linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <asm/uaccess.h>
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <linux/pagemap.h>
  31#include <asm/ioctls.h>
  32#include <linux/sunrpc/types.h>
  33#include <linux/sunrpc/cache.h>
  34#include <linux/sunrpc/stats.h>
  35#include <linux/sunrpc/rpc_pipe_fs.h>
  36#include "netns.h"
  37
  38#define  RPCDBG_FACILITY RPCDBG_CACHE
  39
  40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  41static void cache_revisit_request(struct cache_head *item);
  42
  43static void cache_init(struct cache_head *h)
  44{
  45        time_t now = seconds_since_boot();
  46        h->next = NULL;
  47        h->flags = 0;
  48        kref_init(&h->ref);
  49        h->expiry_time = now + CACHE_NEW_EXPIRY;
  50        h->last_refresh = now;
  51}
  52
  53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
  54{
  55        return  (h->expiry_time < seconds_since_boot()) ||
  56                (detail->flush_time > h->last_refresh);
  57}
  58
  59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  60                                       struct cache_head *key, int hash)
  61{
  62        struct cache_head **head,  **hp;
  63        struct cache_head *new = NULL, *freeme = NULL;
  64
  65        head = &detail->hash_table[hash];
  66
  67        read_lock(&detail->hash_lock);
  68
  69        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  70                struct cache_head *tmp = *hp;
  71                if (detail->match(tmp, key)) {
  72                        if (cache_is_expired(detail, tmp))
  73                                /* This entry is expired, we will discard it. */
  74                                break;
  75                        cache_get(tmp);
  76                        read_unlock(&detail->hash_lock);
  77                        return tmp;
  78                }
  79        }
  80        read_unlock(&detail->hash_lock);
  81        /* Didn't find anything, insert an empty entry */
  82
  83        new = detail->alloc();
  84        if (!new)
  85                return NULL;
  86        /* must fully initialise 'new', else
  87         * we might get lose if we need to
  88         * cache_put it soon.
  89         */
  90        cache_init(new);
  91        detail->init(new, key);
  92
  93        write_lock(&detail->hash_lock);
  94
  95        /* check if entry appeared while we slept */
  96        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  97                struct cache_head *tmp = *hp;
  98                if (detail->match(tmp, key)) {
  99                        if (cache_is_expired(detail, tmp)) {
 100                                *hp = tmp->next;
 101                                tmp->next = NULL;
 102                                detail->entries --;
 103                                freeme = tmp;
 104                                break;
 105                        }
 106                        cache_get(tmp);
 107                        write_unlock(&detail->hash_lock);
 108                        cache_put(new, detail);
 109                        return tmp;
 110                }
 111        }
 112        new->next = *head;
 113        *head = new;
 114        detail->entries++;
 115        cache_get(new);
 116        write_unlock(&detail->hash_lock);
 117
 118        if (freeme)
 119                cache_put(freeme, detail);
 120        return new;
 121}
 122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 123
 124
 125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 126
 127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 128{
 129        head->expiry_time = expiry;
 130        head->last_refresh = seconds_since_boot();
 131        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 132        set_bit(CACHE_VALID, &head->flags);
 133}
 134
 135static void cache_fresh_unlocked(struct cache_head *head,
 136                                 struct cache_detail *detail)
 137{
 138        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 139                cache_revisit_request(head);
 140                cache_dequeue(detail, head);
 141        }
 142}
 143
 144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 145                                       struct cache_head *new, struct cache_head *old, int hash)
 146{
 147        /* The 'old' entry is to be replaced by 'new'.
 148         * If 'old' is not VALID, we update it directly,
 149         * otherwise we need to replace it
 150         */
 151        struct cache_head **head;
 152        struct cache_head *tmp;
 153
 154        if (!test_bit(CACHE_VALID, &old->flags)) {
 155                write_lock(&detail->hash_lock);
 156                if (!test_bit(CACHE_VALID, &old->flags)) {
 157                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 158                                set_bit(CACHE_NEGATIVE, &old->flags);
 159                        else
 160                                detail->update(old, new);
 161                        cache_fresh_locked(old, new->expiry_time);
 162                        write_unlock(&detail->hash_lock);
 163                        cache_fresh_unlocked(old, detail);
 164                        return old;
 165                }
 166                write_unlock(&detail->hash_lock);
 167        }
 168        /* We need to insert a new entry */
 169        tmp = detail->alloc();
 170        if (!tmp) {
 171                cache_put(old, detail);
 172                return NULL;
 173        }
 174        cache_init(tmp);
 175        detail->init(tmp, old);
 176        head = &detail->hash_table[hash];
 177
 178        write_lock(&detail->hash_lock);
 179        if (test_bit(CACHE_NEGATIVE, &new->flags))
 180                set_bit(CACHE_NEGATIVE, &tmp->flags);
 181        else
 182                detail->update(tmp, new);
 183        tmp->next = *head;
 184        *head = tmp;
 185        detail->entries++;
 186        cache_get(tmp);
 187        cache_fresh_locked(tmp, new->expiry_time);
 188        cache_fresh_locked(old, 0);
 189        write_unlock(&detail->hash_lock);
 190        cache_fresh_unlocked(tmp, detail);
 191        cache_fresh_unlocked(old, detail);
 192        cache_put(old, detail);
 193        return tmp;
 194}
 195EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 196
 197static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 198{
 199        if (!cd->cache_upcall)
 200                return -EINVAL;
 201        return cd->cache_upcall(cd, h);
 202}
 203
 204static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
 205{
 206        if (!test_bit(CACHE_VALID, &h->flags))
 207                return -EAGAIN;
 208        else {
 209                /* entry is valid */
 210                if (test_bit(CACHE_NEGATIVE, &h->flags))
 211                        return -ENOENT;
 212                else {
 213                        /*
 214                         * In combination with write barrier in
 215                         * sunrpc_cache_update, ensures that anyone
 216                         * using the cache entry after this sees the
 217                         * updated contents:
 218                         */
 219                        smp_rmb();
 220                        return 0;
 221                }
 222        }
 223}
 224
 225static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 226{
 227        int rv;
 228
 229        write_lock(&detail->hash_lock);
 230        rv = cache_is_valid(detail, h);
 231        if (rv != -EAGAIN) {
 232                write_unlock(&detail->hash_lock);
 233                return rv;
 234        }
 235        set_bit(CACHE_NEGATIVE, &h->flags);
 236        cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
 237        write_unlock(&detail->hash_lock);
 238        cache_fresh_unlocked(h, detail);
 239        return -ENOENT;
 240}
 241
 242/*
 243 * This is the generic cache management routine for all
 244 * the authentication caches.
 245 * It checks the currency of a cache item and will (later)
 246 * initiate an upcall to fill it if needed.
 247 *
 248 *
 249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 250 * -EAGAIN if upcall is pending and request has been queued
 251 * -ETIMEDOUT if upcall failed or request could not be queue or
 252 *           upcall completed but item is still invalid (implying that
 253 *           the cache item has been replaced with a newer one).
