linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45
  46#include <asm/byteorder.h>
  47#include <asm/page.h>
  48#include <asm/system.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define DESCRIPTOR_OUTPUT_MORE          0
  58#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  59#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  60#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  61#define DESCRIPTOR_STATUS               (1 << 11)
  62#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  63#define DESCRIPTOR_PING                 (1 << 7)
  64#define DESCRIPTOR_YY                   (1 << 6)
  65#define DESCRIPTOR_NO_IRQ               (0 << 4)
  66#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  67#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  68#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  69#define DESCRIPTOR_WAIT                 (3 << 0)
  70
  71struct descriptor {
  72        __le16 req_count;
  73        __le16 control;
  74        __le32 data_address;
  75        __le32 branch_address;
  76        __le16 res_count;
  77        __le16 transfer_status;
  78} __attribute__((aligned(16)));
  79
  80#define CONTROL_SET(regs)       (regs)
  81#define CONTROL_CLEAR(regs)     ((regs) + 4)
  82#define COMMAND_PTR(regs)       ((regs) + 12)
  83#define CONTEXT_MATCH(regs)     ((regs) + 16)
  84
  85#define AR_BUFFER_SIZE  (32*1024)
  86#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  87/* we need at least two pages for proper list management */
  88#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  89
  90#define MAX_ASYNC_PAYLOAD       4096
  91#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  92#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  93
  94struct ar_context {
  95        struct fw_ohci *ohci;
  96        struct page *pages[AR_BUFFERS];
  97        void *buffer;
  98        struct descriptor *descriptors;
  99        dma_addr_t descriptors_bus;
 100        void *pointer;
 101        unsigned int last_buffer_index;
 102        u32 regs;
 103        struct tasklet_struct tasklet;
 104};
 105
 106struct context;
 107
 108typedef int (*descriptor_callback_t)(struct context *ctx,
 109                                     struct descriptor *d,
 110                                     struct descriptor *last);
 111
 112/*
 113 * A buffer that contains a block of DMA-able coherent memory used for
 114 * storing a portion of a DMA descriptor program.
 115 */
 116struct descriptor_buffer {
 117        struct list_head list;
 118        dma_addr_t buffer_bus;
 119        size_t buffer_size;
 120        size_t used;
 121        struct descriptor buffer[0];
 122};
 123
 124struct context {
 125        struct fw_ohci *ohci;
 126        u32 regs;
 127        int total_allocation;
 128        bool running;
 129        bool flushing;
 130
 131        /*
 132         * List of page-sized buffers for storing DMA descriptors.
 133         * Head of list contains buffers in use and tail of list contains
 134         * free buffers.
 135         */
 136        struct list_head buffer_list;
 137
 138        /*
 139         * Pointer to a buffer inside buffer_list that contains the tail
 140         * end of the current DMA program.
 141         */
 142        struct descriptor_buffer *buffer_tail;
 143
 144        /*
 145         * The descriptor containing the branch address of the first
 146         * descriptor that has not yet been filled by the device.
 147         */
 148        struct descriptor *last;
 149
 150        /*
 151         * The last descriptor in the DMA program.  It contains the branch
 152         * address that must be updated upon appending a new descriptor.
 153         */
 154        struct descriptor *prev;
 155
 156        descriptor_callback_t callback;
 157
 158        struct tasklet_struct tasklet;
 159};
 160
 161#define IT_HEADER_SY(v)          ((v) <<  0)
 162#define IT_HEADER_TCODE(v)       ((v) <<  4)
 163#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 164#define IT_HEADER_TAG(v)         ((v) << 14)
 165#define IT_HEADER_SPEED(v)       ((v) << 16)
 166#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 167
 168struct iso_context {
 169        struct fw_iso_context base;
 170        struct context context;
 171        int excess_bytes;
 172        void *header;
 173        size_t header_length;
 174
 175        u8 sync;
 176        u8 tags;
 177};
 178
 179#define CONFIG_ROM_SIZE 1024
 180
 181struct fw_ohci {
 182        struct fw_card card;
 183
 184        __iomem char *registers;
 185        int node_id;
 186        int generation;
 187        int request_generation; /* for timestamping incoming requests */
 188        unsigned quirks;
 189        unsigned int pri_req_max;
 190        u32 bus_time;
 191        bool is_root;
 192        bool csr_state_setclear_abdicate;
 193        int n_ir;
 194        int n_it;
 195        /*
 196         * Spinlock for accessing fw_ohci data.  Never call out of
 197         * this driver with this lock held.
 198         */
 199        spinlock_t lock;
 200
 201        struct mutex phy_reg_mutex;
 202
 203        void *misc_buffer;
 204        dma_addr_t misc_buffer_bus;
 205
 206        struct ar_context ar_request_ctx;
 207        struct ar_context ar_response_ctx;
 208        struct context at_request_ctx;
 209        struct context at_response_ctx;
 210
 211        u32 it_context_support;
 212        u32 it_context_mask;     /* unoccupied IT contexts */
 213        struct iso_context *it_context_list;
 214        u64 ir_context_channels; /* unoccupied channels */
 215        u32 ir_context_support;
 216        u32 ir_context_mask;     /* unoccupied IR contexts */
 217        struct iso_context *ir_context_list;
 218        u64 mc_channels; /* channels in use by the multichannel IR context */
 219        bool mc_allocated;
 220
 221        __be32    *config_rom;
 222        dma_addr_t config_rom_bus;
 223        __be32    *next_config_rom;
 224        dma_addr_t next_config_rom_bus;
 225        __be32     next_header;
 226
 227        __le32    *self_id_cpu;
 228        dma_addr_t self_id_bus;
 229        struct tasklet_struct bus_reset_tasklet;
 230
 231        u32 self_id_buffer[512];
 232};
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236        return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 240#define IR_CONTEXT_BUFFER_FILL          0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 245
 246#define CONTEXT_RUN     0x8000
 247#define CONTEXT_WAKE    0x1000
 248#define CONTEXT_DEAD    0x0800
 249#define CONTEXT_ACTIVE  0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 254
 255#define OHCI1394_REGISTER_SIZE          0x800
 256#define OHCI1394_PCI_HCI_Control        0x40
 257#define SELF_ID_BUF_SIZE                0x800
 258#define OHCI_TCODE_PHY_PACKET           0x0e
 259#define OHCI_VERSION_1_1                0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 264#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 265#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 266#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 267
 268#define QUIRK_CYCLE_TIMER               1
 269#define QUIRK_RESET_PACKET              2
 270#define QUIRK_BE_HEADERS                4
 271#define QUIRK_NO_1394A                  8
 272#define QUIRK_NO_MSI                    16
 273
 274/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 275static const struct {
 276        unsigned short vendor, device, revision, flags;
 277} ohci_quirks[] = {
 278        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 279                QUIRK_CYCLE_TIMER},
 280
 281        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 282                QUIRK_BE_HEADERS},
 283
 284        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 285                QUIRK_NO_MSI},
 286
 287        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 288                QUIRK_NO_MSI},
 289
 290        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 291                QUIRK_CYCLE_TIMER},
 292
 293        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 294                QUIRK_NO_MSI},
 295
 296        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 297                QUIRK_CYCLE_TIMER},
 298
 299        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 300                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 301
 302        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 303                QUIRK_RESET_PACKET},
 304
 305        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 306                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 307};
 308
 309/* This overrides anything that was found in ohci_quirks[]. */
 310static int param_quirks;
 311module_param_named(quirks, param_quirks, int, 0644);
 312MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 313        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 314        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 315        ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
 316        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 317        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 318        ")");
 319
 320#define OHCI_PARAM_DEBUG_AT_AR          1
 321#define OHCI_PARAM_DEBUG_SELFIDS        2
 322#define OHCI_PARAM_DEBUG_IRQS           4
 323#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 324
 325#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
 326
 327static int param_debug;
 328module_param_named(debug, param_debug, int, 0644);
 329MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 330        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 331        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 332        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 333        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 334        ", or a combination, or all = -1)");
 335
 336static void log_irqs(u32 evt)
 337{
 338        if (likely(!(param_debug &
 339                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 340                return;
 341
 342        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 343            !(evt & OHCI1394_busReset))
 344                return;
 345
 346        fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 347            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 348            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 349            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 350            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 351            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 352            evt & OHCI1394_isochRx              ? " IR"                 : "",
 353            evt & OHCI1394_isochTx              ? " IT"                 : "",
 354            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 355            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 356            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 357            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 358            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 359            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 360            evt & OHCI1394_busReset             ? " busReset"           : "",
 361            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 362                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 363                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 364                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 365                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 366                    OHCI1394_cycleInconsistent |
 367                    OHCI1394_regAccessFail | OHCI1394_busReset)
 368                                                ? " ?"                  : "");
 369}
 370
 371static const char *speed[] = {
 372        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 373};
 374static const char *power[] = {
 375        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 376        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 377};
 378static const char port[] = { '.', '-', 'p', 'c', };
 379
 380static char _p(u32 *s, int shift)
 381{
 382        return port[*s >> shift & 3];
 383}
 384
 385static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
 386{
 387        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 388                return;
 389
 390        fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
 391                  self_id_count, generation, node_id);
