linux/arch/m68k/math-emu/multi_arith.h
<<
>>
Prefs
   1/* multi_arith.h: multi-precision integer arithmetic functions, needed
   2   to do extended-precision floating point.
   3
   4   (c) 1998 David Huggins-Daines.
   5
   6   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
   7   David Mosberger-Tang.
   8
   9   You may copy, modify, and redistribute this file under the terms of
  10   the GNU General Public License, version 2, or any later version, at
  11   your convenience. */
  12
  13/* Note:
  14
  15   These are not general multi-precision math routines.  Rather, they
  16   implement the subset of integer arithmetic that we need in order to
  17   multiply, divide, and normalize 128-bit unsigned mantissae.  */
  18
  19#ifndef MULTI_ARITH_H
  20#define MULTI_ARITH_H
  21
  22static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
  23{
  24        reg->exp += cnt;
  25
  26        switch (cnt) {
  27        case 0 ... 8:
  28                reg->lowmant = reg->mant.m32[1] << (8 - cnt);
  29                reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
  30                                   (reg->mant.m32[0] << (32 - cnt));
  31                reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
  32                break;
  33        case 9 ... 32:
  34                reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
  35                if (reg->mant.m32[1] << (40 - cnt))
  36                        reg->lowmant |= 1;
  37                reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
  38                                   (reg->mant.m32[0] << (32 - cnt));
  39                reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
  40                break;
  41        case 33 ... 39:
  42                asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
  43                        : "m" (reg->mant.m32[0]), "d" (64 - cnt));
  44                if (reg->mant.m32[1] << (40 - cnt))
  45                        reg->lowmant |= 1;
  46                reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
  47                reg->mant.m32[0] = 0;
  48                break;
  49        case 40 ... 71:
  50                reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
  51                if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
  52                        reg->lowmant |= 1;
  53                reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
  54                reg->mant.m32[0] = 0;
  55                break;
  56        default:
  57                reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
  58                reg->mant.m32[0] = 0;
  59                reg->mant.m32[1] = 0;
  60                break;
  61        }
  62}
  63
  64static inline int fp_overnormalize(struct fp_ext *reg)
  65{
  66        int shift;
  67
  68        if (reg->mant.m32[0]) {
  69                asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
  70                reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
  71                reg->mant.m32[1] = (reg->mant.m32[1] << shift);
  72        } else {
  73                asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
  74                reg->mant.m32[0] = (reg->mant.m32[1] << shift);
  75                reg->mant.m32[1] = 0;
  76                shift += 32;
  77        }
  78
  79        return shift;
  80}
  81
  82static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
  83{
  84        int carry;
  85
  86        /* we assume here, gcc only insert move and a clr instr */
  87        asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
  88                : "g,d" (src->lowmant), "0,0" (dest->lowmant));
  89        asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
  90                : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
  91        asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
  92                : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
  93        asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
  94
  95        return carry;
  96}
  97
  98static inline int fp_addcarry(struct fp_ext *reg)
  99{
 100        if (++reg->exp == 0x7fff) {
 101                if (reg->mant.m64)
 102                        fp_set_sr(FPSR_EXC_INEX2);
 103                reg->mant.m64 = 0;
 104                fp_set_sr(FPSR_EXC_OVFL);
 105                return 0;
 106        }
 107        reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
 108        reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
 109                           (reg->mant.m32[0] << 31);
 110        reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
 111
 112        return 1;
 113}
 114
 115static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
 116                              struct fp_ext *src2)
 117{
 118        /* we assume here, gcc only insert move and a clr instr */
 119        asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
 120                : "g,d" (src2->lowmant), "0,0" (src1->lowmant));
 121        asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
 122                : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
 123        asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
 124                : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
 125}
 126
 127#define fp_mul64(desth, destl, src1, src2) ({                           \
 128        asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)             \
 129                : "dm" (src1), "0" (src2));                             \
 130})
 131#define fp_div64(quot, rem, srch, srcl, div)                            \
 132        asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)                \
 133                : "dm" (div), "1" (srch), "0" (srcl))
 134#define fp_add64(dest1, dest2, src1, src2) ({                           \
 135        asm ("add.l %1,%0" : "=d,dm" (dest2)                            \
 136                : "dm,d" (src2), "0,0" (dest2));                        \
 137        asm ("addx.l %1,%0" : "=d" (dest1)                              \
 138                : "d" (src1), "0" (dest1));                             \
 139})
 140#define fp_addx96(dest, src) ({                                         \
 141        /* we assume here, gcc only insert move and a clr instr */      \
 142        asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])             \
 143                : "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));           \
 144        asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])              \
