linux/net/ipv4/ipmr.c
<<
>>
Prefs
   1/*
   2 *      IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *        Linux Consultancy and Custom Driver Development
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 *
  12 *      Fixes:
  13 *      Michael Chastain        :       Incorrect size of copying.
  14 *      Alan Cox                :       Added the cache manager code
  15 *      Alan Cox                :       Fixed the clone/copy bug and device race.
  16 *      Mike McLagan            :       Routing by source
  17 *      Malcolm Beattie         :       Buffer handling fixes.
  18 *      Alexey Kuznetsov        :       Double buffer free and other fixes.
  19 *      SVR Anand               :       Fixed several multicast bugs and problems.
  20 *      Alexey Kuznetsov        :       Status, optimisations and more.
  21 *      Brad Parker             :       Better behaviour on mrouted upcall
  22 *                                      overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
  25 *                                      Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <linux/types.h>
  32#include <linux/capability.h>
  33#include <linux/errno.h>
  34#include <linux/timer.h>
  35#include <linux/mm.h>
  36#include <linux/kernel.h>
  37#include <linux/fcntl.h>
  38#include <linux/stat.h>
  39#include <linux/socket.h>
  40#include <linux/in.h>
  41#include <linux/inet.h>
  42#include <linux/netdevice.h>
  43#include <linux/inetdevice.h>
  44#include <linux/igmp.h>
  45#include <linux/proc_fs.h>
  46#include <linux/seq_file.h>
  47#include <linux/mroute.h>
  48#include <linux/init.h>
  49#include <linux/if_ether.h>
  50#include <linux/slab.h>
  51#include <net/net_namespace.h>
  52#include <net/ip.h>
  53#include <net/protocol.h>
  54#include <linux/skbuff.h>
  55#include <net/route.h>
  56#include <net/sock.h>
  57#include <net/icmp.h>
  58#include <net/udp.h>
  59#include <net/raw.h>
  60#include <linux/notifier.h>
  61#include <linux/if_arp.h>
  62#include <linux/netfilter_ipv4.h>
  63#include <linux/compat.h>
  64#include <net/ipip.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM 1
  71#endif
  72
  73struct mr_table {
  74        struct list_head        list;
  75#ifdef CONFIG_NET_NS
  76        struct net              *net;
  77#endif
  78        u32                     id;
  79        struct sock __rcu       *mroute_sk;
  80        struct timer_list       ipmr_expire_timer;
  81        struct list_head        mfc_unres_queue;
  82        struct list_head        mfc_cache_array[MFC_LINES];
  83        struct vif_device       vif_table[MAXVIFS];
  84        int                     maxvif;
  85        atomic_t                cache_resolve_queue_len;
  86        int                     mroute_do_assert;
  87        int                     mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89        int                     mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94        struct fib_rule         common;
  95};
  96
  97struct ipmr_result {
  98        struct mr_table         *mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *      Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 128                         struct sk_buff *skb, struct mfc_cache *cache,
 129                         int local);
 130static int ipmr_cache_report(struct mr_table *mrt,
 131                             struct sk_buff *pkt, vifi_t vifi, int assert);
 132static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 133                              struct mfc_cache *c, struct rtmsg *rtm);
 134static void ipmr_expire_process(unsigned long arg);
 135
 136#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 137#define ipmr_for_each_table(mrt, net) \
 138        list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 139
 140static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 141{
 142        struct mr_table *mrt;
 143
 144        ipmr_for_each_table(mrt, net) {
 145                if (mrt->id == id)
 146                        return mrt;
 147        }
 148        return NULL;
 149}
 150
 151static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 152                           struct mr_table **mrt)
 153{
 154        struct ipmr_result res;
 155        struct fib_lookup_arg arg = { .result = &res, };
 156        int err;
 157
 158        err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 159                               flowi4_to_flowi(flp4), 0, &arg);
 160        if (err < 0)
 161                return err;
 162        *mrt = res.mrt;
 163        return 0;
 164}
 165
 166static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 167                            int flags, struct fib_lookup_arg *arg)
 168{
 169        struct ipmr_result *res = arg->result;
 170        struct mr_table *mrt;
 171
 172        switch (rule->action) {
 173        case FR_ACT_TO_TBL:
 174                break;
 175        case FR_ACT_UNREACHABLE:
 176                return -ENETUNREACH;
 177        case FR_ACT_PROHIBIT:
 178                return -EACCES;
 179        case FR_ACT_BLACKHOLE:
 180        default:
 181                return -EINVAL;
 182        }
 183
 184        mrt = ipmr_get_table(rule->fr_net, rule->table);
 185        if (mrt == NULL)
 186                return -EAGAIN;
 187        res->mrt = mrt;
 188        return 0;
 189}
 190
 191static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 192{
 193        return 1;
 194}
 195
 196static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 197        FRA_GENERIC_POLICY,
 198};
 199
 200static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 201                               struct fib_rule_hdr *frh, struct nlattr **tb)
 202{
 203        return 0;
 204}
 205
 206static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 207                             struct nlattr **tb)
 208{
 209        return 1;
 210}
 211
 212static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 213                          struct fib_rule_hdr *frh)
 214{
 215        frh->dst_len = 0;
 216        frh->src_len = 0;
 217        frh->tos     = 0;
 218        return 0;
 219}
 220
 221static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 222        .family         = RTNL_FAMILY_IPMR,
 223        .rule_size      = sizeof(struct ipmr_rule),
 224        .addr_size      = sizeof(u32),
 225        .action         = ipmr_rule_action,
 226        .match          = ipmr_rule_match,
 227        .configure      = ipmr_rule_configure,
 228        .compare        = ipmr_rule_compare,
 229        .default_pref   = fib_default_rule_pref,
 230        .fill           = ipmr_rule_fill,
 231        .nlgroup        = RTNLGRP_IPV4_RULE,
 232        .policy         = ipmr_rule_policy,
 233        .owner          = THIS_MODULE,
 234};
 235
 236static int __net_init ipmr_rules_init(struct net *net)
 237{
 238        struct fib_rules_ops *ops;
 239        struct mr_table *mrt;
 240        int err;
 241
 242        ops = fib_rules_register(&ipmr_rules_ops_template, net);
 243        if (IS_ERR(ops))
 244                return PTR_ERR(ops);
 245
 246        INIT_LIST_HEAD(&net->ipv4.mr_tables);
 247
 248        mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 249        if (mrt == NULL) {
 250                err = -ENOMEM;
 251                goto err1;
 252        }
 253
 254        err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 255        if (err < 0)
 256                goto err2;
 257
 258        net->ipv4.mr_rules_ops = ops;
 259        return 0;
 260
 261err2:
 262        kfree(mrt);
 263err1:
 264        fib_rules_unregister(ops);
 265        return err;
 266}
 267
 268static void __net_exit ipmr_rules_exit(struct net *net)
 269{
 270        struct mr_table *mrt, *next;
 271
 272        list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 273                list_del(&mrt->list);
 274                kfree(mrt);
 275        }
 276        fib_rules_unregister(net->ipv4.mr_rules_ops);
 277}
 278#else
 279#define ipmr_for_each_table(mrt, net) \
 280        for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 281
 282static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 283{
 284        return net->ipv4.mrt;
 285}
 286
 287static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 288                           struct mr_table **mrt)
 289{
 290        *mrt = net->ipv4.mrt;
 291        return 0;
 292}
 293
 294static int __net_init ipmr_rules_init(struct net *net)
 295{
 296        net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 297        return net->ipv4.mrt ? 0 : -ENOMEM;
 298}
 299
 300static void __net_exit ipmr_rules_exit(struct net *net)
 301{
 302        kfree(net->ipv4.mrt);
 303}
 304#endif
 305
 306static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 307{
 308        struct mr_table *mrt;
 309        unsigned int i;
 310
 311        mrt = ipmr_get_table(net, id);
 312        if (mrt != NULL)
 313                return mrt;
 314
 315        mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 316        if (mrt == NULL)
 317                return NULL;
 318        write_pnet(&mrt->net, net);
 319        mrt->id = id;
 320
 321        /* Forwarding cache */
 322        for (i = 0; i < MFC_LINES; i++)
 323                INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 324
 325        INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 326
 327        setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 328                    (unsigned long)mrt);
 329
 330#ifdef CONFIG_IP_PIMSM
 331        mrt->mroute_reg_vif_num = -1;
 332#endif
 333#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 334        list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 335#endif
 336        return mrt;
 337}
 338
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343        struct net *net = dev_net(dev);
 344
 345        dev_close(dev);
 346
 347        dev = __dev_get_by_name(net, "tunl0");
 348        if (dev) {
 349                const struct net_device_ops *ops = dev->netdev_ops;
 350                struct ifreq ifr;
 351                struct ip_tunnel_parm p;
 352
 353                memset(&p, 0, sizeof(p));
 354                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356                p.iph.version = 4;
 357                p.iph.ihl = 5;