 254 * -ENOENT if cache entry was negative
 255 */
 256int cache_check(struct cache_detail *detail,
 257                    struct cache_head *h, struct cache_req *rqstp)
 258{
 259        int rv;
 260        long refresh_age, age;
 261
 262        /* First decide return status as best we can */
 263        rv = cache_is_valid(detail, h);
 264
 265        /* now see if we want to start an upcall */
 266        refresh_age = (h->expiry_time - h->last_refresh);
 267        age = seconds_since_boot() - h->last_refresh;
 268
 269        if (rqstp == NULL) {
 270                if (rv == -EAGAIN)
 271                        rv = -ENOENT;
 272        } else if (rv == -EAGAIN || age > refresh_age/2) {
 273                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 274                                refresh_age, age);
 275                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 276                        switch (cache_make_upcall(detail, h)) {
 277                        case -EINVAL:
 278                                clear_bit(CACHE_PENDING, &h->flags);
 279                                cache_revisit_request(h);
 280                                rv = try_to_negate_entry(detail, h);
 281                                break;
 282                        case -EAGAIN:
 283                                clear_bit(CACHE_PENDING, &h->flags);
 284                                cache_revisit_request(h);
 285                                break;
 286                        }
 287                }
 288        }
 289
 290        if (rv == -EAGAIN) {
 291                if (!cache_defer_req(rqstp, h)) {
 292                        /*
 293                         * Request was not deferred; handle it as best
 294                         * we can ourselves:
 295                         */
 296                        rv = cache_is_valid(detail, h);
 297                        if (rv == -EAGAIN)
 298                                rv = -ETIMEDOUT;
 299                }
 300        }
 301        if (rv)
 302                cache_put(h, detail);
 303        return rv;
 304}
 305EXPORT_SYMBOL_GPL(cache_check);
 306
 307/*
 308 * caches need to be periodically cleaned.
 309 * For this we maintain a list of cache_detail and
 310 * a current pointer into that list and into the table
 311 * for that entry.
 312 *
 313 * Each time clean_cache is called it finds the next non-empty entry
 314 * in the current table and walks the list in that entry
 315 * looking for entries that can be removed.
 316 *
 317 * An entry gets removed if:
 318 * - The expiry is before current time
 319 * - The last_refresh time is before the flush_time for that cache
 320 *
 321 * later we might drop old entries with non-NEVER expiry if that table
 322 * is getting 'full' for some definition of 'full'
 323 *
 324 * The question of "how often to scan a table" is an interesting one
 325 * and is answered in part by the use of the "nextcheck" field in the
 326 * cache_detail.
 327 * When a scan of a table begins, the nextcheck field is set to a time
 328 * that is well into the future.
 329 * While scanning, if an expiry time is found that is earlier than the
 330 * current nextcheck time, nextcheck is set to that expiry time.
 331 * If the flush_time is ever set to a time earlier than the nextcheck
 332 * time, the nextcheck time is then set to that flush_time.
 333 *
 334 * A table is then only scanned if the current time is at least
 335 * the nextcheck time.
 336 *
 337 */
 338
 339static LIST_HEAD(cache_list);
 340static DEFINE_SPINLOCK(cache_list_lock);
 341static struct cache_detail *current_detail;
 342static int current_index;
 343
 344static void do_cache_clean(struct work_struct *work);
 345static struct delayed_work cache_cleaner;
 346
 347static void sunrpc_init_cache_detail(struct cache_detail *cd)
 348{
 349        rwlock_init(&cd->hash_lock);
 350        INIT_LIST_HEAD(&cd->queue);
 351        spin_lock(&cache_list_lock);
 352        cd->nextcheck = 0;
 353        cd->entries = 0;
 354        atomic_set(&cd->readers, 0);
 355        cd->last_close = 0;
 356        cd->last_warn = -1;
 357        list_add(&cd->others, &cache_list);
 358        spin_unlock(&cache_list_lock);
 359
 360        /* start the cleaning process */
 361        schedule_delayed_work(&cache_cleaner, 0);
 362}
 363
 364static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 365{
 366        cache_purge(cd);
 367        spin_lock(&cache_list_lock);
 368        write_lock(&cd->hash_lock);
 369        if (cd->entries || atomic_read(&cd->inuse)) {
 370                write_unlock(&cd->hash_lock);
 371                spin_unlock(&cache_list_lock);
 372                goto out;
 373        }
 374        if (current_detail == cd)
 375                current_detail = NULL;
 376        list_del_init(&cd->others);
 377        write_unlock(&cd->hash_lock);
 378        spin_unlock(&cache_list_lock);
 379        if (list_empty(&cache_list)) {
 380                /* module must be being unloaded so its safe to kill the worker */
 381                cancel_delayed_work_sync(&cache_cleaner);
 382        }
 383        return;
 384out:
 385        printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
 386}
 387
 388/* clean cache tries to find something to clean
 389 * and cleans it.
 390 * It returns 1 if it cleaned something,
 391 *            0 if it didn't find anything this time
 392 *           -1 if it fell off the end of the list.
 393 */
 394static int cache_clean(void)
 395{
 396        int rv = 0;
 397        struct list_head *next;
 398
 399        spin_lock(&cache_list_lock);
 400
 401        /* find a suitable table if we don't already have one */
 402        while (current_detail == NULL ||
 403            current_index >= current_detail->hash_size) {
 404                if (current_detail)
 405                        next = current_detail->others.next;
 406                else
 407                        next = cache_list.next;
 408                if (next == &cache_list) {
 409                        current_detail = NULL;
 410                        spin_unlock(&cache_list_lock);
 411                        return -1;
 412                }
 413                current_detail = list_entry(next, struct cache_detail, others);
 414                if (current_detail->nextcheck > seconds_since_boot())
 415                        current_index = current_detail->hash_size;
 416                else {
 417                        current_index = 0;
 418                        current_detail->nextcheck = seconds_since_boot()+30*60;
 419                }
 420        }
 421
 422        /* find a non-empty bucket in the table */
 423        while (current_detail &&
 424               current_index < current_detail->hash_size &&
 425               current_detail->hash_table[current_index] == NULL)
 426                current_index++;
 427
 428        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 429
 430        if (current_detail && current_index < current_detail->hash_size) {
 431                struct cache_head *ch, **cp;
 432                struct cache_detail *d;
 433
 434                write_lock(&current_detail->hash_lock);
 435
 436                /* Ok, now to clean this strand */
 437
 438                cp = & current_detail->hash_table[current_index];
 439                for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
 440                        if (current_detail->nextcheck > ch->expiry_time)
 441                                current_detail->nextcheck = ch->expiry_time+1;
 442                        if (!cache_is_expired(current_detail, ch))
 443                                continue;
 444
 445                        *cp = ch->next;
 446                        ch->next = NULL;
 447                        current_detail->entries--;
 448                        rv = 1;
 449                        break;
 450                }
 451
 452                write_unlock(&current_detail->hash_lock);
 453                d = current_detail;
 454                if (!ch)
 455                        current_index ++;
 456                spin_unlock(&cache_list_lock);
 457                if (ch) {
 458                        if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
 459                                cache_dequeue(current_detail, ch);
 460                        cache_revisit_request(ch);
 461                        cache_put(ch, d);
 462                }
 463        } else
 464                spin_unlock(&cache_list_lock);
 465
 466        return rv;
 467}
 468
 469/*
 470 * We want to regularly clean the cache, so we need to schedule some work ...
