linux/drivers/atm/fore200e.c
<<
>>
Prefs
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99                             printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100                                    __func__, __LINE__, #expr); \
 101                             panic(FORE200E "%s", __func__); \
 102                         }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183        alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191        return -ENOMEM;
 192
 193    if (alignment > 0)
 194        offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 210
 211    kfree(chunk->alloc_addr);
 212}
 213
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231        if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232            break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238        printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239               *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254        if ((ok = (fore200e->bus->read(addr) == val)))
 255            break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261        printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262               fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279            if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281                for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283                    struct chunk* data = &buffer[ nbr ].data;
 284
 285                    if (data->alloc_addr != NULL)
 286                        fore200e_chunk_free(fore200e, data);
 287                }
 288            }
 289        }
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302            struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303            struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304            
 305            if (status->alloc_addr)
 306                fore200e->bus->dma_chunk_free(fore200e, status);
 307            
 308            if (rbd_block->alloc_addr)
 309                fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310        }
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327        ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328        if (ok == 0) {
 329            
 330            printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331            return -ENODEV;
 332        }
 333
 334        printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335        
 336        fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347           fore200e->name, fore200e->phys_base, 
 348           fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351        /* first, reset the board to prevent further interrupts or data transfers */
 352        fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359        kfree(fore200e->stats);
 360
 361    case FORE200E_STATE_IRQ:
 362        free_irq(fore200e->irq, fore200e->atm_dev);
 363
 364    case FORE200E_STATE_ALLOC_BUF:
 365        fore200e_free_rx_buf(fore200e);
 366
 367    case FORE200E_STATE_INIT_BSQ:
 368        fore200e_uninit_bs_queue(fore200e);
 369
 370    case FORE200E_STATE_INIT_RXQ:
 371        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 374    case FORE200E_STATE_INIT_TXQ:
 375        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 378    case FORE200E_STATE_INIT_CMDQ:
 379        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 381    case FORE200E_STATE_INITIALIZE:
 382        /* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385        /* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388        /* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391        fore200e->bus->unmap(fore200e);
 392
 393    case FORE200E_STATE_CONFIGURE:
 394        /* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397        /* XXX shouldn't we *start* by deregistering the device? */
 398        atm_dev_deregister(fore200e->atm_dev);
 399
 400    case FORE200E_STATE_BLANK:
 401        /* nothing to do for that state */
 402        break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431            virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441            dma_addr, size, direction);
 442
 443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469                             int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
 474                                             chunk->alloc_size,
 475                                             &chunk->dma_addr);
 476    
 477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 478        return -ENOMEM;
 479
 480    chunk->align_addr = chunk->alloc_addr;
 481    
 482    return 0;
 483}
 484
 485
 486/* free a DMA consistent chunk of memory */
 487
 488static void
 489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 490{
 491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
 492                        chunk->alloc_size,
 493                        chunk->alloc_addr,
 494                        chunk->dma_addr);
 495}
 496
 497
 498static int
 499fore200e_pca_irq_check(struct fore200e* fore200e)
 500{
 501    /* this is a 1 bit register */
 502    int irq_posted = readl(fore200e->regs.pca.psr);
 503
 504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 506        DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 507    }
 508#endif
 509
 510    return irq_posted;
 511}
 512
 513
 514static void
 515fore200e_pca_irq_ack(struct fore200e* fore200e)
 516{
 517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 518}
 519
 520
 521static void
 522fore200e_pca_reset(struct fore200e* fore200e)
 523{
 524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 525    fore200e_spin(10);
 526    writel(0, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static int __devinit
 531fore200e_pca_map(struct fore200e* fore200e)
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538        printk(FORE200E "can't map device %s\n", fore200e->name);
 539        return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560        iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int __devinit
 565fore200e_pca_configure(struct fore200e* fore200e)
 566{
 567    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 568    u8              master_ctrl, latency;
 569
 570    DPRINTK(2, "device %s being configured\n", fore200e->name);
 571
 572    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 573        printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 574        return -EIO;
 575    }
 576
 577    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 578
 579    master_ctrl = master_ctrl
 580#if defined(__BIG_ENDIAN)
 581        /* request the PCA board to convert the endianess of slave RAM accesses */
 582        | PCA200E_CTRL_CONVERT_ENDIAN
 583#endif
 584#if 0
 585        | PCA200E_CTRL_DIS_CACHE_RD
 586        | PCA200E_CTRL_DIS_WRT_INVAL
 587        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 588        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 589#endif
 590        | PCA200E_CTRL_LARGE_PCI_BURSTS;
 591    
 592    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 593
 594    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 595       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 596       this may impact the performances of other PCI devices on the same bus, though */
 597    latency = 192;
 598    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 599
 600    fore200e->state = FORE200E_STATE_CONFIGURE;
 601    return 0;
 602}
 603
 604
 605static int __init
 606fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 607{
 608    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 609    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 610    struct prom_opcode      opcode;
 611    int                     ok;
 612    u32                     prom_dma;
 613
 614    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 615
 616    opcode.opcode = OPCODE_GET_PROM;
 617    opcode.pad    = 0;
 618
 619    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 620
 621    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 622    
 623    *entry->status = STATUS_PENDING;
 624
 625    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 626
 627    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 628
 629    *entry->status = STATUS_FREE;
 630
 631    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 632
 633    if (ok == 0) {
 634        printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 635        return -EIO;
 636    }
 637
 638#if defined(__BIG_ENDIAN)
 639    
 640#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 641
 642    /* MAC address is stored as little-endian */
 643    swap_here(&prom->mac_addr[0]);
 644    swap_here(&prom->mac_addr[4]);
 645#endif
 646    
 647    return 0;
 648}
 649
 650
 651static int
 652fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 653{
 654    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 655
 656    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 657                   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 658}
 659
 660#endif /* CONFIG_PCI */
 661
 662
 663#ifdef CONFIG_SBUS
 664
 665static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 666{
 667    return sbus_readl(addr);
 668}
 669
 670static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 671{
 672    sbus_writel(val, addr);
 673}
 674
 675static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 676{
 677        struct platform_device *op = fore200e->bus_dev;
 678        u32 dma_addr;
 679
 680        dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 681
 682        DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 683                virt_addr, size, direction, dma_addr);
 684    
 685        return dma_addr;
 686}
 687
 688static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 689{
 690        struct platform_device *op = fore200e->bus_dev;
 691
 692        DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 693                dma_addr, size, direction);
 694
 695        dma_unmap_single(&op->dev, dma_addr, size, direction);
 696}
 697
 698static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 699{
 700        struct platform_device *op = fore200e->bus_dev;
 701
 702        DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 703    
 704        dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 705}
 706
 707static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 708{
 709        struct platform_device *op = fore200e->bus_dev;
 710
 711        DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 712
 713        dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 714}
 715
 716/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 718 */
 719static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 720                                        int size, int nbr, int alignment)
 721{
 722        struct platform_device *op = fore200e->bus_dev;
 723
 724        chunk->alloc_size = chunk->align_size = size * nbr;
 725
 726        /* returned chunks are page-aligned */
 727        chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 728                                               &chunk->dma_addr, GFP_ATOMIC);
 729
 730        if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 731                return -ENOMEM;
 732
 733        chunk->align_addr = chunk->alloc_addr;
