linux/arch/powerpc/mm/hash_utils_64.c
<<
>>
Prefs
   1/*
   2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   3 *   {mikejc|engebret}@us.ibm.com
   4 *
   5 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   6 *
   7 * SMP scalability work:
   8 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
   9 * 
  10 *    Module name: htab.c
  11 *
  12 *    Description:
  13 *      PowerPC Hashed Page Table functions
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 */
  20
  21#undef DEBUG
  22#undef DEBUG_LOW
  23
  24#include <linux/spinlock.h>
  25#include <linux/errno.h>
  26#include <linux/sched.h>
  27#include <linux/proc_fs.h>
  28#include <linux/stat.h>
  29#include <linux/sysctl.h>
  30#include <linux/ctype.h>
  31#include <linux/cache.h>
  32#include <linux/init.h>
  33#include <linux/signal.h>
  34#include <linux/memblock.h>
  35
  36#include <asm/processor.h>
  37#include <asm/pgtable.h>
  38#include <asm/mmu.h>
  39#include <asm/mmu_context.h>
  40#include <asm/page.h>
  41#include <asm/types.h>
  42#include <asm/system.h>
  43#include <asm/uaccess.h>
  44#include <asm/machdep.h>
  45#include <asm/prom.h>
  46#include <asm/abs_addr.h>
  47#include <asm/tlbflush.h>
  48#include <asm/io.h>
  49#include <asm/eeh.h>
  50#include <asm/tlb.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cputable.h>
  53#include <asm/sections.h>
  54#include <asm/spu.h>
  55#include <asm/udbg.h>
  56#include <asm/code-patching.h>
  57
  58#ifdef DEBUG
  59#define DBG(fmt...) udbg_printf(fmt)
  60#else
  61#define DBG(fmt...)
  62#endif
  63
  64#ifdef DEBUG_LOW
  65#define DBG_LOW(fmt...) udbg_printf(fmt)
  66#else
  67#define DBG_LOW(fmt...)
  68#endif
  69
  70#define KB (1024)
  71#define MB (1024*KB)
  72#define GB (1024L*MB)
  73
  74/*
  75 * Note:  pte   --> Linux PTE
  76 *        HPTE  --> PowerPC Hashed Page Table Entry
  77 *
  78 * Execution context:
  79 *   htab_initialize is called with the MMU off (of course), but
  80 *   the kernel has been copied down to zero so it can directly
  81 *   reference global data.  At this point it is very difficult
  82 *   to print debug info.
  83 *
  84 */
  85
  86#ifdef CONFIG_U3_DART
  87extern unsigned long dart_tablebase;
  88#endif /* CONFIG_U3_DART */
  89
  90static unsigned long _SDR1;
  91struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  92
  93struct hash_pte *htab_address;
  94unsigned long htab_size_bytes;
  95unsigned long htab_hash_mask;
  96EXPORT_SYMBOL_GPL(htab_hash_mask);
  97int mmu_linear_psize = MMU_PAGE_4K;
  98int mmu_virtual_psize = MMU_PAGE_4K;
  99int mmu_vmalloc_psize = MMU_PAGE_4K;
 100#ifdef CONFIG_SPARSEMEM_VMEMMAP
 101int mmu_vmemmap_psize = MMU_PAGE_4K;
 102#endif
 103int mmu_io_psize = MMU_PAGE_4K;
 104int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 105int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 106u16 mmu_slb_size = 64;
 107EXPORT_SYMBOL_GPL(mmu_slb_size);
 108#ifdef CONFIG_HUGETLB_PAGE
 109unsigned int HPAGE_SHIFT;
 110#endif
 111#ifdef CONFIG_PPC_64K_PAGES
 112int mmu_ci_restrictions;
 113#endif
 114#ifdef CONFIG_DEBUG_PAGEALLOC
 115static u8 *linear_map_hash_slots;
 116static unsigned long linear_map_hash_count;
 117static DEFINE_SPINLOCK(linear_map_hash_lock);
 118#endif /* CONFIG_DEBUG_PAGEALLOC */
 119
 120/* There are definitions of page sizes arrays to be used when none
 121 * is provided by the firmware.