 471 */
 472static void do_cache_clean(struct work_struct *work)
 473{
 474        int delay = 5;
 475        if (cache_clean() == -1)
 476                delay = round_jiffies_relative(30*HZ);
 477
 478        if (list_empty(&cache_list))
 479                delay = 0;
 480
 481        if (delay)
 482                schedule_delayed_work(&cache_cleaner, delay);
 483}
 484
 485
 486/*
 487 * Clean all caches promptly.  This just calls cache_clean
 488 * repeatedly until we are sure that every cache has had a chance to
 489 * be fully cleaned
 490 */
 491void cache_flush(void)
 492{
 493        while (cache_clean() != -1)
 494                cond_resched();
 495        while (cache_clean() != -1)
 496                cond_resched();
 497}
 498EXPORT_SYMBOL_GPL(cache_flush);
 499
 500void cache_purge(struct cache_detail *detail)
 501{
 502        detail->flush_time = LONG_MAX;
 503        detail->nextcheck = seconds_since_boot();
 504        cache_flush();
 505        detail->flush_time = 1;
 506}
 507EXPORT_SYMBOL_GPL(cache_purge);
 508
 509
 510/*
 511 * Deferral and Revisiting of Requests.
 512 *
 513 * If a cache lookup finds a pending entry, we
 514 * need to defer the request and revisit it later.
 515 * All deferred requests are stored in a hash table,
 516 * indexed by "struct cache_head *".
 517 * As it may be wasteful to store a whole request
 518 * structure, we allow the request to provide a
 519 * deferred form, which must contain a
 520 * 'struct cache_deferred_req'
 521 * This cache_deferred_req contains a method to allow
 522 * it to be revisited when cache info is available
 523 */
 524
 525#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 526#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 527
 528#define DFR_MAX 300     /* ??? */
 529
 530static DEFINE_SPINLOCK(cache_defer_lock);
 531static LIST_HEAD(cache_defer_list);
 532static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 533static int cache_defer_cnt;
 534
 535static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 536{
 537        hlist_del_init(&dreq->hash);
 538        if (!list_empty(&dreq->recent)) {
 539                list_del_init(&dreq->recent);
 540                cache_defer_cnt--;
 541        }
 542}
 543
 544static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 545{
 546        int hash = DFR_HASH(item);
 547
 548        INIT_LIST_HEAD(&dreq->recent);
 549        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 550}
 551
 552static void setup_deferral(struct cache_deferred_req *dreq,
 553                           struct cache_head *item,
 554                           int count_me)
 555{
 556
 557        dreq->item = item;
 558
 559        spin_lock(&cache_defer_lock);
 560
 561        __hash_deferred_req(dreq, item);
 562
 563        if (count_me) {
 564                cache_defer_cnt++;
 565                list_add(&dreq->recent, &cache_defer_list);
 566        }
 567
 568        spin_unlock(&cache_defer_lock);
 569
 570}
 571
 572struct thread_deferred_req {
 573        struct cache_deferred_req handle;
 574        struct completion completion;
 575};
 576
 577static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 578{
 579        struct thread_deferred_req *dr =
 580                container_of(dreq, struct thread_deferred_req, handle);
 581        complete(&dr->completion);
 582}
 583
 584static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 585{
 586        struct thread_deferred_req sleeper;
 587        struct cache_deferred_req *dreq = &sleeper.handle;
 588
 589        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 590        dreq->revisit = cache_restart_thread;
 591
 592        setup_deferral(dreq, item, 0);
 593
 594        if (!test_bit(CACHE_PENDING, &item->flags) ||
 595            wait_for_completion_interruptible_timeout(
 596                    &sleeper.completion, req->thread_wait) <= 0) {
 597                /* The completion wasn't completed, so we need
 598                 * to clean up
 599                 */
 600                spin_lock(&cache_defer_lock);
 601                if (!hlist_unhashed(&sleeper.handle.hash)) {
 602                        __unhash_deferred_req(&sleeper.handle);
 603                        spin_unlock(&cache_defer_lock);
 604                } else {
 605                        /* cache_revisit_request already removed
 606                         * this from the hash table, but hasn't
 607                         * called ->revisit yet.  It will very soon
 608                         * and we need to wait for it.
 609                         */
 610                        spin_unlock(&cache_defer_lock);
 611                        wait_for_completion(&sleeper.completion);
 612                }
 613        }
 614}
 615
 616static void cache_limit_defers(void)
 617{
 618        /* Make sure we haven't exceed the limit of allowed deferred
 619         * requests.
 620         */
 621        struct cache_deferred_req *discard = NULL;
 622
 623        if (cache_defer_cnt <= DFR_MAX)
 624                return;
 625
 626        spin_lock(&cache_defer_lock);
 627
 628        /* Consider removing either the first or the last */
 629        if (cache_defer_cnt > DFR_MAX) {
 630                if (net_random() & 1)
 631                        discard = list_entry(cache_defer_list.next,
 632                                             struct cache_deferred_req, recent);
 633                else
 634                        discard = list_entry(cache_defer_list.prev,
 635                                             struct cache_deferred_req, recent);
 636                __unhash_deferred_req(discard);
 637        }
 638        spin_unlock(&cache_defer_lock);
 639        if (discard)
 640                discard->revisit(discard, 1);
 641}
 642
 643/* Return true if and only if a deferred request is queued. */
 644static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 645{
 646        struct cache_deferred_req *dreq;
 647
 648        if (req->thread_wait) {
 649                cache_wait_req(req, item);
 650                if (!test_bit(CACHE_PENDING, &item->flags))
 651                        return false;
 652        }
 653        dreq = req->defer(req);
 654        if (dreq == NULL)
 655                return false;
 656        setup_deferral(dreq, item, 1);
 657        if (!test_bit(CACHE_PENDING, &item->flags))
 658                /* Bit could have been cleared before we managed to
 659                 * set up the deferral, so need to revisit just in case
 660                 */
 661                cache_revisit_request(item);
 662
 663        cache_limit_defers();
 664        return true;
 665}
 666
 667static void cache_revisit_request(struct cache_head *item)
 668{
 669        struct cache_deferred_req *dreq;
 670        struct list_head pending;
 671        struct hlist_node *lp, *tmp;
 672        int hash = DFR_HASH(item);
 673
 674        INIT_LIST_HEAD(&pending);
 675        spin_lock(&cache_defer_lock);
 676
 677        hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
 678                if (dreq->item == item) {
 679                        __unhash_deferred_req(dreq);
 680                        list_add(&dreq->recent, &pending);
 681                }
 682
 683        spin_unlock(&cache_defer_lock);
 684
 685        while (!list_empty(&pending)) {
 686                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 687                list_del_init(&dreq->recent);
 688                dreq->revisit(dreq, 0);
 689        }
 690}
 691
 692void cache_clean_deferred(void *owner)
 693{
 694        struct cache_deferred_req *dreq, *tmp;
 695        struct list_head pending;
 696
 697
 698        INIT_LIST_HEAD(&pending);
 699        spin_lock(&cache_defer_lock);
 700
 701        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 702                if (dreq->owner == owner) {
 703                        __unhash_deferred_req(dreq);
 704                        list_add(&dreq->recent, &pending);
 705                }
 706        }
 707        spin_unlock(&cache_defer_lock);
 708
 709        while (!list_empty(&pending)) {
 710                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 711                list_del_init(&dreq->recent);
 712                dreq->revisit(dreq, 1);
 713        }
 714}
 715
 716/*
 717 * communicate with user-space
 718 *
 719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 720 * On read, you get a full request, or block.
