linux/mm/swap.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/module.h>
  25#include <linux/mm_inline.h>
  26#include <linux/buffer_head.h>  /* for try_to_release_page() */
  27#include <linux/percpu_counter.h>
  28#include <linux/percpu.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/backing-dev.h>
  32#include <linux/memcontrol.h>
  33#include <linux/gfp.h>
  34
  35#include "internal.h"
  36
  37/* How many pages do we try to swap or page in/out together? */
  38int page_cluster;
  39
  40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
  41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  42static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  43
  44/*
  45 * This path almost never happens for VM activity - pages are normally
  46 * freed via pagevecs.  But it gets used by networking.
  47 */
  48static void __page_cache_release(struct page *page)
  49{
  50        if (PageLRU(page)) {
  51                unsigned long flags;
  52                struct zone *zone = page_zone(page);
  53
  54                spin_lock_irqsave(&zone->lru_lock, flags);
  55                VM_BUG_ON(!PageLRU(page));
  56                __ClearPageLRU(page);
  57                del_page_from_lru(zone, page);
  58                spin_unlock_irqrestore(&zone->lru_lock, flags);
  59        }
  60}
  61
  62static void __put_single_page(struct page *page)
  63{
  64        __page_cache_release(page);
  65        free_hot_cold_page(page, 0);
  66}
  67
  68static void __put_compound_page(struct page *page)
  69{
  70        compound_page_dtor *dtor;
  71
  72        __page_cache_release(page);
  73        dtor = get_compound_page_dtor(page);
  74        (*dtor)(page);
  75}
  76
  77static void put_compound_page(struct page *page)
  78{
  79        if (unlikely(PageTail(page))) {
  80                /* __split_huge_page_refcount can run under us */
  81                struct page *page_head = page->first_page;
  82                smp_rmb();
  83                /*
  84                 * If PageTail is still set after smp_rmb() we can be sure
  85                 * that the page->first_page we read wasn't a dangling pointer.
  86                 * See __split_huge_page_refcount() smp_wmb().
  87                 */
  88                if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
  89                        unsigned long flags;
  90                        /*
  91                         * Verify that our page_head wasn't converted
  92                         * to a a regular page before we got a
  93                         * reference on it.
  94                         */
  95                        if (unlikely(!PageHead(page_head))) {
  96                                /* PageHead is cleared after PageTail */
  97                                smp_rmb();
  98                                VM_BUG_ON(PageTail(page));
  99                                goto out_put_head;
 100                        }
 101                        /*
 102                         * Only run compound_lock on a valid PageHead,
 103                         * after having it pinned with
 104                         * get_page_unless_zero() above.
 105                         */
 106                        smp_mb();
 107                        /* page_head wasn't a dangling pointer */
 108                        flags = compound_lock_irqsave(page_head);
 109                        if (unlikely(!PageTail(page))) {
 110                                /* __split_huge_page_refcount run before us */
 111                                compound_unlock_irqrestore(page_head, flags);
 112                                VM_BUG_ON(PageHead(page_head));
 113                        out_put_head:
 114                                if (put_page_testzero(page_head))
 115                                        __put_single_page(page_head);
 116                        out_put_single:
 117                                if (put_page_testzero(page))
 118                                        __put_single_page(page);
 119                                return;
 120                        }
 121                        VM_BUG_ON(page_head != page->first_page);
 122                        /*
 123                         * We can release the refcount taken by
 124                         * get_page_unless_zero now that
 125                         * split_huge_page_refcount is blocked on the
 126                         * compound_lock.