 392
 393        for (; self_id_count--; ++s)
 394                if ((*s & 1 << 23) == 0)
 395                        fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
 396                            "%s gc=%d %s %s%s%s\n",
 397                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 398                            speed[*s >> 14 & 3], *s >> 16 & 63,
 399                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 400                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 401                else
 402                        fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 403                            *s, *s >> 24 & 63,
 404                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 405                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 406}
 407
 408static const char *evts[] = {
 409        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 410        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 411        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 412        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 413        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 414        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 415        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 416        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 417        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 418        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 419        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 420        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 421        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 422        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 423        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 424        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 425        [0x20] = "pending/cancelled",
 426};
 427static const char *tcodes[] = {
 428        [0x0] = "QW req",               [0x1] = "BW req",
 429        [0x2] = "W resp",               [0x3] = "-reserved-",
 430        [0x4] = "QR req",               [0x5] = "BR req",
 431        [0x6] = "QR resp",              [0x7] = "BR resp",
 432        [0x8] = "cycle start",          [0x9] = "Lk req",
 433        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 434        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 435        [0xe] = "link internal",        [0xf] = "-reserved-",
 436};
 437
 438static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
 439{
 440        int tcode = header[0] >> 4 & 0xf;
 441        char specific[12];
 442
 443        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 444                return;
 445
 446        if (unlikely(evt >= ARRAY_SIZE(evts)))
 447                        evt = 0x1f;
 448
 449        if (evt == OHCI1394_evt_bus_reset) {
 450                fw_notify("A%c evt_bus_reset, generation %d\n",
 451                    dir, (header[2] >> 16) & 0xff);
 452                return;
 453        }
 454
 455        switch (tcode) {
 456        case 0x0: case 0x6: case 0x8:
 457                snprintf(specific, sizeof(specific), " = %08x",
 458                         be32_to_cpu((__force __be32)header[3]));
 459                break;
 460        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 461                snprintf(specific, sizeof(specific), " %x,%x",
 462                         header[3] >> 16, header[3] & 0xffff);
 463                break;
 464        default:
 465                specific[0] = '\0';
 466        }
 467
 468        switch (tcode) {
 469        case 0xa:
 470                fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
 471                break;
 472        case 0xe:
 473                fw_notify("A%c %s, PHY %08x %08x\n",
 474                          dir, evts[evt], header[1], header[2]);
 475                break;
 476        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 477                fw_notify("A%c spd %x tl %02x, "
 478                    "%04x -> %04x, %s, "
 479                    "%s, %04x%08x%s\n",
 480                    dir, speed, header[0] >> 10 & 0x3f,
 481                    header[1] >> 16, header[0] >> 16, evts[evt],
 482                    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 483                break;
 484        default:
 485                fw_notify("A%c spd %x tl %02x, "
 486                    "%04x -> %04x, %s, "
 487                    "%s%s\n",
 488                    dir, speed, header[0] >> 10 & 0x3f,
 489                    header[1] >> 16, header[0] >> 16, evts[evt],
 490                    tcodes[tcode], specific);
 491        }
 492}
 493
 494#else
 495
 496#define param_debug 0
 497static inline void log_irqs(u32 evt) {}
 498static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
 499static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
 500
 501#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
 502
 503static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 504{
 505        writel(data, ohci->registers + offset);
 506}
 507
 508static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 509{
 510        return readl(ohci->registers + offset);
 511}
 512
 513static inline void flush_writes(const struct fw_ohci *ohci)
 514{
 515        /* Do a dummy read to flush writes. */
 516        reg_read(ohci, OHCI1394_Version);
 517}
 518
 519/*
 520 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 521 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 522 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 523 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 524 */
 525static int read_phy_reg(struct fw_ohci *ohci, int addr)
 526{
 527        u32 val;
 528        int i;
 529
 530        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 531        for (i = 0; i < 3 + 100; i++) {
 532                val = reg_read(ohci, OHCI1394_PhyControl);
 533                if (!~val)
 534                        return -ENODEV; /* Card was ejected. */
 535
 536                if (val & OHCI1394_PhyControl_ReadDone)
 537                        return OHCI1394_PhyControl_ReadData(val);
 538
 539                /*
 540                 * Try a few times without waiting.  Sleeping is necessary
 541                 * only when the link/PHY interface is busy.
 542                 */
 543                if (i >= 3)
 544                        msleep(1);
 545        }
 546        fw_error("failed to read phy reg\n");
 547
 548        return -EBUSY;
 549}
 550
 551static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 552{
 553        int i;
 554
 555        reg_write(ohci, OHCI1394_PhyControl,
 556                  OHCI1394_PhyControl_Write(addr, val));
 557        for (i = 0; i < 3 + 100; i++) {
 558                val = reg_read(ohci, OHCI1394_PhyControl);
 559                if (!~val)
 560                        return -ENODEV; /* Card was ejected. */
 561
 562                if (!(val & OHCI1394_PhyControl_WritePending))
 563                        return 0;
 564
 565                if (i >= 3)
 566                        msleep(1);
 567        }
 568        fw_error("failed to write phy reg\n");
 569
 570        return -EBUSY;
 571}
 572
 573static int update_phy_reg(struct fw_ohci *ohci, int addr,
 574                          int clear_bits, int set_bits)
 575{
 576        int ret = read_phy_reg(ohci, addr);
 577        if (ret < 0)
 578                return ret;
 579
 580        /*
 581         * The interrupt status bits are cleared by writing a one bit.
 582         * Avoid clearing them unless explicitly requested in set_bits.
 583         */
 584        if (addr == 5)
 585                clear_bits |= PHY_INT_STATUS_BITS;
 586
 587        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 588}
 589
 590static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 591{
 592        int ret;
 593
 594        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 595        if (ret < 0)
 596                return ret;
 597
 598        return read_phy_reg(ohci, addr);
 599}
 600
 601static int ohci_read_phy_reg(struct fw_card *card, int addr)
 602{
 603        struct fw_ohci *ohci = fw_ohci(card);
 604        int ret;
 605
 606        mutex_lock(&ohci->phy_reg_mutex);
 607        ret = read_phy_reg(ohci, addr);
 608        mutex_unlock(&ohci->phy_reg_mutex);
 609
 610        return ret;
 611}
 612
 613static int ohci_update_phy_reg(struct fw_card *card, int addr,
 614                               int clear_bits, int set_bits)
 615{
 616        struct fw_ohci *ohci = fw_ohci(card);
 617        int ret;
 618
 619        mutex_lock(&ohci->phy_reg_mutex);
 620        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 621        mutex_unlock(&ohci->phy_reg_mutex);
 622
 623        return ret;
 624}
 625
 626static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 627{
 628        return page_private(ctx->pages[i]);
 629}
 630
 631static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 632{
 633        struct descriptor *d;
 634
 635        d = &ctx->descriptors[index];
 636        d->branch_address  &= cpu_to_le32(~0xf);
 637        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 638        d->transfer_status =  0;
 639
 640        wmb(); /* finish init of new descriptors before branch_address update */
 641        d = &ctx->descriptors[ctx->last_buffer_index];
 642        d->branch_address  |= cpu_to_le32(1);
 643
 644        ctx->last_buffer_index = index;
 645
 646        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 647}
 648
 649static void ar_context_release(struct ar_context *ctx)
 650{
 651        unsigned int i;
 652
 653        if (ctx->buffer)
 654                vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 655
 656        for (i = 0; i < AR_BUFFERS; i++)
 657                if (ctx->pages[i]) {
 658                        dma_unmap_page(ctx->ohci->card.device,
 659                                       ar_buffer_bus(ctx, i),
 660                                       PAGE_SIZE, DMA_FROM_DEVICE);
 661                        __free_page(ctx->pages[i]);
 662                }
 663}
 664
 665static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 666{
 667        if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 668                reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 669                flush_writes(ctx->ohci);
 670
 671                fw_error("AR error: %s; DMA stopped\n", error_msg);
 672        }
 673        /* FIXME: restart? */
 674}
 675
 676static inline unsigned int ar_next_buffer_index(unsigned int index)
 677{
 678        return (index + 1) % AR_BUFFERS;
 679}
 680
 681static inline unsigned int ar_prev_buffer_index(unsigned int index)
 682{
 683        return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 684}
 685
 686static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 687{
 688        return ar_next_buffer_index(ctx->last_buffer_index);
 689}
 690
 691/*
 692 * We search for the buffer that contains the last AR packet DMA data written
 693 * by the controller.
 694 */
 695static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 696                                                 unsigned int *buffer_offset)
 697{
 698        unsigned int i, next_i, last = ctx->last_buffer_index;
 699        __le16 res_count, next_res_count;
 700
 701        i = ar_first_buffer_index(ctx);
 702        res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 703
 704        /* A buffer that is not yet completely filled must be the last one. */
 705        while (i != last && res_count == 0) {
 706
 707                /* Peek at the next descriptor. */
 708                next_i = ar_next_buffer_index(i);
 709                rmb(); /* read descriptors in order */
 710                next_res_count = ACCESS_ONCE(
 711                                ctx->descriptors[next_i].res_count);
 712                /*
 713                 * If the next descriptor is still empty, we must stop at this
 714                 * descriptor.
 715                 */
 716                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 717                        /*
 718                         * The exception is when the DMA data for one packet is
 719                         * split over three buffers; in this case, the middle
 720                         * buffer's descriptor might be never updated by the
 721                         * controller and look still empty, and we have to peek
 722                         * at the third one.