 358                p.iph.protocol = IPPROTO_IPIP;
 359                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362                if (ops->ndo_do_ioctl) {
 363                        mm_segment_t oldfs = get_fs();
 364
 365                        set_fs(KERNEL_DS);
 366                        ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367                        set_fs(oldfs);
 368                }
 369        }
 370}
 371
 372static
 373struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 374{
 375        struct net_device  *dev;
 376
 377        dev = __dev_get_by_name(net, "tunl0");
 378
 379        if (dev) {
 380                const struct net_device_ops *ops = dev->netdev_ops;
 381                int err;
 382                struct ifreq ifr;
 383                struct ip_tunnel_parm p;
 384                struct in_device  *in_dev;
 385
 386                memset(&p, 0, sizeof(p));
 387                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 388                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 389                p.iph.version = 4;
 390                p.iph.ihl = 5;
 391                p.iph.protocol = IPPROTO_IPIP;
 392                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 393                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 394
 395                if (ops->ndo_do_ioctl) {
 396                        mm_segment_t oldfs = get_fs();
 397
 398                        set_fs(KERNEL_DS);
 399                        err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 400                        set_fs(oldfs);
 401                } else {
 402                        err = -EOPNOTSUPP;
 403                }
 404                dev = NULL;
 405
 406                if (err == 0 &&
 407                    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 408                        dev->flags |= IFF_MULTICAST;
 409
 410                        in_dev = __in_dev_get_rtnl(dev);
 411                        if (in_dev == NULL)
 412                                goto failure;
 413
 414                        ipv4_devconf_setall(in_dev);
 415                        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 416
 417                        if (dev_open(dev))
 418                                goto failure;
 419                        dev_hold(dev);
 420                }
 421        }
 422        return dev;
 423
 424failure:
 425        /* allow the register to be completed before unregistering. */
 426        rtnl_unlock();
 427        rtnl_lock();
 428
 429        unregister_netdevice(dev);
 430        return NULL;
 431}
 432
 433#ifdef CONFIG_IP_PIMSM
 434
 435static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 436{
 437        struct net *net = dev_net(dev);
 438        struct mr_table *mrt;
 439        struct flowi4 fl4 = {
 440                .flowi4_oif     = dev->ifindex,
 441                .flowi4_iif     = skb->skb_iif,
 442                .flowi4_mark    = skb->mark,
 443        };
 444        int err;
 445
 446        err = ipmr_fib_lookup(net, &fl4, &mrt);
 447        if (err < 0) {
 448                kfree_skb(skb);
 449                return err;
 450        }
 451
 452        read_lock(&mrt_lock);
 453        dev->stats.tx_bytes += skb->len;
 454        dev->stats.tx_packets++;
 455        ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 456        read_unlock(&mrt_lock);
 457        kfree_skb(skb);
 458        return NETDEV_TX_OK;
 459}
 460
 461static const struct net_device_ops reg_vif_netdev_ops = {
 462        .ndo_start_xmit = reg_vif_xmit,
 463};
 464
 465static void reg_vif_setup(struct net_device *dev)
 466{
 467        dev->type               = ARPHRD_PIMREG;
 468        dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 469        dev->flags              = IFF_NOARP;
 470        dev->netdev_ops         = &reg_vif_netdev_ops,
 471        dev->destructor         = free_netdev;
 472        dev->features           |= NETIF_F_NETNS_LOCAL;
 473}
 474
 475static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 476{
 477        struct net_device *dev;
 478        struct in_device *in_dev;
 479        char name[IFNAMSIZ];
 480
 481        if (mrt->id == RT_TABLE_DEFAULT)
 482                sprintf(name, "pimreg");
 483        else
 484                sprintf(name, "pimreg%u", mrt->id);
 485
 486        dev = alloc_netdev(0, name, reg_vif_setup);
 487
 488        if (dev == NULL)
 489                return NULL;
 490
 491        dev_net_set(dev, net);
 492
 493        if (register_netdevice(dev)) {
 494                free_netdev(dev);
 495                return NULL;
 496        }
 497        dev->iflink = 0;
 498
 499        rcu_read_lock();
 500        in_dev = __in_dev_get_rcu(dev);
 501        if (!in_dev) {
 502                rcu_read_unlock();
 503                goto failure;
 504        }
 505
 506        ipv4_devconf_setall(in_dev);
 507        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 508        rcu_read_unlock();
 509
 510        if (dev_open(dev))
 511                goto failure;
 512
 513        dev_hold(dev);
 514
 515        return dev;
 516
 517failure:
 518        /* allow the register to be completed before unregistering. */
 519        rtnl_unlock();
 520        rtnl_lock();
 521
 522        unregister_netdevice(dev);
 523        return NULL;
 524}
 525#endif
 526
 527/*
 528 *      Delete a VIF entry
 529 *      @notify: Set to 1, if the caller is a notifier_call
 530 */
 531
 532static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 533                      struct list_head *head)
 534{
 535        struct vif_device *v;
 536        struct net_device *dev;
 537        struct in_device *in_dev;
 538
 539        if (vifi < 0 || vifi >= mrt->maxvif)
 540                return -EADDRNOTAVAIL;
 541
 542        v = &mrt->vif_table[vifi];
 543
 544        write_lock_bh(&mrt_lock);
 545        dev = v->dev;
 546        v->dev = NULL;
 547
 548        if (!dev) {
 549                write_unlock_bh(&mrt_lock);
 550                return -EADDRNOTAVAIL;
 551        }
 552
 553#ifdef CONFIG_IP_PIMSM
 554        if (vifi == mrt->mroute_reg_vif_num)
 555                mrt->mroute_reg_vif_num = -1;
 556#endif
 557
 558        if (vifi + 1 == mrt->maxvif) {
 559                int tmp;
 560
 561                for (tmp = vifi - 1; tmp >= 0; tmp--) {
 562                        if (VIF_EXISTS(mrt, tmp))
 563                                break;
 564                }
 565                mrt->maxvif = tmp+1;
 566        }
 567
 568        write_unlock_bh(&mrt_lock);
 569
 570        dev_set_allmulti(dev, -1);
 571
 572        in_dev = __in_dev_get_rtnl(dev);
 573        if (in_dev) {
 574                IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 575                ip_rt_multicast_event(in_dev);
 576        }
 577
 578        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 579                unregister_netdevice_queue(dev, head);
 580
 581        dev_put(dev);
 582        return 0;
 583}
 584
 585static void ipmr_cache_free_rcu(struct rcu_head *head)
 586{
 587        struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 588
 589        kmem_cache_free(mrt_cachep, c);
 590}
 591
 592static inline void ipmr_cache_free(struct mfc_cache *c)
 593{
 594        call_rcu(&c->rcu, ipmr_cache_free_rcu);
 595}
 596
 597/* Destroy an unresolved cache entry, killing queued skbs
 598 * and reporting error to netlink readers.
 599 */
 600
 601static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 602{
 603        struct net *net = read_pnet(&mrt->net);
 604        struct sk_buff *skb;
 605        struct nlmsgerr *e;
 606
 607        atomic_dec(&mrt->cache_resolve_queue_len);
 608
 609        while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 610                if (ip_hdr(skb)->version == 0) {
 611                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 612                        nlh->nlmsg_type = NLMSG_ERROR;
 613                        nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 614                        skb_trim(skb, nlh->nlmsg_len);
 615                        e = NLMSG_DATA(nlh);
 616                        e->error = -ETIMEDOUT;
 617                        memset(&e->msg, 0, sizeof(e->msg));
 618
 619                        rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 620                } else {
 621                        kfree_skb(skb);
 622                }
 623        }
 624
 625        ipmr_cache_free(c);
 626}
 627
 628
 629/* Timer process for the unresolved queue. */
 630
 631static void ipmr_expire_process(unsigned long arg)
 632{
 633        struct mr_table *mrt = (struct mr_table *)arg;
 634        unsigned long now;
 635        unsigned long expires;
 636        struct mfc_cache *c, *next;
 637
 638        if (!spin_trylock(&mfc_unres_lock)) {
 639                mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 640                return;
 641        }
 642
 643        if (list_empty(&mrt->mfc_unres_queue))
 644                goto out;
 645
 646        now = jiffies;
 647        expires = 10*HZ;
 648
 649        list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 650                if (time_after(c->mfc_un.unres.expires, now)) {
 651                        unsigned long interval = c->mfc_un.unres.expires - now;
 652                        if (interval < expires)
 653                                expires = interval;
 654                        continue;
 655                }
 656
 657                list_del(&c->list);
 658                ipmr_destroy_unres(mrt, c);
 659        }
 660
 661        if (!list_empty(&mrt->mfc_unres_queue))
 662                mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 663
 664out:
 665        spin_unlock(&mfc_unres_lock);
 666}
 667
 668/* Fill oifs list. It is called under write locked mrt_lock. */
 669
 670static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 671                                   unsigned char *ttls)
 672{
 673        int vifi;
 674
 675        cache->mfc_un.res.minvif = MAXVIFS;
 676        cache->mfc_un.res.maxvif = 0;
 677        memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 678
 679        for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 680                if (VIF_EXISTS(mrt, vifi) &&