 122 */
 123
 124/* Pre-POWER4 CPUs (4k pages only)
 125 */
 126static struct mmu_psize_def mmu_psize_defaults_old[] = {
 127        [MMU_PAGE_4K] = {
 128                .shift  = 12,
 129                .sllp   = 0,
 130                .penc   = 0,
 131                .avpnm  = 0,
 132                .tlbiel = 0,
 133        },
 134};
 135
 136/* POWER4, GPUL, POWER5
 137 *
 138 * Support for 16Mb large pages
 139 */
 140static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 141        [MMU_PAGE_4K] = {
 142                .shift  = 12,
 143                .sllp   = 0,
 144                .penc   = 0,
 145                .avpnm  = 0,
 146                .tlbiel = 1,
 147        },
 148        [MMU_PAGE_16M] = {
 149                .shift  = 24,
 150                .sllp   = SLB_VSID_L,
 151                .penc   = 0,
 152                .avpnm  = 0x1UL,
 153                .tlbiel = 0,
 154        },
 155};
 156
 157static unsigned long htab_convert_pte_flags(unsigned long pteflags)
 158{
 159        unsigned long rflags = pteflags & 0x1fa;
 160
 161        /* _PAGE_EXEC -> NOEXEC */
 162        if ((pteflags & _PAGE_EXEC) == 0)
 163                rflags |= HPTE_R_N;
 164
 165        /* PP bits. PAGE_USER is already PP bit 0x2, so we only
 166         * need to add in 0x1 if it's a read-only user page
 167         */
 168        if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
 169                                         (pteflags & _PAGE_DIRTY)))
 170                rflags |= 1;
 171
 172        /* Always add C */
 173        return rflags | HPTE_R_C;
 174}
 175
 176int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 177                      unsigned long pstart, unsigned long prot,
 178                      int psize, int ssize)
 179{
 180        unsigned long vaddr, paddr;
 181        unsigned int step, shift;
 182        int ret = 0;
 183
 184        shift = mmu_psize_defs[psize].shift;
 185        step = 1 << shift;
 186
 187        prot = htab_convert_pte_flags(prot);
 188
 189        DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 190            vstart, vend, pstart, prot, psize, ssize);
 191
 192        for (vaddr = vstart, paddr = pstart; vaddr < vend;
 193             vaddr += step, paddr += step) {
 194                unsigned long hash, hpteg;
 195                unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 196                unsigned long va = hpt_va(vaddr, vsid, ssize);
 197                unsigned long tprot = prot;
 198
 199                /* Make kernel text executable */
 200                if (overlaps_kernel_text(vaddr, vaddr + step))
 201                        tprot &= ~HPTE_R_N;
 202
 203                hash = hpt_hash(va, shift, ssize);
 204                hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 205
 206                BUG_ON(!ppc_md.hpte_insert);
 207                ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
 208                                         HPTE_V_BOLTED, psize, ssize);
 209
 210                if (ret < 0)
 211                        break;
 212#ifdef CONFIG_DEBUG_PAGEALLOC
 213                if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
 214                        linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 215#endif /* CONFIG_DEBUG_PAGEALLOC */
 216        }
 217        return ret < 0 ? ret : 0;
 218}
 219
 220#ifdef CONFIG_MEMORY_HOTPLUG
 221static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 222                      int psize, int ssize)
 223{
 224        unsigned long vaddr;
 225        unsigned int step, shift;
 226
 227        shift = mmu_psize_defs[psize].shift;
 228        step = 1 << shift;
 229
 230        if (!ppc_md.hpte_removebolted) {
 231                printk(KERN_WARNING "Platform doesn't implement "
 232                                "hpte_removebolted\n");
 233                return -EINVAL;
 234        }
 235
 236        for (vaddr = vstart; vaddr < vend; vaddr += step)
 237                ppc_md.hpte_removebolted(vaddr, psize, ssize);
 238
 239        return 0;
 240}
 241#endif /* CONFIG_MEMORY_HOTPLUG */
 242
 243static int __init htab_dt_scan_seg_sizes(unsigned long node,
 244                                         const char *uname, int depth,
 245                                         void *data)
 246{
 247        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 248        u32 *prop;
 249        unsigned long size = 0;
 250
 251        /* We are scanning "cpu" nodes only */
 252        if (type == NULL || strcmp(type, "cpu") != 0)
 253                return 0;
 254
 255        prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
 256                                          &size);
 257        if (prop == NULL)
 258                return 0;
 259        for (; size >= 4; size -= 4, ++prop) {
 260                if (prop[0] == 40) {
 261                        DBG("1T segment support detected\n");
 262                        cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 263                        return 1;
 264                }
 265        }
 266        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 267        return 0;
 268}
 269
 270static void __init htab_init_seg_sizes(void)
 271{
 272        of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 273}
 274
 275static int __init htab_dt_scan_page_sizes(unsigned long node,
 276                                          const char *uname, int depth,
 277                                          void *data)
 278{
 279        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 280        u32 *prop;
 281        unsigned long size = 0;
 282
 283        /* We are scanning "cpu" nodes only */
 284        if (type == NULL || strcmp(type, "cpu") != 0)
 285                return 0;
 286
 287        prop = (u32 *)of_get_flat_dt_prop(node,
 288                                          "ibm,segment-page-sizes", &size);
 289        if (prop != NULL) {
 290                DBG("Page sizes from device-tree:\n");
 291                size /= 4;
 292                cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 293                while(size > 0) {
 294                        unsigned int shift = prop[0];
 295                        unsigned int slbenc = prop[1];
 296                        unsigned int lpnum = prop[2];
 297                        unsigned int lpenc = 0;
 298                        struct mmu_psize_def *def;
 299                        int idx = -1;
 300
 301                        size -= 3; prop += 3;
 302                        while(size > 0 && lpnum) {
 303                                if (prop[0] == shift)
 304                                        lpenc = prop[1];
 305                                prop += 2; size -= 2;
 306                                lpnum--;
 307                        }
 308                        switch(shift) {
 309                        case 0xc:
 310                                idx = MMU_PAGE_4K;
 311                                break;
 312                        case 0x10:
 313                                idx = MMU_PAGE_64K;
 314                                break;
 315                        case 0x14:
 316                                idx = MMU_PAGE_1M;
 317                                break;
 318                        case 0x18:
 319                                idx = MMU_PAGE_16M;
 320                                cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 321                                break;
 322                        case 0x22:
 323                                idx = MMU_PAGE_16G;
 324                                break;
 325                        }
 326                        if (idx < 0)
 327                                continue;
 328                        def = &mmu_psize_defs[idx];
 329                        def->shift = shift;
 330                        if (shift <= 23)
 331                                def->avpnm = 0;
 332                        else
 333                                def->avpnm = (1 << (shift - 23)) - 1;
 334                        def->sllp = slbenc;
 335                        def->penc = lpenc;
 336                        /* We don't know for sure what's up with tlbiel, so
 337                         * for now we only set it for 4K and 64K pages
 338                         */
 339                        if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
 340                                def->tlbiel = 1;
 341                        else
 342                                def->tlbiel = 0;
 343
 344                        DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
 345                            "tlbiel=%d, penc=%d\n",
 346                            idx, shift, def->sllp, def->avpnm, def->tlbiel,
 347                            def->penc);
 348                }
 349                return 1;
 350        }
 351        return 0;
 352}
 353
 354#ifdef CONFIG_HUGETLB_PAGE
 355/* Scan for 16G memory blocks that have been set aside for huge pages
 356 * and reserve those blocks for 16G huge pages.