 723                         */
 724                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 725                                next_i = ar_next_buffer_index(next_i);
 726                                rmb();
 727                                next_res_count = ACCESS_ONCE(
 728                                        ctx->descriptors[next_i].res_count);
 729                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 730                                        goto next_buffer_is_active;
 731                        }
 732
 733                        break;
 734                }
 735
 736next_buffer_is_active:
 737                i = next_i;
 738                res_count = next_res_count;
 739        }
 740
 741        rmb(); /* read res_count before the DMA data */
 742
 743        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 744        if (*buffer_offset > PAGE_SIZE) {
 745                *buffer_offset = 0;
 746                ar_context_abort(ctx, "corrupted descriptor");
 747        }
 748
 749        return i;
 750}
 751
 752static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 753                                    unsigned int end_buffer_index,
 754                                    unsigned int end_buffer_offset)
 755{
 756        unsigned int i;
 757
 758        i = ar_first_buffer_index(ctx);
 759        while (i != end_buffer_index) {
 760                dma_sync_single_for_cpu(ctx->ohci->card.device,
 761                                        ar_buffer_bus(ctx, i),
 762                                        PAGE_SIZE, DMA_FROM_DEVICE);
 763                i = ar_next_buffer_index(i);
 764        }
 765        if (end_buffer_offset > 0)
 766                dma_sync_single_for_cpu(ctx->ohci->card.device,
 767                                        ar_buffer_bus(ctx, i),
 768                                        end_buffer_offset, DMA_FROM_DEVICE);
 769}
 770
 771#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 772#define cond_le32_to_cpu(v) \
 773        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 774#else
 775#define cond_le32_to_cpu(v) le32_to_cpu(v)
 776#endif
 777
 778static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 779{
 780        struct fw_ohci *ohci = ctx->ohci;
 781        struct fw_packet p;
 782        u32 status, length, tcode;
 783        int evt;
 784
 785        p.header[0] = cond_le32_to_cpu(buffer[0]);
 786        p.header[1] = cond_le32_to_cpu(buffer[1]);
 787        p.header[2] = cond_le32_to_cpu(buffer[2]);
 788
 789        tcode = (p.header[0] >> 4) & 0x0f;
 790        switch (tcode) {
 791        case TCODE_WRITE_QUADLET_REQUEST:
 792        case TCODE_READ_QUADLET_RESPONSE:
 793                p.header[3] = (__force __u32) buffer[3];
 794                p.header_length = 16;
 795                p.payload_length = 0;
 796                break;
 797
 798        case TCODE_READ_BLOCK_REQUEST :
 799                p.header[3] = cond_le32_to_cpu(buffer[3]);
 800                p.header_length = 16;
 801                p.payload_length = 0;
 802                break;
 803
 804        case TCODE_WRITE_BLOCK_REQUEST:
 805        case TCODE_READ_BLOCK_RESPONSE:
 806        case TCODE_LOCK_REQUEST:
 807        case TCODE_LOCK_RESPONSE:
 808                p.header[3] = cond_le32_to_cpu(buffer[3]);
 809                p.header_length = 16;
 810                p.payload_length = p.header[3] >> 16;
 811                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 812                        ar_context_abort(ctx, "invalid packet length");
 813                        return NULL;
 814                }
 815                break;
 816
 817        case TCODE_WRITE_RESPONSE:
 818        case TCODE_READ_QUADLET_REQUEST:
 819        case OHCI_TCODE_PHY_PACKET:
 820                p.header_length = 12;
 821                p.payload_length = 0;
 822                break;
 823
 824        default:
 825                ar_context_abort(ctx, "invalid tcode");
 826                return NULL;
 827        }
 828
 829        p.payload = (void *) buffer + p.header_length;
 830
 831        /* FIXME: What to do about evt_* errors? */
 832        length = (p.header_length + p.payload_length + 3) / 4;
 833        status = cond_le32_to_cpu(buffer[length]);
 834        evt    = (status >> 16) & 0x1f;
 835
 836        p.ack        = evt - 16;
 837        p.speed      = (status >> 21) & 0x7;
 838        p.timestamp  = status & 0xffff;
 839        p.generation = ohci->request_generation;
 840
 841        log_ar_at_event('R', p.speed, p.header, evt);
 842
 843        /*
 844         * Several controllers, notably from NEC and VIA, forget to
 845         * write ack_complete status at PHY packet reception.
 846         */
 847        if (evt == OHCI1394_evt_no_status &&
 848            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 849                p.ack = ACK_COMPLETE;
 850
 851        /*
 852         * The OHCI bus reset handler synthesizes a PHY packet with
 853         * the new generation number when a bus reset happens (see
 854         * section 8.4.2.3).  This helps us determine when a request
 855         * was received and make sure we send the response in the same
 856         * generation.  We only need this for requests; for responses
 857         * we use the unique tlabel for finding the matching
 858         * request.
 859         *
 860         * Alas some chips sometimes emit bus reset packets with a
 861         * wrong generation.  We set the correct generation for these
 862         * at a slightly incorrect time (in bus_reset_tasklet).
 863         */
 864        if (evt == OHCI1394_evt_bus_reset) {
 865                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 866                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 867        } else if (ctx == &ohci->ar_request_ctx) {
 868                fw_core_handle_request(&ohci->card, &p);
 869        } else {
 870                fw_core_handle_response(&ohci->card, &p);
 871        }
 872
 873        return buffer + length + 1;
 874}
 875
 876static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 877{
 878        void *next;
 879
 880        while (p < end) {
 881                next = handle_ar_packet(ctx, p);
 882                if (!next)
 883                        return p;
 884                p = next;
 885        }
 886
 887        return p;
 888}
 889
 890static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 891{
 892        unsigned int i;
 893
 894        i = ar_first_buffer_index(ctx);
 895        while (i != end_buffer) {
 896                dma_sync_single_for_device(ctx->ohci->card.device,
 897                                           ar_buffer_bus(ctx, i),
 898                                           PAGE_SIZE, DMA_FROM_DEVICE);
 899                ar_context_link_page(ctx, i);
 900                i = ar_next_buffer_index(i);
 901        }
 902}
 903
 904static void ar_context_tasklet(unsigned long data)
 905{
 906        struct ar_context *ctx = (struct ar_context *)data;
 907        unsigned int end_buffer_index, end_buffer_offset;
 908        void *p, *end;
 909
 910        p = ctx->pointer;
 911        if (!p)
 912                return;
 913
 914        end_buffer_index = ar_search_last_active_buffer(ctx,
 915                                                        &end_buffer_offset);
 916        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 917        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 918
 919        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 920                /*
 921                 * The filled part of the overall buffer wraps around; handle
 922                 * all packets up to the buffer end here.  If the last packet
 923                 * wraps around, its tail will be visible after the buffer end
 924                 * because the buffer start pages are mapped there again.
 925                 */
 926                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 927                p = handle_ar_packets(ctx, p, buffer_end);
 928                if (p < buffer_end)
 929                        goto error;
 930                /* adjust p to point back into the actual buffer */
 931                p -= AR_BUFFERS * PAGE_SIZE;
 932        }
 933
 934        p = handle_ar_packets(ctx, p, end);
 935        if (p != end) {
 936                if (p > end)
 937                        ar_context_abort(ctx, "inconsistent descriptor");
 938                goto error;
 939        }
 940
 941        ctx->pointer = p;
 942        ar_recycle_buffers(ctx, end_buffer_index);
 943
 944        return;
 945
 946error:
 947        ctx->pointer = NULL;
 948}
 949
 950static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 951                           unsigned int descriptors_offset, u32 regs)
 952{
 953        unsigned int i;
 954        dma_addr_t dma_addr;
 955        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 956        struct descriptor *d;
 957
 958        ctx->regs        = regs;
 959        ctx->ohci        = ohci;
 960        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 961
 962        for (i = 0; i < AR_BUFFERS; i++) {
 963                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 964                if (!ctx->pages[i])
 965                        goto out_of_memory;
 966                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
 967                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
 968                if (dma_mapping_error(ohci->card.device, dma_addr)) {
 969                        __free_page(ctx->pages[i]);
 970                        ctx->pages[i] = NULL;
 971                        goto out_of_memory;
 972                }
 973                set_page_private(ctx->pages[i], dma_addr);
 974        }
 975
 976        for (i = 0; i < AR_BUFFERS; i++)
 977                pages[i]              = ctx->pages[i];
 978        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
 979                pages[AR_BUFFERS + i] = ctx->pages[i];
 980        ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
 981                                 -1, PAGE_KERNEL);
 982        if (!ctx->buffer)
 983                goto out_of_memory;
 984
 985        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
 986        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
 987
 988        for (i = 0; i < AR_BUFFERS; i++) {
 989                d = &ctx->descriptors[i];
 990                d->req_count      = cpu_to_le16(PAGE_SIZE);
 991                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
 992                                                DESCRIPTOR_STATUS |
 993                                                DESCRIPTOR_BRANCH_ALWAYS);
 994                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
 995                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
 996                        ar_next_buffer_index(i) * sizeof(struct descriptor));
 997        }
 998
 999        return 0;
1000
1001out_of_memory:
1002        ar_context_release(ctx);
1003
1004        return -ENOMEM;
1005}
1006
1007static void ar_context_run(struct ar_context *ctx)
1008{
1009        unsigned int i;
1010
1011        for (i = 0; i < AR_BUFFERS; i++)
1012                ar_context_link_page(ctx, i);
1013
1014        ctx->pointer = ctx->buffer;
1015
1016        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1017        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1018}
1019
1020static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1021{
1022        __le16 branch;
1023
1024        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1025
1026        /* figure out which descriptor the branch address goes in */
1027        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1028                return d;
1029        else
1030                return d + z - 1;
1031}
1032
1033static void context_tasklet(unsigned long data)
1034{
1035        struct context *ctx = (struct context *) data;
1036        struct descriptor *d, *last;
1037        u32 address;
1038        int z;
1039        struct descriptor_buffer *desc;
1040
1041        desc = list_entry(ctx->buffer_list.next,
1042                        struct descriptor_buffer, list);
1043        last = ctx->last;
1044        while (last->branch_address != 0) {
1045                struct descriptor_buffer *old_desc = desc;
1046                address = le32_to_cpu(last->branch_address);
1047                z = address & 0xf;
1048                address &= ~0xf;
1049
1050                /* If the branch address points to a buffer outside of the
1051                 * current buffer, advance to the next buffer. */
1052                if (address < desc->buffer_bus ||
1053                                address >= desc->buffer_bus + desc->used)
1054                        desc = list_entry(desc->list.next,
1055                                        struct descriptor_buffer, list);
1056                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1057                last = find_branch_descriptor(d, z);
1058
1059                if (!ctx->callback(ctx, d, last))
1060                        break;
1061
1062                if (old_desc != desc) {
1063                        /* If we've advanced to the next buffer, move the
1064                         * previous buffer to the free list. */
1065                        unsigned long flags;
1066                        old_desc->used = 0;
1067                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1068                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1069                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1070                }
1071                ctx->last = last;
1072        }
1073}
1074
1075/*
1076 * Allocate a new buffer and add it to the list of free buffers for this
1077 * context.  Must be called with ohci->lock held.
1078 */
1079static int context_add_buffer(struct context *ctx)
1080{
1081        struct descriptor_buffer *desc;
1082        dma_addr_t uninitialized_var(bus_addr);
1083        int offset;
1084
1085        /*
1086         * 16MB of descriptors should be far more than enough for any DMA
1087         * program.  This will catch run-away userspace or DoS attacks.
