linux/drivers/crypto/mv_cesa.c
<<
>>
Prefs
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kthread.h>
  15#include <linux/platform_device.h>
  16#include <linux/scatterlist.h>
  17#include <linux/slab.h>
  18#include <crypto/internal/hash.h>
  19#include <crypto/sha.h>
  20
  21#include "mv_cesa.h"
  22
  23#define MV_CESA "MV-CESA:"
  24#define MAX_HW_HASH_SIZE        0xFFFF
  25
  26/*
  27 * STM:
  28 *   /---------------------------------------\
  29 *   |                                       | request complete
  30 *  \./                                      |
  31 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  32 *                         /°\               |
  33 *                          |                | more scatter entries
  34 *                          \________________/
  35 */
  36enum engine_status {
  37        ENGINE_IDLE,
  38        ENGINE_BUSY,
  39        ENGINE_W_DEQUEUE,
  40};
  41
  42/**
  43 * struct req_progress - used for every crypt request
  44 * @src_sg_it:          sg iterator for src
  45 * @dst_sg_it:          sg iterator for dst
  46 * @sg_src_left:        bytes left in src to process (scatter list)
  47 * @src_start:          offset to add to src start position (scatter list)
  48 * @crypt_len:          length of current hw crypt/hash process
  49 * @hw_nbytes:          total bytes to process in hw for this request
  50 * @copy_back:          whether to copy data back (crypt) or not (hash)
  51 * @sg_dst_left:        bytes left dst to process in this scatter list
  52 * @dst_start:          offset to add to dst start position (scatter list)
  53 * @hw_processed_bytes: number of bytes processed by hw (request).
  54 *
  55 * sg helper are used to iterate over the scatterlist. Since the size of the
  56 * SRAM may be less than the scatter size, this struct struct is used to keep
  57 * track of progress within current scatterlist.
  58 */
  59struct req_progress {
  60        struct sg_mapping_iter src_sg_it;
  61        struct sg_mapping_iter dst_sg_it;
  62        void (*complete) (void);
  63        void (*process) (int is_first);
  64
  65        /* src mostly */
  66        int sg_src_left;
  67        int src_start;
  68        int crypt_len;
  69        int hw_nbytes;
  70        /* dst mostly */
  71        int copy_back;
  72        int sg_dst_left;
  73        int dst_start;
  74        int hw_processed_bytes;
  75};
  76
  77struct crypto_priv {
  78        void __iomem *reg;
  79        void __iomem *sram;
  80        int irq;
  81        struct task_struct *queue_th;
  82
  83        /* the lock protects queue and eng_st */
  84        spinlock_t lock;
  85        struct crypto_queue queue;
  86        enum engine_status eng_st;
  87        struct crypto_async_request *cur_req;
  88        struct req_progress p;
  89        int max_req_size;
  90        int sram_size;
  91        int has_sha1;
  92        int has_hmac_sha1;
  93};
  94
  95static struct crypto_priv *cpg;
  96
  97struct mv_ctx {
  98        u8 aes_enc_key[AES_KEY_LEN];
  99        u32 aes_dec_key[8];
 100        int key_len;
 101        u32 need_calc_aes_dkey;
 102};
 103
 104enum crypto_op {
 105        COP_AES_ECB,
 106        COP_AES_CBC,
 107};
 108
 109struct mv_req_ctx {
 110        enum crypto_op op;
 111        int decrypt;
 112};
 113
 114enum hash_op {
 115        COP_SHA1,
 116        COP_HMAC_SHA1
 117};
 118
 119struct mv_tfm_hash_ctx {
 120        struct crypto_shash *fallback;
 121        struct crypto_shash *base_hash;
 122        u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 123        int count_add;
 124        enum hash_op op;
 125};
 126
 127struct mv_req_hash_ctx {
 128        u64 count;
 129        u32 state[SHA1_DIGEST_SIZE / 4];
 130        u8 buffer[SHA1_BLOCK_SIZE];
 131        int first_hash;         /* marks that we don't have previous state */
 132        int last_chunk;         /* marks that this is the 'final' request */
 133        int extra_bytes;        /* unprocessed bytes in buffer */
 134        enum hash_op op;
 135        int count_add;
 136};
 137
 138static void compute_aes_dec_key(struct mv_ctx *ctx)
 139{
 140        struct crypto_aes_ctx gen_aes_key;
 141        int key_pos;
 142
 143        if (!ctx->need_calc_aes_dkey)
 144                return;
 145
 146        crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 147
 148        key_pos = ctx->key_len + 24;
 149        memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 150        switch (ctx->key_len) {
 151        case AES_KEYSIZE_256:
 152                key_pos -= 2;
 153                /* fall */
 154        case AES_KEYSIZE_192:
 155                key_pos -= 2;
 156                memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 157                                4 * 4);
 158                break;
 159        }
 160        ctx->need_calc_aes_dkey = 0;
 161}
 162
 163static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 164                unsigned int len)
 165{
 166        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 167        struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 168