 357 */
 358static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 359                                        const char *uname, int depth,
 360                                        void *data) {
 361        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 362        unsigned long *addr_prop;
 363        u32 *page_count_prop;
 364        unsigned int expected_pages;
 365        long unsigned int phys_addr;
 366        long unsigned int block_size;
 367
 368        /* We are scanning "memory" nodes only */
 369        if (type == NULL || strcmp(type, "memory") != 0)
 370                return 0;
 371
 372        /* This property is the log base 2 of the number of virtual pages that
 373         * will represent this memory block. */
 374        page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 375        if (page_count_prop == NULL)
 376                return 0;
 377        expected_pages = (1 << page_count_prop[0]);
 378        addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 379        if (addr_prop == NULL)
 380                return 0;
 381        phys_addr = addr_prop[0];
 382        block_size = addr_prop[1];
 383        if (block_size != (16 * GB))
 384                return 0;
 385        printk(KERN_INFO "Huge page(16GB) memory: "
 386                        "addr = 0x%lX size = 0x%lX pages = %d\n",
 387                        phys_addr, block_size, expected_pages);
 388        if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
 389                memblock_reserve(phys_addr, block_size * expected_pages);
 390                add_gpage(phys_addr, block_size, expected_pages);
 391        }
 392        return 0;
 393}
 394#endif /* CONFIG_HUGETLB_PAGE */
 395
 396static void __init htab_init_page_sizes(void)
 397{
 398        int rc;
 399
 400        /* Default to 4K pages only */
 401        memcpy(mmu_psize_defs, mmu_psize_defaults_old,
 402               sizeof(mmu_psize_defaults_old));
 403
 404        /*
 405         * Try to find the available page sizes in the device-tree
 406         */
 407        rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 408        if (rc != 0)  /* Found */
 409                goto found;
 410
 411        /*
 412         * Not in the device-tree, let's fallback on known size
 413         * list for 16M capable GP & GR
 414         */
 415        if (mmu_has_feature(MMU_FTR_16M_PAGE))
 416                memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 417                       sizeof(mmu_psize_defaults_gp));
 418 found:
 419#ifndef CONFIG_DEBUG_PAGEALLOC
 420        /*
 421         * Pick a size for the linear mapping. Currently, we only support
 422         * 16M, 1M and 4K which is the default
 423         */
 424        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 425                mmu_linear_psize = MMU_PAGE_16M;
 426        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 427                mmu_linear_psize = MMU_PAGE_1M;
 428#endif /* CONFIG_DEBUG_PAGEALLOC */
 429
 430#ifdef CONFIG_PPC_64K_PAGES
 431        /*
 432         * Pick a size for the ordinary pages. Default is 4K, we support
 433         * 64K for user mappings and vmalloc if supported by the processor.
 434         * We only use 64k for ioremap if the processor
 435         * (and firmware) support cache-inhibited large pages.
 436         * If not, we use 4k and set mmu_ci_restrictions so that
 437         * hash_page knows to switch processes that use cache-inhibited
 438         * mappings to 4k pages.
 439         */
 440        if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 441                mmu_virtual_psize = MMU_PAGE_64K;
 442                mmu_vmalloc_psize = MMU_PAGE_64K;
 443                if (mmu_linear_psize == MMU_PAGE_4K)
 444                        mmu_linear_psize = MMU_PAGE_64K;
 445                if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 446                        /*
 447                         * Don't use 64k pages for ioremap on pSeries, since
 448                         * that would stop us accessing the HEA ethernet.