 734    
 735        return 0;
 736}
 737
 738/* free a DVMA consistent chunk of memory */
 739static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 740{
 741        struct platform_device *op = fore200e->bus_dev;
 742
 743        dma_free_coherent(&op->dev, chunk->alloc_size,
 744                          chunk->alloc_addr, chunk->dma_addr);
 745}
 746
 747static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 748{
 749        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 750        fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 751}
 752
 753static int fore200e_sba_irq_check(struct fore200e *fore200e)
 754{
 755        return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 756}
 757
 758static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 759{
 760        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 761        fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 762}
 763
 764static void fore200e_sba_reset(struct fore200e *fore200e)
 765{
 766        fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 767        fore200e_spin(10);
 768        fore200e->bus->write(0, fore200e->regs.sba.hcr);
 769}
 770
 771static int __init fore200e_sba_map(struct fore200e *fore200e)
 772{
 773        struct platform_device *op = fore200e->bus_dev;
 774        unsigned int bursts;
 775
 776        /* gain access to the SBA specific registers  */
 777        fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 778        fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 779        fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 780        fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 781
 782        if (!fore200e->virt_base) {
 783                printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 784                return -EFAULT;
 785        }
 786
 787        DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 788    
 789        fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 790
 791        /* get the supported DVMA burst sizes */
 792        bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 793
 794        if (sbus_can_dma_64bit())
 795                sbus_set_sbus64(&op->dev, bursts);
 796
 797        fore200e->state = FORE200E_STATE_MAP;
 798        return 0;
 799}
 800
 801static void fore200e_sba_unmap(struct fore200e *fore200e)
 802{
 803        struct platform_device *op = fore200e->bus_dev;
 804
 805        of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 806        of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 807        of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 808        of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 809}
 810
 811static int __init fore200e_sba_configure(struct fore200e *fore200e)
 812{
 813        fore200e->state = FORE200E_STATE_CONFIGURE;
 814        return 0;
 815}
 816
 817static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 818{
 819        struct platform_device *op = fore200e->bus_dev;
 820        const u8 *prop;
 821        int len;
 822
 823        prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 824        if (!prop)
 825                return -ENODEV;
 826        memcpy(&prom->mac_addr[4], prop, 4);
 827
 828        prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 829        if (!prop)
 830                return -ENODEV;
 831        memcpy(&prom->mac_addr[2], prop, 4);
 832
 833        prom->serial_number = of_getintprop_default(op->dev.of_node,
 834                                                    "serialnumber", 0);
 835        prom->hw_revision = of_getintprop_default(op->dev.of_node,
 836                                                  "promversion", 0);
 837    
 838        return 0;
 839}
 840
 841static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 842{
 843        struct platform_device *op = fore200e->bus_dev;
 844        const struct linux_prom_registers *regs;
 845
 846        regs = of_get_property(op->dev.of_node, "reg", NULL);
 847
 848        return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 849                       (regs ? regs->which_io : 0), op->dev.of_node->name);
 850}
 851#endif /* CONFIG_SBUS */
 852
 853
 854static void
 855fore200e_tx_irq(struct fore200e* fore200e)
 856{
 857    struct host_txq*        txq = &fore200e->host_txq;
 858    struct host_txq_entry*  entry;
 859    struct atm_vcc*         vcc;
 860    struct fore200e_vc_map* vc_map;
 861
 862    if (fore200e->host_txq.txing == 0)
 863        return;
 864
 865    for (;;) {
 866        
 867        entry = &txq->host_entry[ txq->tail ];
 868
 869        if ((*entry->status & STATUS_COMPLETE) == 0) {
 870            break;
 871        }
 872
 873        DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 874                entry, txq->tail, entry->vc_map, entry->skb);
 875
 876        /* free copy of misaligned data */
 877        kfree(entry->data);
 878        
 879        /* remove DMA mapping */
 880        fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 881                                 DMA_TO_DEVICE);
 882
 883        vc_map = entry->vc_map;
 884
 885        /* vcc closed since the time the entry was submitted for tx? */
 886        if ((vc_map->vcc == NULL) ||
 887            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 888
 889            DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 890                    fore200e->atm_dev->number);
 891
 892            dev_kfree_skb_any(entry->skb);
 893        }
 894        else {
 895            ASSERT(vc_map->vcc);
 896
 897            /* vcc closed then immediately re-opened? */
 898            if (vc_map->incarn != entry->incarn) {
 899
 900                /* when a vcc is closed, some PDUs may be still pending in the tx queue.
 901                   if the same vcc is immediately re-opened, those pending PDUs must
 902                   not be popped after the completion of their emission, as they refer
 903                   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 904                   would be decremented by the size of the (unrelated) skb, possibly
 905                   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 906                   we thus bind the tx entry to the current incarnation of the vcc
 907                   when the entry is submitted for tx. When the tx later completes,
 908                   if the incarnation number of the tx entry does not match the one
 909                   of the vcc, then this implies that the vcc has been closed then re-opened.
 910                   we thus just drop the skb here. */
 911
 912                DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 913                        fore200e->atm_dev->number);
 914
 915                dev_kfree_skb_any(entry->skb);
 916            }
 917            else {
 918                vcc = vc_map->vcc;
 919                ASSERT(vcc);
 920
 921                /* notify tx completion */
 922                if (vcc->pop) {
 923                    vcc->pop(vcc, entry->skb);
 924                }
 925                else {
 926                    dev_kfree_skb_any(entry->skb);
 927                }
 928#if 1
 929                /* race fixed by the above incarnation mechanism, but... */
 930                if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 931                    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 932                }
 933#endif
 934                /* check error condition */
 935                if (*entry->status & STATUS_ERROR)
 936                    atomic_inc(&vcc->stats->tx_err);
 937                else
 938                    atomic_inc(&vcc->stats->tx);
 939            }
 940        }
 941
 942        *entry->status = STATUS_FREE;
 943
 944        fore200e->host_txq.txing--;
 945
 946        FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 947    }
 948}
 949
 950
 951#ifdef FORE200E_BSQ_DEBUG
 952int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 953{
 954    struct buffer* buffer;
 955    int count = 0;
 956
 957    buffer = bsq->freebuf;
 958    while (buffer) {
 959
 960        if (buffer->supplied) {
 961            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 962                   where, scheme, magn, buffer->index);
 963        }
 964
 965        if (buffer->magn != magn) {
 966            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 967                   where, scheme, magn, buffer->index, buffer->magn);
 968        }
 969
 970        if (buffer->scheme != scheme) {
 971            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 972                   where, scheme, magn, buffer->index, buffer->scheme);
 973        }
 974
 975        if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 976            printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 977                   where, scheme, magn, buffer->index);
 978        }
 979
 980        count++;
 981        buffer = buffer->next;
 982    }
 983
 984    if (count != bsq->freebuf_count) {
 985        printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 986               where, scheme, magn, count, bsq->freebuf_count);
 987    }
 988    return 0;
 989}
 990#endif
 991
 992
 993static void
 994fore200e_supply(struct fore200e* fore200e)
 995{
 996    int  scheme, magn, i;
 997
 998    struct host_bsq*       bsq;
 999    struct host_bsq_entry* entry;
1000    struct buffer*         buffer;
1001
1002    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005            bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007#ifdef FORE200E_BSQ_DEBUG
1008            bsq_audit(1, bsq, scheme, magn);
1009#endif
1010            while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012                DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013                        RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015                entry = &bsq->host_entry[ bsq->head ];
1016
1017                for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019                    /* take the first buffer in the free buffer list */
1020                    buffer = bsq->freebuf;
1021                    if (!buffer) {
1022                        printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023                               scheme, magn, bsq->freebuf_count);
1024                        return;
1025                    }
1026                    bsq->freebuf = buffer->next;
1027                    
1028#ifdef FORE200E_BSQ_DEBUG
1029                    if (buffer->supplied)
1030                        printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031                               scheme, magn, buffer->index);
1032                    buffer->supplied = 1;
1033#endif
1034                    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035                    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1036                }
1037
1038                FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040                /* decrease accordingly the number of free rx buffers */
1041                bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043                *entry->status = STATUS_PENDING;
1044                fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045            }
1046        }
1047    }
1048}
1049
1050