 169        switch (len) {
 170        case AES_KEYSIZE_128:
 171        case AES_KEYSIZE_192:
 172        case AES_KEYSIZE_256:
 173                break;
 174        default:
 175                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 176                return -EINVAL;
 177        }
 178        ctx->key_len = len;
 179        ctx->need_calc_aes_dkey = 1;
 180
 181        memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 182        return 0;
 183}
 184
 185static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 186{
 187        int ret;
 188        void *sbuf;
 189        int copy_len;
 190
 191        while (len) {
 192                if (!p->sg_src_left) {
 193                        ret = sg_miter_next(&p->src_sg_it);
 194                        BUG_ON(!ret);
 195                        p->sg_src_left = p->src_sg_it.length;
 196                        p->src_start = 0;
 197                }
 198
 199                sbuf = p->src_sg_it.addr + p->src_start;
 200
 201                copy_len = min(p->sg_src_left, len);
 202                memcpy(dbuf, sbuf, copy_len);
 203
 204                p->src_start += copy_len;
 205                p->sg_src_left -= copy_len;
 206
 207                len -= copy_len;
 208                dbuf += copy_len;
 209        }
 210}
 211
 212static void setup_data_in(void)
 213{
 214        struct req_progress *p = &cpg->p;
 215        int data_in_sram =
 216            min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 217        copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 218                        data_in_sram - p->crypt_len);
 219        p->crypt_len = data_in_sram;
 220}
 221
 222static void mv_process_current_q(int first_block)
 223{
 224        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 225        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 226        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 227        struct sec_accel_config op;
 228
 229        switch (req_ctx->op) {
 230        case COP_AES_ECB:
 231                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 232                break;
 233        case COP_AES_CBC:
 234        default:
 235                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 236                op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 237                        ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 238                if (first_block)
 239                        memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 240                break;
 241        }
 242        if (req_ctx->decrypt) {
 243                op.config |= CFG_DIR_DEC;
 244                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 245                                AES_KEY_LEN);
 246        } else {
 247                op.config |= CFG_DIR_ENC;
 248                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 249                                AES_KEY_LEN);
 250        }
 251
 252        switch (ctx->key_len) {
 253        case AES_KEYSIZE_128:
 254                op.config |= CFG_AES_LEN_128;
 255                break;
 256        case AES_KEYSIZE_192:
 257                op.config |= CFG_AES_LEN_192;
 258                break;
 259        case AES_KEYSIZE_256:
 260                op.config |= CFG_AES_LEN_256;
 261                break;
 262        }
 263        op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 264                ENC_P_DST(SRAM_DATA_OUT_START);
 265        op.enc_key_p = SRAM_DATA_KEY_P;
 266
 267        setup_data_in();
 268        op.enc_len = cpg->p.crypt_len;
 269        memcpy(cpg->sram + SRAM_CONFIG, &op,
 270                        sizeof(struct sec_accel_config));
 271
 272        /* GO */
 273        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 274
 275        /*
 276         * XXX: add timer if the interrupt does not occur for some mystery
 277         * reason
 278         */
 279}
 280
 281static void mv_crypto_algo_completion(void)
 282{
 283        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 284        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 285
 286        sg_miter_stop(&cpg->p.src_sg_it);
 287        sg_miter_stop(&cpg->p.dst_sg_it);
 288
 289        if (req_ctx->op != COP_AES_CBC)
 290                return ;
 291
 292        memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 293}
 294
 295static void mv_process_hash_current(int first_block)
 296{
 297        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 298        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 299        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 300        struct req_progress *p = &cpg->p;
 301        struct sec_accel_config op = { 0 };
 302        int is_last;
 303
 304        switch (req_ctx->op) {
 305        case COP_SHA1:
 306        default:
 307                op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 308                break;
 309        case COP_HMAC_SHA1:
