy the allocation request.
 662         */
 663        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 664        panic("Out of memory");
 665        return NULL;
 666}
 667
 668/**
 669 * __alloc_bootmem - allocate boot memory
 670 * @size: size of the request in bytes
 671 * @align: alignment of the region
 672 * @goal: preferred starting address of the region
 673 *
 674 * The goal is dropped if it can not be satisfied and the allocation will
 675 * fall back to memory below @goal.
 676 *
 677 * Allocation may happen on any node in the system.
 678 *
 679 * The function panics if the request can not be satisfied.
 680 */
 681void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 682                              unsigned long goal)
 683{
 684        unsigned long limit = 0;
 685
 686        return ___alloc_bootmem(size, align, goal, limit);
 687}
 688
 689static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
 690                                unsigned long size, unsigned long align,
 691                                unsigned long goal, unsigned long limit)
 692{
 693        void *ptr;
 694
 695        ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
 696        if (ptr)
 697                return ptr;
 698
 699        ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
 700        if (ptr)
 701                return ptr;
 702
 703        return ___alloc_bootmem(size, align, goal, limit);
 704}
 705
 706/**
 707 * __alloc_bootmem_node - allocate boot memory from a specific node
 708 * @pgdat: node to allocate from
 709 * @size: size of the request in bytes
 710 * @align: alignment of the region
 711 * @goal: preferred starting address of the region
 712 *
 713 * The goal is dropped if it can not be satisfied and the allocation will
 714 * fall back to memory below @goal.
 715 *
 716 * Allocation may fall back to any node in the system if the specified node
 717 * can not hold the requested memory.
 718 *
 719 * The function panics if the request can not be satisfied.
 720 */
 721void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 722                                   unsigned long align, unsigned long goal)
 723{
 724        if (WARN_ON_ONCE(slab_is_available()))
 725                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 726
 727        return  ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
 728}
 729
 730void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
 731                                   unsigned long align, unsigned long goal)
 732{
 733#ifdef MAX_DMA32_PFN
 734        unsigned long end_pfn;
 735
 736        if (WARN_ON_ONCE(slab_is_available()))
 737                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 738
 739        /* update goal according ...MAX_DMA32_PFN */
 740        end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
 741
 742        if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
 743            (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
 744                void *ptr;
 745                unsigned long new_goal;
 746
 747                new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
 748                ptr = alloc_bootmem_core(pgdat->bdata, size, align,
 749                                                 new_goal, 0);
 750                if (ptr)
 751                        return ptr;
 752        }
 753#endif
 754
 755        return __alloc_bootmem_node(pgdat, size, align, goal);
 756
 757}
 758
 759#ifdef CONFIG_SPARSEMEM
 760/**
 761 * alloc_bootmem_section - allocate boot memory from a specific section
 762 * @size: size of the request in bytes
 763 * @section_nr: sparse map section to allocate from
 764 *
 765 * Return NULL on failure.
 766 */
 767void * __init alloc_bootmem_section(unsigned long size,
 768                                    unsigned long section_nr)
 769{
 770        bootmem_data_t *bdata;
 771        unsigned long pfn, goal, limit;
 772
 773        pfn = section_nr_to_pfn(section_nr);
 774        goal = pfn << PAGE_SHIFT;
 775        limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
 776        bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
 777
 778        return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
 779}
 780#endif
 781
 782void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 783                                   unsigned long align, unsigned long goal)
 784{
 785        void *ptr;
 786
 787        if (WARN_ON_ONCE(slab_is_available()))
 788                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 789
 790        ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
 791        if (ptr)
 792                return ptr;
 793
 794        ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
 795        if (ptr)
 796                return ptr;
 797
 798        return __alloc_bootmem_nopanic(size, align, goal);
 799}
 800
 801#ifndef ARCH_LOW_ADDRESS_LIMIT
 802#define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
 803#endif
 804
 805/**
 806 * __alloc_bootmem_low - allocate low boot memory
 807 * @size: size of the request in bytes
 808 * @align: alignment of the region
 809 * @goal: preferred starting address of the region
 810 *
 811 * The goal is dropped if it can not be satisfied and the allocation will
 812 * fall back to memory below @goal.
 813 *
 814 * Allocation may happen on any node in the system.
 815 *
 816 * The function panics if the request can not be satisfied.
 817 */
 818void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 819                                  unsigned long goal)
 820{
 821        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 822}
 823
 824/**
 825 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 826 * @pgdat: node to allocate from
 827 * @size: size of the request in bytes
 828 * @align: alignment of the region
 829 * @goal: preferred starting address of the region
 830 *
 831 * The goal is dropped if it can not be satisfied and the allocation will
 832 * fall back to memory below @goal.
 833 *
 834 * Allocation may fall back to any node in the system if the specified node
 835 * can not hold the requested memory.
 836 *
 837 * The function panics if the request can not be satisfied.
 838 */
 839void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 840                                       unsigned long align, unsigned long goal)
 841{
 842        if (WARN_ON_ONCE(slab_is_available()))
 843                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 844
 845        return ___alloc_bootmem_node(pgdat->bdata, size, align,
 846                                goal, ARCH_LOW_ADDRESS_LIMIT);
 847}
 848