 449                         */
 450                        if (!machine_is(pseries))
 451                                mmu_io_psize = MMU_PAGE_64K;
 452                } else
 453                        mmu_ci_restrictions = 1;
 454        }
 455#endif /* CONFIG_PPC_64K_PAGES */
 456
 457#ifdef CONFIG_SPARSEMEM_VMEMMAP
 458        /* We try to use 16M pages for vmemmap if that is supported
 459         * and we have at least 1G of RAM at boot
 460         */
 461        if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 462            memblock_phys_mem_size() >= 0x40000000)
 463                mmu_vmemmap_psize = MMU_PAGE_16M;
 464        else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 465                mmu_vmemmap_psize = MMU_PAGE_64K;
 466        else
 467                mmu_vmemmap_psize = MMU_PAGE_4K;
 468#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 469
 470        printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 471               "virtual = %d, io = %d"
 472#ifdef CONFIG_SPARSEMEM_VMEMMAP
 473               ", vmemmap = %d"
 474#endif
 475               "\n",
 476               mmu_psize_defs[mmu_linear_psize].shift,
 477               mmu_psize_defs[mmu_virtual_psize].shift,
 478               mmu_psize_defs[mmu_io_psize].shift
 479#ifdef CONFIG_SPARSEMEM_VMEMMAP
 480               ,mmu_psize_defs[mmu_vmemmap_psize].shift
 481#endif
 482               );
 483
 484#ifdef CONFIG_HUGETLB_PAGE
 485        /* Reserve 16G huge page memory sections for huge pages */
 486        of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 487#endif /* CONFIG_HUGETLB_PAGE */
 488}
 489
 490static int __init htab_dt_scan_pftsize(unsigned long node,
 491                                       const char *uname, int depth,
 492                                       void *data)
 493{
 494        char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 495        u32 *prop;
 496
 497        /* We are scanning "cpu" nodes only */
 498        if (type == NULL || strcmp(type, "cpu") != 0)
 499                return 0;
 500
 501        prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 502        if (prop != NULL) {
 503                /* pft_size[0] is the NUMA CEC cookie */
 504                ppc64_pft_size = prop[1];
 505                return 1;
 506        }
 507        return 0;
 508}
 509
 510static unsigned long __init htab_get_table_size(void)
 511{
 512        unsigned long mem_size, rnd_mem_size, pteg_count, psize;
 513
 514        /* If hash size isn't already provided by the platform, we try to
 515         * retrieve it from the device-tree. If it's not there neither, we
 516         * calculate it now based on the total RAM size
 517         */
 518        if (ppc64_pft_size == 0)
 519                of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 520        if (ppc64_pft_size)
 521                return 1UL << ppc64_pft_size;
 522
 523        /* round mem_size up to next power of 2 */
 524        mem_size = memblock_phys_mem_size();
 525        rnd_mem_size = 1UL << __ilog2(mem_size);
 526        if (rnd_mem_size < mem_size)
 527                rnd_mem_size <<= 1;
 528
 529        /* # pages / 2 */
 530        psize = mmu_psize_defs[mmu_virtual_psize].shift;
 531        pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
 532
 533        return pteg_count << 7;
 534}
 535
 536#ifdef CONFIG_MEMORY_HOTPLUG
 537void create_section_mapping(unsigned long start, unsigned long end)
 538{
 539        BUG_ON(htab_bolt_mapping(start, end, __pa(start),
 540                                 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 541                                 mmu_kernel_ssize));
 542}
 543
 544int remove_section_mapping(unsigned long start, unsigned long end)
 545{
 546        return htab_remove_mapping(start, end, mmu_linear_psize,
 547                        mmu_kernel_ssize);
 548}
 549#endif /* CONFIG_MEMORY_HOTPLUG */
 550
 551#define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
 552
 553static void __init htab_finish_init(void)
 554{
 555        extern unsigned int *htab_call_hpte_insert1;
 556        extern unsigned int *htab_call_hpte_insert2;
 557        extern unsigned int *htab_call_hpte_remove;
 558        extern unsigned int *htab_call_hpte_updatepp;
 559
 560#ifdef CONFIG_PPC_HAS_HASH_64K
 561        extern unsigned int *ht64_call_hpte_insert1;
 562        extern unsigned int *ht64_call_hpte_insert2;
 563        extern unsigned int *ht64_call_hpte_remove;
 564        extern unsigned int *ht64_call_hpte_updatepp;
 565
 566        patch_branch(ht64_call_hpte_insert1,
 567                FUNCTION_TEXT(ppc_md.hpte_insert),
 568                BRANCH_SET_LINK);
 569        patch_branch(ht64_call_hpte_insert2,
 570                FUNCTION_TEXT(ppc_md.hpte_insert),
 571                BRANCH_SET_LINK);
 572        patch_branch(ht64_call_hpte_remove,
 573                FUNCTION_TEXT(ppc_md.hpte_remove),
 574                BRANCH_SET_LINK);
 575        patch_branch(ht64_call_hpte_updatepp,
 576                FUNCTION_TEXT(ppc_md.hpte_updatepp),
 577                BRANCH_SET_LINK);
 578
 579#endif /* CONFIG_PPC_HAS_HASH_64K */
 580
 581        patch_branch(htab_call_hpte_insert1,
 582                FUNCTION_TEXT(ppc_md.hpte_insert),
 583                BRANCH_SET_LINK);
 584        patch_branch(htab_call_hpte_insert2,
 585                FUNCTION_TEXT(ppc_md.hpte_insert),
 586                BRANCH_SET_LINK);
 587        patch_branch(htab_call_hpte_remove,
 588                FUNCTION_TEXT(ppc_md.hpte_remove),
 589                BRANCH_SET_LINK);
 590        patch_branch(htab_call_hpte_updatepp,
 591                FUNCTION_TEXT(ppc_md.hpte_updatepp),
 592                BRANCH_SET_LINK);
 593}
 594
 595static void __init htab_initialize(void)
 596{
 597        unsigned long table;
 598        unsigned long pteg_count;
 599        unsigned long prot;
 600        unsigned long base = 0, size = 0, limit;
 601        struct memblock_region *reg;
 602
 603        DBG(" -> htab_initialize()\n");
 604
 605        /* Initialize segment sizes */
 606        htab_init_seg_sizes();
 607
 608        /* Initialize page sizes */
 609        htab_init_page_sizes();
 610
 611        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 612                mmu_kernel_ssize = MMU_SEGSIZE_1T;
 613                mmu_highuser_ssize = MMU_SEGSIZE_1T;
 614                printk(KERN_INFO "Using 1TB segments\n");
 615        }
 616
 617        /*
 618         * Calculate the required size of the htab.  We want the number of
 619         * PTEGs to equal one half the number of real pages.