 310                op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 311                memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 312                                tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 313                break;
 314        }
 315
 316        op.mac_src_p =
 317                MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 318                req_ctx->
 319                count);
 320
 321        setup_data_in();
 322
 323        op.mac_digest =
 324                MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 325        op.mac_iv =
 326                MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 327                MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 328
 329        is_last = req_ctx->last_chunk
 330                && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 331                && (req_ctx->count <= MAX_HW_HASH_SIZE);
 332        if (req_ctx->first_hash) {
 333                if (is_last)
 334                        op.config |= CFG_NOT_FRAG;
 335                else
 336                        op.config |= CFG_FIRST_FRAG;
 337
 338                req_ctx->first_hash = 0;
 339        } else {
 340                if (is_last)
 341                        op.config |= CFG_LAST_FRAG;
 342                else
 343                        op.config |= CFG_MID_FRAG;
 344
 345                writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 346                writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 347                writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 348                writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 349                writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 350        }
 351
 352        memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 353
 354        /* GO */
 355        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 356
 357        /*
 358        * XXX: add timer if the interrupt does not occur for some mystery
 359        * reason
 360        */
 361}
 362
 363static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 364                                          struct shash_desc *desc)
 365{
 366        int i;
 367        struct sha1_state shash_state;
 368
 369        shash_state.count = ctx->count + ctx->count_add;
 370        for (i = 0; i < 5; i++)
 371                shash_state.state[i] = ctx->state[i];
 372        memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 373        return crypto_shash_import(desc, &shash_state);
 374}
 375
 376static int mv_hash_final_fallback(struct ahash_request *req)
 377{
 378        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 379        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 380        struct {
 381                struct shash_desc shash;
 382                char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
 383        } desc;
 384        int rc;
 385
 386        desc.shash.tfm = tfm_ctx->fallback;
 387        desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 388        if (unlikely(req_ctx->first_hash)) {
 389                crypto_shash_init(&desc.shash);
 390                crypto_shash_update(&desc.shash, req_ctx->buffer,
 391                                    req_ctx->extra_bytes);
 392        } else {
 393                /* only SHA1 for now....
 394                 */
 395                rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
 396                if (rc)
 397                        goto out;
 398        }
 399        rc = crypto_shash_final(&desc.shash, req->result);
 400out:
 401        return rc;
 402}
 403
 404static void mv_hash_algo_completion(void)
 405{
 406        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 407        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 408
 409        if (ctx->extra_bytes)
 410                copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 411        sg_miter_stop(&cpg->p.src_sg_it);
 412
 413        if (likely(ctx->last_chunk)) {
 414                if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 415                        memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 416                               crypto_ahash_digestsize(crypto_ahash_reqtfm
 417                                                       (req)));
 418                } else
 419                        mv_hash_final_fallback(req);
 420        } else {
 421                ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 422                ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 423                ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 424                ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 425                ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 426        }
 427}
 428
 429static void dequeue_complete_req(void)
 430{
 431        struct crypto_async_request *req = cpg->cur_req;
 432        void *buf;
 433        int ret;
 434        cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 435        if (cpg->p.copy_back) {
 436                int need_copy_len = cpg->p.crypt_len;
 437                int sram_offset = 0;