 145                : "d" (temp.m32[0]), "0" (dest->m32[1]));               \
 146        asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])              \
 147                : "d" (0), "0" (dest->m32[0]));                         \
 148})
 149#define fp_sub64(dest, src) ({                                          \
 150        asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])                      \
 151                : "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));            \
 152        asm ("subx.l %1,%0" : "=d" (dest.m32[0])                        \
 153                : "d" (src.m32[0]), "0" (dest.m32[0]));                 \
 154})
 155#define fp_sub96c(dest, srch, srcm, srcl) ({                            \
 156        char carry;                                                     \
 157        asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])                      \
 158                : "dm,d" (srcl), "0,0" (dest.m32[2]));                  \
 159        asm ("subx.l %1,%0" : "=d" (dest.m32[1])                        \
 160                : "d" (srcm), "0" (dest.m32[1]));                       \
 161        asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])  \
 162                : "d" (srch), "1" (dest.m32[0]));                       \
 163        carry;                                                          \
 164})
 165
 166static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
 167                                   struct fp_ext *src2)
 168{
 169        union fp_mant64 temp;
 170
 171        fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
 172        fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
 173
 174        fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
 175        fp_addx96(dest, temp);
 176
 177        fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
 178        fp_addx96(dest, temp);
 179}
 180
 181static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
 182                                 struct fp_ext *div)
 183{
 184        union fp_mant128 tmp;
 185        union fp_mant64 tmp64;
 186        unsigned long *mantp = dest->m32;
 187        unsigned long fix, rem, first, dummy;
 188        int i;
 189
 190        /* the algorithm below requires dest to be smaller than div,
 191           but both have the high bit set */
 192        if (src->mant.m64 >= div->mant.m64) {
 193                fp_sub64(src->mant, div->mant);
 194                *mantp = 1;
 195        } else
 196                *mantp = 0;
 197        mantp++;
 198
 199        /* basic idea behind this algorithm: we can't divide two 64bit numbers
 200           (AB/CD) directly, but we can calculate AB/C0, but this means this
 201           quotient is off by C0/CD, so we have to multiply the first result
 202           to fix the result, after that we have nearly the correct result
 203           and only a few corrections are needed. */
 204
 205        /* C0/CD can be precalculated, but it's an 64bit division again, but
 206           we can make it a bit easier, by dividing first through C so we get
 207           10/1D and now only a single shift and the value fits into 32bit. */
 208        fix = 0x80000000;
 209        dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
 210        dummy = (dummy >> 1) | fix;
 211        fp_div64(fix, dummy, fix, 0, dummy);
 212        fix--;
 213
 214        for (i = 0; i < 3; i++, mantp++) {
 215                if (src->mant.m32[0] == div->mant.m32[0]) {
 216                        fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
 217
 218                        fp_mul64(*mantp, dummy, first, fix);
 219                        *mantp += fix;
 220                } else {
 221                        fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
 222
 223                        fp_mul64(*mantp, dummy, first, fix);
 224                }
 225
 226                fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
 227                fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
 228                tmp.m32[2] = 0;
 229
 230                fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
 231                fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
 232
 233                src->mant.m32[0] = tmp.m32[1];
 234                src->mant.m32[1] = tmp.m32[2];
 235
 236                while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
 237                        src->mant.m32[0] = tmp.m32[1];
 238                        src->mant.m32[1] = tmp.m32[2];
 239                        *mantp += 1;
 240                }
 241        }
 242}
 243
 244static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
 245                                 int shift)
 246{
 247        unsigned long tmp;
 248
 249        switch (shift) {
 250        case 0:
 251                dest->mant.m64 = src->m64[0];
 252                dest->lowmant = src->m32[2] >> 24;
 253                if (src->m32[3] || (src->m32[2] << 8))
 254                        dest->lowmant |= 1;
 255                break;
 256        case 1:
 257                asm volatile ("lsl.l #1,%0"
 258                        : "=d" (tmp) : "0" (src->m32[2]));
 259                asm volatile ("roxl.l #1,%0"
 260                        : "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
 261                asm volatile ("roxl.l #1,%0"
 262                        : "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
 263                dest->lowmant = tmp >> 24;
 264                if (src->m32[3] || (tmp << 8))
 265                        dest->lowmant |= 1;
 266                break;
 267        case 31:
 268                asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
 269                        : "=d" (dest->mant.m32[0])
 270                        : "d" (src->m32[0]), "0" (src->m32[1]));
 271                asm volatile ("roxr.l #1,%0"
 272                        : "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
 273                asm volatile ("roxr.l #1,%0"
 274                        : "=d" (tmp) : "0" (src->m32[3]));
 275                dest->lowmant = tmp >> 24;
 276                if (src->m32[3] << 7)
 277                        dest->lowmant |= 1;
 278                break;
 279        case 32:
 280                dest->mant.m32[0] = src->m32[1];
 281                dest->mant.m32[1] = src->m32[2];
 282                dest->lowmant = src->m32[3] >> 24;
 283                if (src->m32[3] << 8)
 284                        dest->lowmant |= 1;
 285                break;
 286        }
 287}
 288
 289#endif  /* MULTI_ARITH_H */
 290