 681                    ttls[vifi] && ttls[vifi] < 255) {
 682                        cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 683                        if (cache->mfc_un.res.minvif > vifi)
 684                                cache->mfc_un.res.minvif = vifi;
 685                        if (cache->mfc_un.res.maxvif <= vifi)
 686                                cache->mfc_un.res.maxvif = vifi + 1;
 687                }
 688        }
 689}
 690
 691static int vif_add(struct net *net, struct mr_table *mrt,
 692                   struct vifctl *vifc, int mrtsock)
 693{
 694        int vifi = vifc->vifc_vifi;
 695        struct vif_device *v = &mrt->vif_table[vifi];
 696        struct net_device *dev;
 697        struct in_device *in_dev;
 698        int err;
 699
 700        /* Is vif busy ? */
 701        if (VIF_EXISTS(mrt, vifi))
 702                return -EADDRINUSE;
 703
 704        switch (vifc->vifc_flags) {
 705#ifdef CONFIG_IP_PIMSM
 706        case VIFF_REGISTER:
 707                /*
 708                 * Special Purpose VIF in PIM
 709                 * All the packets will be sent to the daemon
 710                 */
 711                if (mrt->mroute_reg_vif_num >= 0)
 712                        return -EADDRINUSE;
 713                dev = ipmr_reg_vif(net, mrt);
 714                if (!dev)
 715                        return -ENOBUFS;
 716                err = dev_set_allmulti(dev, 1);
 717                if (err) {
 718                        unregister_netdevice(dev);
 719                        dev_put(dev);
 720                        return err;
 721                }
 722                break;
 723#endif
 724        case VIFF_TUNNEL:
 725                dev = ipmr_new_tunnel(net, vifc);
 726                if (!dev)
 727                        return -ENOBUFS;
 728                err = dev_set_allmulti(dev, 1);
 729                if (err) {
 730                        ipmr_del_tunnel(dev, vifc);
 731                        dev_put(dev);
 732                        return err;
 733                }
 734                break;
 735
 736        case VIFF_USE_IFINDEX:
 737        case 0:
 738                if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 739                        dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 740                        if (dev && __in_dev_get_rtnl(dev) == NULL) {
 741                                dev_put(dev);
 742                                return -EADDRNOTAVAIL;
 743                        }
 744                } else {
 745                        dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 746                }
 747                if (!dev)
 748                        return -EADDRNOTAVAIL;
 749                err = dev_set_allmulti(dev, 1);
 750                if (err) {
 751                        dev_put(dev);
 752                        return err;
 753                }
 754                break;
 755        default:
 756                return -EINVAL;
 757        }
 758
 759        in_dev = __in_dev_get_rtnl(dev);
 760        if (!in_dev) {
 761                dev_put(dev);
 762                return -EADDRNOTAVAIL;
 763        }
 764        IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 765        ip_rt_multicast_event(in_dev);
 766
 767        /* Fill in the VIF structures */
 768
 769        v->rate_limit = vifc->vifc_rate_limit;
 770        v->local = vifc->vifc_lcl_addr.s_addr;
 771        v->remote = vifc->vifc_rmt_addr.s_addr;
 772        v->flags = vifc->vifc_flags;
 773        if (!mrtsock)
 774                v->flags |= VIFF_STATIC;
 775        v->threshold = vifc->vifc_threshold;
 776        v->bytes_in = 0;
 777        v->bytes_out = 0;
 778        v->pkt_in = 0;
 779        v->pkt_out = 0;
 780        v->link = dev->ifindex;
 781        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 782                v->link = dev->iflink;
 783
 784        /* And finish update writing critical data */
 785        write_lock_bh(&mrt_lock);
 786        v->dev = dev;
 787#ifdef CONFIG_IP_PIMSM
 788        if (v->flags & VIFF_REGISTER)
 789                mrt->mroute_reg_vif_num = vifi;
 790#endif
 791        if (vifi+1 > mrt->maxvif)
 792                mrt->maxvif = vifi+1;
 793        write_unlock_bh(&mrt_lock);
 794        return 0;
 795}
 796
 797/* called with rcu_read_lock() */
 798static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 799                                         __be32 origin,
 800                                         __be32 mcastgrp)
 801{
 802        int line = MFC_HASH(mcastgrp, origin);
 803        struct mfc_cache *c;
 804
 805        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 806                if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 807                        return c;
 808        }
 809        return NULL;
 810}
 811
 812/*
 813 *      Allocate a multicast cache entry
 814 */
 815static struct mfc_cache *ipmr_cache_alloc(void)
 816{
 817        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 818
 819        if (c)
 820                c->mfc_un.res.minvif = MAXVIFS;
 821        return c;
 822}
 823
 824static struct mfc_cache *ipmr_cache_alloc_unres(void)
 825{
 826        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 827
 828        if (c) {
 829                skb_queue_head_init(&c->mfc_un.unres.unresolved);
 830                c->mfc_un.unres.expires = jiffies + 10*HZ;
 831        }
 832        return c;
 833}
 834
 835/*
 836 *      A cache entry has gone into a resolved state from queued
 837 */
 838
 839static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 840                               struct mfc_cache *uc, struct mfc_cache *c)
 841{
 842        struct sk_buff *skb;
 843        struct nlmsgerr *e;
 844
 845        /* Play the pending entries through our router */
 846
 847        while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 848                if (ip_hdr(skb)->version == 0) {
 849                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 850
 851                        if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 852                                nlh->nlmsg_len = skb_tail_pointer(skb) -
 853                                                 (u8 *)nlh;
 854                        } else {
 855                                nlh->nlmsg_type = NLMSG_ERROR;
 856                                nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 857                                skb_trim(skb, nlh->nlmsg_len);
 858                                e = NLMSG_DATA(nlh);
 859                                e->error = -EMSGSIZE;
 860                                memset(&e->msg, 0, sizeof(e->msg));
 861                        }
 862
 863                        rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 864                } else {
 865                        ip_mr_forward(net, mrt, skb, c, 0);
 866                }
 867        }
 868}
 869
 870/*
 871 *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 872 *      expects the following bizarre scheme.
 873 *
 874 *      Called under mrt_lock.
 875 */
 876
 877static int ipmr_cache_report(struct mr_table *mrt,
 878                             struct sk_buff *pkt, vifi_t vifi, int assert)
 879{
 880        struct sk_buff *skb;
 881        const int ihl = ip_hdrlen(pkt);
 882        struct igmphdr *igmp;
 883        struct igmpmsg *msg;
 884        struct sock *mroute_sk;
 885        int ret;
 886
 887#ifdef CONFIG_IP_PIMSM
 888        if (assert == IGMPMSG_WHOLEPKT)
 889                skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 890        else
 891#endif
 892                skb = alloc_skb(128, GFP_ATOMIC);
 893
 894        if (!skb)
 895                return -ENOBUFS;
 896
 897#ifdef CONFIG_IP_PIMSM
 898        if (assert == IGMPMSG_WHOLEPKT) {
 899                /* Ugly, but we have no choice with this interface.
 900                 * Duplicate old header, fix ihl, length etc.
 901                 * And all this only to mangle msg->im_msgtype and
 902                 * to set msg->im_mbz to "mbz" :-)
 903                 */
 904                skb_push(skb, sizeof(struct iphdr));
 905                skb_reset_network_header(skb);
 906                skb_reset_transport_header(skb);
 907                msg = (struct igmpmsg *)skb_network_header(skb);
 908                memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 909                msg->im_msgtype = IGMPMSG_WHOLEPKT;
 910                msg->im_mbz = 0;
 911                msg->im_vif = mrt->mroute_reg_vif_num;
 912                ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 913                ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 914                                             sizeof(struct iphdr));
 915        } else
 916#endif
 917        {
 918
 919        /* Copy the IP header */
 920
 921        skb->network_header = skb->tail;
 922        skb_put(skb, ihl);
 923        skb_copy_to_linear_data(skb, pkt->data, ihl);
 924        ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
 925        msg = (struct igmpmsg *)skb_network_header(skb);
 926        msg->im_vif = vifi;
 927        skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 928
 929        /* Add our header */
 930
 931        igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 932        igmp->type      =
 933        msg->im_msgtype = assert;
 934        igmp->code      = 0;
 935        ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
 936        skb->transport_header = skb->network_header;
 937        }
 938
 939        rcu_read_lock();
 940        mroute_sk = rcu_dereference(mrt->mroute_sk);
 941        if (mroute_sk == NULL) {
 942                rcu_read_unlock();
 943                kfree_skb(skb);
 944                return -EINVAL;
 945        }
 946
 947        /* Deliver to mrouted */
 948
 949        ret = sock_queue_rcv_skb(mroute_sk, skb);
 950        rcu_read_unlock();
 951        if (ret < 0) {
 952                if (net_ratelimit())
 953                        printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
 954                kfree_skb(skb);
 955        }
 956
 957        return ret;
 958}
 959
 960/*
 961 *      Queue a packet for resolution. It gets locked cache entry!