 438                do {
 439                        int dst_copy;
 440
 441                        if (!cpg->p.sg_dst_left) {
 442                                ret = sg_miter_next(&cpg->p.dst_sg_it);
 443                                BUG_ON(!ret);
 444                                cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 445                                cpg->p.dst_start = 0;
 446                        }
 447
 448                        buf = cpg->p.dst_sg_it.addr;
 449                        buf += cpg->p.dst_start;
 450
 451                        dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 452
 453                        memcpy(buf,
 454                               cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 455                               dst_copy);
 456                        sram_offset += dst_copy;
 457                        cpg->p.sg_dst_left -= dst_copy;
 458                        need_copy_len -= dst_copy;
 459                        cpg->p.dst_start += dst_copy;
 460                } while (need_copy_len > 0);
 461        }
 462
 463        cpg->p.crypt_len = 0;
 464
 465        BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 466        if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 467                /* process next scatter list entry */
 468                cpg->eng_st = ENGINE_BUSY;
 469                cpg->p.process(0);
 470        } else {
 471                cpg->p.complete();
 472                cpg->eng_st = ENGINE_IDLE;
 473                local_bh_disable();
 474                req->complete(req, 0);
 475                local_bh_enable();
 476        }
 477}
 478
 479static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 480{
 481        int i = 0;
 482        size_t cur_len;
 483
 484        while (sl) {
 485                cur_len = sl[i].length;
 486                ++i;
 487                if (total_bytes > cur_len)
 488                        total_bytes -= cur_len;
 489                else
 490                        break;
 491        }
 492
 493        return i;
 494}
 495
 496static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 497{
 498        struct req_progress *p = &cpg->p;
 499        int num_sgs;
 500
 501        cpg->cur_req = &req->base;
 502        memset(p, 0, sizeof(struct req_progress));
 503        p->hw_nbytes = req->nbytes;
 504        p->complete = mv_crypto_algo_completion;
 505        p->process = mv_process_current_q;
 506        p->copy_back = 1;
 507
 508        num_sgs = count_sgs(req->src, req->nbytes);
 509        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 510
 511        num_sgs = count_sgs(req->dst, req->nbytes);
 512        sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 513
 514        mv_process_current_q(1);
 515}
 516
 517static void mv_start_new_hash_req(struct ahash_request *req)
 518{
 519        struct req_progress *p = &cpg->p;
 520        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 521        int num_sgs, hw_bytes, old_extra_bytes, rc;
 522        cpg->cur_req = &req->base;
 523        memset(p, 0, sizeof(struct req_progress));
 524        hw_bytes = req->nbytes + ctx->extra_bytes;
 525        old_extra_bytes = ctx->extra_bytes;
 526
 527        ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 528        if (ctx->extra_bytes != 0
 529            && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 530                hw_bytes -= ctx->extra_bytes;
 531        else
 532                ctx->extra_bytes = 0;
 533
 534        num_sgs = count_sgs(req->src, req->nbytes);
 535        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 536
 537        if (hw_bytes) {
 538                p->hw_nbytes = hw_bytes;
 539                p->complete = mv_hash_algo_completion;
 540                p->process = mv_process_hash_current;
 541
 542                if (unlikely(old_extra_bytes)) {
 543                        memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 544                               old_extra_bytes);
 545                        p->crypt_len = old_extra_bytes;
 546                }
 547
 548                mv_process_hash_current(1);
 549        } else {
 550                copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 551                                ctx->extra_bytes - old_extra_bytes);
 552                sg_miter_stop(&p->src_sg_it);
 553                if (ctx->last_chunk)
 554                        rc = mv_hash_final_fallback(req);
 555                else
 556                        rc = 0;
 557                cpg->eng_st = ENGINE_IDLE;
 558                local_bh_disable();
 559                req->base.complete(&req->base, rc);
 560                local_bh_enable();
 561        }
 562}
 563
 564static int queue_manag(void *data)
 565{
 566        cpg->eng_st = ENGINE_IDLE;
 567        do {
 568                struct crypto_async_request *async_req = NULL;
 569                struct crypto_async_request *backlog;
 570
 571                __set_current_state(TASK_INTERRUPTIBLE);
 572
 573                if (cpg->eng_st == ENGINE_W_DEQUEUE)