1051static int
1052fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053{
1054    struct sk_buff*      skb;
1055    struct buffer*       buffer;
1056    struct fore200e_vcc* fore200e_vcc;
1057    int                  i, pdu_len = 0;
1058#ifdef FORE200E_52BYTE_AAL0_SDU
1059    u32                  cell_header = 0;
1060#endif
1061
1062    ASSERT(vcc);
1063    
1064    fore200e_vcc = FORE200E_VCC(vcc);
1065    ASSERT(fore200e_vcc);
1066
1067#ifdef FORE200E_52BYTE_AAL0_SDU
1068    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070        cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071                      (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1074                       rpd->atm_header.clp;
1075        pdu_len = 4;
1076    }
1077#endif
1078    
1079    /* compute total PDU length */
1080    for (i = 0; i < rpd->nseg; i++)
1081        pdu_len += rpd->rsd[ i ].length;
1082    
1083    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084    if (skb == NULL) {
1085        DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087        atomic_inc(&vcc->stats->rx_drop);
1088        return -ENOMEM;
1089    } 
1090
1091    __net_timestamp(skb);
1092    
1093#ifdef FORE200E_52BYTE_AAL0_SDU
1094    if (cell_header) {
1095        *((u32*)skb_put(skb, 4)) = cell_header;
1096    }
1097#endif
1098
1099    /* reassemble segments */
1100    for (i = 0; i < rpd->nseg; i++) {
1101        
1102        /* rebuild rx buffer address from rsd handle */
1103        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104        
1105        /* Make device DMA transfer visible to CPU.  */
1106        fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1107        
1108        memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110        /* Now let the device get at it again.  */
1111        fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1112    }
1113
1114    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115    
1116    if (pdu_len < fore200e_vcc->rx_min_pdu)
1117        fore200e_vcc->rx_min_pdu = pdu_len;
1118    if (pdu_len > fore200e_vcc->rx_max_pdu)
1119        fore200e_vcc->rx_max_pdu = pdu_len;
1120    fore200e_vcc->rx_pdu++;
1121
1122    /* push PDU */
1123    if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125        DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126                vcc->itf, vcc->vpi, vcc->vci);
1127
1128        dev_kfree_skb_any(skb);
1129
1130        atomic_inc(&vcc->stats->rx_drop);
1131        return -ENOMEM;
1132    }
1133
1134    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141    return 0;
1142}
1143
1144
1145static void
1146fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147{
1148    struct host_bsq* bsq;
1149    struct buffer*   buffer;
1150    int              i;
1151    
1152    for (i = 0; i < rpd->nseg; i++) {
1153
1154        /* rebuild rx buffer address from rsd handle */
1155        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157        bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159#ifdef FORE200E_BSQ_DEBUG
1160        bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162        if (buffer->supplied == 0)
1163            printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164                   buffer->scheme, buffer->magn, buffer->index);
1165        buffer->supplied = 0;
1166#endif
1167
1168        /* re-insert the buffer into the free buffer list */
1169        buffer->next = bsq->freebuf;
1170        bsq->freebuf = buffer;
1171
1172        /* then increment the number of free rx buffers */
1173        bsq->freebuf_count++;
1174    }
1175}
1176
1177
1178static void
1179fore200e_rx_irq(struct fore200e* fore200e)
1180{
1181    struct host_rxq*        rxq = &fore200e->host_rxq;
1182    struct host_rxq_entry*  entry;
1183    struct atm_vcc*         vcc;
1184    struct fore200e_vc_map* vc_map;
1185
1186    for (;;) {
1187        
1188        entry = &rxq->host_entry[ rxq->head ];
1189
1190        /* no more received PDUs */
1191        if ((*entry->status & STATUS_COMPLETE) == 0)
1192            break;
1193
1194        vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196        if ((vc_map->vcc == NULL) ||
1197            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199            DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200                    fore200e->atm_dev->number,
1201                    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202        }
1203        else {
1204            vcc = vc_map->vcc;
1205            ASSERT(vcc);
1206
1207            if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209                fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210            }
1211            else {
1212                DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213                        fore200e->atm_dev->number,
1214                        entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215                atomic_inc(&vcc->stats->rx_err);
1216            }
1217        }
1218
1219        FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221        fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223        /* rewrite the rpd address to ack the received PDU */
1224        fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225        *entry->status = STATUS_FREE;
1226
1227        fore200e_supply(fore200e);
1228    }
1229}
1230
1231
1232#ifndef FORE200E_USE_TASKLET
1233static void
1234fore200e_irq(struct fore200e* fore200e)
1235{
1236    unsigned long flags;
1237
1238    spin_lock_irqsave(&fore200e->q_lock, flags);
1239    fore200e_rx_irq(fore200e);
1240    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242    spin_lock_irqsave(&fore200e->q_lock, flags);
1243    fore200e_tx_irq(fore200e);
1244    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245}
1246#endif
1247
1248
1249static irqreturn_t
1250fore200e_interrupt(int irq, void* dev)
1251{
1252    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254    if (fore200e->bus->irq_check(fore200e) == 0) {
1255        
1256        DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257        return IRQ_NONE;
1258    }
1259    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261#ifdef FORE200E_USE_TASKLET
1262    tasklet_schedule(&fore200e->tx_tasklet);
1263    tasklet_schedule(&fore200e->rx_tasklet);
1264#else
1265    fore200e_irq(fore200e);
1266#endif
1267    
1268    fore200e->bus->irq_ack(fore200e);
1269    return IRQ_HANDLED;
1270}
1271
1272
1273#ifdef FORE200E_USE_TASKLET
1274static void
1275fore200e_tx_tasklet(unsigned long data)
1276{
1277    struct fore200e* fore200e = (struct fore200e*) data;
1278    unsigned long flags;
1279
1280    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282    spin_lock_irqsave(&fore200e->q_lock, flags);
1283    fore200e_tx_irq(fore200e);
1284    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285}
1286
1287
1288static void
1289fore200e_rx_tasklet(unsigned long data)
1290{
1291    struct fore200e* fore200e = (struct fore200e*) data;
1292    unsigned long    flags;
1293
1294    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296    spin_lock_irqsave(&fore200e->q_lock, flags);
1297    fore200e_rx_irq((struct fore200e*) data);
1298    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299}
1300#endif
1301
1302
1303static int
1304fore200e_select_scheme(struct atm_vcc* vcc)
1305{
1306    /* fairly balance the VCs over (identical) buffer schemes */
1307    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310            vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312    return scheme;
1313}
1314
1315
1316static int 
1317fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318{
1319    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1320    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1321    struct activate_opcode   activ_opcode;
1322    struct deactivate_opcode deactiv_opcode;
1323    struct vpvc              vpvc;
1324    int                      ok;
1325    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328    
1329    if (activate) {
1330        FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331        
1332        activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333        activ_opcode.aal    = aal;
1334        activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335        activ_opcode.pad    = 0;
1336    }
1337    else {
1338        deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339        deactiv_opcode.pad    = 0;
1340    }
1341
1342    vpvc.vci = vcc->vci;
1343    vpvc.vpi = vcc->vpi;
1344
1345    *entry->status = STATUS_PENDING;
1346
1347    if (activate) {
1348
1349#ifdef FORE200E_52BYTE_AAL0_SDU
1350        mtu = 48;
1351#endif
1352        /* the MTU is not used by the cp, except in the case of AAL0 */
1353        fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1354        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355        fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356    }
1357    else {
1358        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359        fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360    }
1361
1362    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364    *entry->status = STATUS_FREE;
1365
1366    if (ok == 0) {
1367        printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368               activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369        return -EIO;
1370    }
1371
1372    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1373            activate ? "open" : "clos");
1374
1375    return 0;
1376}
1377
1378
1379#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1380
1381static void
1382fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383{
1384    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385    
1386        /* compute the data cells to idle cells ratio from the tx PCR */
1387        rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388        rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389    }
1390    else {
1391        /* disable rate control */
1392        rate->data_cells = rate->idle_cells = 0;
1393    }
1394}
1395
1396
1397static int
1398fore200e_open(struct atm_vcc *vcc)
1399{
1400    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1401    struct fore200e_vcc*    fore200e_vcc;
1402    struct fore200e_vc_map* vc_map;
1403    unsigned long           flags;
1404    int                     vci = vcc->vci;
1405    short                   vpi = vcc->vpi;
1406
1407    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410    spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413    if (vc_map->vcc) {
1414
1415        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417        printk(FORE200E "VC %d.%d.%d already in use\n",
1418               fore200e->atm_dev->number, vpi, vci);
1419
1420        return -EINVAL;
1421    }
1422
1423    vc_map->vcc = vcc;
1424
1425    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428    if (fore200e_vcc == NULL) {
1429        vc_map->vcc = NULL;
1430        return -ENOMEM;
1431    }
1432
1433    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436            fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437            vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438            fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439            vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440    