 721 * On write, an update request is processed.
 722 * Poll works if anything to read, and always allows write.
 723 *
 724 * Implemented by linked list of requests.  Each open file has
 725 * a ->private that also exists in this list.  New requests are added
 726 * to the end and may wakeup and preceding readers.
 727 * New readers are added to the head.  If, on read, an item is found with
 728 * CACHE_UPCALLING clear, we free it from the list.
 729 *
 730 */
 731
 732static DEFINE_SPINLOCK(queue_lock);
 733static DEFINE_MUTEX(queue_io_mutex);
 734
 735struct cache_queue {
 736        struct list_head        list;
 737        int                     reader; /* if 0, then request */
 738};
 739struct cache_request {
 740        struct cache_queue      q;
 741        struct cache_head       *item;
 742        char                    * buf;
 743        int                     len;
 744        int                     readers;
 745};
 746struct cache_reader {
 747        struct cache_queue      q;
 748        int                     offset; /* if non-0, we have a refcnt on next request */
 749};
 750
 751static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 752                          loff_t *ppos, struct cache_detail *cd)
 753{
 754        struct cache_reader *rp = filp->private_data;
 755        struct cache_request *rq;
 756        struct inode *inode = filp->f_path.dentry->d_inode;
 757        int err;
 758
 759        if (count == 0)
 760                return 0;
 761
 762        mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 763                              * readers on this file */
 764 again:
 765        spin_lock(&queue_lock);
 766        /* need to find next request */
 767        while (rp->q.list.next != &cd->queue &&
 768               list_entry(rp->q.list.next, struct cache_queue, list)
 769               ->reader) {
 770                struct list_head *next = rp->q.list.next;
 771                list_move(&rp->q.list, next);
 772        }
 773        if (rp->q.list.next == &cd->queue) {
 774                spin_unlock(&queue_lock);
 775                mutex_unlock(&inode->i_mutex);
 776                BUG_ON(rp->offset);
 777                return 0;
 778        }
 779        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 780        BUG_ON(rq->q.reader);
 781        if (rp->offset == 0)
 782                rq->readers++;
 783        spin_unlock(&queue_lock);
 784
 785        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 786                err = -EAGAIN;
 787                spin_lock(&queue_lock);
 788                list_move(&rp->q.list, &rq->q.list);
 789                spin_unlock(&queue_lock);
 790        } else {
 791                if (rp->offset + count > rq->len)
 792                        count = rq->len - rp->offset;
 793                err = -EFAULT;
 794                if (copy_to_user(buf, rq->buf + rp->offset, count))
 795                        goto out;
 796                rp->offset += count;
 797                if (rp->offset >= rq->len) {
 798                        rp->offset = 0;
 799                        spin_lock(&queue_lock);
 800                        list_move(&rp->q.list, &rq->q.list);
 801                        spin_unlock(&queue_lock);
 802                }
 803                err = 0;
 804        }
 805 out:
 806        if (rp->offset == 0) {
 807                /* need to release rq */
 808                spin_lock(&queue_lock);
 809                rq->readers--;
 810                if (rq->readers == 0 &&
 811                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 812                        list_del(&rq->q.list);
 813                        spin_unlock(&queue_lock);
 814                        cache_put(rq->item, cd);
 815                        kfree(rq->buf);
 816                        kfree(rq);
 817                } else
 818                        spin_unlock(&queue_lock);
 819        }
 820        if (err == -EAGAIN)
 821                goto again;
 822        mutex_unlock(&inode->i_mutex);
 823        return err ? err :  count;
 824}
 825
 826static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 827                                 size_t count, struct cache_detail *cd)
 828{
 829        ssize_t ret;
 830
 831        if (copy_from_user(kaddr, buf, count))
 832                return -EFAULT;
 833        kaddr[count] = '\0';
 834        ret = cd->cache_parse(cd, kaddr, count);
 835        if (!ret)
 836                ret = count;
 837        return ret;
 838}
 839
 840static ssize_t cache_slow_downcall(const char __user *buf,
 841                                   size_t count, struct cache_detail *cd)
 842{
 843        static char write_buf[8192]; /* protected by queue_io_mutex */
 844        ssize_t ret = -EINVAL;
 845
 846        if (count >= sizeof(write_buf))
 847                goto out;
 848        mutex_lock(&queue_io_mutex);
 849        ret = cache_do_downcall(write_buf, buf, count, cd);
 850        mutex_unlock(&queue_io_mutex);
 851out:
 852        return ret;
 853}
 854
 855static ssize_t cache_downcall(struct address_space *mapping,
 856                              const char __user *buf,
 857                              size_t count, struct cache_detail *cd)
 858{
 859        struct page *page;
 860        char *kaddr;
 861        ssize_t ret = -ENOMEM;
 862
 863        if (count >= PAGE_CACHE_SIZE)
 864                goto out_slow;
 865
 866        page = find_or_create_page(mapping, 0, GFP_KERNEL);
 867        if (!page)
 868                goto out_slow;
 869
 870        kaddr = kmap(page);
 871        ret = cache_do_downcall(kaddr, buf, count, cd);
 872        kunmap(page);
 873        unlock_page(page);
 874        page_cache_release(page);
 875        return ret;
 876out_slow:
 877        return cache_slow_downcall(buf, count, cd);
 878}
 879
 880static ssize_t cache_write(struct file *filp, const char __user *buf,
 881                           size_t count, loff_t *ppos,
 882                           struct cache_detail *cd)
 883{
 884        struct address_space *mapping = filp->f_mapping;
 885        struct inode *inode = filp->f_path.dentry->d_inode;
 886        ssize_t ret = -EINVAL;
 887
 888        if (!cd->cache_parse)
 889                goto out;
 890
 891        mutex_lock(&inode->i_mutex);
 892        ret = cache_downcall(mapping, buf, count, cd);
 893        mutex_unlock(&inode->i_mutex);
 894out:
 895        return ret;
 896}
 897
 898static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 899
 900static unsigned int cache_poll(struct file *filp, poll_table *wait,
 901                               struct cache_detail *cd)
 902{
 903        unsigned int mask;
 904        struct cache_reader *rp = filp->private_data;
 905        struct cache_queue *cq;
 906
 907        poll_wait(filp, &queue_wait, wait);
 908
 909        /* alway allow write */
 910        mask = POLL_OUT | POLLWRNORM;
 911
 912        if (!rp)
 913                return mask;
 914
 915        spin_lock(&queue_lock);
 916
 917        for (cq= &rp->q; &cq->list != &cd->queue;
 918             cq = list_entry(cq->list.next, struct cache_queue, list))
 919                if (!cq->reader) {
 920                        mask |= POLLIN | POLLRDNORM;
 921                        break;
 922                }