 574                        dequeue_complete_req();
 575
 576                spin_lock_irq(&cpg->lock);
 577                if (cpg->eng_st == ENGINE_IDLE) {
 578                        backlog = crypto_get_backlog(&cpg->queue);
 579                        async_req = crypto_dequeue_request(&cpg->queue);
 580                        if (async_req) {
 581                                BUG_ON(cpg->eng_st != ENGINE_IDLE);
 582                                cpg->eng_st = ENGINE_BUSY;
 583                        }
 584                }
 585                spin_unlock_irq(&cpg->lock);
 586
 587                if (backlog) {
 588                        backlog->complete(backlog, -EINPROGRESS);
 589                        backlog = NULL;
 590                }
 591
 592                if (async_req) {
 593                        if (async_req->tfm->__crt_alg->cra_type !=
 594                            &crypto_ahash_type) {
 595                                struct ablkcipher_request *req =
 596                                    ablkcipher_request_cast(async_req);
 597                                mv_start_new_crypt_req(req);
 598                        } else {
 599                                struct ahash_request *req =
 600                                    ahash_request_cast(async_req);
 601                                mv_start_new_hash_req(req);
 602                        }
 603                        async_req = NULL;
 604                }
 605
 606                schedule();
 607
 608        } while (!kthread_should_stop());
 609        return 0;
 610}
 611
 612static int mv_handle_req(struct crypto_async_request *req)
 613{
 614        unsigned long flags;
 615        int ret;
 616
 617        spin_lock_irqsave(&cpg->lock, flags);
 618        ret = crypto_enqueue_request(&cpg->queue, req);
 619        spin_unlock_irqrestore(&cpg->lock, flags);
 620        wake_up_process(cpg->queue_th);
 621        return ret;
 622}
 623
 624static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 625{
 626        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 627
 628        req_ctx->op = COP_AES_ECB;
 629        req_ctx->decrypt = 0;
 630
 631        return mv_handle_req(&req->base);
 632}
 633
 634static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 635{
 636        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 637        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 638
 639        req_ctx->op = COP_AES_ECB;
 640        req_ctx->decrypt = 1;
 641
 642        compute_aes_dec_key(ctx);
 643        return mv_handle_req(&req->base);
 644}
 645
 646static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 647{
 648        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 649
 650        req_ctx->op = COP_AES_CBC;
 651        req_ctx->decrypt = 0;
 652
 653        return mv_handle_req(&req->base);
 654}
 655
 656static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 657{
 658        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 659        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 660
 661        req_ctx->op = COP_AES_CBC;
 662        req_ctx->decrypt = 1;
 663
 664        compute_aes_dec_key(ctx);
 665        return mv_handle_req(&req->base);
 666}
 667
 668static int mv_cra_init(struct crypto_tfm *tfm)
 669{
 670        tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 671        return 0;
 672}
 673
 674static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 675                                 int is_last, unsigned int req_len,
 676                                 int count_add)
 677{
 678        memset(ctx, 0, sizeof(*ctx));
 679        ctx->op = op;
 680        ctx->count = req_len;
 681        ctx->first_hash = 1;
 682        ctx->last_chunk = is_last;
 683        ctx->count_add = count_add;
 684}
 685
 686static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 687                                   unsigned req_len)
 688{
 689        ctx->last_chunk = is_last;
 690        ctx->count += req_len;
 691}
 692
 693static int mv_hash_init(struct ahash_request *req)
 694{
 695        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 696        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 697                             tfm_ctx->count_add);
 698        return 0;
 699}
 700
 701static int mv_hash_update(struct ahash_request *req)
 702{
 703        if (!req->nbytes)
 704                return 0;
 705
 706        mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 707        return mv_handle_req(&req->base);
 708}
 709
 710static int mv_hash_final(struct ahash_request *req)
 711{
 712        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 713
 714        mv_update_hash_req_ctx(ctx, 1, 0);
 715        return mv_handle_req(&req->base);
 716}
 717
 718static int mv_hash_finup(struct ahash_request *req)
 719{
 720        mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 721        return mv_handle_req(&req->base);
 722}
 723
 724static int mv_hash_digest(struct ahash_request *req)
 725{