1441    /* pseudo-CBR bandwidth requested? */
1442    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443        
1444        mutex_lock(&fore200e->rate_mtx);
1445        if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446            mutex_unlock(&fore200e->rate_mtx);
1447
1448            kfree(fore200e_vcc);
1449            vc_map->vcc = NULL;
1450            return -EAGAIN;
1451        }
1452
1453        /* reserve bandwidth */
1454        fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455        mutex_unlock(&fore200e->rate_mtx);
1456    }
1457    
1458    vcc->itf = vcc->dev->number;
1459
1460    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461    set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463    vcc->dev_data = fore200e_vcc;
1464    
1465    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467        vc_map->vcc = NULL;
1468
1469        clear_bit(ATM_VF_ADDR, &vcc->flags);
1470        clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472        vcc->dev_data = NULL;
1473
1474        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476        kfree(fore200e_vcc);
1477        return -EINVAL;
1478    }
1479    
1480    /* compute rate control parameters */
1481    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482        
1483        fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484        set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486        DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487                vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488                vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1489                fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490    }
1491    
1492    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1495
1496    /* new incarnation of the vcc */
1497    vc_map->incarn = ++fore200e->incarn_count;
1498
1499    /* VC unusable before this flag is set */
1500    set_bit(ATM_VF_READY, &vcc->flags);
1501
1502    return 0;
1503}
1504
1505
1506static void
1507fore200e_close(struct atm_vcc* vcc)
1508{
1509    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1510    struct fore200e_vcc*    fore200e_vcc;
1511    struct fore200e_vc_map* vc_map;
1512    unsigned long           flags;
1513
1514    ASSERT(vcc);
1515    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520    clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524    spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528    /* the vc is no longer considered as "in use" by fore200e_open() */
1529    vc_map->vcc = NULL;
1530
1531    vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533    fore200e_vcc = FORE200E_VCC(vcc);
1534    vcc->dev_data = NULL;
1535
1536    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538    /* release reserved bandwidth, if any */
1539    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541        mutex_lock(&fore200e->rate_mtx);
1542        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543        mutex_unlock(&fore200e->rate_mtx);
1544
1545        clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546    }
1547
1548    clear_bit(ATM_VF_ADDR, &vcc->flags);
1549    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551    ASSERT(fore200e_vcc);
1552    kfree(fore200e_vcc);
1553}
1554
1555
1556static int
1557fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558{
1559    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1560    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1561    struct fore200e_vc_map* vc_map;
1562    struct host_txq*        txq          = &fore200e->host_txq;
1563    struct host_txq_entry*  entry;
1564    struct tpd*             tpd;
1565    struct tpd_haddr        tpd_haddr;
1566    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567    int                     tx_copy      = 0;
1568    int                     tx_len       = skb->len;
1569    u32*                    cell_header  = NULL;
1570    unsigned char*          skb_data;
1571    int                     skb_len;
1572    unsigned char*          data;
1573    unsigned long           flags;
1574
1575    ASSERT(vcc);
1576    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577    ASSERT(fore200e);
1578    ASSERT(fore200e_vcc);
1579
1580    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581        DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582        dev_kfree_skb_any(skb);
1583        return -EINVAL;
1584    }
1585
1586#ifdef FORE200E_52BYTE_AAL0_SDU
1587    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588        cell_header = (u32*) skb->data;
1589        skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590        skb_len     = tx_len = skb->len  - 4;
1591
1592        DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593    }
1594    else 
1595#endif
1596    {
1597        skb_data = skb->data;
1598        skb_len  = skb->len;
1599    }
1600    
1601    if (((unsigned long)skb_data) & 0x3) {
1602
1603        DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604        tx_copy = 1;
1605        tx_len  = skb_len;
1606    }
1607
1608    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610        /* this simply NUKES the PCA board */
1611        DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612        tx_copy = 1;
1613        tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614    }
1615    
1616    if (tx_copy) {
1617        data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618        if (data == NULL) {
1619            if (vcc->pop) {
1620                vcc->pop(vcc, skb);
1621            }
1622            else {
1623                dev_kfree_skb_any(skb);
1624            }
1625            return -ENOMEM;
1626        }
1627
1628        memcpy(data, skb_data, skb_len);
1629        if (skb_len < tx_len)
1630            memset(data + skb_len, 0x00, tx_len - skb_len);
1631    }
1632    else {
1633        data = skb_data;
1634    }
1635
1636    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637    ASSERT(vc_map->vcc == vcc);
1638
1639  retry_here:
1640
1641    spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643    entry = &txq->host_entry[ txq->head ];
1644
1645    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647        /* try to free completed tx queue entries */
1648        fore200e_tx_irq(fore200e);
1649
1650        if (*entry->status != STATUS_FREE) {
1651
1652            spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654            /* retry once again? */
1655            if (--retry > 0) {
1656                udelay(50);
1657                goto retry_here;
1658            }
1659
1660            atomic_inc(&vcc->stats->tx_err);
1661
1662            fore200e->tx_sat++;
1663            DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664                    fore200e->name, fore200e->cp_queues->heartbeat);
1665            if (vcc->pop) {
1666                vcc->pop(vcc, skb);
1667            }
1668            else {
1669                dev_kfree_skb_any(skb);
1670            }
1671
1672            if (tx_copy)
1673                kfree(data);
1674
1675            return -ENOBUFS;
1676        }
1677    }
1678
1679    entry->incarn = vc_map->incarn;
1680    entry->vc_map = vc_map;
1681    entry->skb    = skb;
1682    entry->data   = tx_copy ? data : NULL;
1683
1684    tpd = entry->tpd;
1685    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1686    tpd->tsd[ 0 ].length = tx_len;
1687
1688    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689    txq->txing++;
1690
1691    /* The dma_map call above implies a dma_sync so the device can use it,
1692     * thus no explicit dma_sync call is necessary here.
1693     */
1694    
1695    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1696            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697            tpd->tsd[0].length, skb_len);
1698
1699    if (skb_len < fore200e_vcc->tx_min_pdu)
1700        fore200e_vcc->tx_min_pdu = skb_len;
1701    if (skb_len > fore200e_vcc->tx_max_pdu)
1702        fore200e_vcc->tx_max_pdu = skb_len;
1703    fore200e_vcc->tx_pdu++;
1704
1705    /* set tx rate control information */
1706    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709    if (cell_header) {
1710        tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711        tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712        tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713        tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714        tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715    }
1716    else {
1717        /* set the ATM header, common to all cells conveying the PDU */
1718        tpd->atm_header.clp = 0;
1719        tpd->atm_header.plt = 0;
1720        tpd->atm_header.vci = vcc->vci;
1721        tpd->atm_header.vpi = vcc->vpi;
1722        tpd->atm_header.gfc = 0;
1723    }
1724
1725    tpd->spec.length = tx_len;
1726    tpd->spec.nseg   = 1;
1727    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728    tpd->spec.intr   = 1;
1729
1730    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731    tpd_haddr.pad   = 0;
1732    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734    *entry->status = STATUS_PENDING;
1735    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739    return 0;
1740}
1741
1742
1743static int
1744fore200e_getstats(struct fore200e* fore200e)
1745{
1746    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748    struct stats_opcode     opcode;
1749    int                     ok;
1750    u32                     stats_dma_addr;
1751
1752    if (fore200e->stats == NULL) {
1753        fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754        if (fore200e->stats == NULL)
1755            return -ENOMEM;
1756    }
1757    
1758    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759                                            sizeof(struct stats), DMA_FROM_DEVICE);
1760    
1761    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763    opcode.opcode = OPCODE_GET_STATS;
1764    opcode.pad    = 0;
1765
1766    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777    
1778    if (ok == 0) {
1779        printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780        return -EIO;
1781    }
1782
1783    return 0;
1784}
1785
1786
1787static int
1788fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789{
1790    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793            vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795    return -EINVAL;
1796}
1797
1798
1799static int
1800fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801{
1802    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803    
1804    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805            vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806    
1807    return -EINVAL;
1808}
1809
1810
1811#if 0 /* currently unused */
1812static int
1813fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814{
1815    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817    struct oc3_opcode       opcode;
1818    int                     ok;
1819    u32                     oc3_regs_dma_addr;
1820
1821    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825    opcode.opcode = OPCODE_GET_OC3;
1826    opcode.reg    = 0;
1827    opcode.value  = 0;