 923        spin_unlock(&queue_lock);
 924        return mask;
 925}
 926
 927static int cache_ioctl(struct inode *ino, struct file *filp,
 928                       unsigned int cmd, unsigned long arg,
 929                       struct cache_detail *cd)
 930{
 931        int len = 0;
 932        struct cache_reader *rp = filp->private_data;
 933        struct cache_queue *cq;
 934
 935        if (cmd != FIONREAD || !rp)
 936                return -EINVAL;
 937
 938        spin_lock(&queue_lock);
 939
 940        /* only find the length remaining in current request,
 941         * or the length of the next request
 942         */
 943        for (cq= &rp->q; &cq->list != &cd->queue;
 944             cq = list_entry(cq->list.next, struct cache_queue, list))
 945                if (!cq->reader) {
 946                        struct cache_request *cr =
 947                                container_of(cq, struct cache_request, q);
 948                        len = cr->len - rp->offset;
 949                        break;
 950                }
 951        spin_unlock(&queue_lock);
 952
 953        return put_user(len, (int __user *)arg);
 954}
 955
 956static int cache_open(struct inode *inode, struct file *filp,
 957                      struct cache_detail *cd)
 958{
 959        struct cache_reader *rp = NULL;
 960
 961        if (!cd || !try_module_get(cd->owner))
 962                return -EACCES;
 963        nonseekable_open(inode, filp);
 964        if (filp->f_mode & FMODE_READ) {
 965                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 966                if (!rp)
 967                        return -ENOMEM;
 968                rp->offset = 0;
 969                rp->q.reader = 1;
 970                atomic_inc(&cd->readers);
 971                spin_lock(&queue_lock);
 972                list_add(&rp->q.list, &cd->queue);
 973                spin_unlock(&queue_lock);
 974        }
 975        filp->private_data = rp;
 976        return 0;
 977}
 978
 979static int cache_release(struct inode *inode, struct file *filp,
 980                         struct cache_detail *cd)
 981{
 982        struct cache_reader *rp = filp->private_data;
 983
 984        if (rp) {
 985                spin_lock(&queue_lock);
 986                if (rp->offset) {
 987                        struct cache_queue *cq;
 988                        for (cq= &rp->q; &cq->list != &cd->queue;
 989                             cq = list_entry(cq->list.next, struct cache_queue, list))
 990                                if (!cq->reader) {
 991                                        container_of(cq, struct cache_request, q)
 992                                                ->readers--;
 993                                        break;
 994                                }
 995                        rp->offset = 0;
 996                }
 997                list_del(&rp->q.list);
 998                spin_unlock(&queue_lock);
 999
1000                filp->private_data = NULL;
1001                kfree(rp);
1002
1003                cd->last_close = seconds_since_boot();
1004                atomic_dec(&cd->readers);
1005        }
1006        module_put(cd->owner);
1007        return 0;
1008}
1009
1010
1011
1012static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1013{
1014        struct cache_queue *cq;
1015        spin_lock(&queue_lock);
1016        list_for_each_entry(cq, &detail->queue, list)
1017                if (!cq->reader) {
1018                        struct cache_request *cr = container_of(cq, struct cache_request, q);
1019                        if (cr->item != ch)
1020                                continue;
1021                        if (cr->readers != 0)
1022                                continue;
1023                        list_del(&cr->q.list);
1024                        spin_unlock(&queue_lock);
1025                        cache_put(cr->item, detail);
1026                        kfree(cr->buf);
1027                        kfree(cr);
1028                        return;
1029                }
1030        spin_unlock(&queue_lock);
1031}
1032
1033/*
1034 * Support routines for text-based upcalls.
1035 * Fields are separated by spaces.
1036 * Fields are either mangled to quote space tab newline slosh with slosh
1037 * or a hexified with a leading \x
1038 * Record is terminated with newline.
1039 *
1040 */
1041
1042void qword_add(char **bpp, int *lp, char *str)
1043{
1044        char *bp = *bpp;
1045        int len = *lp;
1046        char c;
1047
1048        if (len < 0) return;
1049
1050        while ((c=*str++) && len)
1051                switch(c) {
1052                case ' ':
1053                case '\t':
1054                case '\n':
1055                case '\\':
1056                        if (len >= 4) {
1057                                *bp++ = '\\';
1058                                *bp++ = '0' + ((c & 0300)>>6);
1059                                *bp++ = '0' + ((c & 0070)>>3);
1060                                *bp++ = '0' + ((c & 0007)>>0);
1061                        }
1062                        len -= 4;
1063                        break;
1064                default:
1065                        *bp++ = c;
1066                        len--;
1067                }
1068        if (c || len <1) len = -1;
1069        else {
1070                *bp++ = ' ';
1071                len--;
1072        }
1073        *bpp = bp;
1074        *lp = len;
1075}
1076EXPORT_SYMBOL_GPL(qword_add);
1077
1078void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1079{
1080        char *bp = *bpp;
1081        int len = *lp;
1082
1083        if (len < 0) return;
1084
1085        if (len > 2) {
1086                *bp++ = '\\';
1087                *bp++ = 'x';
1088                len -= 2;
1089                while (blen && len >= 2) {
1090                        unsigned char c = *buf++;
1091                        *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1092                        *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1093                        len -= 2;
1094                        blen--;
1095                }
1096        }
1097        if (blen || len<1) len = -1;
1098        else {
1099                *bp++ = ' ';
1100                len--;
1101        }
1102        *bpp = bp;
1103        *lp = len;
1104}
1105EXPORT_SYMBOL_GPL(qword_addhex);
1106
1107static void warn_no_listener(struct cache_detail *detail)
1108{
1109        if (detail->last_warn != detail->last_close) {
1110                detail->last_warn = detail->last_close;
1111                if (detail->warn_no_listener)
1112                        detail->warn_no_listener(detail, detail->last_close != 0);
1113        }
1114}
1115
1116static bool cache_listeners_exist(struct cache_detail *detail)
1117{
1118        if (atomic_read(&detail->readers))
1119                return true;
1120        if (detail->last_close == 0)
1121                /* This cache was never opened */
1122                return false;
1123        if (detail->last_close < seconds_since_boot() - 30)
1124                /*
1125                 * We allow for the possibility that someone might
1126                 * restart a userspace daemon without restarting the
1127                 * server; but after 30 seconds, we give up.
