linux/arch/openrisc/kernel/process.c
<<
>>
Prefs
   1/*
   2 * OpenRISC process.c
   3 *
   4 * Linux architectural port borrowing liberally from similar works of
   5 * others.  All original copyrights apply as per the original source
   6 * declaration.
   7 *
   8 * Modifications for the OpenRISC architecture:
   9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
  10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
  11 *
  12 *      This program is free software; you can redistribute it and/or
  13 *      modify it under the terms of the GNU General Public License
  14 *      as published by the Free Software Foundation; either version
  15 *      2 of the License, or (at your option) any later version.
  16 *
  17 * This file handles the architecture-dependent parts of process handling...
  18 */
  19
  20#define __KERNEL_SYSCALLS__
  21#include <stdarg.h>
  22
  23#include <linux/errno.h>
  24#include <linux/sched.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/stddef.h>
  29#include <linux/unistd.h>
  30#include <linux/ptrace.h>
  31#include <linux/slab.h>
  32#include <linux/elfcore.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/init_task.h>
  36#include <linux/mqueue.h>
  37#include <linux/fs.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/pgtable.h>
  41#include <asm/system.h>
  42#include <asm/io.h>
  43#include <asm/processor.h>
  44#include <asm/spr_defs.h>
  45
  46#include <linux/smp.h>
  47
  48/*
  49 * Pointer to Current thread info structure.
  50 *
  51 * Used at user space -> kernel transitions.
  52 */
  53struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
  54
  55void machine_restart(void)
  56{
  57        printk(KERN_INFO "*** MACHINE RESTART ***\n");
  58        __asm__("l.nop 1");
  59}
  60
  61/*
  62 * Similar to machine_power_off, but don't shut off power.  Add code
  63 * here to freeze the system for e.g. post-mortem debug purpose when
  64 * possible.  This halt has nothing to do with the idle halt.
  65 */
  66void machine_halt(void)
  67{
  68        printk(KERN_INFO "*** MACHINE HALT ***\n");
  69        __asm__("l.nop 1");
  70}
  71
  72/* If or when software power-off is implemented, add code here.  */
  73void machine_power_off(void)
  74{
  75        printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
  76        __asm__("l.nop 1");
  77}
  78
  79void (*pm_power_off) (void) = machine_power_off;
  80
  81/*
  82 * When a process does an "exec", machine state like FPU and debug
  83 * registers need to be reset.  This is a hook function for that.
  84 * Currently we don't have any such state to reset, so this is empty.
  85 */
  86void flush_thread(void)
  87{
  88}
  89
  90void show_regs(struct pt_regs *regs)
  91{
  92        extern void show_registers(struct pt_regs *regs);
  93
  94        /* __PHX__ cleanup this mess */
  95        show_registers(regs);
  96}
  97
  98unsigned long thread_saved_pc(struct task_struct *t)
  99{
 100        return (unsigned long)user_regs(t->stack)->pc;
 101}
 102
 103void release_thread(struct task_struct *dead_task)
 104{
 105}
 106
 107/*
 108 * Copy the thread-specific (arch specific) info from the current
 109 * process to the new one p
 110 */
 111extern asmlinkage void ret_from_fork(void);
 112
 113int
 114copy_thread(unsigned long clone_flags, unsigned long usp,
 115            unsigned long unused, struct task_struct *p, struct pt_regs *regs)
 116{
 117        struct pt_regs *childregs;
 118        struct pt_regs *kregs;
 119        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 120        struct thread_info *ti;
 121        unsigned long top_of_kernel_stack;
 122
 123        top_of_kernel_stack = sp;
 124
 125        p->set_child_tid = p->clear_child_tid = NULL;
 126
 127        /* Copy registers */
 128        /* redzone */
 129        sp -= STACK_FRAME_OVERHEAD;
 130        sp -= sizeof(struct pt_regs);
 131        childregs = (struct pt_regs *)sp;
 132
 133        /* Copy parent registers */
 134        *childregs = *regs;
 135
 136        if ((childregs->sr & SPR_SR_SM) == 1) {
 137                /* for kernel thread, set `current_thread_info'
 138                 * and stackptr in new task
 139                 */
 140                childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 141                childregs->gpr[10] = (unsigned long)task_thread_info(p);
 142        } else {
 143                childregs->sp = usp;
 144        }
 145
 146        childregs->gpr[11] = 0; /* Result from fork() */
 147
 148        /*
 149         * The way this works is that at some point in the future
 150         * some task will call _switch to switch to the new task.
 151         * That will pop off the stack frame created below and start
 152         * the new task running at ret_from_fork.  The new task will
 153         * do some house keeping and then return from the fork or clone
 154         * system call, using the stack frame created above.