 726        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 727        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 728                             req->nbytes, tfm_ctx->count_add);
 729        return mv_handle_req(&req->base);
 730}
 731
 732static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 733                             const void *ostate)
 734{
 735        const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 736        int i;
 737        for (i = 0; i < 5; i++) {
 738                ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 739                ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 740        }
 741}
 742
 743static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 744                          unsigned int keylen)
 745{
 746        int rc;
 747        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 748        int bs, ds, ss;
 749
 750        if (!ctx->base_hash)
 751                return 0;
 752
 753        rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 754        if (rc)
 755                return rc;
 756
 757        /* Can't see a way to extract the ipad/opad from the fallback tfm
 758           so I'm basically copying code from the hmac module */
 759        bs = crypto_shash_blocksize(ctx->base_hash);
 760        ds = crypto_shash_digestsize(ctx->base_hash);
 761        ss = crypto_shash_statesize(ctx->base_hash);
 762
 763        {
 764                struct {
 765                        struct shash_desc shash;
 766                        char ctx[crypto_shash_descsize(ctx->base_hash)];
 767                } desc;
 768                unsigned int i;
 769                char ipad[ss];
 770                char opad[ss];
 771
 772                desc.shash.tfm = ctx->base_hash;
 773                desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
 774                    CRYPTO_TFM_REQ_MAY_SLEEP;
 775
 776                if (keylen > bs) {
 777                        int err;
 778
 779                        err =
 780                            crypto_shash_digest(&desc.shash, key, keylen, ipad);
 781                        if (err)
 782                                return err;
 783
 784                        keylen = ds;
 785                } else
 786                        memcpy(ipad, key, keylen);
 787
 788                memset(ipad + keylen, 0, bs - keylen);
 789                memcpy(opad, ipad, bs);
 790
 791                for (i = 0; i < bs; i++) {
 792                        ipad[i] ^= 0x36;
 793                        opad[i] ^= 0x5c;
 794                }
 795
 796                rc = crypto_shash_init(&desc.shash) ? :
 797                    crypto_shash_update(&desc.shash, ipad, bs) ? :
 798                    crypto_shash_export(&desc.shash, ipad) ? :
 799                    crypto_shash_init(&desc.shash) ? :
 800                    crypto_shash_update(&desc.shash, opad, bs) ? :
 801                    crypto_shash_export(&desc.shash, opad);
 802
 803                if (rc == 0)
 804                        mv_hash_init_ivs(ctx, ipad, opad);
 805
 806                return rc;
 807        }
 808}
 809
 810static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 811                            enum hash_op op, int count_add)
 812{
 813        const char *fallback_driver_name = tfm->__crt_alg->cra_name;
 814        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 815        struct crypto_shash *fallback_tfm = NULL;
 816        struct crypto_shash *base_hash = NULL;
 817        int err = -ENOMEM;
 818
 819        ctx->op = op;
 820        ctx->count_add = count_add;
 821
 822        /* Allocate a fallback and abort if it failed. */
 823        fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 824                                          CRYPTO_ALG_NEED_FALLBACK);
 825        if (IS_ERR(fallback_tfm)) {
 826                printk(KERN_WARNING MV_CESA
 827                       "Fallback driver '%s' could not be loaded!\n",
 828                       fallback_driver_name);
 829                err = PTR_ERR(fallback_tfm);
 830                goto out;
 831        }
 832        ctx->fallback = fallback_tfm;
 833
 834        if (base_hash_name) {
 835                /* Allocate a hash to compute the ipad/opad of hmac. */
 836                base_hash = crypto_alloc_shash(base_hash_name, 0,
 837                                               CRYPTO_ALG_NEED_FALLBACK);
 838                if (IS_ERR(base_hash)) {
 839                        printk(KERN_WARNING MV_CESA
 840                               "Base driver '%s' could not be loaded!\n",
 841                               base_hash_name);
 842                        err = PTR_ERR(base_hash);
 843                        goto err_bad_base;
 844                }
 845        }
 846        ctx->base_hash = base_hash;
 847
 848        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 849                                 sizeof(struct mv_req_hash_ctx) +
 850                                 crypto_shash_descsize(ctx->fallback));
 851        return 0;
 852err_bad_base:
 853        crypto_free_shash(fallback_tfm);
 854out:
 855        return err;
 856}
 857