 962 */
 963
 964static int
 965ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 966{
 967        bool found = false;
 968        int err;
 969        struct mfc_cache *c;
 970        const struct iphdr *iph = ip_hdr(skb);
 971
 972        spin_lock_bh(&mfc_unres_lock);
 973        list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 974                if (c->mfc_mcastgrp == iph->daddr &&
 975                    c->mfc_origin == iph->saddr) {
 976                        found = true;
 977                        break;
 978                }
 979        }
 980
 981        if (!found) {
 982                /* Create a new entry if allowable */
 983
 984                if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 985                    (c = ipmr_cache_alloc_unres()) == NULL) {
 986                        spin_unlock_bh(&mfc_unres_lock);
 987
 988                        kfree_skb(skb);
 989                        return -ENOBUFS;
 990                }
 991
 992                /* Fill in the new cache entry */
 993
 994                c->mfc_parent   = -1;
 995                c->mfc_origin   = iph->saddr;
 996                c->mfc_mcastgrp = iph->daddr;
 997
 998                /* Reflect first query at mrouted. */
 999
1000                err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1001                if (err < 0) {
1002                        /* If the report failed throw the cache entry
1003                           out - Brad Parker
1004                         */
1005                        spin_unlock_bh(&mfc_unres_lock);
1006
1007                        ipmr_cache_free(c);
1008                        kfree_skb(skb);
1009                        return err;
1010                }
1011
1012                atomic_inc(&mrt->cache_resolve_queue_len);
1013                list_add(&c->list, &mrt->mfc_unres_queue);
1014
1015                if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1016                        mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1017        }
1018
1019        /* See if we can append the packet */
1020
1021        if (c->mfc_un.unres.unresolved.qlen > 3) {
1022                kfree_skb(skb);
1023                err = -ENOBUFS;
1024        } else {
1025                skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1026                err = 0;
1027        }
1028
1029        spin_unlock_bh(&mfc_unres_lock);
1030        return err;
1031}
1032
1033/*
1034 *      MFC cache manipulation by user space mroute daemon
1035 */
1036
1037static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1038{
1039        int line;
1040        struct mfc_cache *c, *next;
1041
1042        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1043
1044        list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1045                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1046                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1047                        list_del_rcu(&c->list);
1048
1049                        ipmr_cache_free(c);
1050                        return 0;
1051                }
1052        }
1053        return -ENOENT;
1054}
1055
1056static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1057                        struct mfcctl *mfc, int mrtsock)
1058{
1059        bool found = false;
1060        int line;
1061        struct mfc_cache *uc, *c;
1062
1063        if (mfc->mfcc_parent >= MAXVIFS)
1064                return -ENFILE;
1065
1066        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1067
1068        list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1069                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1070                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1071                        found = true;
1072                        break;
1073                }
1074        }
1075
1076        if (found) {
1077                write_lock_bh(&mrt_lock);
1078                c->mfc_parent = mfc->mfcc_parent;
1079                ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1080                if (!mrtsock)
1081                        c->mfc_flags |= MFC_STATIC;
1082                write_unlock_bh(&mrt_lock);
1083                return 0;
1084        }
1085
1086        if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1087                return -EINVAL;
1088
1089        c = ipmr_cache_alloc();
1090        if (c == NULL)
1091                return -ENOMEM;
1092
1093        c->mfc_origin = mfc->mfcc_origin.s_addr;
1094        c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1095        c->mfc_parent = mfc->mfcc_parent;
1096        ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1097        if (!mrtsock)
1098                c->mfc_flags |= MFC_STATIC;
1099
1100        list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1101
1102        /*
1103         *      Check to see if we resolved a queued list. If so we
1104         *      need to send on the frames and tidy up.
1105         */
1106        found = false;
1107        spin_lock_bh(&mfc_unres_lock);
1108        list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1109                if (uc->mfc_origin == c->mfc_origin &&
1110                    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1111                        list_del(&uc->list);
1112                        atomic_dec(&mrt->cache_resolve_queue_len);
1113                        found = true;
1114                        break;
1115                }
1116        }
1117        if (list_empty(&mrt->mfc_unres_queue))
1118                del_timer(&mrt->ipmr_expire_timer);
1119        spin_unlock_bh(&mfc_unres_lock);
1120
1121        if (found) {
1122                ipmr_cache_resolve(net, mrt, uc, c);
1123                ipmr_cache_free(uc);
1124        }
1125        return 0;
1126}
1127
1128/*
1129 *      Close the multicast socket, and clear the vif tables etc
1130 */
1131
1132static void mroute_clean_tables(struct mr_table *mrt)
1133{
1134        int i;
1135        LIST_HEAD(list);
1136        struct mfc_cache *c, *next;
1137
1138        /* Shut down all active vif entries */
1139
1140        for (i = 0; i < mrt->maxvif; i++) {
1141                if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1142                        vif_delete(mrt, i, 0, &list);
1143        }
1144        unregister_netdevice_many(&list);
1145
1146        /* Wipe the cache */
1147
1148        for (i = 0; i < MFC_LINES; i++) {
1149                list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1150                        if (c->mfc_flags & MFC_STATIC)
1151                                continue;
1152                        list_del_rcu(&c->list);
1153                        ipmr_cache_free(c);
1154                }
1155        }
1156
1157        if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1158                spin_lock_bh(&mfc_unres_lock);
1159                list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1160                        list_del(&c->list);
1161                        ipmr_destroy_unres(mrt, c);
1162                }
1163                spin_unlock_bh(&mfc_unres_lock);
1164        }
1165}
1166
1167/* called from ip_ra_control(), before an RCU grace period,
1168 * we dont need to call synchronize_rcu() here
1169 */
1170static void mrtsock_destruct(struct sock *sk)
1171{
1172        struct net *net = sock_net(sk);
1173        struct mr_table *mrt;
1174
1175        rtnl_lock();
1176        ipmr_for_each_table(mrt, net) {
1177                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1178                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1179                        rcu_assign_pointer(mrt->mroute_sk, NULL);
1180                        mroute_clean_tables(mrt);
1181                }
1182        }
1183        rtnl_unlock();
1184}
1185
1186/*
1187 *      Socket options and virtual interface manipulation. The whole
1188 *      virtual interface system is a complete heap, but unfortunately
1189 *      that's how BSD mrouted happens to think. Maybe one day with a proper
1190 *      MOSPF/PIM router set up we can clean this up.
1191 */
1192
1193int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1194{
1195        int ret;
1196        struct vifctl vif;
1197        struct mfcctl mfc;
1198        struct net *net = sock_net(sk);
1199        struct mr_table *mrt;
1200
1201        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1202        if (mrt == NULL)
1203                return -ENOENT;
1204
1205        if (optname != MRT_INIT) {
1206                if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1207                    !capable(CAP_NET_ADMIN))
1208                        return -EACCES;
1209        }
1210
1211        switch (optname) {
1212        case MRT_INIT:
1213                if (sk->sk_type != SOCK_RAW ||
1214                    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1215                        return -EOPNOTSUPP;
1216                if (optlen != sizeof(int))
1217                        return -ENOPROTOOPT;
1218
1219                rtnl_lock();
1220                if (rtnl_dereference(mrt->mroute_sk)) {
1221                        rtnl_unlock();
1222                        return -EADDRINUSE;
1223                }
1224
1225                ret = ip_ra_control(sk, 1, mrtsock_destruct);
1226                if (ret == 0) {
1227                        rcu_assign_pointer(mrt->mroute_sk, sk);
1228                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1229                }
1230                rtnl_unlock();
1231                return ret;
1232        case MRT_DONE:
1233                if (sk != rcu_dereference_raw(mrt->mroute_sk))
1234                        return -EACCES;
1235                return ip_ra_control(sk, 0, NULL);
1236        case MRT_ADD_VIF:
1237        case MRT_DEL_VIF:
1238                if (optlen != sizeof(vif))
1239                        return -EINVAL;
1240                if (copy_from_user(&vif, optval, sizeof(vif)))
1241                        return -EFAULT;
1242                if (vif.vifc_vifi >= MAXVIFS)
1243                        return -ENFILE;
1244                rtnl_lock();
1245                if (optname == MRT_ADD_VIF) {
1246                        ret = vif_add(net, mrt, &vif,
1247                                      sk == rtnl_dereference(mrt->mroute_sk));
1248                } else {
1249                        ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1250                }
1251                rtnl_unlock();
1252                return ret;
1253
1254                /*
1255                 *      Manipulate the forwarding caches. These live
1256                 *      in a sort of kernel/user symbiosis.
1257                 */
1258        case MRT_ADD_MFC:
1259        case MRT_DEL_MFC:
1260                if (optlen != sizeof(mfc))
1261                        return -EINVAL;
1262                if (copy_from_user(&mfc, optval, sizeof(mfc)))
1263                        return -EFAULT;
1264                rtnl_lock();
1265                if (optname == MRT_DEL_MFC)
1266                        ret = ipmr_mfc_delete(mrt, &mfc);
1267                else
1268                        ret = ipmr_mfc_add(net, mrt, &mfc,
1269                                           sk == rtnl_dereference(mrt->mroute_sk));
1270                rtnl_unlock();
1271                return ret;
1272                /*
1273                 *      Control PIM assert.
1274                 */
1275        case MRT_ASSERT:
1276        {
1277                int v;
1278                if (get_user(v, (int __user *)optval))
1279                        return -EFAULT;
1280                mrt->mroute_do_assert = (v) ? 1 : 0;
1281                return 0;
1282        }
1283#ifdef CONFIG_IP_PIMSM
1284        case MRT_PIM:
1285        {
1286                int v;
1287
1288                if (get_user(v, (int __user *)optval))
1289                        return -EFAULT;
1290                v = (v) ? 1 : 0;
1291
1292                rtnl_lock();
1293                ret = 0;
1294                if (v != mrt->mroute_do_pim) {
1295                        mrt->mroute_do_pim = v;
1296                        mrt->mroute_do_assert = v;
1297                }
1298                rtnl_unlock();
1299                return ret;
1300        }
1301#endif
1302#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1303        case MRT_TABLE:
1304        {
1305                u32 v;
1306
1307                if (optlen != sizeof(u32))
1308                        return -EINVAL;
1309                if (get_user(v, (u32 __user *)optval))
1310                        return -EFAULT;
1311
1312                rtnl_lock();
1313                ret = 0;
1314                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1315                        ret = -EBUSY;
1316                } else {
1317                        if (!ipmr_new_table(net, v))
1318                                ret = -ENOMEM;
1319                        raw_sk(sk)->ipmr_table = v;
1320                }
1321                rtnl_unlock();
1322                return ret;
1323        }
1324#endif
1325        /*
1326         *      Spurious command, or MRT_VERSION which you cannot
1327         *      set.
1328         */
1329        default:
1330                return -ENOPROTOOPT;
1331        }
1332}
1333
1334/*
1335 *      Getsock opt support for the multicast routing system.