 155         */
 156        /* redzone */
 157        sp -= STACK_FRAME_OVERHEAD;
 158        sp -= sizeof(struct pt_regs);
 159        kregs = (struct pt_regs *)sp;
 160
 161        ti = task_thread_info(p);
 162        ti->ksp = sp;
 163
 164        /* kregs->sp must store the location of the 'pre-switch' kernel stack
 165         * pointer... for a newly forked process, this is simply the top of
 166         * the kernel stack.
 167         */
 168        kregs->sp = top_of_kernel_stack;
 169        kregs->gpr[3] = (unsigned long)current; /* arg to schedule_tail */
 170        kregs->gpr[10] = (unsigned long)task_thread_info(p);
 171        kregs->gpr[9] = (unsigned long)ret_from_fork;
 172
 173        return 0;
 174}
 175
 176/*
 177 * Set up a thread for executing a new program
 178 */
 179void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
 180{
 181        unsigned long sr = regs->sr & ~SPR_SR_SM;
 182
 183        set_fs(USER_DS);
 184        memset(regs->gpr, 0, sizeof(regs->gpr));
 185
 186        regs->pc = pc;
 187        regs->sr = sr;
 188        regs->sp = sp;
 189
 190/*      printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
 191}
 192
 193/* Fill in the fpu structure for a core dump.  */
 194int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
 195{
 196        /* TODO */
 197        return 0;
 198}
 199
 200extern struct thread_info *_switch(struct thread_info *old_ti,
 201                                   struct thread_info *new_ti);
 202
 203struct task_struct *__switch_to(struct task_struct *old,
 204                                struct task_struct *new)
 205{
 206        struct task_struct *last;
 207        struct thread_info *new_ti, *old_ti;
 208        unsigned long flags;
 209
 210        local_irq_save(flags);
 211
 212        /* current_set is an array of saved current pointers
 213         * (one for each cpu). we need them at user->kernel transition,
 214         * while we save them at kernel->user transition
 215         */
 216        new_ti = new->stack;
 217        old_ti = old->stack;
 218
 219        current_thread_info_set[smp_processor_id()] = new_ti;
 220        last = (_switch(old_ti, new_ti))->task;
 221
 222        local_irq_restore(flags);
 223
 224        return last;
 225}
 226
 227/*
 228 * Write out registers in core dump format, as defined by the
 229 * struct user_regs_struct
 230 */
 231void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
 232{
 233        dest[0] = 0; /* r0 */
 234        memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
 235        dest[32] = regs->pc;
 236        dest[33] = regs->sr;
 237        dest[34] = 0;
 238        dest[35] = 0;
 239}
 240
 241extern void _kernel_thread_helper(void);
 242
 243void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
 244{
 245        do_exit(fn(arg));
 246}
 247
 248/*
 249 * Create a kernel thread.
 250 */
 251int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
 252{
 253        struct pt_regs regs;
 254
 255        memset(&regs, 0, sizeof(regs));
 256
 257        regs.gpr[20] = (unsigned long)fn;
 258        regs.gpr[22] = (unsigned long)arg;
 259        regs.sr = mfspr(SPR_SR);
 260        regs.pc = (unsigned long)_kernel_thread_helper;
 261
 262        return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
 263                       0, &regs, 0, NULL, NULL);
 264}
 265
 266/*
 267 * sys_execve() executes a new program.
 268 */
 269asmlinkage long _sys_execve(const char __user *name,
 270                            const char __user * const __user *argv,
 271                            const char __user * const __user *envp,
 272                            struct pt_regs *regs)
 273{
 274        int error;
 275        char *filename;
 276
 277        filename = getname(name);
 278        error = PTR_ERR(filename);
 279
 280        if (IS_ERR(filename))
 281                goto out;
 282
 283        error = do_execve(filename, argv, envp, regs);
 284        putname(filename);
 285
 286out:
 287        return error;
 288}
 289
 290unsigned long get_wchan(struct task_struct *p)
 291{
 292        /* TODO */
 293
 294        return 0;
 295}
 296
 297int kernel_execve(const char *filename, char *const argv[], char *const envp[])
 298{
 299        register long __res asm("r11") = __NR_execve;
 300        register long __a asm("r3") = (long)(filename);
 301        register long __b asm("r4") = (long)(argv);
 302        register long __c asm("r5") = (long)(envp);
 303        __asm__ volatile ("l.sys 1"
 304                          : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
 305                          : "0"(__res), "1"(__a), "2"(__b), "3"(__c)
 306                          : "r6", "r7", "r8", "r12", "r13", "r15",
 307                            "r17", "r19", "r21", "r23", "r25", "r27",
 308                            "r29", "r31");
 309        __asm__ volatile ("l.nop");
 310        return __res;
 311}
 312