 620         */ 
 621        htab_size_bytes = htab_get_table_size();
 622        pteg_count = htab_size_bytes >> 7;
 623
 624        htab_hash_mask = pteg_count - 1;
 625
 626        if (firmware_has_feature(FW_FEATURE_LPAR)) {
 627                /* Using a hypervisor which owns the htab */
 628                htab_address = NULL;
 629                _SDR1 = 0; 
 630        } else {
 631                /* Find storage for the HPT.  Must be contiguous in
 632                 * the absolute address space. On cell we want it to be
 633                 * in the first 2 Gig so we can use it for IOMMU hacks.
 634                 */
 635                if (machine_is(cell))
 636                        limit = 0x80000000;
 637                else
 638                        limit = MEMBLOCK_ALLOC_ANYWHERE;
 639
 640                table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
 641
 642                DBG("Hash table allocated at %lx, size: %lx\n", table,
 643                    htab_size_bytes);
 644
 645                htab_address = abs_to_virt(table);
 646
 647                /* htab absolute addr + encoded htabsize */
 648                _SDR1 = table + __ilog2(pteg_count) - 11;
 649
 650                /* Initialize the HPT with no entries */
 651                memset((void *)table, 0, htab_size_bytes);
 652
 653                /* Set SDR1 */
 654                mtspr(SPRN_SDR1, _SDR1);
 655        }
 656
 657        prot = pgprot_val(PAGE_KERNEL);
 658
 659#ifdef CONFIG_DEBUG_PAGEALLOC
 660        linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 661        linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
 662                                                    1, ppc64_rma_size));
 663        memset(linear_map_hash_slots, 0, linear_map_hash_count);
 664#endif /* CONFIG_DEBUG_PAGEALLOC */
 665
 666        /* On U3 based machines, we need to reserve the DART area and
 667         * _NOT_ map it to avoid cache paradoxes as it's remapped non
 668         * cacheable later on
 669         */
 670
 671        /* create bolted the linear mapping in the hash table */
 672        for_each_memblock(memory, reg) {
 673                base = (unsigned long)__va(reg->base);
 674                size = reg->size;
 675
 676                DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 677                    base, size, prot);
 678
 679#ifdef CONFIG_U3_DART
 680                /* Do not map the DART space. Fortunately, it will be aligned
 681                 * in such a way that it will not cross two memblock regions and
 682                 * will fit within a single 16Mb page.
 683                 * The DART space is assumed to be a full 16Mb region even if
 684                 * we only use 2Mb of that space. We will use more of it later
 685                 * for AGP GART. We have to use a full 16Mb large page.
 686                 */
 687                DBG("DART base: %lx\n", dart_tablebase);
 688
 689                if (dart_tablebase != 0 && dart_tablebase >= base
 690                    && dart_tablebase < (base + size)) {
 691                        unsigned long dart_table_end = dart_tablebase + 16 * MB;
 692                        if (base != dart_tablebase)
 693                                BUG_ON(htab_bolt_mapping(base, dart_tablebase,
 694                                                        __pa(base), prot,
 695                                                        mmu_linear_psize,
 696                                                        mmu_kernel_ssize));
 697                        if ((base + size) > dart_table_end)
 698                                BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
 699                                                        base + size,
 700                                                        __pa(dart_table_end),
 701                                                         prot,
 702                                                         mmu_linear_psize,
 703                                                         mmu_kernel_ssize));
 704                        continue;
 705                }
 706#endif /* CONFIG_U3_DART */
 707                BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 708                                prot, mmu_linear_psize, mmu_kernel_ssize));
 709        }
 710        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 711
 712        /*
 713         * If we have a memory_limit and we've allocated TCEs then we need to
 714         * explicitly map the TCE area at the top of RAM. We also cope with the
 715         * case that the TCEs start below memory_limit.
 716         * tce_alloc_start/end are 16MB aligned so the mapping should work
 717         * for either 4K or 16MB pages.
 718         */
 719        if (tce_alloc_start) {
 720                tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 721                tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 722
 723                if (base + size >= tce_alloc_start)
 724                        tce_alloc_start = base + size + 1;
 725
 726                BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 727                                         __pa(tce_alloc_start), prot,
 728                                         mmu_linear_psize, mmu_kernel_ssize));
 729        }
 730
 731        htab_finish_init();
 732
 733        DBG(" <- htab_initialize()\n");
 734}
 735#undef KB
 736#undef MB
 737
 738void __init early_init_mmu(void)
 739{
 740        /* Setup initial STAB address in the PACA */
 741        get_paca()->stab_real = __pa((u64)&initial_stab);
 742        get_paca()->stab_addr = (u64)&initial_stab;
 743
 744        /* Initialize the MMU Hash table and create the linear mapping
 745         * of memory. Has to be done before stab/slb initialization as
 746         * this is currently where the page size encoding is obtained
 747         */
 748        htab_initialize();
 749
 750        /* Initialize stab / SLB management except on iSeries
 751         */
 752        if (mmu_has_feature(MMU_FTR_SLB))
 753                slb_initialize();
 754        else if (!firmware_has_feature(FW_FEATURE_ISERIES))
 755                stab_initialize(get_paca()->stab_real);
 756}
 757
 758#ifdef CONFIG_SMP
 759void __cpuinit early_init_mmu_secondary(void)
 760{
 761        /* Initialize hash table for that CPU */
 762        if (!firmware_has_feature(FW_FEATURE_LPAR))
 763                mtspr(SPRN_SDR1, _SDR1);
 764
 765        /* Initialize STAB/SLB. We use a virtual address as it works
 766         * in real mode on pSeries and we want a virtual address on
 767         * iSeries anyway
 768         */
 769        if (mmu_has_feature(MMU_FTR_SLB))