1828    opcode.mask   = 0;
1829
1830    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831    
1832    *entry->status = STATUS_PENDING;
1833
1834    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838    *entry->status = STATUS_FREE;
1839
1840    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841    
1842    if (ok == 0) {
1843        printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844        return -EIO;
1845    }
1846
1847    return 0;
1848}
1849#endif
1850
1851
1852static int
1853fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854{
1855    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857    struct oc3_opcode       opcode;
1858    int                     ok;
1859
1860    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864    opcode.opcode = OPCODE_SET_OC3;
1865    opcode.reg    = reg;
1866    opcode.value  = value;
1867    opcode.mask   = mask;
1868
1869    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870    
1871    *entry->status = STATUS_PENDING;
1872
1873    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877    *entry->status = STATUS_FREE;
1878
1879    if (ok == 0) {
1880        printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881        return -EIO;
1882    }
1883
1884    return 0;
1885}
1886
1887
1888static int
1889fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890{
1891    u32 mct_value, mct_mask;
1892    int error;
1893
1894    if (!capable(CAP_NET_ADMIN))
1895        return -EPERM;
1896    
1897    switch (loop_mode) {
1898
1899    case ATM_LM_NONE:
1900        mct_value = 0; 
1901        mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902        break;
1903        
1904    case ATM_LM_LOC_PHY:
1905        mct_value = mct_mask = SUNI_MCT_DLE;
1906        break;
1907
1908    case ATM_LM_RMT_PHY:
1909        mct_value = mct_mask = SUNI_MCT_LLE;
1910        break;
1911
1912    default:
1913        return -EINVAL;
1914    }
1915
1916    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917    if (error == 0)
1918        fore200e->loop_mode = loop_mode;
1919
1920    return error;
1921}
1922
1923
1924static int
1925fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926{
1927    struct sonet_stats tmp;
1928
1929    if (fore200e_getstats(fore200e) < 0)
1930        return -EIO;
1931
1932    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940                      be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941                      be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943                      be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944                      be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946    if (arg)
1947        return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1948    
1949    return 0;
1950}
1951
1952
1953static int
1954fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955{
1956    struct fore200e* fore200e = FORE200E_DEV(dev);
1957    
1958    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960    switch (cmd) {
1961
1962    case SONET_GETSTAT:
1963        return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965    case SONET_GETDIAG:
1966        return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968    case ATM_SETLOOP:
1969        return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971    case ATM_GETLOOP:
1972        return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974    case ATM_QUERYLOOP:
1975        return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976    }
1977
1978    return -ENOSYS; /* not implemented */
1979}
1980
1981
1982static int
1983fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984{
1985    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989        DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990        return -EINVAL;
1991    }
1992
1993    DPRINTK(2, "change_qos %d.%d.%d, "
1994            "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996            "available_cell_rate = %u",
1997            vcc->itf, vcc->vpi, vcc->vci,
1998            fore200e_traffic_class[ qos->txtp.traffic_class ],
1999            qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000            fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001            qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002            flags, fore200e->available_cell_rate);
2003
2004    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006        mutex_lock(&fore200e->rate_mtx);
2007        if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008            mutex_unlock(&fore200e->rate_mtx);
2009            return -EAGAIN;
2010        }
2011
2012        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013        fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015        mutex_unlock(&fore200e->rate_mtx);
2016        
2017        memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018        
2019        /* update rate control parameters */
2020        fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022        set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024        return 0;
2025    }
2026    
2027    return -EINVAL;
2028}
2029    
2030
2031static int __devinit
2032fore200e_irq_request(struct fore200e* fore200e)
2033{
2034    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036        printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037               fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038        return -EBUSY;
2039    }
2040
2041    printk(FORE200E "IRQ %s reserved for device %s\n",
2042           fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044#ifdef FORE200E_USE_TASKLET
2045    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047#endif
2048
2049    fore200e->state = FORE200E_STATE_IRQ;
2050    return 0;
2051}
2052
2053
2054static int __devinit
2055fore200e_get_esi(struct fore200e* fore200e)
2056{
2057    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058    int ok, i;
2059
2060    if (!prom)
2061        return -ENOMEM;
2062
2063    ok = fore200e->bus->prom_read(fore200e, prom);
2064    if (ok < 0) {
2065        kfree(prom);
2066        return -EBUSY;
2067    }
2068        
2069    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070           fore200e->name, 
2071           (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2072           prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073        
2074    for (i = 0; i < ESI_LEN; i++) {
2075        fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076    }
2077    
2078    kfree(prom);
2079
2080    return 0;
2081}
2082
2083
2084static int __devinit
2085fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086{
2087    int scheme, magn, nbr, size, i;
2088
2089    struct host_bsq* bsq;
2090    struct buffer*   buffer;
2091
2092    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097            nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098            size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100            DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102            /* allocate the array of receive buffers */
2103            buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2104
2105            if (buffer == NULL)
2106                return -ENOMEM;
2107
2108            bsq->freebuf = NULL;
2109
2110            for (i = 0; i < nbr; i++) {
2111
2112                buffer[ i ].scheme = scheme;
2113                buffer[ i ].magn   = magn;
2114#ifdef FORE200E_BSQ_DEBUG
2115                buffer[ i ].index  = i;
2116                buffer[ i ].supplied = 0;
2117#endif
2118
2119                /* allocate the receive buffer body */
2120                if (fore200e_chunk_alloc(fore200e,
2121                                         &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122                                         DMA_FROM_DEVICE) < 0) {
2123                    
2124                    while (i > 0)
2125                        fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126                    kfree(buffer);
2127                    
2128                    return -ENOMEM;
2129                }
2130
2131                /* insert the buffer into the free buffer list */
2132                buffer[ i ].next = bsq->freebuf;
2133                bsq->freebuf = &buffer[ i ];
2134            }
2135            /* all the buffers are free, initially */
2136            bsq->freebuf_count = nbr;
2137
2138#ifdef FORE200E_BSQ_DEBUG
2139            bsq_audit(3, bsq, scheme, magn);
2140#endif
2141        }
2142    }
2143
2144    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145    return 0;
2146}
2147
2148
2149static int __devinit
2150fore200e_init_bs_queue(struct fore200e* fore200e)
2151{
2152    int scheme, magn, i;
2153
2154    struct host_bsq*     bsq;
2155    struct cp_bsq_entry __iomem * cp_entry;
2156
2157    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160            DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164            /* allocate and align the array of status words */
2165            if (fore200e->bus->dma_chunk_alloc(fore200e,
2166                                               &bsq->status,
2167                                               sizeof(enum status), 
2168                                               QUEUE_SIZE_BS,
2169                                               fore200e->bus->status_alignment) < 0) {
2170                return -ENOMEM;
2171            }
2172
2173            /* allocate and align the array of receive buffer descriptors */
2174            if (fore200e->bus->dma_chunk_alloc(fore200e,
2175                                               &bsq->rbd_block,
2176                                               sizeof(struct rbd_block),
2177                                               QUEUE_SIZE_BS,
2178                                               fore200e->bus->descr_alignment) < 0) {
2179                
2180                fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181                return -ENOMEM;
2182            }
2183            
2184            /* get the base address of the cp resident buffer supply queue entries */
2185            cp_entry = fore200e->virt_base + 
2186                       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187            
2188            /* fill the host resident and cp resident buffer supply queue entries */
2189            for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190                
2191                bsq->host_entry[ i ].status = 
2192                                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193                bsq->host_entry[ i ].rbd_block =
2194                                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195                bsq->host_entry[ i ].rbd_block_dma =
2196                                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197                bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198                
2199                *bsq->host_entry[ i ].status = STATUS_FREE;
2200                
2201                fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2202                                     &cp_entry[ i ].status_haddr);
2203            }
2204        }
2205    }
2206
2207    fore200e->state = FORE200E_STATE_INIT_BSQ;
2208    return 0;
2209}
2210
2211