 858static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 859{
 860        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 861
 862        crypto_free_shash(ctx->fallback);
 863        if (ctx->base_hash)
 864                crypto_free_shash(ctx->base_hash);
 865}
 866
 867static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 868{
 869        return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 870}
 871
 872static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 873{
 874        return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 875}
 876
 877irqreturn_t crypto_int(int irq, void *priv)
 878{
 879        u32 val;
 880
 881        val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 882        if (!(val & SEC_INT_ACCEL0_DONE))
 883                return IRQ_NONE;
 884
 885        val &= ~SEC_INT_ACCEL0_DONE;
 886        writel(val, cpg->reg + FPGA_INT_STATUS);
 887        writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 888        BUG_ON(cpg->eng_st != ENGINE_BUSY);
 889        cpg->eng_st = ENGINE_W_DEQUEUE;
 890        wake_up_process(cpg->queue_th);
 891        return IRQ_HANDLED;
 892}
 893
 894struct crypto_alg mv_aes_alg_ecb = {
 895        .cra_name               = "ecb(aes)",
 896        .cra_driver_name        = "mv-ecb-aes",
 897        .cra_priority   = 300,
 898        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
 899        .cra_blocksize  = 16,
 900        .cra_ctxsize    = sizeof(struct mv_ctx),
 901        .cra_alignmask  = 0,
 902        .cra_type       = &crypto_ablkcipher_type,
 903        .cra_module     = THIS_MODULE,
 904        .cra_init       = mv_cra_init,
 905        .cra_u          = {
 906                .ablkcipher = {
 907                        .min_keysize    =       AES_MIN_KEY_SIZE,
 908                        .max_keysize    =       AES_MAX_KEY_SIZE,
 909                        .setkey         =       mv_setkey_aes,
 910                        .encrypt        =       mv_enc_aes_ecb,
 911                        .decrypt        =       mv_dec_aes_ecb,
 912                },
 913        },
 914};
 915
 916struct crypto_alg mv_aes_alg_cbc = {
 917        .cra_name               = "cbc(aes)",
 918        .cra_driver_name        = "mv-cbc-aes",
 919        .cra_priority   = 300,
 920        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
 921        .cra_blocksize  = AES_BLOCK_SIZE,
 922        .cra_ctxsize    = sizeof(struct mv_ctx),
 923        .cra_alignmask  = 0,
 924        .cra_type       = &crypto_ablkcipher_type,
 925        .cra_module     = THIS_MODULE,
 926        .cra_init       = mv_cra_init,
 927        .cra_u          = {
 928                .ablkcipher = {
 929                        .ivsize         =       AES_BLOCK_SIZE,
 930                        .min_keysize    =       AES_MIN_KEY_SIZE,
 931                        .max_keysize    =       AES_MAX_KEY_SIZE,
 932                        .setkey         =       mv_setkey_aes,
 933                        .encrypt        =       mv_enc_aes_cbc,
 934                        .decrypt        =       mv_dec_aes_cbc,
 935                },
 936        },
 937};
 938
 939struct ahash_alg mv_sha1_alg = {
 940        .init = mv_hash_init,
 941        .update = mv_hash_update,
 942        .final = mv_hash_final,
 943        .finup = mv_hash_finup,
 944        .digest = mv_hash_digest,
 945        .halg = {
 946                 .digestsize = SHA1_DIGEST_SIZE,
 947                 .base = {
 948                          .cra_name = "sha1",
 949                          .cra_driver_name = "mv-sha1",
 950                          .cra_priority = 300,
 951                          .cra_flags =
 952                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
 953                          .cra_blocksize = SHA1_BLOCK_SIZE,
 954                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 955                          .cra_init = mv_cra_hash_sha1_init,
 956                          .cra_exit = mv_cra_hash_exit,
 957                          .cra_module = THIS_MODULE,
 958                          }
 959                 }
 960};
 961
 962struct ahash_alg mv_hmac_sha1_alg = {
 963        .init = mv_hash_init,
 964        .update = mv_hash_update,
 965        .final = mv_hash_final,
 966        .finup = mv_hash_finup,
 967        .digest = mv_hash_digest,
 968        .setkey = mv_hash_setkey,
 969        .halg = {
 970                 .digestsize = SHA1_DIGEST_SIZE,
 971                 .base = {
 972                          .cra_name = "hmac(sha1)",
 973                          .cra_driver_name = "mv-hmac-sha1",
 974                          .cra_priority = 300,
 975                          .cra_flags =
 976                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
 977                          .cra_blocksize = SHA1_BLOCK_SIZE,
 978                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 979                          .cra_init = mv_cra_hash_hmac_sha1_init,
 980                          .cra_exit = mv_cra_hash_exit,
 981                          .cra_module = THIS_MODULE,