 770                slb_initialize();
 771        else
 772                stab_initialize(get_paca()->stab_addr);
 773}
 774#endif /* CONFIG_SMP */
 775
 776/*
 777 * Called by asm hashtable.S for doing lazy icache flush
 778 */
 779unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
 780{
 781        struct page *page;
 782
 783        if (!pfn_valid(pte_pfn(pte)))
 784                return pp;
 785
 786        page = pte_page(pte);
 787
 788        /* page is dirty */
 789        if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
 790                if (trap == 0x400) {
 791                        flush_dcache_icache_page(page);
 792                        set_bit(PG_arch_1, &page->flags);
 793                } else
 794                        pp |= HPTE_R_N;
 795        }
 796        return pp;
 797}
 798
 799#ifdef CONFIG_PPC_MM_SLICES
 800unsigned int get_paca_psize(unsigned long addr)
 801{
 802        unsigned long index, slices;
 803
 804        if (addr < SLICE_LOW_TOP) {
 805                slices = get_paca()->context.low_slices_psize;
 806                index = GET_LOW_SLICE_INDEX(addr);
 807        } else {
 808                slices = get_paca()->context.high_slices_psize;
 809                index = GET_HIGH_SLICE_INDEX(addr);
 810        }
 811        return (slices >> (index * 4)) & 0xF;
 812}
 813
 814#else
 815unsigned int get_paca_psize(unsigned long addr)
 816{
 817        return get_paca()->context.user_psize;
 818}
 819#endif
 820
 821/*
 822 * Demote a segment to using 4k pages.
 823 * For now this makes the whole process use 4k pages.
 824 */
 825#ifdef CONFIG_PPC_64K_PAGES
 826void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
 827{
 828        if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
 829                return;
 830        slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
 831#ifdef CONFIG_SPU_BASE
 832        spu_flush_all_slbs(mm);
 833#endif
 834        if (get_paca_psize(addr) != MMU_PAGE_4K) {
 835                get_paca()->context = mm->context;
 836                slb_flush_and_rebolt();
 837        }
 838}
 839#endif /* CONFIG_PPC_64K_PAGES */
 840
 841#ifdef CONFIG_PPC_SUBPAGE_PROT
 842/*
 843 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
 844 * Userspace sets the subpage permissions using the subpage_prot system call.
 845 *
 846 * Result is 0: full permissions, _PAGE_RW: read-only,
 847 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
 848 */
 849static int subpage_protection(struct mm_struct *mm, unsigned long ea)
 850{
 851        struct subpage_prot_table *spt = &mm->context.spt;
 852        u32 spp = 0;
 853        u32 **sbpm, *sbpp;
 854
 855        if (ea >= spt->maxaddr)
 856                return 0;
 857        if (ea < 0x100000000) {
 858                /* addresses below 4GB use spt->low_prot */
 859                sbpm = spt->low_prot;
 860        } else {
 861                sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
 862                if (!sbpm)
 863                        return 0;
 864        }
 865        sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
 866        if (!sbpp)
 867                return 0;
 868        spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
 869
 870        /* extract 2-bit bitfield for this 4k subpage */
 871        spp >>= 30 - 2 * ((ea >> 12) & 0xf);
 872
 873        /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
 874        spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
 875        return spp;
 876}
 877
 878#else /* CONFIG_PPC_SUBPAGE_PROT */
 879static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
 880{
 881        return 0;
 882}
 883#endif
 884
 885void hash_failure_debug(unsigned long ea, unsigned long access,
 886                        unsigned long vsid, unsigned long trap,
 887                        int ssize, int psize, unsigned long pte)
 888{
 889        if (!printk_ratelimit())
 890                return;
 891        pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
 892                ea, access, current->comm);
 893        pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
 894                trap, vsid, ssize, psize, pte);
 895}
 896
 897/* Result code is:
 898 *  0 - handled
 899 *  1 - normal page fault
 900 * -1 - critical hash insertion error
 901 * -2 - access not permitted by subpage protection mechanism
 902 */
 903int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
 904{
 905        pgd_t *pgdir;
 906        unsigned long vsid;
 907        struct mm_struct *mm;
 908        pte_t *ptep;
 909        unsigned hugeshift;
 910        const struct cpumask *tmp;
 911        int rc, user_region = 0, local = 0;
 912        int psize, ssize;
 913
 914        DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
 915                ea, access, trap);
 916
 917        if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
 918                DBG_LOW(" out of pgtable range !\n");
 919                return 1;
 920        }
 921
 922        /* Get region & vsid */
 923        switch (REGION_ID(ea)) {
 924        case USER_REGION_ID:
 925                user_region = 1;
 926                mm = current->mm;
 927                if (! mm) {
 928                        DBG_LOW(" user region with no mm !\n");
 929                        return 1;
 930                }
 931                psize = get_slice_psize(mm, ea);
 932                ssize = user_segment_size(ea);
 933                vsid = get_vsid(mm->context.id, ea, ssize);
 934                break;
 935        case VMALLOC_REGION_ID:
 936                mm = &init_mm;
 937                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
 938                if (ea < VMALLOC_END)
 939                        psize = mmu_vmalloc_psize;
 940                else
 941                        psize = mmu_io_psize;
 942                ssize = mmu_kernel_ssize;
 943                break;
 944        default:
 945                /* Not a valid range
 946                 * Send the problem up to do_page_fault 
 947                 */
 948                return 1;
 949        }
 950        DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
 951
 952        /* Get pgdir */
 953        pgdir = mm->pgd;
 954        if (pgdir == NULL)
 955                return 1;
 956
 957        /* Check CPU locality */
 958        tmp = cpumask_of(smp_processor_id());
 959        if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
 960                local = 1;
 961
 962#ifndef CONFIG_PPC_64K_PAGES
 963        /* If we use 4K pages and our psize is not 4K, then we might
 964         * be hitting a special driver mapping, and need to align the
 965         * address before we fetch the PTE.