1128                 */
1129                 return false;
1130        return true;
1131}
1132
1133/*
1134 * register an upcall request to user-space and queue it up for read() by the
1135 * upcall daemon.
1136 *
1137 * Each request is at most one page long.
1138 */
1139int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1140                void (*cache_request)(struct cache_detail *,
1141                                      struct cache_head *,
1142                                      char **,
1143                                      int *))
1144{
1145
1146        char *buf;
1147        struct cache_request *crq;
1148        char *bp;
1149        int len;
1150
1151        if (!cache_listeners_exist(detail)) {
1152                warn_no_listener(detail);
1153                return -EINVAL;
1154        }
1155
1156        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1157        if (!buf)
1158                return -EAGAIN;
1159
1160        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1161        if (!crq) {
1162                kfree(buf);
1163                return -EAGAIN;
1164        }
1165
1166        bp = buf; len = PAGE_SIZE;
1167
1168        cache_request(detail, h, &bp, &len);
1169
1170        if (len < 0) {
1171                kfree(buf);
1172                kfree(crq);
1173                return -EAGAIN;
1174        }
1175        crq->q.reader = 0;
1176        crq->item = cache_get(h);
1177        crq->buf = buf;
1178        crq->len = PAGE_SIZE - len;
1179        crq->readers = 0;
1180        spin_lock(&queue_lock);
1181        list_add_tail(&crq->q.list, &detail->queue);
1182        spin_unlock(&queue_lock);
1183        wake_up(&queue_wait);
1184        return 0;
1185}
1186EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1187
1188/*
1189 * parse a message from user-space and pass it
1190 * to an appropriate cache
1191 * Messages are, like requests, separated into fields by
1192 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1193 *
1194 * Message is
1195 *   reply cachename expiry key ... content....
1196 *
1197 * key and content are both parsed by cache
1198 */
1199
1200#define isodigit(c) (isdigit(c) && c <= '7')
1201int qword_get(char **bpp, char *dest, int bufsize)
1202{
1203        /* return bytes copied, or -1 on error */
1204        char *bp = *bpp;
1205        int len = 0;
1206
1207        while (*bp == ' ') bp++;
1208
1209        if (bp[0] == '\\' && bp[1] == 'x') {
1210                /* HEX STRING */
1211                bp += 2;
1212                while (len < bufsize) {
1213                        int h, l;
1214
1215                        h = hex_to_bin(bp[0]);
1216                        if (h < 0)
1217                                break;
1218
1219                        l = hex_to_bin(bp[1]);
1220                        if (l < 0)
1221                                break;
1222
1223                        *dest++ = (h << 4) | l;
1224                        bp += 2;
1225                        len++;
1226                }
1227        } else {
1228                /* text with \nnn octal quoting */
1229                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1230                        if (*bp == '\\' &&
1231                            isodigit(bp[1]) && (bp[1] <= '3') &&
1232                            isodigit(bp[2]) &&
1233                            isodigit(bp[3])) {
1234                                int byte = (*++bp -'0');
1235                                bp++;
1236                                byte = (byte << 3) | (*bp++ - '0');
1237                                byte = (byte << 3) | (*bp++ - '0');
1238                                *dest++ = byte;
1239                                len++;
1240                        } else {
1241                                *dest++ = *bp++;
1242                                len++;
1243                        }
1244                }
1245        }
1246
1247        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1248                return -1;
1249        while (*bp == ' ') bp++;
1250        *bpp = bp;
1251        *dest = '\0';
1252        return len;
1253}
1254EXPORT_SYMBOL_GPL(qword_get);
1255
1256
1257/*
1258 * support /proc/sunrpc/cache/$CACHENAME/content
1259 * as a seqfile.
1260 * We call ->cache_show passing NULL for the item to
1261 * get a header, then pass each real item in the cache
1262 */
1263
1264struct handle {
1265        struct cache_detail *cd;
1266};
1267
1268static void *c_start(struct seq_file *m, loff_t *pos)
1269        __acquires(cd->hash_lock)
1270{
1271        loff_t n = *pos;
1272        unsigned hash, entry;
1273        struct cache_head *ch;
1274        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1275
1276
1277        read_lock(&cd->hash_lock);
1278        if (!n--)
1279                return SEQ_START_TOKEN;
1280        hash = n >> 32;
1281        entry = n & ((1LL<<32) - 1);
1282
1283        for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1284                if (!entry--)
1285                        return ch;
1286        n &= ~((1LL<<32) - 1);
1287        do {
1288                hash++;
1289                n += 1LL<<32;
1290        } while(hash < cd->hash_size &&
1291                cd->hash_table[hash]==NULL);
1292        if (hash >= cd->hash_size)
1293                return NULL;
1294        *pos = n+1;
1295        return cd->hash_table[hash];
1296}
1297
1298static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1299{
1300        struct cache_head *ch = p;
1301        int hash = (*pos >> 32);
1302        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1303
1304        if (p == SEQ_START_TOKEN)
1305                hash = 0;
1306        else if (ch->next == NULL) {
1307                hash++;
1308                *pos += 1LL<<32;
1309        } else {
1310                ++*pos;
1311                return ch->next;
1312        }
1313        *pos &= ~((1LL<<32) - 1);
1314        while (hash < cd->hash_size &&
1315               cd->hash_table[hash] == NULL) {
1316                hash++;
1317                *pos += 1LL<<32;
1318        }
1319        if (hash >= cd->hash_size)
1320                return NULL;
1321        ++*pos;
1322        return cd->hash_table[hash];
1323}
1324
1325static void c_stop(struct seq_file *m, void *p)
1326        __releases(cd->hash_lock)
1327{
1328        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1329        read_unlock(&cd->hash_lock);
1330}
1331
1332static int c_show(struct seq_file *m, void *p)
1333{
1334        struct cache_head *cp = p;
1335        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1336
1337        if (p == SEQ_START_TOKEN)
1338                return cd->cache_show(m, cd, NULL);
1339
1340        ifdebug(CACHE)
1341                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1342                           convert_to_wallclock(cp->expiry_time),
1343                           atomic_read(&cp->ref.refcount), cp->flags);
1344        cache_get(cp);
1345        if (cache_check(cd, cp, NULL))
1346                /* cache_check does a cache_put on failure */
1347                seq_printf(m, "# ");
1348        else
1349                cache_put(cp, cd);
1350
1351        return cd->cache_show(m, cd, cp);
1352}
1353
1354static const struct seq_operations cache_content_op = {
1355        .start  = c_start,
1356        .next   = c_next,
1357        .stop   = c_stop,
1358        .show   = c_show,
1359};
1360
1361static int content_open(struct inode *inode, struct file *file,