 127                         */
 128                        if (put_page_testzero(page_head))
 129                                VM_BUG_ON(1);
 130                        /* __split_huge_page_refcount will wait now */
 131                        VM_BUG_ON(atomic_read(&page->_count) <= 0);
 132                        atomic_dec(&page->_count);
 133                        VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
 134                        compound_unlock_irqrestore(page_head, flags);
 135                        if (put_page_testzero(page_head)) {
 136                                if (PageHead(page_head))
 137                                        __put_compound_page(page_head);
 138                                else
 139                                        __put_single_page(page_head);
 140                        }
 141                } else {
 142                        /* page_head is a dangling pointer */
 143                        VM_BUG_ON(PageTail(page));
 144                        goto out_put_single;
 145                }
 146        } else if (put_page_testzero(page)) {
 147                if (PageHead(page))
 148                        __put_compound_page(page);
 149                else
 150                        __put_single_page(page);
 151        }
 152}
 153
 154void put_page(struct page *page)
 155{
 156        if (unlikely(PageCompound(page)))
 157                put_compound_page(page);
 158        else if (put_page_testzero(page))
 159                __put_single_page(page);
 160}
 161EXPORT_SYMBOL(put_page);
 162
 163/**
 164 * put_pages_list() - release a list of pages
 165 * @pages: list of pages threaded on page->lru
 166 *
 167 * Release a list of pages which are strung together on page.lru.  Currently
 168 * used by read_cache_pages() and related error recovery code.
 169 */
 170void put_pages_list(struct list_head *pages)
 171{
 172        while (!list_empty(pages)) {
 173                struct page *victim;
 174
 175                victim = list_entry(pages->prev, struct page, lru);
 176                list_del(&victim->lru);
 177                page_cache_release(victim);
 178        }
 179}
 180EXPORT_SYMBOL(put_pages_list);
 181
 182static void pagevec_lru_move_fn(struct pagevec *pvec,
 183                                void (*move_fn)(struct page *page, void *arg),
 184                                void *arg)
 185{
 186        int i;
 187        struct zone *zone = NULL;
 188        unsigned long flags = 0;
 189
 190        for (i = 0; i < pagevec_count(pvec); i++) {
 191                struct page *page = pvec->pages[i];
 192                struct zone *pagezone = page_zone(page);
 193
 194                if (pagezone != zone) {
 195                        if (zone)
 196                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 197                        zone = pagezone;
 198                        spin_lock_irqsave(&zone->lru_lock, flags);
 199                }
 200
 201                (*move_fn)(page, arg);
 202        }
 203        if (zone)
 204                spin_unlock_irqrestore(&zone->lru_lock, flags);
 205        release_pages(pvec->pages, pvec->nr, pvec->cold);
 206        pagevec_reinit(pvec);
 207}
 208
 209static void pagevec_move_tail_fn(struct page *page, void *arg)
 210{
 211        int *pgmoved = arg;
 212        struct zone *zone = page_zone(page);
 213
 214        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 215                enum lru_list lru = page_lru_base_type(page);
 216                list_move_tail(&page->lru, &zone->lru[lru].list);
 217                mem_cgroup_rotate_reclaimable_page(page);
 218                (*pgmoved)++;
 219        }
 220}
 221
 222/*
 223 * pagevec_move_tail() must be called with IRQ disabled.
 224 * Otherwise this may cause nasty races.
 225 */
 226static void pagevec_move_tail(struct pagevec *pvec)
 227{
 228        int pgmoved = 0;
 229
 230        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 231        __count_vm_events(PGROTATED, pgmoved);
 232}
 233
 234/*
 235 * Writeback is about to end against a page which has been marked for immediate
 236 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 237 * inactive list.