1336 */
1337
1338int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1339{
1340        int olr;
1341        int val;
1342        struct net *net = sock_net(sk);
1343        struct mr_table *mrt;
1344
1345        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1346        if (mrt == NULL)
1347                return -ENOENT;
1348
1349        if (optname != MRT_VERSION &&
1350#ifdef CONFIG_IP_PIMSM
1351           optname != MRT_PIM &&
1352#endif
1353           optname != MRT_ASSERT)
1354                return -ENOPROTOOPT;
1355
1356        if (get_user(olr, optlen))
1357                return -EFAULT;
1358
1359        olr = min_t(unsigned int, olr, sizeof(int));
1360        if (olr < 0)
1361                return -EINVAL;
1362
1363        if (put_user(olr, optlen))
1364                return -EFAULT;
1365        if (optname == MRT_VERSION)
1366                val = 0x0305;
1367#ifdef CONFIG_IP_PIMSM
1368        else if (optname == MRT_PIM)
1369                val = mrt->mroute_do_pim;
1370#endif
1371        else
1372                val = mrt->mroute_do_assert;
1373        if (copy_to_user(optval, &val, olr))
1374                return -EFAULT;
1375        return 0;
1376}
1377
1378/*
1379 *      The IP multicast ioctl support routines.
1380 */
1381
1382int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1383{
1384        struct sioc_sg_req sr;
1385        struct sioc_vif_req vr;
1386        struct vif_device *vif;
1387        struct mfc_cache *c;
1388        struct net *net = sock_net(sk);
1389        struct mr_table *mrt;
1390
1391        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1392        if (mrt == NULL)
1393                return -ENOENT;
1394
1395        switch (cmd) {
1396        case SIOCGETVIFCNT:
1397                if (copy_from_user(&vr, arg, sizeof(vr)))
1398                        return -EFAULT;
1399                if (vr.vifi >= mrt->maxvif)
1400                        return -EINVAL;
1401                read_lock(&mrt_lock);
1402                vif = &mrt->vif_table[vr.vifi];
1403                if (VIF_EXISTS(mrt, vr.vifi)) {
1404                        vr.icount = vif->pkt_in;
1405                        vr.ocount = vif->pkt_out;
1406                        vr.ibytes = vif->bytes_in;
1407                        vr.obytes = vif->bytes_out;
1408                        read_unlock(&mrt_lock);
1409
1410                        if (copy_to_user(arg, &vr, sizeof(vr)))
1411                                return -EFAULT;
1412                        return 0;
1413                }
1414                read_unlock(&mrt_lock);
1415                return -EADDRNOTAVAIL;
1416        case SIOCGETSGCNT:
1417                if (copy_from_user(&sr, arg, sizeof(sr)))
1418                        return -EFAULT;
1419
1420                rcu_read_lock();
1421                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1422                if (c) {
1423                        sr.pktcnt = c->mfc_un.res.pkt;
1424                        sr.bytecnt = c->mfc_un.res.bytes;
1425                        sr.wrong_if = c->mfc_un.res.wrong_if;
1426                        rcu_read_unlock();
1427
1428                        if (copy_to_user(arg, &sr, sizeof(sr)))
1429                                return -EFAULT;
1430                        return 0;
1431                }
1432                rcu_read_unlock();
1433                return -EADDRNOTAVAIL;
1434        default:
1435                return -ENOIOCTLCMD;
1436        }
1437}
1438
1439#ifdef CONFIG_COMPAT
1440struct compat_sioc_sg_req {
1441        struct in_addr src;
1442        struct in_addr grp;
1443        compat_ulong_t pktcnt;
1444        compat_ulong_t bytecnt;
1445        compat_ulong_t wrong_if;
1446};
1447
1448struct compat_sioc_vif_req {
1449        vifi_t  vifi;           /* Which iface */
1450        compat_ulong_t icount;
1451        compat_ulong_t ocount;
1452        compat_ulong_t ibytes;
1453        compat_ulong_t obytes;
1454};
1455
1456int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1457{
1458        struct compat_sioc_sg_req sr;
1459        struct compat_sioc_vif_req vr;
1460        struct vif_device *vif;
1461        struct mfc_cache *c;
1462        struct net *net = sock_net(sk);
1463        struct mr_table *mrt;
1464
1465        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1466        if (mrt == NULL)
1467                return -ENOENT;
1468
1469        switch (cmd) {
1470        case SIOCGETVIFCNT:
1471                if (copy_from_user(&vr, arg, sizeof(vr)))
1472                        return -EFAULT;
1473                if (vr.vifi >= mrt->maxvif)
1474                        return -EINVAL;
1475                read_lock(&mrt_lock);
1476                vif = &mrt->vif_table[vr.vifi];
1477                if (VIF_EXISTS(mrt, vr.vifi)) {
1478                        vr.icount = vif->pkt_in;
1479                        vr.ocount = vif->pkt_out;
1480                        vr.ibytes = vif->bytes_in;
1481                        vr.obytes = vif->bytes_out;
1482                        read_unlock(&mrt_lock);
1483
1484                        if (copy_to_user(arg, &vr, sizeof(vr)))
1485                                return -EFAULT;
1486                        return 0;
1487                }
1488                read_unlock(&mrt_lock);
1489                return -EADDRNOTAVAIL;
1490        case SIOCGETSGCNT:
1491                if (copy_from_user(&sr, arg, sizeof(sr)))
1492                        return -EFAULT;
1493
1494                rcu_read_lock();
1495                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1496                if (c) {
1497                        sr.pktcnt = c->mfc_un.res.pkt;
1498                        sr.bytecnt = c->mfc_un.res.bytes;
1499                        sr.wrong_if = c->mfc_un.res.wrong_if;
1500                        rcu_read_unlock();
1501
1502                        if (copy_to_user(arg, &sr, sizeof(sr)))
1503                                return -EFAULT;
1504                        return 0;
1505                }
1506                rcu_read_unlock();
1507                return -EADDRNOTAVAIL;
1508        default:
1509                return -ENOIOCTLCMD;
1510        }
1511}
1512#endif
1513
1514
1515static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1516{
1517        struct net_device *dev = ptr;
1518        struct net *net = dev_net(dev);
1519        struct mr_table *mrt;
1520        struct vif_device *v;
1521        int ct;
1522        LIST_HEAD(list);
1523
1524        if (event != NETDEV_UNREGISTER)
1525                return NOTIFY_DONE;
1526
1527        ipmr_for_each_table(mrt, net) {
1528                v = &mrt->vif_table[0];
1529                for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1530                        if (v->dev == dev)
1531                                vif_delete(mrt, ct, 1, &list);
1532                }
1533        }
1534        unregister_netdevice_many(&list);
1535        return NOTIFY_DONE;
1536}
1537
1538
1539static struct notifier_block ip_mr_notifier = {
1540        .notifier_call = ipmr_device_event,
1541};
1542
1543/*
1544 *      Encapsulate a packet by attaching a valid IPIP header to it.
1545 *      This avoids tunnel drivers and other mess and gives us the speed so
1546 *      important for multicast video.
1547 */
1548
1549static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1550{
1551        struct iphdr *iph;
1552        const struct iphdr *old_iph = ip_hdr(skb);
1553
1554        skb_push(skb, sizeof(struct iphdr));
1555        skb->transport_header = skb->network_header;
1556        skb_reset_network_header(skb);
1557        iph = ip_hdr(skb);
1558
1559        iph->version    =       4;
1560        iph->tos        =       old_iph->tos;
1561        iph->ttl        =       old_iph->ttl;
1562        iph->frag_off   =       0;
1563        iph->daddr      =       daddr;
1564        iph->saddr      =       saddr;
1565        iph->protocol   =       IPPROTO_IPIP;
1566        iph->ihl        =       5;
1567        iph->tot_len    =       htons(skb->len);
1568        ip_select_ident(iph, skb_dst(skb), NULL);
1569        ip_send_check(iph);
1570
1571        memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1572        nf_reset(skb);
1573}
1574
1575static inline int ipmr_forward_finish(struct sk_buff *skb)
1576{
1577        struct ip_options *opt = &(IPCB(skb)->opt);
1578
1579        IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1580
1581        if (unlikely(opt->optlen))
1582                ip_forward_options(skb);
1583
1584        return dst_output(skb);
1585}
1586
1587/*
1588 *      Processing handlers for ipmr_forward
1589 */
1590
1591static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1592                            struct sk_buff *skb, struct mfc_cache *c, int vifi)
1593{
1594        const struct iphdr *iph = ip_hdr(skb);
1595        struct vif_device *vif = &mrt->vif_table[vifi];
1596        struct net_device *dev;
1597        struct rtable *rt;
1598        struct flowi4 fl4;
1599        int    encap = 0;
1600
1601        if (vif->dev == NULL)
1602                goto out_free;
1603
1604#ifdef CONFIG_IP_PIMSM
1605        if (vif->flags & VIFF_REGISTER) {
1606                vif->pkt_out++;
1607                vif->bytes_out += skb->len;
1608                vif->dev->stats.tx_bytes += skb->len;
1609                vif->dev->stats.tx_packets++;
1610                ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1611                goto out_free;
1612        }
1613#endif
1614
1615        if (vif->flags & VIFF_TUNNEL) {
1616                rt = ip_route_output_ports(net, &fl4, NULL,
1617                                           vif->remote, vif->local,
1618                                           0, 0,
1619                                           IPPROTO_IPIP,
1620                                           RT_TOS(iph->tos), vif->link);
1621                if (IS_ERR(rt))
1622                        goto out_free;
1623                encap = sizeof(struct iphdr);
1624        } else {
1625                rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1626                                           0, 0,
1627                                           IPPROTO_IPIP,
1628                                           RT_TOS(iph->tos), vif->link);
1629                if (IS_ERR(rt))
1630                        goto out_free;
1631        }
1632
1633        dev = rt->dst.dev;
1634
1635        if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1636                /* Do not fragment multicasts. Alas, IPv4 does not
1637                 * allow to send ICMP, so that packets will disappear
1638                 * to blackhole.