 982                          }
 983                 }
 984};
 985
 986static int mv_probe(struct platform_device *pdev)
 987{
 988        struct crypto_priv *cp;
 989        struct resource *res;
 990        int irq;
 991        int ret;
 992
 993        if (cpg) {
 994                printk(KERN_ERR MV_CESA "Second crypto dev?\n");
 995                return -EEXIST;
 996        }
 997
 998        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
 999        if (!res)
1000                return -ENXIO;
1001
1002        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1003        if (!cp)
1004                return -ENOMEM;
1005
1006        spin_lock_init(&cp->lock);
1007        crypto_init_queue(&cp->queue, 50);
1008        cp->reg = ioremap(res->start, resource_size(res));
1009        if (!cp->reg) {
1010                ret = -ENOMEM;
1011                goto err;
1012        }
1013
1014        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1015        if (!res) {
1016                ret = -ENXIO;
1017                goto err_unmap_reg;
1018        }
1019        cp->sram_size = resource_size(res);
1020        cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1021        cp->sram = ioremap(res->start, cp->sram_size);
1022        if (!cp->sram) {
1023                ret = -ENOMEM;
1024                goto err_unmap_reg;
1025        }
1026
1027        irq = platform_get_irq(pdev, 0);
1028        if (irq < 0 || irq == NO_IRQ) {
1029                ret = irq;
1030                goto err_unmap_sram;
1031        }
1032        cp->irq = irq;
1033
1034        platform_set_drvdata(pdev, cp);
1035        cpg = cp;
1036
1037        cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1038        if (IS_ERR(cp->queue_th)) {
1039                ret = PTR_ERR(cp->queue_th);
1040                goto err_unmap_sram;
1041        }
1042
1043        ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1044                        cp);
1045        if (ret)
1046                goto err_thread;
1047
1048        writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1049        writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1050        writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1051
1052        ret = crypto_register_alg(&mv_aes_alg_ecb);
1053        if (ret) {
1054                printk(KERN_WARNING MV_CESA
1055                       "Could not register aes-ecb driver\n");
1056                goto err_irq;
1057        }
1058
1059        ret = crypto_register_alg(&mv_aes_alg_cbc);
1060        if (ret) {
1061                printk(KERN_WARNING MV_CESA
1062                       "Could not register aes-cbc driver\n");
1063                goto err_unreg_ecb;
1064        }
1065
1066        ret = crypto_register_ahash(&mv_sha1_alg);
1067        if (ret == 0)
1068                cpg->has_sha1 = 1;
1069        else
1070                printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1071
1072        ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1073        if (ret == 0) {
1074                cpg->has_hmac_sha1 = 1;
1075        } else {
1076                printk(KERN_WARNING MV_CESA
1077                       "Could not register hmac-sha1 driver\n");
1078        }
1079
1080        return 0;
1081err_unreg_ecb:
1082        crypto_unregister_alg(&mv_aes_alg_ecb);
1083err_irq:
1084        free_irq(irq, cp);
1085err_thread:
1086        kthread_stop(cp->queue_th);
1087err_unmap_sram:
1088        iounmap(cp->sram);
1089err_unmap_reg:
1090        iounmap(cp->reg);
1091err:
1092        kfree(cp);
1093        cpg = NULL;
1094        platform_set_drvdata(pdev, NULL);
1095        return ret;
1096}
1097
1098static int mv_remove(struct platform_device *pdev)
1099{
1100        struct crypto_priv *cp = platform_get_drvdata(pdev);
1101
1102        crypto_unregister_alg(&mv_aes_alg_ecb);
1103        crypto_unregister_alg(&mv_aes_alg_cbc);
1104        if (cp->has_sha1)
1105                crypto_unregister_ahash(&mv_sha1_alg);
1106        if (cp->has_hmac_sha1)
1107                crypto_unregister_ahash(&mv_hmac_sha1_alg);
1108        kthread_stop(cp->queue_th);
1109        free_irq(cp->irq, cp);
1110        memset(cp->sram, 0, cp->sram_size);
1111        iounmap(cp->sram);
1112        iounmap(cp->reg);
1113        kfree(cp);
1114        cpg = NULL;
1115        return 0;
1116}
1117
1118static struct platform_driver marvell_crypto = {
1119        .probe          = mv_probe,
1120        .remove         = mv_remove,
1121        .driver         = {
1122                .owner  = THIS_MODULE,
1123                .name   = "mv_crypto",
1124        },
1125};
1126MODULE_ALIAS("platform:mv_crypto");
1127
1128static int __init mv_crypto_init(void)
1129{
1130        return platform_driver_register(&marvell_crypto);
1131}
1132module_init(mv_crypto_init);
1133
1134static void __exit mv_crypto_exit(void)
1135{
1136        platform_driver_unregister(&marvell_crypto);
1137}
1138module_exit(mv_crypto_exit);
1139
1140MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1141MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1142MODULE_LICENSE("GPL");
1143