 966         *
 967         * It could also be a hugepage mapping, in which case this is
 968         * not necessary, but it's not harmful, either.
 969         */
 970        if (psize != MMU_PAGE_4K)
 971                ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
 972#endif /* CONFIG_PPC_64K_PAGES */
 973
 974        /* Get PTE and page size from page tables */
 975        ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
 976        if (ptep == NULL || !pte_present(*ptep)) {
 977                DBG_LOW(" no PTE !\n");
 978                return 1;
 979        }
 980
 981        /* Add _PAGE_PRESENT to the required access perm */
 982        access |= _PAGE_PRESENT;
 983
 984        /* Pre-check access permissions (will be re-checked atomically
 985         * in __hash_page_XX but this pre-check is a fast path
 986         */
 987        if (access & ~pte_val(*ptep)) {
 988                DBG_LOW(" no access !\n");
 989                return 1;
 990        }
 991
 992#ifdef CONFIG_HUGETLB_PAGE
 993        if (hugeshift)
 994                return __hash_page_huge(ea, access, vsid, ptep, trap, local,
 995                                        ssize, hugeshift, psize);
 996#endif /* CONFIG_HUGETLB_PAGE */
 997
 998#ifndef CONFIG_PPC_64K_PAGES
 999        DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1000#else
1001        DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1002                pte_val(*(ptep + PTRS_PER_PTE)));
1003#endif
1004        /* Do actual hashing */
1005#ifdef CONFIG_PPC_64K_PAGES
1006        /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1007        if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1008                demote_segment_4k(mm, ea);
1009                psize = MMU_PAGE_4K;
1010        }
1011
1012        /* If this PTE is non-cacheable and we have restrictions on
1013         * using non cacheable large pages, then we switch to 4k
1014         */
1015        if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1016            (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1017                if (user_region) {
1018                        demote_segment_4k(mm, ea);
1019                        psize = MMU_PAGE_4K;
1020                } else if (ea < VMALLOC_END) {
1021                        /*
1022                         * some driver did a non-cacheable mapping
1023                         * in vmalloc space, so switch vmalloc
1024                         * to 4k pages
1025                         */
1026                        printk(KERN_ALERT "Reducing vmalloc segment "
1027                               "to 4kB pages because of "
1028                               "non-cacheable mapping\n");
1029                        psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1030#ifdef CONFIG_SPU_BASE
1031                        spu_flush_all_slbs(mm);
1032#endif
1033                }
1034        }
1035        if (user_region) {
1036                if (psize != get_paca_psize(ea)) {
1037                        get_paca()->context = mm->context;
1038                        slb_flush_and_rebolt();
1039                }
1040        } else if (get_paca()->vmalloc_sllp !=
1041                   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1042                get_paca()->vmalloc_sllp =
1043                        mmu_psize_defs[mmu_vmalloc_psize].sllp;
1044                slb_vmalloc_update();
1045        }
1046#endif /* CONFIG_PPC_64K_PAGES */
1047
1048#ifdef CONFIG_PPC_HAS_HASH_64K
1049        if (psize == MMU_PAGE_64K)
1050                rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1051        else
1052#endif /* CONFIG_PPC_HAS_HASH_64K */
1053        {
1054                int spp = subpage_protection(mm, ea);
1055                if (access & spp)
1056                        rc = -2;
1057                else
1058                        rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1059                                            local, ssize, spp);
1060        }
1061
1062        /* Dump some info in case of hash insertion failure, they should
1063         * never happen so it is really useful to know if/when they do
1064         */
1065        if (rc == -1)
1066                hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1067                                   pte_val(*ptep));
1068#ifndef CONFIG_PPC_64K_PAGES
1069        DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1070#else
1071        DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1072                pte_val(*(ptep + PTRS_PER_PTE)));
1073#endif
1074        DBG_LOW(" -> rc=%d\n", rc);
1075        return rc;
1076}
1077EXPORT_SYMBOL_GPL(hash_page);
1078
1079void hash_preload(struct mm_struct *mm, unsigned long ea,
1080                  unsigned long access, unsigned long trap)
1081{
1082        unsigned long vsid;
1083        pgd_t *pgdir;
1084        pte_t *ptep;
1085        unsigned long flags;
1086        int rc, ssize, local = 0;
1087
1088        BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1089
1090#ifdef CONFIG_PPC_MM_SLICES
1091        /* We only prefault standard pages for now */
1092        if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1093                return;
1094#endif
1095
1096        DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1097                " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1098
1099        /* Get Linux PTE if available */
1100        pgdir = mm->pgd;
1101        if (pgdir == NULL)
1102                return;
1103        ptep = find_linux_pte(pgdir, ea);
1104        if (!ptep)
1105                return;
1106
1107#ifdef CONFIG_PPC_64K_PAGES
1108        /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1109         * a 64K kernel), then we don't preload, hash_page() will take
1110         * care of it once we actually try to access the page.