2212static int __devinit
2213fore200e_init_rx_queue(struct fore200e* fore200e)
2214{
2215    struct host_rxq*     rxq =  &fore200e->host_rxq;
2216    struct cp_rxq_entry __iomem * cp_entry;
2217    int i;
2218
2219    DPRINTK(2, "receive queue is being initialized\n");
2220
2221    /* allocate and align the array of status words */
2222    if (fore200e->bus->dma_chunk_alloc(fore200e,
2223                                       &rxq->status,
2224                                       sizeof(enum status), 
2225                                       QUEUE_SIZE_RX,
2226                                       fore200e->bus->status_alignment) < 0) {
2227        return -ENOMEM;
2228    }
2229
2230    /* allocate and align the array of receive PDU descriptors */
2231    if (fore200e->bus->dma_chunk_alloc(fore200e,
2232                                       &rxq->rpd,
2233                                       sizeof(struct rpd), 
2234                                       QUEUE_SIZE_RX,
2235                                       fore200e->bus->descr_alignment) < 0) {
2236        
2237        fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238        return -ENOMEM;
2239    }
2240
2241    /* get the base address of the cp resident rx queue entries */
2242    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244    /* fill the host resident and cp resident rx entries */
2245    for (i=0; i < QUEUE_SIZE_RX; i++) {
2246        
2247        rxq->host_entry[ i ].status = 
2248                             FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249        rxq->host_entry[ i ].rpd = 
2250                             FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251        rxq->host_entry[ i ].rpd_dma = 
2252                             FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253        rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255        *rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2258                             &cp_entry[ i ].status_haddr);
2259
2260        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261                             &cp_entry[ i ].rpd_haddr);
2262    }
2263
2264    /* set the head entry of the queue */
2265    rxq->head = 0;
2266
2267    fore200e->state = FORE200E_STATE_INIT_RXQ;
2268    return 0;
2269}
2270
2271
2272static int __devinit
2273fore200e_init_tx_queue(struct fore200e* fore200e)
2274{
2275    struct host_txq*     txq =  &fore200e->host_txq;
2276    struct cp_txq_entry __iomem * cp_entry;
2277    int i;
2278
2279    DPRINTK(2, "transmit queue is being initialized\n");
2280
2281    /* allocate and align the array of status words */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283                                       &txq->status,
2284                                       sizeof(enum status), 
2285                                       QUEUE_SIZE_TX,
2286                                       fore200e->bus->status_alignment) < 0) {
2287        return -ENOMEM;
2288    }
2289
2290    /* allocate and align the array of transmit PDU descriptors */
2291    if (fore200e->bus->dma_chunk_alloc(fore200e,
2292                                       &txq->tpd,
2293                                       sizeof(struct tpd), 
2294                                       QUEUE_SIZE_TX,
2295                                       fore200e->bus->descr_alignment) < 0) {
2296        
2297        fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298        return -ENOMEM;
2299    }
2300
2301    /* get the base address of the cp resident tx queue entries */
2302    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304    /* fill the host resident and cp resident tx entries */
2305    for (i=0; i < QUEUE_SIZE_TX; i++) {
2306        
2307        txq->host_entry[ i ].status = 
2308                             FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309        txq->host_entry[ i ].tpd = 
2310                             FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311        txq->host_entry[ i ].tpd_dma  = 
2312                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313        txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315        *txq->host_entry[ i ].status = STATUS_FREE;
2316        
2317        fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2318                             &cp_entry[ i ].status_haddr);
2319        
2320        /* although there is a one-to-one mapping of tx queue entries and tpds,
2321           we do not write here the DMA (physical) base address of each tpd into
2322           the related cp resident entry, because the cp relies on this write
2323           operation to detect that a new pdu has been submitted for tx */
2324    }
2325
2326    /* set the head and tail entries of the queue */
2327    txq->head = 0;
2328    txq->tail = 0;
2329
2330    fore200e->state = FORE200E_STATE_INIT_TXQ;
2331    return 0;
2332}
2333
2334
2335static int __devinit
2336fore200e_init_cmd_queue(struct fore200e* fore200e)
2337{
2338    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2339    struct cp_cmdq_entry __iomem * cp_entry;
2340    int i;
2341
2342    DPRINTK(2, "command queue is being initialized\n");
2343
2344    /* allocate and align the array of status words */
2345    if (fore200e->bus->dma_chunk_alloc(fore200e,
2346                                       &cmdq->status,
2347                                       sizeof(enum status), 
2348                                       QUEUE_SIZE_CMD,
2349                                       fore200e->bus->status_alignment) < 0) {
2350        return -ENOMEM;
2351    }
2352    
2353    /* get the base address of the cp resident cmd queue entries */
2354    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356    /* fill the host resident and cp resident cmd entries */
2357    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358        
2359        cmdq->host_entry[ i ].status   = 
2360                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361        cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363        *cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365        fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2366                             &cp_entry[ i ].status_haddr);
2367    }
2368
2369    /* set the head entry of the queue */
2370    cmdq->head = 0;
2371
2372    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373    return 0;
2374}
2375
2376
2377static void __devinit
2378fore200e_param_bs_queue(struct fore200e* fore200e,
2379                        enum buffer_scheme scheme, enum buffer_magn magn,
2380                        int queue_length, int pool_size, int supply_blksize)
2381{
2382    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2385    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2387    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2388}
2389
2390
2391static int __devinit
2392fore200e_initialize(struct fore200e* fore200e)
2393{
2394    struct cp_queues __iomem * cpq;
2395    int               ok, scheme, magn;
2396
2397    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399    mutex_init(&fore200e->rate_mtx);
2400    spin_lock_init(&fore200e->q_lock);
2401
2402    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404    /* enable cp to host interrupts */
2405    fore200e->bus->write(1, &cpq->imask);
2406
2407    if (fore200e->bus->irq_enable)
2408        fore200e->bus->irq_enable(fore200e);
2409    
2410    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2414    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2415
2416    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2417    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2418
2419    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421            fore200e_param_bs_queue(fore200e, scheme, magn,
2422                                    QUEUE_SIZE_BS, 
2423                                    fore200e_rx_buf_nbr[ scheme ][ magn ],
2424                                    RBD_BLK_SIZE);
2425
2426    /* issue the initialize command */
2427    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2428    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431    if (ok == 0) {
2432        printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433        return -ENODEV;
2434    }
2435
2436    printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438    fore200e->state = FORE200E_STATE_INITIALIZE;
2439    return 0;
2440}
2441
2442
2443static void __devinit
2444fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448#if 0
2449    printk("%c", c);
2450#endif
2451    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452}
2453
2454
2455static int __devinit
2456fore200e_monitor_getc(struct fore200e* fore200e)
2457{
2458    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2460    int                c;
2461
2462    while (time_before(jiffies, timeout)) {
2463
2464        c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466        if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468            fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469#if 0
2470            printk("%c", c & 0xFF);
2471#endif
2472            return c & 0xFF;
2473        }
2474    }
2475
2476    return -1;
2477}
2478
2479
2480static void __devinit
2481fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482{
2483    while (*str) {
2484
2485        /* the i960 monitor doesn't accept any new character if it has something to say */
2486        while (fore200e_monitor_getc(fore200e) >= 0);
2487        
2488        fore200e_monitor_putc(fore200e, *str++);
2489    }
2490
2491    while (fore200e_monitor_getc(fore200e) >= 0);
2492}
2493
2494#ifdef __LITTLE_ENDIAN
2495#define FW_EXT ".bin"
2496#else
2497#define FW_EXT "_ecd.bin2"
2498#endif
2499
2500static int __devinit
2501fore200e_load_and_start_fw(struct fore200e* fore200e)
2502{
2503    const struct firmware *firmware;
2504    struct device *device;
2505    struct fw_header *fw_header;
2506    const __le32 *fw_data;
2507    u32 fw_size;
2508    u32 __iomem *load_addr;
2509    char buf[48];
2510    int err = -ENODEV;
2511
2512    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513        device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514#ifdef CONFIG_SBUS
2515    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516        device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517#endif
2518    else
2519        return err;
2520
2521    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523        printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524        return err;
2525    }
2526
2527    fw_data = (__le32 *) firmware->data;
2528    fw_size = firmware->size / sizeof(u32);
2529    fw_header = (struct fw_header *) firmware->data;
2530    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533            fore200e->name, load_addr, fw_size);
2534
2535    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536        printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537        goto release;
2538    }
2539
2540    for (; fw_size--; fw_data++, load_addr++)
2541        fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545#if defined(__sparc_v9__)
2546    /* reported to be required by SBA cards on some sparc64 hosts */
2547    fore200e_spin(100);
2548#endif
2549