 238 */
 239void rotate_reclaimable_page(struct page *page)
 240{
 241        if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 242            !PageUnevictable(page) && PageLRU(page)) {
 243                struct pagevec *pvec;
 244                unsigned long flags;
 245
 246                page_cache_get(page);
 247                local_irq_save(flags);
 248                pvec = &__get_cpu_var(lru_rotate_pvecs);
 249                if (!pagevec_add(pvec, page))
 250                        pagevec_move_tail(pvec);
 251                local_irq_restore(flags);
 252        }
 253}
 254
 255static void update_page_reclaim_stat(struct zone *zone, struct page *page,
 256                                     int file, int rotated)
 257{
 258        struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
 259        struct zone_reclaim_stat *memcg_reclaim_stat;
 260
 261        memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
 262
 263        reclaim_stat->recent_scanned[file]++;
 264        if (rotated)
 265                reclaim_stat->recent_rotated[file]++;
 266
 267        if (!memcg_reclaim_stat)
 268                return;
 269
 270        memcg_reclaim_stat->recent_scanned[file]++;
 271        if (rotated)
 272                memcg_reclaim_stat->recent_rotated[file]++;
 273}
 274
 275static void __activate_page(struct page *page, void *arg)
 276{
 277        struct zone *zone = page_zone(page);
 278
 279        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 280                int file = page_is_file_cache(page);
 281                int lru = page_lru_base_type(page);
 282                del_page_from_lru_list(zone, page, lru);
 283
 284                SetPageActive(page);
 285                lru += LRU_ACTIVE;
 286                add_page_to_lru_list(zone, page, lru);
 287                __count_vm_event(PGACTIVATE);
 288
 289                update_page_reclaim_stat(zone, page, file, 1);
 290        }
 291}
 292
 293#ifdef CONFIG_SMP
 294static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 295
 296static void activate_page_drain(int cpu)
 297{
 298        struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 299
 300        if (pagevec_count(pvec))
 301                pagevec_lru_move_fn(pvec, __activate_page, NULL);
 302}
 303
 304void activate_page(struct page *page)
 305{
 306        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 307                struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 308
 309                page_cache_get(page);
 310                if (!pagevec_add(pvec, page))
 311                        pagevec_lru_move_fn(pvec, __activate_page, NULL);
 312                put_cpu_var(activate_page_pvecs);
 313        }
 314}
 315
 316#else
 317static inline void activate_page_drain(int cpu)
 318{
 319}
 320
 321void activate_page(struct page *page)
 322{
 323        struct zone *zone = page_zone(page);
 324
 325        spin_lock_irq(&zone->lru_lock);
 326        __activate_page(page, NULL);
 327        spin_unlock_irq(&zone->lru_lock);
 328}
 329#endif
 330
 331/*
 332 * Mark a page as having seen activity.
 333 *
 334 * inactive,unreferenced        ->      inactive,referenced
 335 * inactive,referenced          ->      active,unreferenced
 336 * active,unreferenced          ->      active,referenced
 337 */
 338void mark_page_accessed(struct page *page)
 339{
 340        if (!PageActive(page) && !PageUnevictable(page) &&
 341                        PageReferenced(page) && PageLRU(page)) {
 342                activate_page(page);
 343                ClearPageReferenced(page);
 344        } else if (!PageReferenced(page)) {
 345                SetPageReferenced(page);
 346        }
 347}
 348
 349EXPORT_SYMBOL(mark_page_accessed);
 350
 351void __lru_cache_add(struct page *page, enum lru_list lru)
 352{
 353        struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
 354
 355        page_cache_get(page);
 356        if (!pagevec_add(pvec, page))
 357                ____pagevec_lru_add(pvec, lru);
 358        put_cpu_var(lru_add_pvecs);
 359}
 360EXPORT_SYMBOL(__lru_cache_add);
 361
 362/**
 363 * lru_cache_add_lru - add a page to a page list
 364 * @page: the page to be added to the LRU.
 365 * @lru: the LRU list to which the page is added.
 366 */
 367void lru_cache_add_lru(struct page *page, enum lru_list lru)
 368{
 369        if (PageActive(page)) {
 370                VM_BUG_ON(PageUnevictable(page));
 371                ClearPageActive(page);
 372        } else if (PageUnevictable(page)) {
 373                VM_BUG_ON(PageActive(page));
 374                ClearPageUnevictable(page);
 375        }
 376
 377        VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
 378        __lru_cache_add(page, lru);
 379}
 380
 381/**
 382 * add_page_to_unevictable_list - add a page to the unevictable list
 383 * @page:  the page to be added to the unevictable list
 384 *
 385 * Add page directly to its zone's unevictable list.  To avoid races with
 386 * tasks that might be making the page evictable, through eg. munlock,
 387 * munmap or exit, while it's not on the lru, we want to add the page
 388 * while it's locked or otherwise "invisible" to other tasks.  This is
 389 * difficult to do when using the pagevec cache, so bypass that.