1639                 */
1640
1641                IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1642                ip_rt_put(rt);
1643                goto out_free;
1644        }
1645
1646        encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1647
1648        if (skb_cow(skb, encap)) {
1649                ip_rt_put(rt);
1650                goto out_free;
1651        }
1652
1653        vif->pkt_out++;
1654        vif->bytes_out += skb->len;
1655
1656        skb_dst_drop(skb);
1657        skb_dst_set(skb, &rt->dst);
1658        ip_decrease_ttl(ip_hdr(skb));
1659
1660        /* FIXME: forward and output firewalls used to be called here.
1661         * What do we do with netfilter? -- RR
1662         */
1663        if (vif->flags & VIFF_TUNNEL) {
1664                ip_encap(skb, vif->local, vif->remote);
1665                /* FIXME: extra output firewall step used to be here. --RR */
1666                vif->dev->stats.tx_packets++;
1667                vif->dev->stats.tx_bytes += skb->len;
1668        }
1669
1670        IPCB(skb)->flags |= IPSKB_FORWARDED;
1671
1672        /*
1673         * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1674         * not only before forwarding, but after forwarding on all output
1675         * interfaces. It is clear, if mrouter runs a multicasting
1676         * program, it should receive packets not depending to what interface
1677         * program is joined.
1678         * If we will not make it, the program will have to join on all
1679         * interfaces. On the other hand, multihoming host (or router, but
1680         * not mrouter) cannot join to more than one interface - it will
1681         * result in receiving multiple packets.
1682         */
1683        NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1684                ipmr_forward_finish);
1685        return;
1686
1687out_free:
1688        kfree_skb(skb);
1689}
1690
1691static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1692{
1693        int ct;
1694
1695        for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1696                if (mrt->vif_table[ct].dev == dev)
1697                        break;
1698        }
1699        return ct;
1700}
1701
1702/* "local" means that we should preserve one skb (for local delivery) */
1703
1704static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1705                         struct sk_buff *skb, struct mfc_cache *cache,
1706                         int local)
1707{
1708        int psend = -1;
1709        int vif, ct;
1710
1711        vif = cache->mfc_parent;
1712        cache->mfc_un.res.pkt++;
1713        cache->mfc_un.res.bytes += skb->len;
1714
1715        /*
1716         * Wrong interface: drop packet and (maybe) send PIM assert.
1717         */
1718        if (mrt->vif_table[vif].dev != skb->dev) {
1719                int true_vifi;
1720
1721                if (rt_is_output_route(skb_rtable(skb))) {
1722                        /* It is our own packet, looped back.
1723                         * Very complicated situation...
1724                         *
1725                         * The best workaround until routing daemons will be
1726                         * fixed is not to redistribute packet, if it was
1727                         * send through wrong interface. It means, that
1728                         * multicast applications WILL NOT work for
1729                         * (S,G), which have default multicast route pointing
1730                         * to wrong oif. In any case, it is not a good
1731                         * idea to use multicasting applications on router.
1732                         */
1733                        goto dont_forward;
1734                }
1735
1736                cache->mfc_un.res.wrong_if++;
1737                true_vifi = ipmr_find_vif(mrt, skb->dev);
1738
1739                if (true_vifi >= 0 && mrt->mroute_do_assert &&
1740                    /* pimsm uses asserts, when switching from RPT to SPT,
1741                     * so that we cannot check that packet arrived on an oif.
1742                     * It is bad, but otherwise we would need to move pretty
1743                     * large chunk of pimd to kernel. Ough... --ANK
1744                     */
1745                    (mrt->mroute_do_pim ||
1746                     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1747                    time_after(jiffies,
1748                               cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1749                        cache->mfc_un.res.last_assert = jiffies;
1750                        ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1751                }
1752                goto dont_forward;
1753        }
1754
1755        mrt->vif_table[vif].pkt_in++;
1756        mrt->vif_table[vif].bytes_in += skb->len;
1757
1758        /*
1759         *      Forward the frame
1760         */
1761        for (ct = cache->mfc_un.res.maxvif - 1;
1762             ct >= cache->mfc_un.res.minvif; ct--) {
1763                if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1764                        if (psend != -1) {
1765                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1766
1767                                if (skb2)
1768                                        ipmr_queue_xmit(net, mrt, skb2, cache,
1769                                                        psend);
1770                        }
1771                        psend = ct;
1772                }
1773        }
1774        if (psend != -1) {
1775                if (local) {
1776                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1777
1778                        if (skb2)
1779                                ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1780                } else {
1781                        ipmr_queue_xmit(net, mrt, skb, cache, psend);
1782                        return 0;
1783                }
1784        }
1785
1786dont_forward:
1787        if (!local)
1788                kfree_skb(skb);
1789        return 0;
1790}
1791
1792static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1793{
1794        struct rtable *rt = skb_rtable(skb);
1795        struct iphdr *iph = ip_hdr(skb);
1796        struct flowi4 fl4 = {
1797                .daddr = iph->daddr,
1798                .saddr = iph->saddr,
1799                .flowi4_tos = iph->tos,
1800                .flowi4_oif = rt->rt_oif,
1801                .flowi4_iif = rt->rt_iif,
1802                .flowi4_mark = rt->rt_mark,
1803        };
1804        struct mr_table *mrt;
1805        int err;
1806
1807        err = ipmr_fib_lookup(net, &fl4, &mrt);
1808        if (err)
1809                return ERR_PTR(err);
1810        return mrt;
1811}
1812
1813/*
1814 *      Multicast packets for forwarding arrive here
1815 *      Called with rcu_read_lock();
1816 */
1817
1818int ip_mr_input(struct sk_buff *skb)
1819{
1820        struct mfc_cache *cache;
1821        struct net *net = dev_net(skb->dev);
1822        int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1823        struct mr_table *mrt;
1824
1825        /* Packet is looped back after forward, it should not be
1826         * forwarded second time, but still can be delivered locally.
1827         */
1828        if (IPCB(skb)->flags & IPSKB_FORWARDED)
1829                goto dont_forward;
1830
1831        mrt = ipmr_rt_fib_lookup(net, skb);
1832        if (IS_ERR(mrt)) {
1833                kfree_skb(skb);
1834                return PTR_ERR(mrt);
1835        }
1836        if (!local) {
1837                if (IPCB(skb)->opt.router_alert) {
1838                        if (ip_call_ra_chain(skb))
1839                                return 0;
1840                } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1841                        /* IGMPv1 (and broken IGMPv2 implementations sort of
1842                         * Cisco IOS <= 11.2(8)) do not put router alert
1843                         * option to IGMP packets destined to routable
1844                         * groups. It is very bad, because it means
1845                         * that we can forward NO IGMP messages.