1088         */
1089        if (ctx->total_allocation >= 16*1024*1024)
1090                return -ENOMEM;
1091
1092        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1093                        &bus_addr, GFP_ATOMIC);
1094        if (!desc)
1095                return -ENOMEM;
1096
1097        offset = (void *)&desc->buffer - (void *)desc;
1098        desc->buffer_size = PAGE_SIZE - offset;
1099        desc->buffer_bus = bus_addr + offset;
1100        desc->used = 0;
1101
1102        list_add_tail(&desc->list, &ctx->buffer_list);
1103        ctx->total_allocation += PAGE_SIZE;
1104
1105        return 0;
1106}
1107
1108static int context_init(struct context *ctx, struct fw_ohci *ohci,
1109                        u32 regs, descriptor_callback_t callback)
1110{
1111        ctx->ohci = ohci;
1112        ctx->regs = regs;
1113        ctx->total_allocation = 0;
1114
1115        INIT_LIST_HEAD(&ctx->buffer_list);
1116        if (context_add_buffer(ctx) < 0)
1117                return -ENOMEM;
1118
1119        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1120                        struct descriptor_buffer, list);
1121
1122        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1123        ctx->callback = callback;
1124
1125        /*
1126         * We put a dummy descriptor in the buffer that has a NULL
1127         * branch address and looks like it's been sent.  That way we
1128         * have a descriptor to append DMA programs to.
1129         */
1130        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1131        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1132        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1133        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1134        ctx->last = ctx->buffer_tail->buffer;
1135        ctx->prev = ctx->buffer_tail->buffer;
1136
1137        return 0;
1138}
1139
1140static void context_release(struct context *ctx)
1141{
1142        struct fw_card *card = &ctx->ohci->card;
1143        struct descriptor_buffer *desc, *tmp;
1144
1145        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1146                dma_free_coherent(card->device, PAGE_SIZE, desc,
1147                        desc->buffer_bus -
1148                        ((void *)&desc->buffer - (void *)desc));
1149}
1150
1151/* Must be called with ohci->lock held */
1152static struct descriptor *context_get_descriptors(struct context *ctx,
1153                                                  int z, dma_addr_t *d_bus)
1154{
1155        struct descriptor *d = NULL;
1156        struct descriptor_buffer *desc = ctx->buffer_tail;
1157
1158        if (z * sizeof(*d) > desc->buffer_size)
1159                return NULL;
1160
1161        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1162                /* No room for the descriptor in this buffer, so advance to the
1163                 * next one. */
1164
1165                if (desc->list.next == &ctx->buffer_list) {
1166                        /* If there is no free buffer next in the list,
1167                         * allocate one. */
1168                        if (context_add_buffer(ctx) < 0)
1169                                return NULL;
1170                }
1171                desc = list_entry(desc->list.next,
1172                                struct descriptor_buffer, list);
1173                ctx->buffer_tail = desc;
1174        }
1175
1176        d = desc->buffer + desc->used / sizeof(*d);
1177        memset(d, 0, z * sizeof(*d));
1178        *d_bus = desc->buffer_bus + desc->used;
1179
1180        return d;
1181}
1182
1183static void context_run(struct context *ctx, u32 extra)
1184{
1185        struct fw_ohci *ohci = ctx->ohci;
1186
1187        reg_write(ohci, COMMAND_PTR(ctx->regs),
1188                  le32_to_cpu(ctx->last->branch_address));
1189        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1190        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1191        ctx->running = true;
1192        flush_writes(ohci);
1193}
1194
1195static void context_append(struct context *ctx,
1196                           struct descriptor *d, int z, int extra)
1197{
1198        dma_addr_t d_bus;
1199        struct descriptor_buffer *desc = ctx->buffer_tail;
1200
1201        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1202
1203        desc->used += (z + extra) * sizeof(*d);
1204
1205        wmb(); /* finish init of new descriptors before branch_address update */
1206        ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1207        ctx->prev = find_branch_descriptor(d, z);
1208}
1209
1210static void context_stop(struct context *ctx)
1211{
1212        u32 reg;
1213        int i;
1214
1215        reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1216        ctx->running = false;
1217
1218        for (i = 0; i < 1000; i++) {
1219                reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1220                if ((reg & CONTEXT_ACTIVE) == 0)
1221                        return;
1222
1223                if (i)
1224                        udelay(10);
1225        }
1226        fw_error("Error: DMA context still active (0x%08x)\n", reg);
1227}
1228
1229struct driver_data {
1230        u8 inline_data[8];
1231        struct fw_packet *packet;
1232};
1233
1234/*
1235 * This function apppends a packet to the DMA queue for transmission.
1236 * Must always be called with the ochi->lock held to ensure proper
1237 * generation handling and locking around packet queue manipulation.
1238 */
1239static int at_context_queue_packet(struct context *ctx,
1240                                   struct fw_packet *packet)
1241{
1242        struct fw_ohci *ohci = ctx->ohci;
1243        dma_addr_t d_bus, uninitialized_var(payload_bus);
1244        struct driver_data *driver_data;
1245        struct descriptor *d, *last;
1246        __le32 *header;
1247        int z, tcode;
1248
1249        d = context_get_descriptors(ctx, 4, &d_bus);
1250        if (d == NULL) {
1251                packet->ack = RCODE_SEND_ERROR;
1252                return -1;
1253        }
1254
1255        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1256        d[0].res_count = cpu_to_le16(packet->timestamp);
1257
1258        /*
1259         * The DMA format for asyncronous link packets is different
1260         * from the IEEE1394 layout, so shift the fields around
1261         * accordingly.
1262         */
1263
1264        tcode = (packet->header[0] >> 4) & 0x0f;
1265        header = (__le32 *) &d[1];
1266        switch (tcode) {
1267        case TCODE_WRITE_QUADLET_REQUEST:
1268        case TCODE_WRITE_BLOCK_REQUEST:
1269        case TCODE_WRITE_RESPONSE:
1270        case TCODE_READ_QUADLET_REQUEST:
1271        case TCODE_READ_BLOCK_REQUEST:
1272        case TCODE_READ_QUADLET_RESPONSE:
1273        case TCODE_READ_BLOCK_RESPONSE:
1274        case TCODE_LOCK_REQUEST:
1275        case TCODE_LOCK_RESPONSE:
1276                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1277                                        (packet->speed << 16));
1278                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1279                                        (packet->header[0] & 0xffff0000));
1280                header[2] = cpu_to_le32(packet->header[2]);
1281
1282                if (TCODE_IS_BLOCK_PACKET(tcode))
1283                        header[3] = cpu_to_le32(packet->header[3]);
1284                else
1285                        header[3] = (__force __le32) packet->header[3];
1286
1287                d[0].req_count = cpu_to_le16(packet->header_length);
1288                break;
1289
1290        case TCODE_LINK_INTERNAL:
1291                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1292                                        (packet->speed << 16));
1293                header[1] = cpu_to_le32(packet->header[1]);
1294                header[2] = cpu_to_le32(packet->header[2]);
1295                d[0].req_count = cpu_to_le16(12);
1296
1297                if (is_ping_packet(&packet->header[1]))
1298                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1299                break;
1300
1301        case TCODE_STREAM_DATA:
1302                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1303                                        (packet->speed << 16));
1304                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1305                d[0].req_count = cpu_to_le16(8);
1306                break;
1307
1308        default:
1309                /* BUG(); */
1310                packet->ack = RCODE_SEND_ERROR;
1311                return -1;
1312        }
1313
1314        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1315        driver_data = (struct driver_data *) &d[3];
1316        driver_data->packet = packet;
1317        packet->driver_data = driver_data;
1318
1319        if (packet->payload_length > 0) {
1320                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1321                        payload_bus = dma_map_single(ohci->card.device,
1322                                                     packet->payload,
1323                                                     packet->payload_length,
1324                                                     DMA_TO_DEVICE);
1325                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1326                                packet->ack = RCODE_SEND_ERROR;
1327                                return -1;
1328                        }
1329                        packet->payload_bus     = payload_bus;
1330                        packet->payload_mapped  = true;
1331                } else {
1332                        memcpy(driver_data->inline_data, packet->payload,
1333                               packet->payload_length);
1334                        payload_bus = d_bus + 3 * sizeof(*d);
1335                }
1336
1337                d[2].req_count    = cpu_to_le16(packet->payload_length);
1338                d[2].data_address = cpu_to_le32(payload_bus);
1339                last = &d[2];
1340                z = 3;
1341        } else {
1342                last = &d[0];
1343                z = 2;
1344        }
1345
1346        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1347                                     DESCRIPTOR_IRQ_ALWAYS |
1348                                     DESCRIPTOR_BRANCH_ALWAYS);
1349
1350        /* FIXME: Document how the locking works. */
1351        if (ohci->generation != packet->generation) {
1352                if (packet->payload_mapped)
1353                        dma_unmap_single(ohci->card.device, payload_bus,
1354                                         packet->payload_length, DMA_TO_DEVICE);
1355                packet->ack = RCODE_GENERATION;
1356                return -1;
1357        }
1358
1359        context_append(ctx, d, z, 4 - z);
1360
1361        if (ctx->running)
1362                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1363        else
1364                context_run(ctx, 0);
1365
1366        return 0;
1367}
1368
1369static void at_context_flush(struct context *ctx)
1370{
1371        tasklet_disable(&ctx->tasklet);
1372
1373        ctx->flushing = true;
1374        context_tasklet((unsigned long)ctx);
1375        ctx->flushing = false;
1376
1377        tasklet_enable(&ctx->tasklet);
1378}
1379
1380static int handle_at_packet(struct context *context,
1381                            struct descriptor *d,
1382                            struct descriptor *last)
1383{
1384        struct driver_data *driver_data;
1385        struct fw_packet *packet;
1386        struct fw_ohci *ohci = context->ohci;
1387        int evt;
1388
1389        if (last->transfer_status == 0 && !context->flushing)
1390                /* This descriptor isn't done yet, stop iteration. */
1391                return 0;
1392
1393        driver_data = (struct driver_data *) &d[3];
1394        packet = driver_data->packet;
1395        if (packet == NULL)
1396                /* This packet was cancelled, just continue. */
1397                return 1;
1398
1399        if (packet->payload_mapped)
1400                dma_unmap_single(ohci->card.device, packet->payload_bus,
1401                                 packet->payload_length, DMA_TO_DEVICE);
1402
1403        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1404        packet->timestamp = le16_to_cpu(last->res_count);
1405
1406        log_ar_at_event('T', packet->speed, packet->header, evt);
1407
1408        switch (evt) {
1409        case OHCI1394_evt_timeout:
1410                /* Async response transmit timed out. */
1411                packet->ack = RCODE_CANCELLED;
1412                break;
1413
1414        case OHCI1394_evt_flushed:
1415                /*
1416                 * The packet was flushed should give same error as
1417                 * when we try to use a stale generation count.