 390 */
 391void add_page_to_unevictable_list(struct page *page)
 392{
 393        struct zone *zone = page_zone(page);
 394
 395        spin_lock_irq(&zone->lru_lock);
 396        SetPageUnevictable(page);
 397        SetPageLRU(page);
 398        add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
 399        spin_unlock_irq(&zone->lru_lock);
 400}
 401
 402/*
 403 * If the page can not be invalidated, it is moved to the
 404 * inactive list to speed up its reclaim.  It is moved to the
 405 * head of the list, rather than the tail, to give the flusher
 406 * threads some time to write it out, as this is much more
 407 * effective than the single-page writeout from reclaim.
 408 *
 409 * If the page isn't page_mapped and dirty/writeback, the page
 410 * could reclaim asap using PG_reclaim.
 411 *
 412 * 1. active, mapped page -> none
 413 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 414 * 3. inactive, mapped page -> none
 415 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 416 * 5. inactive, clean -> inactive, tail
 417 * 6. Others -> none
 418 *
 419 * In 4, why it moves inactive's head, the VM expects the page would
 420 * be write it out by flusher threads as this is much more effective
 421 * than the single-page writeout from reclaim.
 422 */
 423static void lru_deactivate_fn(struct page *page, void *arg)
 424{
 425        int lru, file;
 426        bool active;
 427        struct zone *zone = page_zone(page);
 428
 429        if (!PageLRU(page))
 430                return;
 431
 432        if (PageUnevictable(page))
 433                return;
 434
 435        /* Some processes are using the page */
 436        if (page_mapped(page))
 437                return;
 438
 439        active = PageActive(page);
 440
 441        file = page_is_file_cache(page);
 442        lru = page_lru_base_type(page);
 443        del_page_from_lru_list(zone, page, lru + active);
 444        ClearPageActive(page);
 445        ClearPageReferenced(page);
 446        add_page_to_lru_list(zone, page, lru);
 447
 448        if (PageWriteback(page) || PageDirty(page)) {
 449                /*
 450                 * PG_reclaim could be raced with end_page_writeback
 451                 * It can make readahead confusing.  But race window
 452                 * is _really_ small and  it's non-critical problem.
 453                 */
 454                SetPageReclaim(page);
 455        } else {
 456                /*
 457                 * The page's writeback ends up during pagevec
 458                 * We moves tha page into tail of inactive.
 459                 */
 460                list_move_tail(&page->lru, &zone->lru[lru].list);
 461                mem_cgroup_rotate_reclaimable_page(page);
 462                __count_vm_event(PGROTATED);
 463        }
 464
 465        if (active)
 466                __count_vm_event(PGDEACTIVATE);
 467        update_page_reclaim_stat(zone, page, file, 0);
 468}
 469
 470/*
 471 * Drain pages out of the cpu's pagevecs.
 472 * Either "cpu" is the current CPU, and preemption has already been
 473 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 474 */
 475static void drain_cpu_pagevecs(int cpu)
 476{
 477        struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
 478        struct pagevec *pvec;
 479        int lru;
 480
 481        for_each_lru(lru) {
 482                pvec = &pvecs[lru - LRU_BASE];
 483                if (pagevec_count(pvec))
 484                        ____pagevec_lru_add(pvec, lru);
 485        }
 486
 487        pvec = &per_cpu(lru_rotate_pvecs, cpu);
 488        if (pagevec_count(pvec)) {
 489                unsigned long flags;
 490
 491                /* No harm done if a racing interrupt already did this */
 492                local_irq_save(flags);
 493                pagevec_move_tail(pvec);
 494                local_irq_restore(flags);
 495        }
 496
 497        pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 498        if (pagevec_count(pvec))
 499                pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 500
 501        activate_page_drain(cpu);
 502}
 503
 504/**
 505 * deactivate_page - forcefully deactivate a page
 506 * @page: page to deactivate
 507 *
 508 * This function hints the VM that @page is a good reclaim candidate,
 509 * for example if its invalidation fails due to the page being dirty
 510 * or under writeback.
 511 */
 512void deactivate_page(struct page *page)
 513{
 514        /*
 515         * In a workload with many unevictable page such as mprotect, unevictable
 516         * page deactivation for accelerating reclaim is pointless.