2550    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551    fore200e_monitor_puts(fore200e, buf);
2552
2553    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554        printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555        goto release;
2556    }
2557
2558    printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560    fore200e->state = FORE200E_STATE_START_FW;
2561    err = 0;
2562
2563release:
2564    release_firmware(firmware);
2565    return err;
2566}
2567
2568
2569static int __devinit
2570fore200e_register(struct fore200e* fore200e, struct device *parent)
2571{
2572    struct atm_dev* atm_dev;
2573
2574    DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                               -1, NULL);
2578    if (atm_dev == NULL) {
2579        printk(FORE200E "unable to register device %s\n", fore200e->name);
2580        return -ENODEV;
2581    }
2582
2583    atm_dev->dev_data = fore200e;
2584    fore200e->atm_dev = atm_dev;
2585
2586    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589    fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591    fore200e->state = FORE200E_STATE_REGISTER;
2592    return 0;
2593}
2594
2595
2596static int __devinit
2597fore200e_init(struct fore200e* fore200e, struct device *parent)
2598{
2599    if (fore200e_register(fore200e, parent) < 0)
2600        return -ENODEV;
2601    
2602    if (fore200e->bus->configure(fore200e) < 0)
2603        return -ENODEV;
2604
2605    if (fore200e->bus->map(fore200e) < 0)
2606        return -ENODEV;
2607
2608    if (fore200e_reset(fore200e, 1) < 0)
2609        return -ENODEV;
2610
2611    if (fore200e_load_and_start_fw(fore200e) < 0)
2612        return -ENODEV;
2613
2614    if (fore200e_initialize(fore200e) < 0)
2615        return -ENODEV;
2616
2617    if (fore200e_init_cmd_queue(fore200e) < 0)
2618        return -ENOMEM;
2619
2620    if (fore200e_init_tx_queue(fore200e) < 0)
2621        return -ENOMEM;
2622
2623    if (fore200e_init_rx_queue(fore200e) < 0)
2624        return -ENOMEM;
2625
2626    if (fore200e_init_bs_queue(fore200e) < 0)
2627        return -ENOMEM;
2628
2629    if (fore200e_alloc_rx_buf(fore200e) < 0)
2630        return -ENOMEM;
2631
2632    if (fore200e_get_esi(fore200e) < 0)
2633        return -EIO;
2634
2635    if (fore200e_irq_request(fore200e) < 0)
2636        return -EBUSY;
2637
2638    fore200e_supply(fore200e);
2639
2640    /* all done, board initialization is now complete */
2641    fore200e->state = FORE200E_STATE_COMPLETE;
2642    return 0;
2643}
2644
2645#ifdef CONFIG_SBUS
2646static const struct of_device_id fore200e_sba_match[];
2647static int __devinit fore200e_sba_probe(struct platform_device *op)
2648{
2649        const struct of_device_id *match;
2650        const struct fore200e_bus *bus;
2651        struct fore200e *fore200e;
2652        static int index = 0;
2653        int err;
2654
2655        match = of_match_device(fore200e_sba_match, &op->dev);
2656        if (!match)
2657                return -EINVAL;
2658        bus = match->data;
2659
2660        fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661        if (!fore200e)
2662                return -ENOMEM;
2663
2664        fore200e->bus = bus;
2665        fore200e->bus_dev = op;
2666        fore200e->irq = op->archdata.irqs[0];
2667        fore200e->phys_base = op->resource[0].start;
2668
2669        sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671        err = fore200e_init(fore200e, &op->dev);
2672        if (err < 0) {
2673                fore200e_shutdown(fore200e);
2674                kfree(fore200e);
2675                return err;
2676        }
2677
2678        index++;
2679        dev_set_drvdata(&op->dev, fore200e);
2680
2681        return 0;
2682}
2683
2684static int __devexit fore200e_sba_remove(struct platform_device *op)
2685{
2686        struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688        fore200e_shutdown(fore200e);
2689        kfree(fore200e);
2690
2691        return 0;
2692}
2693
2694static const struct of_device_id fore200e_sba_match[] = {
2695        {
2696                .name = SBA200E_PROM_NAME,
2697                .data = (void *) &fore200e_bus[1],
2698        },
2699        {},
2700};
2701MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703static struct platform_driver fore200e_sba_driver = {
2704        .driver = {
2705                .name = "fore_200e",
2706                .owner = THIS_MODULE,
2707                .of_match_table = fore200e_sba_match,
2708        },
2709        .probe          = fore200e_sba_probe,
2710        .remove         = __devexit_p(fore200e_sba_remove),
2711};
2712#endif
2713
2714#ifdef CONFIG_PCI
2715static int __devinit
2716fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717{
2718    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719    struct fore200e* fore200e;
2720    int err = 0;
2721    static int index = 0;
2722
2723    if (pci_enable_device(pci_dev)) {
2724        err = -EINVAL;
2725        goto out;
2726    }
2727    
2728    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729    if (fore200e == NULL) {
2730        err = -ENOMEM;
2731        goto out_disable;
2732    }
2733
2734    fore200e->bus       = bus;
2735    fore200e->bus_dev   = pci_dev;    
2736    fore200e->irq       = pci_dev->irq;
2737    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741    pci_set_master(pci_dev);
2742
2743    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744           fore200e->bus->model_name, 
2745           fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749    err = fore200e_init(fore200e, &pci_dev->dev);
2750    if (err < 0) {
2751        fore200e_shutdown(fore200e);
2752        goto out_free;
2753    }
2754
2755    ++index;
2756    pci_set_drvdata(pci_dev, fore200e);
2757
2758out:
2759    return err;
2760
2761out_free:
2762    kfree(fore200e);
2763out_disable:
2764    pci_disable_device(pci_dev);
2765    goto out;
2766}
2767
2768
2769static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770{
2771    struct fore200e *fore200e;
2772
2773    fore200e = pci_get_drvdata(pci_dev);
2774
2775    fore200e_shutdown(fore200e);
2776    kfree(fore200e);
2777    pci_disable_device(pci_dev);
2778}
2779
2780
2781static struct pci_device_id fore200e_pca_tbl[] = {
2782    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783      0, 0, (unsigned long) &fore200e_bus[0] },
2784    { 0, }
2785};
2786
2787MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789static struct pci_driver fore200e_pca_driver = {
2790    .name =     "fore_200e",
2791    .probe =    fore200e_pca_detect,
2792    .remove =   __devexit_p(fore200e_pca_remove_one),
2793    .id_table = fore200e_pca_tbl,
2794};
2795#endif
2796
2797static int __init fore200e_module_init(void)
2798{
2799        int err;
2800
2801        printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803#ifdef CONFIG_SBUS
2804        err = platform_driver_register(&fore200e_sba_driver);
2805        if (err)
2806                return err;
2807#endif
2808
2809#ifdef CONFIG_PCI
2810        err = pci_register_driver(&fore200e_pca_driver);
2811#endif
2812
2813#ifdef CONFIG_SBUS
2814        if (err)
2815                platform_driver_unregister(&fore200e_sba_driver);
2816#endif
2817
2818        return err;
2819}
2820
2821static void __exit fore200e_module_cleanup(void)
2822{
2823#ifdef CONFIG_PCI
2824        pci_unregister_driver(&fore200e_pca_driver);
2825#endif
2826#ifdef CONFIG_SBUS
2827        platform_driver_unregister(&fore200e_sba_driver);
2828#endif
2829}
2830
2831static int
2832fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833{
2834    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2835    struct fore200e_vcc* fore200e_vcc;
2836    struct atm_vcc*      vcc;
2837    int                  i, len, left = *pos;
2838    unsigned long        flags;
2839
2840    if (!left--) {
2841
2842        if (fore200e_getstats(fore200e) < 0)
2843            return -EIO;
2844
2845        len = sprintf(page,"\n"
2846                       " device:\n"
2847                       "   internal name:\t\t%s\n", fore200e->name);
2848
2849        /* print bus-specific information */
2850        if (fore200e->bus->proc_read)
2851            len += fore200e->bus->proc_read(fore200e, page + len);
2852        
2853        len += sprintf(page + len,
2854                "   interrupt line:\t\t%s\n"
2855                "   physical base address:\t0x%p\n"
2856                "   virtual base address:\t0x%p\n"
2857                "   factory address (ESI):\t%pM\n"
2858                "   board serial number:\t\t%d\n\n",
2859                fore200e_irq_itoa(fore200e->irq),
2860                (void*)fore200e->phys_base,
2861                fore200e->virt_base,
2862                fore200e->esi,
2863                fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865        return len;
2866    }
2867
2868    if (!left--)
2869        return sprintf(page,
2870                       "   free small bufs, scheme 1:\t%d\n"
2871                       "   free large bufs, scheme 1:\t%d\n"
2872                       "   free small bufs, scheme 2:\t%d\n"
2873                       "   free large bufs, scheme 2:\t%d\n",
2874                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879    if (!left--) {
2880        u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882        len = sprintf(page,"\n\n"
2883                      " cell processor:\n"
2884                      "   heartbeat state:\t\t");
2885        
2886        if (hb >> 16 != 0xDEAD)
2887            len += sprintf(page + len, "0x%08x\n", hb);
2888        else
2889            len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891        return len;
2892    }
2893
2894    if (!left--) {
2895        static const char* media_name[] = {
2896            "unshielded twisted pair",
2897            "multimode optical fiber ST",
2898            "multimode optical fiber SC",
2899            "single-mode optical fiber ST",
2900            "single-mode optical fiber SC",
2901            "unknown"
2902        };
2903
2904        static const char* oc3_mode[] = {
2905            "normal operation",
2906            "diagnostic loopback",
2907            "line loopback",
2908            "unknown"
2909        };
2910
2911        u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912        u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913        u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914        u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915        u32 oc3_index;
2916
2917        if (media_index > 4)
2918                media_index = 5;
2919        
2920        switch (fore200e->loop_mode) {
2921            case ATM_LM_NONE:    oc3_index = 0;
2922                                 break;
2923            case ATM_LM_LOC_PHY: oc3_index = 1;
2924                                 break;
2925            case ATM_LM_RMT_PHY: oc3_index = 2;
2926                                 break;
2927            default:             oc3_index = 3;
2928        }
2929
2930        return sprintf(page,
2931                       "   firmware release:\t\t%d.%d.%d\n"
2932                       "   monitor release:\t\t%d.%d\n"
2933                       "   media type:\t\t\t%s\n"
2934                       "   OC-3 revision:\t\t0x%x\n"
2935                       "   OC-3 mode:\t\t\t%s",