1418                 */
1419                packet->ack = RCODE_GENERATION;
1420                break;
1421
1422        case OHCI1394_evt_missing_ack:
1423                if (context->flushing)
1424                        packet->ack = RCODE_GENERATION;
1425                else {
1426                        /*
1427                         * Using a valid (current) generation count, but the
1428                         * node is not on the bus or not sending acks.
1429                         */
1430                        packet->ack = RCODE_NO_ACK;
1431                }
1432                break;
1433
1434        case ACK_COMPLETE + 0x10:
1435        case ACK_PENDING + 0x10:
1436        case ACK_BUSY_X + 0x10:
1437        case ACK_BUSY_A + 0x10:
1438        case ACK_BUSY_B + 0x10:
1439        case ACK_DATA_ERROR + 0x10:
1440        case ACK_TYPE_ERROR + 0x10:
1441                packet->ack = evt - 0x10;
1442                break;
1443
1444        case OHCI1394_evt_no_status:
1445                if (context->flushing) {
1446                        packet->ack = RCODE_GENERATION;
1447                        break;
1448                }
1449                /* fall through */
1450
1451        default:
1452                packet->ack = RCODE_SEND_ERROR;
1453                break;
1454        }
1455
1456        packet->callback(packet, &ohci->card, packet->ack);
1457
1458        return 1;
1459}
1460
1461#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1462#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1463#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1464#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1465#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1466
1467static void handle_local_rom(struct fw_ohci *ohci,
1468                             struct fw_packet *packet, u32 csr)
1469{
1470        struct fw_packet response;
1471        int tcode, length, i;
1472
1473        tcode = HEADER_GET_TCODE(packet->header[0]);
1474        if (TCODE_IS_BLOCK_PACKET(tcode))
1475                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1476        else
1477                length = 4;
1478
1479        i = csr - CSR_CONFIG_ROM;
1480        if (i + length > CONFIG_ROM_SIZE) {
1481                fw_fill_response(&response, packet->header,
1482                                 RCODE_ADDRESS_ERROR, NULL, 0);
1483        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1484                fw_fill_response(&response, packet->header,
1485                                 RCODE_TYPE_ERROR, NULL, 0);
1486        } else {
1487                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1488                                 (void *) ohci->config_rom + i, length);
1489        }
1490
1491        fw_core_handle_response(&ohci->card, &response);
1492}
1493
1494static void handle_local_lock(struct fw_ohci *ohci,
1495                              struct fw_packet *packet, u32 csr)
1496{
1497        struct fw_packet response;
1498        int tcode, length, ext_tcode, sel, try;
1499        __be32 *payload, lock_old;
1500        u32 lock_arg, lock_data;
1501
1502        tcode = HEADER_GET_TCODE(packet->header[0]);
1503        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1504        payload = packet->payload;
1505        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1506
1507        if (tcode == TCODE_LOCK_REQUEST &&
1508            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1509                lock_arg = be32_to_cpu(payload[0]);
1510                lock_data = be32_to_cpu(payload[1]);
1511        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1512                lock_arg = 0;
1513                lock_data = 0;
1514        } else {
1515                fw_fill_response(&response, packet->header,
1516                                 RCODE_TYPE_ERROR, NULL, 0);
1517                goto out;
1518        }
1519
1520        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1521        reg_write(ohci, OHCI1394_CSRData, lock_data);
1522        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1523        reg_write(ohci, OHCI1394_CSRControl, sel);
1524
1525        for (try = 0; try < 20; try++)
1526                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1527                        lock_old = cpu_to_be32(reg_read(ohci,
1528                                                        OHCI1394_CSRData));
1529                        fw_fill_response(&response, packet->header,
1530                                         RCODE_COMPLETE,
1531                                         &lock_old, sizeof(lock_old));
1532                        goto out;
1533                }
1534
1535        fw_error("swap not done (CSR lock timeout)\n");
1536        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1537
1538 out:
1539        fw_core_handle_response(&ohci->card, &response);
1540}
1541
1542static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1543{
1544        u64 offset, csr;
1545
1546        if (ctx == &ctx->ohci->at_request_ctx) {
1547                packet->ack = ACK_PENDING;
1548                packet->callback(packet, &ctx->ohci->card, packet->ack);
1549        }
1550
1551        offset =
1552                ((unsigned long long)
1553                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1554                packet->header[2];
1555        csr = offset - CSR_REGISTER_BASE;
1556
1557        /* Handle config rom reads. */
1558        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1559                handle_local_rom(ctx->ohci, packet, csr);
1560        else switch (csr) {
1561        case CSR_BUS_MANAGER_ID:
1562        case CSR_BANDWIDTH_AVAILABLE:
1563        case CSR_CHANNELS_AVAILABLE_HI:
1564        case CSR_CHANNELS_AVAILABLE_LO:
1565                handle_local_lock(ctx->ohci, packet, csr);
1566                break;
1567        default:
1568                if (ctx == &ctx->ohci->at_request_ctx)
1569                        fw_core_handle_request(&ctx->ohci->card, packet);
1570                else
1571                        fw_core_handle_response(&ctx->ohci->card, packet);
1572                break;
1573        }
1574
1575        if (ctx == &ctx->ohci->at_response_ctx) {
1576                packet->ack = ACK_COMPLETE;
1577                packet->callback(packet, &ctx->ohci->card, packet->ack);
1578        }
1579}
1580
1581static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1582{
1583        unsigned long flags;
1584        int ret;
1585
1586        spin_lock_irqsave(&ctx->ohci->lock, flags);
1587
1588        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1589            ctx->ohci->generation == packet->generation) {
1590                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1591                handle_local_request(ctx, packet);
1592                return;
1593        }
1594
1595        ret = at_context_queue_packet(ctx, packet);
1596        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1597
1598        if (ret < 0)
1599                packet->callback(packet, &ctx->ohci->card, packet->ack);
1600
1601}
1602
1603static void detect_dead_context(struct fw_ohci *ohci,
1604                                const char *name, unsigned int regs)
1605{
1606        u32 ctl;
1607
1608        ctl = reg_read(ohci, CONTROL_SET(regs));
1609        if (ctl & CONTEXT_DEAD) {
1610#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1611                fw_error("DMA context %s has stopped, error code: %s\n",
1612                         name, evts[ctl & 0x1f]);
1613#else
1614                fw_error("DMA context %s has stopped, error code: %#x\n",
1615                         name, ctl & 0x1f);
1616#endif
1617        }
1618}
1619
1620static void handle_dead_contexts(struct fw_ohci *ohci)
1621{
1622        unsigned int i;
1623        char name[8];
1624
1625        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1626        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1627        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1628        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1629        for (i = 0; i < 32; ++i) {
1630                if (!(ohci->it_context_support & (1 << i)))
1631                        continue;
1632                sprintf(name, "IT%u", i);
1633                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1634        }
1635        for (i = 0; i < 32; ++i) {
1636                if (!(ohci->ir_context_support & (1 << i)))
1637                        continue;
1638                sprintf(name, "IR%u", i);
1639                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1640        }
1641        /* TODO: maybe try to flush and restart the dead contexts */
1642}
1643
1644static u32 cycle_timer_ticks(u32 cycle_timer)
1645{
1646        u32 ticks;
1647
1648        ticks = cycle_timer & 0xfff;
1649        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1650        ticks += (3072 * 8000) * (cycle_timer >> 25);
1651
1652        return ticks;
1653}
1654
1655/*
1656 * Some controllers exhibit one or more of the following bugs when updating the
1657 * iso cycle timer register:
1658 *  - When the lowest six bits are wrapping around to zero, a read that happens
1659 *    at the same time will return garbage in the lowest ten bits.
1660 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1661 *    not incremented for about 60 ns.
1662 *  - Occasionally, the entire register reads zero.
1663 *
1664 * To catch these, we read the register three times and ensure that the
1665 * difference between each two consecutive reads is approximately the same, i.e.
1666 * less than twice the other.  Furthermore, any negative difference indicates an
1667 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1668 * execute, so we have enough precision to compute the ratio of the differences.)
1669 */
1670static u32 get_cycle_time(struct fw_ohci *ohci)
1671{
1672        u32 c0, c1, c2;
1673        u32 t0, t1, t2;
1674        s32 diff01, diff12;
1675        int i;
1676
1677        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1678
1679        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1680                i = 0;
1681                c1 = c2;
1682                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1683                do {
1684                        c0 = c1;
1685                        c1 = c2;
1686                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1687                        t0 = cycle_timer_ticks(c0);
1688                        t1 = cycle_timer_ticks(c1);
1689                        t2 = cycle_timer_ticks(c2);
1690                        diff01 = t1 - t0;
1691                        diff12 = t2 - t1;
1692                } while ((diff01 <= 0 || diff12 <= 0 ||
1693                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1694                         && i++ < 20);
1695        }
1696
1697        return c2;
1698}
1699
1700/*
1701 * This function has to be called at least every 64 seconds.  The bus_time
1702 * field stores not only the upper 25 bits of the BUS_TIME register but also
1703 * the most significant bit of the cycle timer in bit 6 so that we can detect
1704 * changes in this bit.