1846                         */
1847                        struct sock *mroute_sk;
1848
1849                        mroute_sk = rcu_dereference(mrt->mroute_sk);
1850                        if (mroute_sk) {
1851                                nf_reset(skb);
1852                                raw_rcv(mroute_sk, skb);
1853                                return 0;
1854                        }
1855                    }
1856        }
1857
1858        /* already under rcu_read_lock() */
1859        cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1860
1861        /*
1862         *      No usable cache entry
1863         */
1864        if (cache == NULL) {
1865                int vif;
1866
1867                if (local) {
1868                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869                        ip_local_deliver(skb);
1870                        if (skb2 == NULL)
1871                                return -ENOBUFS;
1872                        skb = skb2;
1873                }
1874
1875                read_lock(&mrt_lock);
1876                vif = ipmr_find_vif(mrt, skb->dev);
1877                if (vif >= 0) {
1878                        int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1879                        read_unlock(&mrt_lock);
1880
1881                        return err2;
1882                }
1883                read_unlock(&mrt_lock);
1884                kfree_skb(skb);
1885                return -ENODEV;
1886        }
1887
1888        read_lock(&mrt_lock);
1889        ip_mr_forward(net, mrt, skb, cache, local);
1890        read_unlock(&mrt_lock);
1891
1892        if (local)
1893                return ip_local_deliver(skb);
1894
1895        return 0;
1896
1897dont_forward:
1898        if (local)
1899                return ip_local_deliver(skb);
1900        kfree_skb(skb);
1901        return 0;
1902}
1903
1904#ifdef CONFIG_IP_PIMSM
1905/* called with rcu_read_lock() */
1906static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1907                     unsigned int pimlen)
1908{
1909        struct net_device *reg_dev = NULL;
1910        struct iphdr *encap;
1911
1912        encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1913        /*
1914         * Check that:
1915         * a. packet is really sent to a multicast group
1916         * b. packet is not a NULL-REGISTER
1917         * c. packet is not truncated
1918         */
1919        if (!ipv4_is_multicast(encap->daddr) ||
1920            encap->tot_len == 0 ||
1921            ntohs(encap->tot_len) + pimlen > skb->len)
1922                return 1;
1923
1924        read_lock(&mrt_lock);
1925        if (mrt->mroute_reg_vif_num >= 0)
1926                reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1927        read_unlock(&mrt_lock);
1928
1929        if (reg_dev == NULL)
1930                return 1;
1931
1932        skb->mac_header = skb->network_header;
1933        skb_pull(skb, (u8 *)encap - skb->data);
1934        skb_reset_network_header(skb);
1935        skb->protocol = htons(ETH_P_IP);
1936        skb->ip_summed = CHECKSUM_NONE;
1937        skb->pkt_type = PACKET_HOST;
1938
1939        skb_tunnel_rx(skb, reg_dev);
1940
1941        netif_rx(skb);
1942
1943        return NET_RX_SUCCESS;
1944}
1945#endif
1946
1947#ifdef CONFIG_IP_PIMSM_V1
1948/*
1949 * Handle IGMP messages of PIMv1
1950 */
1951
1952int pim_rcv_v1(struct sk_buff *skb)
1953{
1954        struct igmphdr *pim;
1955        struct net *net = dev_net(skb->dev);
1956        struct mr_table *mrt;
1957
1958        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1959                goto drop;
1960
1961        pim = igmp_hdr(skb);
1962
1963        mrt = ipmr_rt_fib_lookup(net, skb);
1964        if (IS_ERR(mrt))
1965                goto drop;
1966        if (!mrt->mroute_do_pim ||
1967            pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1968                goto drop;
1969
1970        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1971drop:
1972                kfree_skb(skb);
1973        }
1974        return 0;
1975}
1976#endif
1977
1978#ifdef CONFIG_IP_PIMSM_V2
1979static int pim_rcv(struct sk_buff *skb)
1980{
1981        struct pimreghdr *pim;
1982        struct net *net = dev_net(skb->dev);
1983        struct mr_table *mrt;
1984
1985        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1986                goto drop;
1987
1988        pim = (struct pimreghdr *)skb_transport_header(skb);
1989        if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1990            (pim->flags & PIM_NULL_REGISTER) ||
1991            (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1992             csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1993                goto drop;
1994
1995        mrt = ipmr_rt_fib_lookup(net, skb);
1996        if (IS_ERR(mrt))
1997                goto drop;
1998        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1999drop:
2000                kfree_skb(skb);
2001        }
2002        return 0;
2003}
2004#endif
2005
2006static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2007                              struct mfc_cache *c, struct rtmsg *rtm)
2008{
2009        int ct;
2010        struct rtnexthop *nhp;
2011        u8 *b = skb_tail_pointer(skb);
2012        struct rtattr *mp_head;
2013
2014        /* If cache is unresolved, don't try to parse IIF and OIF */
2015        if (c->mfc_parent >= MAXVIFS)
2016                return -ENOENT;
2017
2018        if (VIF_EXISTS(mrt, c->mfc_parent))
2019                RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2020
2021        mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2022
2023        for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2024                if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2025                        if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2026                                goto rtattr_failure;
2027                        nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2028                        nhp->rtnh_flags = 0;
2029                        nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2030                        nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2031                        nhp->rtnh_len = sizeof(*nhp);
2032                }
2033        }
2034        mp_head->rta_type = RTA_MULTIPATH;
2035        mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2036        rtm->rtm_type = RTN_MULTICAST;
2037        return 1;
2038
2039rtattr_failure:
2040        nlmsg_trim(skb, b);
2041        return -EMSGSIZE;
2042}
2043
2044int ipmr_get_route(struct net *net, struct sk_buff *skb,
2045                   __be32 saddr, __be32 daddr,
2046                   struct rtmsg *rtm, int nowait)
2047{
2048        struct mfc_cache *cache;
2049        struct mr_table *mrt;
2050        int err;
2051
2052        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2053        if (mrt == NULL)
2054                return -ENOENT;
2055
2056        rcu_read_lock();
2057        cache = ipmr_cache_find(mrt, saddr, daddr);
2058
2059        if (cache == NULL) {
2060                struct sk_buff *skb2;
2061                struct iphdr *iph;
2062                struct net_device *dev;
2063                int vif = -1;
2064
2065                if (nowait) {
2066                        rcu_read_unlock();
2067                        return -EAGAIN;
2068                }
2069
2070                dev = skb->dev;
2071                read_lock(&mrt_lock);
2072                if (dev)
2073                        vif = ipmr_find_vif(mrt, dev);
2074                if (vif < 0) {
2075                        read_unlock(&mrt_lock);
2076                        rcu_read_unlock();
2077                        return -ENODEV;
2078                }
2079                skb2 = skb_clone(skb, GFP_ATOMIC);
2080                if (!skb2) {
2081                        read_unlock(&mrt_lock);
2082                        rcu_read_unlock();
2083                        return -ENOMEM;
2084                }
2085
2086                skb_push(skb2, sizeof(struct iphdr));
2087                skb_reset_network_header(skb2);
2088                iph = ip_hdr(skb2);
2089                iph->ihl = sizeof(struct iphdr) >> 2;
2090                iph->saddr = saddr;
2091                iph->daddr = daddr;
2092                iph->version = 0;
2093                err = ipmr_cache_unresolved(mrt, vif, skb2);
2094                read_unlock(&mrt_lock);
2095                rcu_read_unlock();
2096                return err;
2097        }
2098
2099        read_lock(&mrt_lock);
2100        if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2101                cache->mfc_flags |= MFC_NOTIFY;
2102        err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2103        read_unlock(&mrt_lock);
2104        rcu_read_unlock();
2105        return err;
2106}
2107
2108static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2109                            u32 pid, u32 seq, struct mfc_cache *c)
2110{
2111        struct nlmsghdr *nlh;
2112        struct rtmsg *rtm;
2113
2114        nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2115        if (nlh == NULL)
2116                return -EMSGSIZE;
2117
2118        rtm = nlmsg_data(nlh);
2119        rtm->rtm_family   = RTNL_FAMILY_IPMR;
2120        rtm->rtm_dst_len  = 32;
2121        rtm->rtm_src_len  = 32;
2122        rtm->rtm_tos      = 0;
2123        rtm->rtm_table    = mrt->id;
2124        NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2125        rtm->rtm_type     = RTN_MULTICAST;
2126        rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2127        rtm->rtm_protocol = RTPROT_UNSPEC;
2128        rtm->rtm_flags    = 0;
2129
2130        NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2131        NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2132
2133        if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2134                goto nla_put_failure;
2135
2136        return nlmsg_end(skb, nlh);
2137
2138nla_put_failure:
2139        nlmsg_cancel(skb, nlh);
2140        return -EMSGSIZE;
2141}
2142
2143static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2144{
2145        struct net *net = sock_net(skb->sk);
2146        struct mr_table *mrt;
2147        struct mfc_cache *mfc;
2148        unsigned int t = 0, s_t;
2149        unsigned int h = 0, s_h;
2150        unsigned int e = 0, s_e;
2151
2152        s_t = cb->args[0];
2153        s_h = cb->args[1];
2154        s_e = cb->args[2];
2155
2156        rcu_read_lock();
2157        ipmr_for_each_table(mrt, net) {
2158                if (t < s_t)
2159                        goto next_table;
2160                if (t > s_t)
2161                        s_h = 0;
2162                for (h = s_h; h < MFC_LINES; h++) {
2163                        list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2164                                if (e < s_e)
2165                                        goto next_entry;
2166                                if (ipmr_fill_mroute(mrt, skb,
2167                                                     NETLINK_CB(cb->skb).pid,
2168                                                     cb->nlh->nlmsg_seq,
2169                                                     mfc) < 0)
2170                                        goto done;
2171next_entry:
2172                                e++;
2173                        }
2174                        e = s_e = 0;
2175                }
2176                s_h = 0;
2177next_table:
2178                t++;
2179        }
2180done:
2181        rcu_read_unlock();
2182
2183        cb->args[2] = e;
2184        cb->args[1] = h;
2185        cb->args[0] = t;
2186
2187        return skb->len;
2188}
2189
2190#ifdef CONFIG_PROC_FS
2191/*
2192 *      The /proc interfaces to multicast routing :
2193 *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2194 */
2195struct ipmr_vif_iter {
2196        struct seq_net_private p;
2197        struct mr_table *mrt;
2198        int ct;
2199};
2200