2936                       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2937                       mon960_release >> 16, mon960_release << 16 >> 16,
2938                       media_name[ media_index ],
2939                       oc3_revision,
2940                       oc3_mode[ oc3_index ]);
2941    }
2942
2943    if (!left--) {
2944        struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946        return sprintf(page,
2947                       "\n\n"
2948                       " monitor:\n"
2949                       "   version number:\t\t%d\n"
2950                       "   boot status word:\t\t0x%08x\n",
2951                       fore200e->bus->read(&cp_monitor->mon_version),
2952                       fore200e->bus->read(&cp_monitor->bstat));
2953    }
2954
2955    if (!left--)
2956        return sprintf(page,
2957                       "\n"
2958                       " device statistics:\n"
2959                       "  4b5b:\n"
2960                       "     crc_header_errors:\t\t%10u\n"
2961                       "     framing_errors:\t\t%10u\n",
2962                       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963                       be32_to_cpu(fore200e->stats->phy.framing_errors));
2964    
2965    if (!left--)
2966        return sprintf(page, "\n"
2967                       "  OC-3:\n"
2968                       "     section_bip8_errors:\t%10u\n"
2969                       "     path_bip8_errors:\t\t%10u\n"
2970                       "     line_bip24_errors:\t\t%10u\n"
2971                       "     line_febe_errors:\t\t%10u\n"
2972                       "     path_febe_errors:\t\t%10u\n"
2973                       "     corr_hcs_errors:\t\t%10u\n"
2974                       "     ucorr_hcs_errors:\t\t%10u\n",
2975                       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976                       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977                       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978                       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979                       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980                       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981                       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983    if (!left--)
2984        return sprintf(page,"\n"
2985                       "   ATM:\t\t\t\t     cells\n"
2986                       "     TX:\t\t\t%10u\n"
2987                       "     RX:\t\t\t%10u\n"
2988                       "     vpi out of range:\t\t%10u\n"
2989                       "     vpi no conn:\t\t%10u\n"
2990                       "     vci out of range:\t\t%10u\n"
2991                       "     vci no conn:\t\t%10u\n",
2992                       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993                       be32_to_cpu(fore200e->stats->atm.cells_received),
2994                       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995                       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996                       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997                       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998    
2999    if (!left--)
3000        return sprintf(page,"\n"
3001                       "   AAL0:\t\t\t     cells\n"
3002                       "     TX:\t\t\t%10u\n"
3003                       "     RX:\t\t\t%10u\n"
3004                       "     dropped:\t\t\t%10u\n",
3005                       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006                       be32_to_cpu(fore200e->stats->aal0.cells_received),
3007                       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008    
3009    if (!left--)
3010        return sprintf(page,"\n"
3011                       "   AAL3/4:\n"
3012                       "     SAR sublayer:\t\t     cells\n"
3013                       "       TX:\t\t\t%10u\n"
3014                       "       RX:\t\t\t%10u\n"
3015                       "       dropped:\t\t\t%10u\n"
3016                       "       CRC errors:\t\t%10u\n"
3017                       "       protocol errors:\t\t%10u\n\n"
3018                       "     CS  sublayer:\t\t      PDUs\n"
3019                       "       TX:\t\t\t%10u\n"
3020                       "       RX:\t\t\t%10u\n"
3021                       "       dropped:\t\t\t%10u\n"
3022                       "       protocol errors:\t\t%10u\n",
3023                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024                       be32_to_cpu(fore200e->stats->aal34.cells_received),
3025                       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026                       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027                       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028                       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029                       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030                       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031                       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032    
3033    if (!left--)
3034        return sprintf(page,"\n"
3035                       "   AAL5:\n"
3036                       "     SAR sublayer:\t\t     cells\n"
3037                       "       TX:\t\t\t%10u\n"
3038                       "       RX:\t\t\t%10u\n"
3039                       "       dropped:\t\t\t%10u\n"
3040                       "       congestions:\t\t%10u\n\n"
3041                       "     CS  sublayer:\t\t      PDUs\n"
3042                       "       TX:\t\t\t%10u\n"
3043                       "       RX:\t\t\t%10u\n"
3044                       "       dropped:\t\t\t%10u\n"
3045                       "       CRC errors:\t\t%10u\n"
3046                       "       protocol errors:\t\t%10u\n",
3047                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048                       be32_to_cpu(fore200e->stats->aal5.cells_received),
3049                       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050                       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051                       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052                       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053                       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054                       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055                       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056    
3057    if (!left--)
3058        return sprintf(page,"\n"
3059                       "   AUX:\t\t       allocation failures\n"
3060                       "     small b1:\t\t\t%10u\n"
3061                       "     large b1:\t\t\t%10u\n"
3062                       "     small b2:\t\t\t%10u\n"
3063                       "     large b2:\t\t\t%10u\n"
3064                       "     RX PDUs:\t\t\t%10u\n"
3065                       "     TX PDUs:\t\t\t%10lu\n",
3066                       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067                       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068                       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069                       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070                       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071                       fore200e->tx_sat);
3072    
3073    if (!left--)
3074        return sprintf(page,"\n"
3075                       " receive carrier:\t\t\t%s\n",
3076                       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077    
3078    if (!left--) {
3079        return sprintf(page,"\n"
3080                       " VCCs:\n  address   VPI VCI   AAL "
3081                       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3082    }
3083
3084    for (i = 0; i < NBR_CONNECT; i++) {
3085
3086        vcc = fore200e->vc_map[i].vcc;
3087
3088        if (vcc == NULL)
3089            continue;
3090
3091        spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093        if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095            fore200e_vcc = FORE200E_VCC(vcc);
3096            ASSERT(fore200e_vcc);
3097
3098            len = sprintf(page,
3099                          "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3100                          (u32)(unsigned long)vcc,
3101                          vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102                          fore200e_vcc->tx_pdu,
3103                          fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104                          fore200e_vcc->tx_max_pdu,
3105                          fore200e_vcc->rx_pdu,
3106                          fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107                          fore200e_vcc->rx_max_pdu);
3108
3109            spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110            return len;
3111        }
3112
3113        spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114    }
3115    
3116    return 0;
3117}
3118
3119module_init(fore200e_module_init);
3120module_exit(fore200e_module_cleanup);
3121
3122
3123static const struct atmdev_ops fore200e_ops =
3124{
3125        .open       = fore200e_open,
3126        .close      = fore200e_close,
3127        .ioctl      = fore200e_ioctl,
3128        .getsockopt = fore200e_getsockopt,
3129        .setsockopt = fore200e_setsockopt,
3130        .send       = fore200e_send,
3131        .change_qos = fore200e_change_qos,
3132        .proc_read  = fore200e_proc_read,
3133        .owner      = THIS_MODULE
3134};
3135
3136
3137static const struct fore200e_bus fore200e_bus[] = {
3138#ifdef CONFIG_PCI
3139    { "PCA-200E", "pca200e", 32, 4, 32, 
3140      fore200e_pca_read,
3141      fore200e_pca_write,
3142      fore200e_pca_dma_map,
3143      fore200e_pca_dma_unmap,
3144      fore200e_pca_dma_sync_for_cpu,
3145      fore200e_pca_dma_sync_for_device,
3146      fore200e_pca_dma_chunk_alloc,
3147      fore200e_pca_dma_chunk_free,
3148      fore200e_pca_configure,
3149      fore200e_pca_map,
3150      fore200e_pca_reset,
3151      fore200e_pca_prom_read,
3152      fore200e_pca_unmap,
3153      NULL,
3154      fore200e_pca_irq_check,
3155      fore200e_pca_irq_ack,
3156      fore200e_pca_proc_read,
3157    },
3158#endif
3159#ifdef CONFIG_SBUS
3160    { "SBA-200E", "sba200e", 32, 64, 32,
3161      fore200e_sba_read,
3162      fore200e_sba_write,
3163      fore200e_sba_dma_map,
3164      fore200e_sba_dma_unmap,
3165      fore200e_sba_dma_sync_for_cpu,
3166      fore200e_sba_dma_sync_for_device,
3167      fore200e_sba_dma_chunk_alloc,
3168      fore200e_sba_dma_chunk_free,
3169      fore200e_sba_configure,
3170      fore200e_sba_map,
3171      fore200e_sba_reset,
3172      fore200e_sba_prom_read,
3173      fore200e_sba_unmap,
3174      fore200e_sba_irq_enable,
3175      fore200e_sba_irq_check,
3176      fore200e_sba_irq_ack,
3177      fore200e_sba_proc_read,
3178    },
3179#endif
3180    {}
3181};
3182
3183MODULE_LICENSE("GPL");
3184#ifdef CONFIG_PCI
3185#ifdef __LITTLE_ENDIAN__
3186MODULE_FIRMWARE("pca200e.bin");
3187#else
3188MODULE_FIRMWARE("pca200e_ecd.bin2");
3189#endif
3190#endif /* CONFIG_PCI */
3191#ifdef CONFIG_SBUS
3192MODULE_FIRMWARE("sba200e_ecd.bin2");
3193#endif
3194