 517         */
 518        if (PageUnevictable(page))
 519                return;
 520
 521        if (likely(get_page_unless_zero(page))) {
 522                struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 523
 524                if (!pagevec_add(pvec, page))
 525                        pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 526                put_cpu_var(lru_deactivate_pvecs);
 527        }
 528}
 529
 530void lru_add_drain(void)
 531{
 532        drain_cpu_pagevecs(get_cpu());
 533        put_cpu();
 534}
 535
 536static void lru_add_drain_per_cpu(struct work_struct *dummy)
 537{
 538        lru_add_drain();
 539}
 540
 541/*
 542 * Returns 0 for success
 543 */
 544int lru_add_drain_all(void)
 545{
 546        return schedule_on_each_cpu(lru_add_drain_per_cpu);
 547}
 548
 549/*
 550 * Batched page_cache_release().  Decrement the reference count on all the
 551 * passed pages.  If it fell to zero then remove the page from the LRU and
 552 * free it.
 553 *
 554 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
 555 * for the remainder of the operation.
 556 *
 557 * The locking in this function is against shrink_inactive_list(): we recheck
 558 * the page count inside the lock to see whether shrink_inactive_list()
 559 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
 560 * will free it.
 561 */
 562void release_pages(struct page **pages, int nr, int cold)
 563{
 564        int i;
 565        struct pagevec pages_to_free;
 566        struct zone *zone = NULL;
 567        unsigned long uninitialized_var(flags);
 568
 569        pagevec_init(&pages_to_free, cold);
 570        for (i = 0; i < nr; i++) {
 571                struct page *page = pages[i];
 572
 573                if (unlikely(PageCompound(page))) {
 574                        if (zone) {
 575                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 576                                zone = NULL;
 577                        }
 578                        put_compound_page(page);
 579                        continue;
 580                }
 581
 582                if (!put_page_testzero(page))
 583                        continue;
 584
 585                if (PageLRU(page)) {
 586                        struct zone *pagezone = page_zone(page);
 587
 588                        if (pagezone != zone) {
 589                                if (zone)
 590                                        spin_unlock_irqrestore(&zone->lru_lock,
 591                                                                        flags);
 592                                zone = pagezone;
 593                                spin_lock_irqsave(&zone->lru_lock, flags);
 594                        }
 595                        VM_BUG_ON(!PageLRU(page));
 596                        __ClearPageLRU(page);
 597                        del_page_from_lru(zone, page);
 598                }
 599
 600                if (!pagevec_add(&pages_to_free, page)) {
 601                        if (zone) {
 602                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 603                                zone = NULL;
 604                        }
 605                        __pagevec_free(&pages_to_free);
 606                        pagevec_reinit(&pages_to_free);
 607                }
 608        }
 609        if (zone)
 610                spin_unlock_irqrestore(&zone->lru_lock, flags);
 611
 612        pagevec_free(&pages_to_free);
 613}
 614EXPORT_SYMBOL(release_pages);
 615
 616/*
 617 * The pages which we're about to release may be in the deferred lru-addition
 618 * queues.  That would prevent them from really being freed right now.  That's
 619 * OK from a correctness point of view but is inefficient - those pages may be
 620 * cache-warm and we want to give them back to the page allocator ASAP.
 621 *
 622 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 623 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 624 * mutual recursion.