2201static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2202                                           struct ipmr_vif_iter *iter,
2203                                           loff_t pos)
2204{
2205        struct mr_table *mrt = iter->mrt;
2206
2207        for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2208                if (!VIF_EXISTS(mrt, iter->ct))
2209                        continue;
2210                if (pos-- == 0)
2211                        return &mrt->vif_table[iter->ct];
2212        }
2213        return NULL;
2214}
2215
2216static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2217        __acquires(mrt_lock)
2218{
2219        struct ipmr_vif_iter *iter = seq->private;
2220        struct net *net = seq_file_net(seq);
2221        struct mr_table *mrt;
2222
2223        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2224        if (mrt == NULL)
2225                return ERR_PTR(-ENOENT);
2226
2227        iter->mrt = mrt;
2228
2229        read_lock(&mrt_lock);
2230        return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2231                : SEQ_START_TOKEN;
2232}
2233
2234static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2235{
2236        struct ipmr_vif_iter *iter = seq->private;
2237        struct net *net = seq_file_net(seq);
2238        struct mr_table *mrt = iter->mrt;
2239
2240        ++*pos;
2241        if (v == SEQ_START_TOKEN)
2242                return ipmr_vif_seq_idx(net, iter, 0);
2243
2244        while (++iter->ct < mrt->maxvif) {
2245                if (!VIF_EXISTS(mrt, iter->ct))
2246                        continue;
2247                return &mrt->vif_table[iter->ct];
2248        }
2249        return NULL;
2250}
2251
2252static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2253        __releases(mrt_lock)
2254{
2255        read_unlock(&mrt_lock);
2256}
2257
2258static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2259{
2260        struct ipmr_vif_iter *iter = seq->private;
2261        struct mr_table *mrt = iter->mrt;
2262
2263        if (v == SEQ_START_TOKEN) {
2264                seq_puts(seq,
2265                         "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2266        } else {
2267                const struct vif_device *vif = v;
2268                const char *name =  vif->dev ? vif->dev->name : "none";
2269
2270                seq_printf(seq,
2271                           "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2272                           vif - mrt->vif_table,
2273                           name, vif->bytes_in, vif->pkt_in,
2274                           vif->bytes_out, vif->pkt_out,
2275                           vif->flags, vif->local, vif->remote);
2276        }
2277        return 0;
2278}
2279
2280static const struct seq_operations ipmr_vif_seq_ops = {
2281        .start = ipmr_vif_seq_start,
2282        .next  = ipmr_vif_seq_next,
2283        .stop  = ipmr_vif_seq_stop,
2284        .show  = ipmr_vif_seq_show,
2285};
2286
2287static int ipmr_vif_open(struct inode *inode, struct file *file)
2288{
2289        return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2290                            sizeof(struct ipmr_vif_iter));
2291}
2292
2293static const struct file_operations ipmr_vif_fops = {
2294        .owner   = THIS_MODULE,
2295        .open    = ipmr_vif_open,
2296        .read    = seq_read,
2297        .llseek  = seq_lseek,
2298        .release = seq_release_net,
2299};
2300
2301struct ipmr_mfc_iter {
2302        struct seq_net_private p;
2303        struct mr_table *mrt;
2304        struct list_head *cache;
2305        int ct;
2306};
2307
2308
2309static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2310                                          struct ipmr_mfc_iter *it, loff_t pos)
2311{
2312        struct mr_table *mrt = it->mrt;
2313        struct mfc_cache *mfc;
2314
2315        rcu_read_lock();
2316        for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2317                it->cache = &mrt->mfc_cache_array[it->ct];
2318                list_for_each_entry_rcu(mfc, it->cache, list)
2319                        if (pos-- == 0)
2320                                return mfc;
2321        }
2322        rcu_read_unlock();
2323
2324        spin_lock_bh(&mfc_unres_lock);
2325        it->cache = &mrt->mfc_unres_queue;
2326        list_for_each_entry(mfc, it->cache, list)
2327                if (pos-- == 0)
2328                        return mfc;
2329        spin_unlock_bh(&mfc_unres_lock);
2330
2331        it->cache = NULL;
2332        return NULL;
2333}
2334
2335
2336static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2337{
2338        struct ipmr_mfc_iter *it = seq->private;
2339        struct net *net = seq_file_net(seq);
2340        struct mr_table *mrt;
2341
2342        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2343        if (mrt == NULL)
2344                return ERR_PTR(-ENOENT);
2345
2346        it->mrt = mrt;
2347        it->cache = NULL;
2348        it->ct = 0;
2349        return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2350                : SEQ_START_TOKEN;
2351}
2352
2353static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2354{
2355        struct mfc_cache *mfc = v;
2356        struct ipmr_mfc_iter *it = seq->private;
2357        struct net *net = seq_file_net(seq);
2358        struct mr_table *mrt = it->mrt;
2359
2360        ++*pos;
2361
2362        if (v == SEQ_START_TOKEN)
2363                return ipmr_mfc_seq_idx(net, seq->private, 0);
2364
2365        if (mfc->list.next != it->cache)
2366                return list_entry(mfc->list.next, struct mfc_cache, list);
2367
2368        if (it->cache == &mrt->mfc_unres_queue)
2369                goto end_of_list;
2370
2371        BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2372
2373        while (++it->ct < MFC_LINES) {
2374                it->cache = &mrt->mfc_cache_array[it->ct];
2375                if (list_empty(it->cache))
2376                        continue;
2377                return list_first_entry(it->cache, struct mfc_cache, list);
2378        }
2379
2380        /* exhausted cache_array, show unresolved */
2381        rcu_read_unlock();
2382        it->cache = &mrt->mfc_unres_queue;
2383        it->ct = 0;
2384
2385        spin_lock_bh(&mfc_unres_lock);
2386        if (!list_empty(it->cache))
2387                return list_first_entry(it->cache, struct mfc_cache, list);
2388
2389end_of_list:
2390        spin_unlock_bh(&mfc_unres_lock);
2391        it->cache = NULL;
2392
2393        return NULL;
2394}
2395
2396static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2397{
2398        struct ipmr_mfc_iter *it = seq->private;
2399        struct mr_table *mrt = it->mrt;
2400
2401        if (it->cache == &mrt->mfc_unres_queue)
2402                spin_unlock_bh(&mfc_unres_lock);
2403        else if (it->cache == &mrt->mfc_cache_array[it->ct])
2404                rcu_read_unlock();
2405}
2406
2407static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2408{
2409        int n;
2410
2411        if (v == SEQ_START_TOKEN) {
2412                seq_puts(seq,
2413                 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2414        } else {
2415                const struct mfc_cache *mfc = v;
2416                const struct ipmr_mfc_iter *it = seq->private;
2417                const struct mr_table *mrt = it->mrt;
2418
2419                seq_printf(seq, "%08X %08X %-3hd",
2420                           (__force u32) mfc->mfc_mcastgrp,
2421                           (__force u32) mfc->mfc_origin,
2422                           mfc->mfc_parent);
2423
2424                if (it->cache != &mrt->mfc_unres_queue) {
2425                        seq_printf(seq, " %8lu %8lu %8lu",
2426                                   mfc->mfc_un.res.pkt,
2427                                   mfc->mfc_un.res.bytes,
2428                                   mfc->mfc_un.res.wrong_if);
2429                        for (n = mfc->mfc_un.res.minvif;
2430                             n < mfc->mfc_un.res.maxvif; n++) {
2431                                if (VIF_EXISTS(mrt, n) &&
2432                                    mfc->mfc_un.res.ttls[n] < 255)
2433                                        seq_printf(seq,
2434                                           " %2d:%-3d",
2435                                           n, mfc->mfc_un.res.ttls[n]);
2436                        }
2437                } else {
2438                        /* unresolved mfc_caches don't contain
2439                         * pkt, bytes and wrong_if values
2440                         */
2441                        seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2442                }
2443                seq_putc(seq, '\n');
2444        }
2445        return 0;
2446}
2447
2448static const struct seq_operations ipmr_mfc_seq_ops = {
2449        .start = ipmr_mfc_seq_start,
2450        .next  = ipmr_mfc_seq_next,
2451        .stop  = ipmr_mfc_seq_stop,
2452        .show  = ipmr_mfc_seq_show,
2453};
2454
2455static int ipmr_mfc_open(struct inode *inode, struct file *file)
2456{
2457        return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2458                            sizeof(struct ipmr_mfc_iter));
2459}
2460
2461static const struct file_operations ipmr_mfc_fops = {
2462        .owner   = THIS_MODULE,
2463        .open    = ipmr_mfc_open,
2464        .read    = seq_read,
2465        .llseek  = seq_lseek,
2466        .release = seq_release_net,
2467};
2468#endif
2469
2470#ifdef CONFIG_IP_PIMSM_V2
2471static const struct net_protocol pim_protocol = {
2472        .handler        =       pim_rcv,
2473        .netns_ok       =       1,
2474};
2475#endif
2476
2477
2478/*
2479 *      Setup for IP multicast routing
2480 */
2481static int __net_init ipmr_net_init(struct net *net)
2482{
2483        int err;
2484
2485        err = ipmr_rules_init(net);
2486        if (err < 0)
2487                goto fail;
2488
2489#ifdef CONFIG_PROC_FS
2490        err = -ENOMEM;
2491        if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2492                goto proc_vif_fail;
2493        if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2494                goto proc_cache_fail;
2495#endif
2496        return 0;
2497
2498#ifdef CONFIG_PROC_FS
2499proc_cache_fail:
2500        proc_net_remove(net, "ip_mr_vif");
2501proc_vif_fail:
2502        ipmr_rules_exit(net);
2503#endif
2504fail:
2505        return err;
2506}
2507
2508static void __net_exit ipmr_net_exit(struct net *net)
2509{
2510#ifdef CONFIG_PROC_FS
2511        proc_net_remove(net, "ip_mr_cache");
2512        proc_net_remove(net, "ip_mr_vif");
2513#endif
2514        ipmr_rules_exit(net);
2515}
2516
2517static struct pernet_operations ipmr_net_ops = {
2518        .init = ipmr_net_init,
2519        .exit = ipmr_net_exit,
2520};
2521
2522int __init ip_mr_init(void)
2523{
2524        int err;
2525
2526        mrt_cachep = kmem_cache_create("ip_mrt_cache",
2527                                       sizeof(struct mfc_cache),
2528                                       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2529                                       NULL);
2530        if (!mrt_cachep)
2531                return -ENOMEM;
2532
2533        err = register_pernet_subsys(&ipmr_net_ops);
2534        if (err)
2535                goto reg_pernet_fail;
2536
2537        err = register_netdevice_notifier(&ip_mr_notifier);
2538        if (err)
2539                goto reg_notif_fail;
2540#ifdef CONFIG_IP_PIMSM_V2
2541        if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2542                printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2543                err = -EAGAIN;
2544                goto add_proto_fail;
2545        }
2546#endif
2547        rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
2548        return 0;
2549
2550#ifdef CONFIG_IP_PIMSM_V2
2551add_proto_fail:
2552        unregister_netdevice_notifier(&ip_mr_notifier);
2553#endif
2554reg_notif_fail:
2555        unregister_pernet_subsys(&ipmr_net_ops);
2556reg_pernet_fail:
2557        kmem_cache_destroy(mrt_cachep);
2558        return err;
2559}
2560