1705 */
1706static u32 update_bus_time(struct fw_ohci *ohci)
1707{
1708        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1709
1710        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1711                ohci->bus_time += 0x40;
1712
1713        return ohci->bus_time | cycle_time_seconds;
1714}
1715
1716static void bus_reset_tasklet(unsigned long data)
1717{
1718        struct fw_ohci *ohci = (struct fw_ohci *)data;
1719        int self_id_count, i, j, reg;
1720        int generation, new_generation;
1721        unsigned long flags;
1722        void *free_rom = NULL;
1723        dma_addr_t free_rom_bus = 0;
1724        bool is_new_root;
1725
1726        reg = reg_read(ohci, OHCI1394_NodeID);
1727        if (!(reg & OHCI1394_NodeID_idValid)) {
1728                fw_notify("node ID not valid, new bus reset in progress\n");
1729                return;
1730        }
1731        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1732                fw_notify("malconfigured bus\n");
1733                return;
1734        }
1735        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1736                               OHCI1394_NodeID_nodeNumber);
1737
1738        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1739        if (!(ohci->is_root && is_new_root))
1740                reg_write(ohci, OHCI1394_LinkControlSet,
1741                          OHCI1394_LinkControl_cycleMaster);
1742        ohci->is_root = is_new_root;
1743
1744        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1745        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1746                fw_notify("inconsistent self IDs\n");
1747                return;
1748        }
1749        /*
1750         * The count in the SelfIDCount register is the number of
1751         * bytes in the self ID receive buffer.  Since we also receive
1752         * the inverted quadlets and a header quadlet, we shift one
1753         * bit extra to get the actual number of self IDs.
1754         */
1755        self_id_count = (reg >> 3) & 0xff;
1756        if (self_id_count == 0 || self_id_count > 252) {
1757                fw_notify("inconsistent self IDs\n");
1758                return;
1759        }
1760        generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1761        rmb();
1762
1763        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1764                if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1765                        fw_notify("inconsistent self IDs\n");
1766                        return;
1767                }
1768                ohci->self_id_buffer[j] =
1769                                cond_le32_to_cpu(ohci->self_id_cpu[i]);
1770        }
1771        rmb();
1772
1773        /*
1774         * Check the consistency of the self IDs we just read.  The
1775         * problem we face is that a new bus reset can start while we
1776         * read out the self IDs from the DMA buffer. If this happens,
1777         * the DMA buffer will be overwritten with new self IDs and we
1778         * will read out inconsistent data.  The OHCI specification
1779         * (section 11.2) recommends a technique similar to
1780         * linux/seqlock.h, where we remember the generation of the
1781         * self IDs in the buffer before reading them out and compare
1782         * it to the current generation after reading them out.  If
1783         * the two generations match we know we have a consistent set
1784         * of self IDs.
1785         */
1786
1787        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1788        if (new_generation != generation) {
1789                fw_notify("recursive bus reset detected, "
1790                          "discarding self ids\n");
1791                return;
1792        }
1793
1794        /* FIXME: Document how the locking works. */
1795        spin_lock_irqsave(&ohci->lock, flags);
1796
1797        ohci->generation = -1; /* prevent AT packet queueing */
1798        context_stop(&ohci->at_request_ctx);
1799        context_stop(&ohci->at_response_ctx);
1800
1801        spin_unlock_irqrestore(&ohci->lock, flags);
1802
1803        /*
1804         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1805         * packets in the AT queues and software needs to drain them.
1806         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1807         */
1808        at_context_flush(&ohci->at_request_ctx);
1809        at_context_flush(&ohci->at_response_ctx);
1810
1811        spin_lock_irqsave(&ohci->lock, flags);
1812
1813        ohci->generation = generation;
1814        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1815
1816        if (ohci->quirks & QUIRK_RESET_PACKET)
1817                ohci->request_generation = generation;
1818
1819        /*
1820         * This next bit is unrelated to the AT context stuff but we
1821         * have to do it under the spinlock also.  If a new config rom
1822         * was set up before this reset, the old one is now no longer
1823         * in use and we can free it. Update the config rom pointers
1824         * to point to the current config rom and clear the
1825         * next_config_rom pointer so a new update can take place.
1826         */
1827
1828        if (ohci->next_config_rom != NULL) {
1829                if (ohci->next_config_rom != ohci->config_rom) {
1830                        free_rom      = ohci->config_rom;
1831                        free_rom_bus  = ohci->config_rom_bus;
1832                }
1833                ohci->config_rom      = ohci->next_config_rom;
1834                ohci->config_rom_bus  = ohci->next_config_rom_bus;
1835                ohci->next_config_rom = NULL;
1836
1837                /*
1838                 * Restore config_rom image and manually update
1839                 * config_rom registers.  Writing the header quadlet
1840                 * will indicate that the config rom is ready, so we
1841                 * do that last.
1842                 */
1843                reg_write(ohci, OHCI1394_BusOptions,
1844                          be32_to_cpu(ohci->config_rom[2]));
1845                ohci->config_rom[0] = ohci->next_header;
1846                reg_write(ohci, OHCI1394_ConfigROMhdr,
1847                          be32_to_cpu(ohci->next_header));
1848        }
1849
1850#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1851        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1852        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1853#endif
1854
1855        spin_unlock_irqrestore(&ohci->lock, flags);
1856
1857        if (free_rom)
1858                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1859                                  free_rom, free_rom_bus);
1860
1861        log_selfids(ohci->node_id, generation,
1862                    self_id_count, ohci->self_id_buffer);
1863
1864        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1865                                 self_id_count, ohci->self_id_buffer,
1866                                 ohci->csr_state_setclear_abdicate);
1867        ohci->csr_state_setclear_abdicate = false;
1868}
1869
1870static irqreturn_t irq_handler(int irq, void *data)
1871{
1872        struct fw_ohci *ohci = data;
1873        u32 event, iso_event;
1874        int i;
1875
1876        event = reg_read(ohci, OHCI1394_IntEventClear);
1877
1878        if (!event || !~event)
1879                return IRQ_NONE;
1880
1881        /*
1882         * busReset and postedWriteErr must not be cleared yet
1883         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1884         */
1885        reg_write(ohci, OHCI1394_IntEventClear,
1886                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1887        log_irqs(event);
1888
1889        if (event & OHCI1394_selfIDComplete)
1890                tasklet_schedule(&ohci->bus_reset_tasklet);
1891
1892        if (event & OHCI1394_RQPkt)
1893                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1894
1895        if (event & OHCI1394_RSPkt)
1896                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1897
1898        if (event & OHCI1394_reqTxComplete)
1899                tasklet_schedule(&ohci->at_request_ctx.tasklet);
1900
1901        if (event & OHCI1394_respTxComplete)
1902                tasklet_schedule(&ohci->at_response_ctx.tasklet);
1903
1904        if (event & OHCI1394_isochRx) {
1905                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1906                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1907
1908                while (iso_event) {
1909                        i = ffs(iso_event) - 1;
1910                        tasklet_schedule(
1911                                &ohci->ir_context_list[i].context.tasklet);
1912                        iso_event &= ~(1 << i);
1913                }
1914        }
1915
1916        if (event & OHCI1394_isochTx) {
1917                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1918                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1919
1920                while (iso_event) {
1921                        i = ffs(iso_event) - 1;
1922                        tasklet_schedule(
1923                                &ohci->it_context_list[i].context.tasklet);
1924                        iso_event &= ~(1 << i);
1925                }
1926        }
1927
1928        if (unlikely(event & OHCI1394_regAccessFail))
1929                fw_error("Register access failure - "
1930                         "please notify linux1394-devel@lists.sf.net\n");
1931
1932        if (unlikely(event & OHCI1394_postedWriteErr)) {
1933                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1934                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1935                reg_write(ohci, OHCI1394_IntEventClear,
1936                          OHCI1394_postedWriteErr);
1937                fw_error("PCI posted write error\n");
1938        }
1939
1940        if (unlikely(event & OHCI1394_cycleTooLong)) {
1941                if (printk_ratelimit())
1942                        fw_notify("isochronous cycle too long\n");
1943                reg_write(ohci, OHCI1394_LinkControlSet,
1944                          OHCI1394_LinkControl_cycleMaster);
1945        }
1946
1947        if (unlikely(event & OHCI1394_cycleInconsistent)) {
1948                /*
1949                 * We need to clear this event bit in order to make
1950                 * cycleMatch isochronous I/O work.  In theory we should
1951                 * stop active cycleMatch iso contexts now and restart
1952                 * them at least two cycles later.  (FIXME?)