 625 */
 626void __pagevec_release(struct pagevec *pvec)
 627{
 628        lru_add_drain();
 629        release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 630        pagevec_reinit(pvec);
 631}
 632
 633EXPORT_SYMBOL(__pagevec_release);
 634
 635/* used by __split_huge_page_refcount() */
 636void lru_add_page_tail(struct zone* zone,
 637                       struct page *page, struct page *page_tail)
 638{
 639        int active;
 640        enum lru_list lru;
 641        const int file = 0;
 642        struct list_head *head;
 643
 644        VM_BUG_ON(!PageHead(page));
 645        VM_BUG_ON(PageCompound(page_tail));
 646        VM_BUG_ON(PageLRU(page_tail));
 647        VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
 648
 649        SetPageLRU(page_tail);
 650
 651        if (page_evictable(page_tail, NULL)) {
 652                if (PageActive(page)) {
 653                        SetPageActive(page_tail);
 654                        active = 1;
 655                        lru = LRU_ACTIVE_ANON;
 656                } else {
 657                        active = 0;
 658                        lru = LRU_INACTIVE_ANON;
 659                }
 660                update_page_reclaim_stat(zone, page_tail, file, active);
 661                if (likely(PageLRU(page)))
 662                        head = page->lru.prev;
 663                else
 664                        head = &zone->lru[lru].list;
 665                __add_page_to_lru_list(zone, page_tail, lru, head);
 666        } else {
 667                SetPageUnevictable(page_tail);
 668                add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
 669        }
 670}
 671
 672static void ____pagevec_lru_add_fn(struct page *page, void *arg)
 673{
 674        enum lru_list lru = (enum lru_list)arg;
 675        struct zone *zone = page_zone(page);
 676        int file = is_file_lru(lru);
 677        int active = is_active_lru(lru);
 678
 679        VM_BUG_ON(PageActive(page));
 680        VM_BUG_ON(PageUnevictable(page));
 681        VM_BUG_ON(PageLRU(page));
 682
 683        SetPageLRU(page);
 684        if (active)
 685                SetPageActive(page);
 686        update_page_reclaim_stat(zone, page, file, active);
 687        add_page_to_lru_list(zone, page, lru);
 688}
 689
 690/*
 691 * Add the passed pages to the LRU, then drop the caller's refcount
 692 * on them.  Reinitialises the caller's pagevec.
 693 */
 694void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
 695{
 696        VM_BUG_ON(is_unevictable_lru(lru));
 697
 698        pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
 699}
 700
 701EXPORT_SYMBOL(____pagevec_lru_add);
 702
 703/*
 704 * Try to drop buffers from the pages in a pagevec
 705 */
 706void pagevec_strip(struct pagevec *pvec)
 707{
 708        int i;
 709
 710        for (i = 0; i < pagevec_count(pvec); i++) {
 711                struct page *page = pvec->pages[i];
 712
 713                if (page_has_private(page) && trylock_page(page)) {
 714                        if (page_has_private(page))
 715                                try_to_release_page(page, 0);
 716                        unlock_page(page);
 717                }
 718        }
 719}
 720
 721/**
 722 * pagevec_lookup - gang pagecache lookup
 723 * @pvec:       Where the resulting pages are placed
 724 * @mapping:    The address_space to search
 725 * @start:      The starting page index
 726 * @nr_pages:   The maximum number of pages
 727 *
 728 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
 729 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
 730 * reference against the pages in @pvec.
 731 *
 732 * The search returns a group of mapping-contiguous pages with ascending
 733 * indexes.  There may be holes in the indices due to not-present pages.
 734 *
 735 * pagevec_lookup() returns the number of pages which were found.
 736 */
 737unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
 738                pgoff_t start, unsigned nr_pages)
 739{
 740        pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
 741        return pagevec_count(pvec);
 742}
 743
 744EXPORT_SYMBOL(pagevec_lookup);
 745
 746unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
 747                pgoff_t *index, int tag, unsigned nr_pages)
 748{
 749        pvec->nr = find_get_pages_tag(mapping, index, tag,
 750                                        nr_pages, pvec->pages);
 751        return pagevec_count(pvec);
 752}
 753
 754EXPORT_SYMBOL(pagevec_lookup_tag);
 755
 756/*
 757 * Perform any setup for the swap system
 758 */
 759void __init swap_setup(void)
 760{
 761        unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
 762
 763#ifdef CONFIG_SWAP
 764        bdi_init(swapper_space.backing_dev_info);
 765#endif
 766
 767        /* Use a smaller cluster for small-memory machines */
 768        if (megs < 16)
 769                page_cluster = 2;
 770        else
 771                page_cluster = 3;
 772        /*
 773         * Right now other parts of the system means that we
 774         * _really_ don't want to cluster much more
 775         */
 776}
 777