1111         * That way we don't have to duplicate all of the logic for segment
1112         * page size demotion here
1113         */
1114        if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1115                return;
1116#endif /* CONFIG_PPC_64K_PAGES */
1117
1118        /* Get VSID */
1119        ssize = user_segment_size(ea);
1120        vsid = get_vsid(mm->context.id, ea, ssize);
1121
1122        /* Hash doesn't like irqs */
1123        local_irq_save(flags);
1124
1125        /* Is that local to this CPU ? */
1126        if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1127                local = 1;
1128
1129        /* Hash it in */
1130#ifdef CONFIG_PPC_HAS_HASH_64K
1131        if (mm->context.user_psize == MMU_PAGE_64K)
1132                rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1133        else
1134#endif /* CONFIG_PPC_HAS_HASH_64K */
1135                rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1136                                    subpage_protection(mm, ea));
1137
1138        /* Dump some info in case of hash insertion failure, they should
1139         * never happen so it is really useful to know if/when they do
1140         */
1141        if (rc == -1)
1142                hash_failure_debug(ea, access, vsid, trap, ssize,
1143                                   mm->context.user_psize, pte_val(*ptep));
1144
1145        local_irq_restore(flags);
1146}
1147
1148/* WARNING: This is called from hash_low_64.S, if you change this prototype,
1149 *          do not forget to update the assembly call site !
1150 */
1151void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1152                     int local)
1153{
1154        unsigned long hash, index, shift, hidx, slot;
1155
1156        DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1157        pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1158                hash = hpt_hash(va, shift, ssize);
1159                hidx = __rpte_to_hidx(pte, index);
1160                if (hidx & _PTEIDX_SECONDARY)
1161                        hash = ~hash;
1162                slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1163                slot += hidx & _PTEIDX_GROUP_IX;
1164                DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1165                ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1166        } pte_iterate_hashed_end();
1167}
1168
1169void flush_hash_range(unsigned long number, int local)
1170{
1171        if (ppc_md.flush_hash_range)
1172                ppc_md.flush_hash_range(number, local);
1173        else {
1174                int i;
1175                struct ppc64_tlb_batch *batch =
1176                        &__get_cpu_var(ppc64_tlb_batch);
1177
1178                for (i = 0; i < number; i++)
1179                        flush_hash_page(batch->vaddr[i], batch->pte[i],
1180                                        batch->psize, batch->ssize, local);
1181        }
1182}
1183
1184/*
1185 * low_hash_fault is called when we the low level hash code failed
1186 * to instert a PTE due to an hypervisor error
1187 */
1188void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1189{
1190        if (user_mode(regs)) {
1191#ifdef CONFIG_PPC_SUBPAGE_PROT
1192                if (rc == -2)
1193                        _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1194                else
1195#endif
1196                        _exception(SIGBUS, regs, BUS_ADRERR, address);
1197        } else
1198                bad_page_fault(regs, address, SIGBUS);
1199}
1200
1201#ifdef CONFIG_DEBUG_PAGEALLOC
1202static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1203{
1204        unsigned long hash, hpteg;
1205        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1206        unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1207        unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1208        int ret;
1209
1210        hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1211        hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1212
1213        ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1214                                 mode, HPTE_V_BOLTED,
1215                                 mmu_linear_psize, mmu_kernel_ssize);
1216        BUG_ON (ret < 0);
1217        spin_lock(&linear_map_hash_lock);
1218        BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1219        linear_map_hash_slots[lmi] = ret | 0x80;
1220        spin_unlock(&linear_map_hash_lock);
1221}
1222
1223static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1224{
1225        unsigned long hash, hidx, slot;
1226        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1227        unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1228
1229        hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1230        spin_lock(&linear_map_hash_lock);
1231        BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1232        hidx = linear_map_hash_slots[lmi] & 0x7f;
1233        linear_map_hash_slots[lmi] = 0;
1234        spin_unlock(&linear_map_hash_lock);
1235        if (hidx & _PTEIDX_SECONDARY)
1236                hash = ~hash;
1237        slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1238        slot += hidx & _PTEIDX_GROUP_IX;
1239        ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1240}
1241
1242void kernel_map_pages(struct page *page, int numpages, int enable)
1243{
1244        unsigned long flags, vaddr, lmi;
1245        int i;
1246
1247        local_irq_save(flags);
1248        for (i = 0; i < numpages; i++, page++) {
1249                vaddr = (unsigned long)page_address(page);
1250                lmi = __pa(vaddr) >> PAGE_SHIFT;
1251                if (lmi >= linear_map_hash_count)
1252                        continue;
1253                if (enable)
1254                        kernel_map_linear_page(vaddr, lmi);
1255                else
1256                        kernel_unmap_linear_page(vaddr, lmi);
1257        }
1258        local_irq_restore(flags);
1259}
1260#endif /* CONFIG_DEBUG_PAGEALLOC */
1261
1262void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1263                                phys_addr_t first_memblock_size)
1264{
1265        /* We don't currently support the first MEMBLOCK not mapping 0
1266         * physical on those processors
1267         */
1268        BUG_ON(first_memblock_base != 0);
1269
1270        /* On LPAR systems, the first entry is our RMA region,
1271         * non-LPAR 64-bit hash MMU systems don't have a limitation
1272         * on real mode access, but using the first entry works well
1273         * enough. We also clamp it to 1G to avoid some funky things
1274         * such as RTAS bugs etc...
1275         */
1276        ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1277
1278        /* Finally limit subsequent allocations */
1279        memblock_set_current_limit(ppc64_rma_size);
1280}
1281