1362                        struct cache_detail *cd)
1363{
1364        struct handle *han;
1365
1366        if (!cd || !try_module_get(cd->owner))
1367                return -EACCES;
1368        han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1369        if (han == NULL) {
1370                module_put(cd->owner);
1371                return -ENOMEM;
1372        }
1373
1374        han->cd = cd;
1375        return 0;
1376}
1377
1378static int content_release(struct inode *inode, struct file *file,
1379                struct cache_detail *cd)
1380{
1381        int ret = seq_release_private(inode, file);
1382        module_put(cd->owner);
1383        return ret;
1384}
1385
1386static int open_flush(struct inode *inode, struct file *file,
1387                        struct cache_detail *cd)
1388{
1389        if (!cd || !try_module_get(cd->owner))
1390                return -EACCES;
1391        return nonseekable_open(inode, file);
1392}
1393
1394static int release_flush(struct inode *inode, struct file *file,
1395                        struct cache_detail *cd)
1396{
1397        module_put(cd->owner);
1398        return 0;
1399}
1400
1401static ssize_t read_flush(struct file *file, char __user *buf,
1402                          size_t count, loff_t *ppos,
1403                          struct cache_detail *cd)
1404{
1405        char tbuf[20];
1406        unsigned long p = *ppos;
1407        size_t len;
1408
1409        sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1410        len = strlen(tbuf);
1411        if (p >= len)
1412                return 0;
1413        len -= p;
1414        if (len > count)
1415                len = count;
1416        if (copy_to_user(buf, (void*)(tbuf+p), len))
1417                return -EFAULT;
1418        *ppos += len;
1419        return len;
1420}
1421
1422static ssize_t write_flush(struct file *file, const char __user *buf,
1423                           size_t count, loff_t *ppos,
1424                           struct cache_detail *cd)
1425{
1426        char tbuf[20];
1427        char *bp, *ep;
1428
1429        if (*ppos || count > sizeof(tbuf)-1)
1430                return -EINVAL;
1431        if (copy_from_user(tbuf, buf, count))
1432                return -EFAULT;
1433        tbuf[count] = 0;
1434        simple_strtoul(tbuf, &ep, 0);
1435        if (*ep && *ep != '\n')
1436                return -EINVAL;
1437
1438        bp = tbuf;
1439        cd->flush_time = get_expiry(&bp);
1440        cd->nextcheck = seconds_since_boot();
1441        cache_flush();
1442
1443        *ppos += count;
1444        return count;
1445}
1446
1447static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1448                                 size_t count, loff_t *ppos)
1449{
1450        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1451
1452        return cache_read(filp, buf, count, ppos, cd);
1453}
1454
1455static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1456                                  size_t count, loff_t *ppos)
1457{
1458        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1459
1460        return cache_write(filp, buf, count, ppos, cd);
1461}
1462
1463static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1464{
1465        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1466
1467        return cache_poll(filp, wait, cd);
1468}
1469
1470static long cache_ioctl_procfs(struct file *filp,
1471                               unsigned int cmd, unsigned long arg)
1472{
1473        struct inode *inode = filp->f_path.dentry->d_inode;
1474        struct cache_detail *cd = PDE(inode)->data;
1475
1476        return cache_ioctl(inode, filp, cmd, arg, cd);
1477}
1478
1479static int cache_open_procfs(struct inode *inode, struct file *filp)
1480{
1481        struct cache_detail *cd = PDE(inode)->data;
1482
1483        return cache_open(inode, filp, cd);
1484}
1485
1486static int cache_release_procfs(struct inode *inode, struct file *filp)
1487{
1488        struct cache_detail *cd = PDE(inode)->data;
1489
1490        return cache_release(inode, filp, cd);
1491}
1492
1493static const struct file_operations cache_file_operations_procfs = {
1494        .owner          = THIS_MODULE,
1495        .llseek         = no_llseek,
1496        .read           = cache_read_procfs,
1497        .write          = cache_write_procfs,
1498        .poll           = cache_poll_procfs,
1499        .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1500        .open           = cache_open_procfs,
1501        .release        = cache_release_procfs,
1502};
1503
1504static int content_open_procfs(struct inode *inode, struct file *filp)
1505{
1506        struct cache_detail *cd = PDE(inode)->data;
1507
1508        return content_open(inode, filp, cd);
1509}
1510
1511static int content_release_procfs(struct inode *inode, struct file *filp)
1512{
1513        struct cache_detail *cd = PDE(inode)->data;
1514
1515        return content_release(inode, filp, cd);
1516}
1517
1518static const struct file_operations content_file_operations_procfs = {
1519        .open           = content_open_procfs,
1520        .read           = seq_read,
1521        .llseek         = seq_lseek,
1522        .release        = content_release_procfs,
1523};
1524
1525static int open_flush_procfs(struct inode *inode, struct file *filp)
1526{
1527        struct cache_detail *cd = PDE(inode)->data;
1528
1529        return open_flush(inode, filp, cd);
1530}
1531
1532static int release_flush_procfs(struct inode *inode, struct file *filp)
1533{
1534        struct cache_detail *cd = PDE(inode)->data;
1535
1536        return release_flush(inode, filp, cd);
1537}
1538
1539static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1540                            size_t count, loff_t *ppos)
1541{
1542        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1543
1544        return read_flush(filp, buf, count, ppos, cd);
1545}
1546
1547static ssize_t write_flush_procfs(struct file *filp,
1548                                  const char __user *buf,
1549                                  size_t count, loff_t *ppos)
1550{
1551        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1552
1553        return write_flush(filp, buf, count, ppos, cd);
1554}
1555
1556static const struct file_operations cache_flush_operations_procfs = {
1557        .open           = open_flush_procfs,
1558        .read           = read_flush_procfs,
1559        .write          = write_flush_procfs,
1560        .release        = release_flush_procfs,
1561        .llseek         = no_llseek,
1562};
1563
1564static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1565{
1566        struct sunrpc_net *sn;
1567
1568        if (cd->u.procfs.proc_ent == NULL)
1569                return;
1570        if (cd->u.procfs.flush_ent)
1571                remove_proc_entry("flush", cd->u.procfs.proc_ent);
1572        if (cd->u.procfs.channel_ent)
1573                remove_proc_entry("channel", cd->u.procfs.proc_ent);
1574        if (cd->u.procfs.content_ent)
1575                remove_proc_entry("content", cd->u.procfs.proc_ent);
1576        cd->u.procfs.proc_ent = NULL;
1577        sn = net_generic(net, sunrpc_net_id);
1578        remove_proc_entry(cd->name, sn->proc_net_rpc);
1579}
1580
1581#ifdef CONFIG_PROC_FS
1582static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1583{
1584        struct proc_dir_entry *p;
1585        struct sunrpc_net *sn;
1586
1587        sn = net_generic(net, sunrpc_net_id);