1953                 */
1954                if (printk_ratelimit())
1955                        fw_notify("isochronous cycle inconsistent\n");
1956        }
1957
1958        if (unlikely(event & OHCI1394_unrecoverableError))
1959                handle_dead_contexts(ohci);
1960
1961        if (event & OHCI1394_cycle64Seconds) {
1962                spin_lock(&ohci->lock);
1963                update_bus_time(ohci);
1964                spin_unlock(&ohci->lock);
1965        } else
1966                flush_writes(ohci);
1967
1968        return IRQ_HANDLED;
1969}
1970
1971static int software_reset(struct fw_ohci *ohci)
1972{
1973        u32 val;
1974        int i;
1975
1976        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1977        for (i = 0; i < 500; i++) {
1978                val = reg_read(ohci, OHCI1394_HCControlSet);
1979                if (!~val)
1980                        return -ENODEV; /* Card was ejected. */
1981
1982                if (!(val & OHCI1394_HCControl_softReset))
1983                        return 0;
1984
1985                msleep(1);
1986        }
1987
1988        return -EBUSY;
1989}
1990
1991static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1992{
1993        size_t size = length * 4;
1994
1995        memcpy(dest, src, size);
1996        if (size < CONFIG_ROM_SIZE)
1997                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1998}
1999
2000static int configure_1394a_enhancements(struct fw_ohci *ohci)
2001{
2002        bool enable_1394a;
2003        int ret, clear, set, offset;
2004
2005        /* Check if the driver should configure link and PHY. */
2006        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2007              OHCI1394_HCControl_programPhyEnable))
2008                return 0;
2009
2010        /* Paranoia: check whether the PHY supports 1394a, too. */
2011        enable_1394a = false;
2012        ret = read_phy_reg(ohci, 2);
2013        if (ret < 0)
2014                return ret;
2015        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2016                ret = read_paged_phy_reg(ohci, 1, 8);
2017                if (ret < 0)
2018                        return ret;
2019                if (ret >= 1)
2020                        enable_1394a = true;
2021        }
2022
2023        if (ohci->quirks & QUIRK_NO_1394A)
2024                enable_1394a = false;
2025
2026        /* Configure PHY and link consistently. */
2027        if (enable_1394a) {
2028                clear = 0;
2029                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2030        } else {
2031                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2032                set = 0;
2033        }
2034        ret = update_phy_reg(ohci, 5, clear, set);
2035        if (ret < 0)
2036                return ret;
2037
2038        if (enable_1394a)
2039                offset = OHCI1394_HCControlSet;
2040        else
2041                offset = OHCI1394_HCControlClear;
2042        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2043
2044        /* Clean up: configuration has been taken care of. */
2045        reg_write(ohci, OHCI1394_HCControlClear,
2046                  OHCI1394_HCControl_programPhyEnable);
2047
2048        return 0;
2049}
2050
2051static int ohci_enable(struct fw_card *card,
2052                       const __be32 *config_rom, size_t length)
2053{
2054        struct fw_ohci *ohci = fw_ohci(card);
2055        struct pci_dev *dev = to_pci_dev(card->device);
2056        u32 lps, seconds, version, irqs;
2057        int i, ret;
2058
2059        if (software_reset(ohci)) {
2060                fw_error("Failed to reset ohci card.\n");
2061                return -EBUSY;
2062        }
2063
2064        /*
2065         * Now enable LPS, which we need in order to start accessing
2066         * most of the registers.  In fact, on some cards (ALI M5251),
2067         * accessing registers in the SClk domain without LPS enabled
2068         * will lock up the machine.  Wait 50msec to make sure we have
2069         * full link enabled.  However, with some cards (well, at least
2070         * a JMicron PCIe card), we have to try again sometimes.
2071         */
2072        reg_write(ohci, OHCI1394_HCControlSet,
2073                  OHCI1394_HCControl_LPS |
2074                  OHCI1394_HCControl_postedWriteEnable);
2075        flush_writes(ohci);
2076
2077        for (lps = 0, i = 0; !lps && i < 3; i++) {
2078                msleep(50);
2079                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2080                      OHCI1394_HCControl_LPS;
2081        }
2082
2083        if (!lps) {
2084                fw_error("Failed to set Link Power Status\n");
2085                return -EIO;
2086        }
2087
2088        reg_write(ohci, OHCI1394_HCControlClear,
2089                  OHCI1394_HCControl_noByteSwapData);
2090
2091        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2092        reg_write(ohci, OHCI1394_LinkControlSet,
2093                  OHCI1394_LinkControl_cycleTimerEnable |
2094                  OHCI1394_LinkControl_cycleMaster);
2095
2096        reg_write(ohci, OHCI1394_ATRetries,
2097                  OHCI1394_MAX_AT_REQ_RETRIES |
2098                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2099                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2100                  (200 << 16));
2101
2102        seconds = lower_32_bits(get_seconds());
2103        reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2104        ohci->bus_time = seconds & ~0x3f;
2105
2106        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2107        if (version >= OHCI_VERSION_1_1) {
2108                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2109                          0xfffffffe);
2110                card->broadcast_channel_auto_allocated = true;
2111        }
2112
2113        /* Get implemented bits of the priority arbitration request counter. */
2114        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2115        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2116        reg_write(ohci, OHCI1394_FairnessControl, 0);
2117        card->priority_budget_implemented = ohci->pri_req_max != 0;
2118
2119        reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2120        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2121        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2122
2123        ret = configure_1394a_enhancements(ohci);
2124        if (ret < 0)
2125                return ret;
2126
2127        /* Activate link_on bit and contender bit in our self ID packets.*/
2128        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2129        if (ret < 0)
2130                return ret;
2131
2132        /*
2133         * When the link is not yet enabled, the atomic config rom
2134         * update mechanism described below in ohci_set_config_rom()
2135         * is not active.  We have to update ConfigRomHeader and
2136         * BusOptions manually, and the write to ConfigROMmap takes
2137         * effect immediately.  We tie this to the enabling of the
2138         * link, so we have a valid config rom before enabling - the
2139         * OHCI requires that ConfigROMhdr and BusOptions have valid
2140         * values before enabling.
2141         *
2142         * However, when the ConfigROMmap is written, some controllers
2143         * always read back quadlets 0 and 2 from the config rom to
2144         * the ConfigRomHeader and BusOptions registers on bus reset.
2145         * They shouldn't do that in this initial case where the link
2146         * isn't enabled.  This means we have to use the same
2147         * workaround here, setting the bus header to 0 and then write
2148         * the right values in the bus reset tasklet.
2149         */
2150
2151        if (config_rom) {
2152                ohci->next_config_rom =
2153                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2154                                           &ohci->next_config_rom_bus,
2155                                           GFP_KERNEL);
2156                if (ohci->next_config_rom == NULL)
2157                        return -ENOMEM;
2158
2159                copy_config_rom(ohci->next_config_rom, config_rom, length);
2160        } else {
2161                /*
2162                 * In the suspend case, config_rom is NULL, which
2163                 * means that we just reuse the old config rom.
2164                 */
2165                ohci->next_config_rom = ohci->config_rom;
2166                ohci->next_config_rom_bus = ohci->config_rom_bus;
2167        }
2168
2169        ohci->next_header = ohci->next_config_rom[0];
2170        ohci->next_config_rom[0] = 0;
2171        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2172        reg_write(ohci, OHCI1394_BusOptions,
2173                  be32_to_cpu(ohci->next_config_rom[2]));
2174        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2175
2176        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2177
2178        if (!(ohci->quirks & QUIRK_NO_MSI))
2179                pci_enable_msi(dev);
2180        if (request_irq(dev->irq, irq_handler,
2181                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2182                        ohci_driver_name, ohci)) {
2183                fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2184                pci_disable_msi(dev);
2185
2186                if (config_rom) {
2187                        dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2188                                          ohci->next_config_rom,
2189                                          ohci->next_config_rom_bus);
2190                        ohci->next_config_rom = NULL;
2191                }
2192                return -EIO;
2193        }
2194
2195        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2196                OHCI1394_RQPkt | OHCI1394_RSPkt |
2197                OHCI1394_isochTx | OHCI1394_isochRx |
2198                OHCI1394_postedWriteErr |
2199                OHCI1394_selfIDComplete |
2200                OHCI1394_regAccessFail |
2201                OHCI1394_cycle64Seconds |
2202                OHCI1394_cycleInconsistent |
2203                OHCI1394_unrecoverableError |
2204                OHCI1394_cycleTooLong |
2205                OHCI1394_masterIntEnable;
2206        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2207                irqs |= OHCI1394_busReset;
2208        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2209
2210        reg_write(ohci, OHCI1394_HCControlSet,
2211                  OHCI1394_HCControl_linkEnable |
2212                  OHCI1394_HCControl_BIBimageValid);
2213
2214        reg_write(ohci, OHCI1394_LinkControlSet,
2215                  OHCI1394_LinkControl_rcvSelfID |
2216                  OHCI1394_LinkControl_rcvPhyPkt);
2217
2218        ar_context_run(&ohci->ar_request_ctx);
2219        ar_context_run(&ohci->ar_response_ctx);
2220
2221        flush_writes(ohci);
2222
2223        /* We are ready to go, reset bus to finish initialization. */
2224        fw_schedule_bus_reset(&ohci->card, false, true);
2225
2226        return 0;
2227}
2228
2229static int ohci_set_config_rom(struct fw_card *card,
2230                               const __be32 *config_rom, size_t length)
2231{
2232        struct fw_ohci *ohci;
2233        unsigned long flags;
2234        __be32 *next_config_rom;
2235        dma_addr_t uninitialized_var(next_config_rom_bus);
2236
2237        ohci = fw_ohci(card);
2238
2239        /*
2240         * When the OHCI controller is enabled, the config rom update
2241         * mechanism is a bit tricky, but easy enough to use.  See
2242         * section 5.5.6 in the OHCI specification.
2243         *
2244         * The OHCI controller caches the new config rom address in a
2245         * shadow register (ConfigROMmapNext) and needs a bus reset
2246         * for the changes to take place.  When the bus reset is
2247         * detected, the controller loads the new values for the
2248         * ConfigRomHeader and BusOptions registers from the specified
2249         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2250         * shadow register. All automatically and atomically.
2251         *
2252         * Now, there's a twist to this story.  The automatic load of
2253         * ConfigRomHeader and BusOptions doesn't honor the
2254         * noByteSwapData bit, so with a be32 config rom, the
2255         * controller will load be32 values in to these registers
2256         * during the atomic update, even on litte endian
2257         * architectures.  The workaround we use is to put a 0 in the
2258         * header quadlet; 0 is endian agnostic and means that the
2259         * config rom isn't ready yet.  In the bus reset tasklet we
2260         * then set up the real values for the two registers.
2261         *
2262         * We use ohci->lock to avoid racing with the code that sets
2263         * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2264         */
2265
2266        next_config_rom =
2267                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2268                                   &next_config_rom_bus, GFP_KERNEL);
2269        if (next_config_rom == NULL)
2270                return -ENOMEM;
2271
2272        spin_lock_irqsave(&ohci->lock, flags);
2273
2274        /*
2275         * If there is not an already pending config_rom update,
2276         * push our new allocation into the ohci->next_config_rom
2277         * and then mark the local variable as null so that we
2278         * won't deallocate the new buffer.
2279         *
2280         * OTOH, if there is a pending config_rom update, just
2281         * use that buffer with the new config_rom data, and
2282         * let this routine free the unused DMA allocation.