1588        cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1589        if (cd->u.procfs.proc_ent == NULL)
1590                goto out_nomem;
1591        cd->u.procfs.channel_ent = NULL;
1592        cd->u.procfs.content_ent = NULL;
1593
1594        p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1595                             cd->u.procfs.proc_ent,
1596                             &cache_flush_operations_procfs, cd);
1597        cd->u.procfs.flush_ent = p;
1598        if (p == NULL)
1599                goto out_nomem;
1600
1601        if (cd->cache_upcall || cd->cache_parse) {
1602                p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1603                                     cd->u.procfs.proc_ent,
1604                                     &cache_file_operations_procfs, cd);
1605                cd->u.procfs.channel_ent = p;
1606                if (p == NULL)
1607                        goto out_nomem;
1608        }
1609        if (cd->cache_show) {
1610                p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1611                                cd->u.procfs.proc_ent,
1612                                &content_file_operations_procfs, cd);
1613                cd->u.procfs.content_ent = p;
1614                if (p == NULL)
1615                        goto out_nomem;
1616        }
1617        return 0;
1618out_nomem:
1619        remove_cache_proc_entries(cd, net);
1620        return -ENOMEM;
1621}
1622#else /* CONFIG_PROC_FS */
1623static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1624{
1625        return 0;
1626}
1627#endif
1628
1629void __init cache_initialize(void)
1630{
1631        INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1632}
1633
1634int cache_register_net(struct cache_detail *cd, struct net *net)
1635{
1636        int ret;
1637
1638        sunrpc_init_cache_detail(cd);
1639        ret = create_cache_proc_entries(cd, net);
1640        if (ret)
1641                sunrpc_destroy_cache_detail(cd);
1642        return ret;
1643}
1644
1645int cache_register(struct cache_detail *cd)
1646{
1647        return cache_register_net(cd, &init_net);
1648}
1649EXPORT_SYMBOL_GPL(cache_register);
1650
1651void cache_unregister_net(struct cache_detail *cd, struct net *net)
1652{
1653        remove_cache_proc_entries(cd, net);
1654        sunrpc_destroy_cache_detail(cd);
1655}
1656
1657void cache_unregister(struct cache_detail *cd)
1658{
1659        cache_unregister_net(cd, &init_net);
1660}
1661EXPORT_SYMBOL_GPL(cache_unregister);
1662
1663static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1664                                 size_t count, loff_t *ppos)
1665{
1666        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1667
1668        return cache_read(filp, buf, count, ppos, cd);
1669}
1670
1671static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1672                                  size_t count, loff_t *ppos)
1673{
1674        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1675
1676        return cache_write(filp, buf, count, ppos, cd);
1677}
1678
1679static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1680{
1681        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1682
1683        return cache_poll(filp, wait, cd);
1684}
1685
1686static long cache_ioctl_pipefs(struct file *filp,
1687                              unsigned int cmd, unsigned long arg)
1688{
1689        struct inode *inode = filp->f_dentry->d_inode;
1690        struct cache_detail *cd = RPC_I(inode)->private;
1691
1692        return cache_ioctl(inode, filp, cmd, arg, cd);
1693}
1694
1695static int cache_open_pipefs(struct inode *inode, struct file *filp)
1696{
1697        struct cache_detail *cd = RPC_I(inode)->private;
1698
1699        return cache_open(inode, filp, cd);
1700}
1701
1702static int cache_release_pipefs(struct inode *inode, struct file *filp)
1703{
1704        struct cache_detail *cd = RPC_I(inode)->private;
1705
1706        return cache_release(inode, filp, cd);
1707}
1708
1709const struct file_operations cache_file_operations_pipefs = {
1710        .owner          = THIS_MODULE,
1711        .llseek         = no_llseek,
1712        .read           = cache_read_pipefs,
1713        .write          = cache_write_pipefs,
1714        .poll           = cache_poll_pipefs,
1715        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1716        .open           = cache_open_pipefs,
1717        .release        = cache_release_pipefs,
1718};
1719
1720static int content_open_pipefs(struct inode *inode, struct file *filp)
1721{
1722        struct cache_detail *cd = RPC_I(inode)->private;
1723
1724        return content_open(inode, filp, cd);
1725}
1726
1727static int content_release_pipefs(struct inode *inode, struct file *filp)
1728{
1729        struct cache_detail *cd = RPC_I(inode)->private;
1730
1731        return content_release(inode, filp, cd);
1732}
1733
1734const struct file_operations content_file_operations_pipefs = {
1735        .open           = content_open_pipefs,
1736        .read           = seq_read,
1737        .llseek         = seq_lseek,
1738        .release        = content_release_pipefs,
1739};
1740
1741static int open_flush_pipefs(struct inode *inode, struct file *filp)
1742{
1743        struct cache_detail *cd = RPC_I(inode)->private;
1744
1745        return open_flush(inode, filp, cd);
1746}
1747
1748static int release_flush_pipefs(struct inode *inode, struct file *filp)
1749{
1750        struct cache_detail *cd = RPC_I(inode)->private;
1751
1752        return release_flush(inode, filp, cd);
1753}
1754
1755static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1756                            size_t count, loff_t *ppos)
1757{
1758        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1759
1760        return read_flush(filp, buf, count, ppos, cd);
1761}
1762
1763static ssize_t write_flush_pipefs(struct file *filp,
1764                                  const char __user *buf,
1765                                  size_t count, loff_t *ppos)
1766{
1767        struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1768
1769        return write_flush(filp, buf, count, ppos, cd);
1770}
1771
1772const struct file_operations cache_flush_operations_pipefs = {
1773        .open           = open_flush_pipefs,
1774        .read           = read_flush_pipefs,
1775        .write          = write_flush_pipefs,
1776        .release        = release_flush_pipefs,
1777        .llseek         = no_llseek,
1778};
1779
1780int sunrpc_cache_register_pipefs(struct dentry *parent,
1781                                 const char *name, mode_t umode,
1782                                 struct cache_detail *cd)
1783{
1784        struct qstr q;
1785        struct dentry *dir;
1786        int ret = 0;
1787
1788        sunrpc_init_cache_detail(cd);
1789        q.name = name;
1790        q.len = strlen(name);
1791        q.hash = full_name_hash(q.name, q.len);
1792        dir = rpc_create_cache_dir(parent, &q, umode, cd);
1793        if (!IS_ERR(dir))
1794                cd->u.pipefs.dir = dir;
1795        else {
1796                sunrpc_destroy_cache_detail(cd);
1797                ret = PTR_ERR(dir);
1798        }
1799        return ret;
1800}
1801EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1802
1803void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1804{
1805        rpc_remove_cache_dir(cd->u.pipefs.dir);
1806        cd->u.pipefs.dir = NULL;
1807        sunrpc_destroy_cache_detail(cd);
1808}
1809EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1810
1811