2283         */
2284
2285        if (ohci->next_config_rom == NULL) {
2286                ohci->next_config_rom = next_config_rom;
2287                ohci->next_config_rom_bus = next_config_rom_bus;
2288                next_config_rom = NULL;
2289        }
2290
2291        copy_config_rom(ohci->next_config_rom, config_rom, length);
2292
2293        ohci->next_header = config_rom[0];
2294        ohci->next_config_rom[0] = 0;
2295
2296        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2297
2298        spin_unlock_irqrestore(&ohci->lock, flags);
2299
2300        /* If we didn't use the DMA allocation, delete it. */
2301        if (next_config_rom != NULL)
2302                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2303                                  next_config_rom, next_config_rom_bus);
2304
2305        /*
2306         * Now initiate a bus reset to have the changes take
2307         * effect. We clean up the old config rom memory and DMA
2308         * mappings in the bus reset tasklet, since the OHCI
2309         * controller could need to access it before the bus reset
2310         * takes effect.
2311         */
2312
2313        fw_schedule_bus_reset(&ohci->card, true, true);
2314
2315        return 0;
2316}
2317
2318static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2319{
2320        struct fw_ohci *ohci = fw_ohci(card);
2321
2322        at_context_transmit(&ohci->at_request_ctx, packet);
2323}
2324
2325static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2326{
2327        struct fw_ohci *ohci = fw_ohci(card);
2328
2329        at_context_transmit(&ohci->at_response_ctx, packet);
2330}
2331
2332static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2333{
2334        struct fw_ohci *ohci = fw_ohci(card);
2335        struct context *ctx = &ohci->at_request_ctx;
2336        struct driver_data *driver_data = packet->driver_data;
2337        int ret = -ENOENT;
2338
2339        tasklet_disable(&ctx->tasklet);
2340
2341        if (packet->ack != 0)
2342                goto out;
2343
2344        if (packet->payload_mapped)
2345                dma_unmap_single(ohci->card.device, packet->payload_bus,
2346                                 packet->payload_length, DMA_TO_DEVICE);
2347
2348        log_ar_at_event('T', packet->speed, packet->header, 0x20);
2349        driver_data->packet = NULL;
2350        packet->ack = RCODE_CANCELLED;
2351        packet->callback(packet, &ohci->card, packet->ack);
2352        ret = 0;
2353 out:
2354        tasklet_enable(&ctx->tasklet);
2355
2356        return ret;
2357}
2358
2359static int ohci_enable_phys_dma(struct fw_card *card,
2360                                int node_id, int generation)
2361{
2362#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2363        return 0;
2364#else
2365        struct fw_ohci *ohci = fw_ohci(card);
2366        unsigned long flags;
2367        int n, ret = 0;
2368
2369        /*
2370         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2371         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2372         */
2373
2374        spin_lock_irqsave(&ohci->lock, flags);
2375
2376        if (ohci->generation != generation) {
2377                ret = -ESTALE;
2378                goto out;
2379        }
2380
2381        /*
2382         * Note, if the node ID contains a non-local bus ID, physical DMA is
2383         * enabled for _all_ nodes on remote buses.
2384         */
2385
2386        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2387        if (n < 32)
2388                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2389        else
2390                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2391
2392        flush_writes(ohci);
2393 out:
2394        spin_unlock_irqrestore(&ohci->lock, flags);
2395
2396        return ret;
2397#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2398}
2399
2400static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2401{
2402        struct fw_ohci *ohci = fw_ohci(card);
2403        unsigned long flags;
2404        u32 value;
2405
2406        switch (csr_offset) {
2407        case CSR_STATE_CLEAR:
2408        case CSR_STATE_SET:
2409                if (ohci->is_root &&
2410                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2411                     OHCI1394_LinkControl_cycleMaster))
2412                        value = CSR_STATE_BIT_CMSTR;
2413                else
2414                        value = 0;
2415                if (ohci->csr_state_setclear_abdicate)
2416                        value |= CSR_STATE_BIT_ABDICATE;
2417
2418                return value;
2419
2420        case CSR_NODE_IDS:
2421                return reg_read(ohci, OHCI1394_NodeID) << 16;
2422
2423        case CSR_CYCLE_TIME:
2424                return get_cycle_time(ohci);
2425
2426        case CSR_BUS_TIME:
2427                /*
2428                 * We might be called just after the cycle timer has wrapped
2429                 * around but just before the cycle64Seconds handler, so we
2430                 * better check here, too, if the bus time needs to be updated.
2431                 */
2432                spin_lock_irqsave(&ohci->lock, flags);
2433                value = update_bus_time(ohci);
2434                spin_unlock_irqrestore(&ohci->lock, flags);
2435                return value;
2436
2437        case CSR_BUSY_TIMEOUT:
2438                value = reg_read(ohci, OHCI1394_ATRetries);
2439                return (value >> 4) & 0x0ffff00f;
2440
2441        case CSR_PRIORITY_BUDGET:
2442                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2443                        (ohci->pri_req_max << 8);
2444
2445        default:
2446                WARN_ON(1);
2447                return 0;
2448        }
2449}
2450
2451static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2452{
2453        struct fw_ohci *ohci = fw_ohci(card);
2454        unsigned long flags;
2455
2456        switch (csr_offset) {
2457        case CSR_STATE_CLEAR:
2458                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2459                        reg_write(ohci, OHCI1394_LinkControlClear,
2460                                  OHCI1394_LinkControl_cycleMaster);
2461                        flush_writes(ohci);
2462                }
2463                if (value & CSR_STATE_BIT_ABDICATE)
2464                        ohci->csr_state_setclear_abdicate = false;
2465                break;
2466
2467        case CSR_STATE_SET:
2468                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2469                        reg_write(ohci, OHCI1394_LinkControlSet,
2470                                  OHCI1394_LinkControl_cycleMaster);
2471                        flush_writes(ohci);
2472                }
2473                if (value & CSR_STATE_BIT_ABDICATE)
2474                        ohci->csr_state_setclear_abdicate = true;
2475                break;
2476
2477        case CSR_NODE_IDS:
2478                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2479                flush_writes(ohci);
2480                break;
2481
2482        case CSR_CYCLE_TIME:
2483                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2484                reg_write(ohci, OHCI1394_IntEventSet,
2485                          OHCI1394_cycleInconsistent);
2486                flush_writes(ohci);
2487                break;
2488
2489        case CSR_BUS_TIME:
2490                spin_lock_irqsave(&ohci->lock, flags);
2491                ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2492                spin_unlock_irqrestore(&ohci->lock, flags);
2493                break;
2494
2495        case CSR_BUSY_TIMEOUT:
2496                value = (value & 0xf) | ((value & 0xf) << 4) |
2497                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2498                reg_write(ohci, OHCI1394_ATRetries, value);
2499                flush_writes(ohci);
2500                break;
2501
2502        case CSR_PRIORITY_BUDGET:
2503                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2504                flush_writes(ohci);
2505                break;
2506
2507        default:
2508                WARN_ON(1);
2509                break;
2510        }
2511}
2512
2513static void copy_iso_headers(struct iso_context *ctx, void *p)
2514{
2515        int i = ctx->header_length;
2516
2517        if (i + ctx->base.header_size > PAGE_SIZE)
2518                return;
2519
2520        /*
2521         * The iso header is byteswapped to little endian by
2522         * the controller, but the remaining header quadlets
2523         * are big endian.  We want to present all the headers
2524         * as big endian, so we have to swap the first quadlet.
2525         */
2526        if (ctx->base.header_size > 0)
2527                *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2528        if (ctx->base.header_size > 4)
2529                *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2530        if (ctx->base.header_size > 8)
2531                memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2532        ctx->header_length += ctx->base.header_size;
2533}
2534
2535static int handle_ir_packet_per_buffer(struct context *context,
2536                                       struct descriptor *d,
2537                                       struct descriptor *last)
2538{
2539        struct iso_context *ctx =
2540                container_of(context, struct iso_context, context);
2541        struct descriptor *pd;
2542        __le32 *ir_header;
2543        void *p;
2544
2545        for (pd = d; pd <= last; pd++)
2546                if (pd->transfer_status)
2547                        break;
2548        if (pd > last)
2549                /* Descriptor(s) not done yet, stop iteration */
2550                return 0;
2551
2552        p = last + 1;
2553        copy_iso_headers(ctx, p);
2554
2555        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2556                ir_header = (__le32 *) p;
2557                ctx->base.callback.sc(&ctx->base,
2558                                      le32_to_cpu(ir_header[0]) & 0xffff,
2559                                      ctx->header_length, ctx->header,
2560                                      ctx->base.callback_data);
2561                ctx->header_length = 0;
2562        }
2563
2564        return 1;
2565}
2566
2567/* d == last because each descriptor block is only a single descriptor. */
2568static int handle_ir_buffer_fill(struct context *context,
2569                                 struct descriptor *d,
2570                                 struct descriptor *last)
2571{
2572        struct iso_context *ctx =
2573                container_of(context, struct iso_context, context);
2574
2575        if (!last->transfer_status)
2576                /* Descriptor(s) not done yet, stop iteration */
2577                return 0;
2578
2579        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2580                ctx->base.callback.mc(&ctx->base,
2581                                      le32_to_cpu(last->data_address) +
2582                                      le16_to_cpu(last->req_count) -
2583                                      le16_to_cpu(last->res_count),
2584                                      ctx->base.callback_data);
2585
2586        return 1;
2587}
2588
2589static int handle_it_packet(struct context *context,
2590                            struct descriptor *d,
2591                            struct descriptor *last)
2592{
2593        struct iso_context *ctx =
2594                container_of(context, struct iso_context, context);
2595        int i;
2596        struct descriptor *pd;
2597
2598        for (pd = d; pd <= last; pd++)
2599                if (pd->transfer_status)
2600                        break;
2601        if (pd > last)
2602                /* Descriptor(s) not done yet, stop iteration */
2603                return 0;
2604
2605        i = ctx->header_length;
2606        if (i + 4 < PAGE_SIZE) {
2607                /* Present this value as big-endian to match the receive code */
2608                *(__be32 *)(ctx->header + i) = cpu_to_be32(
2609                                ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2610                                le16_to_cpu(pd->res_count));
2611                ctx->header_length += 4;
2612        }
2613        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2614                ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2615                                      ctx->header_length, ctx->header,
2616                                      ctx->base.callback_data);
2617                ctx->header_length = 0;
2618        }
2619        return 1;
2620}
2621
2622static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2623{
2624        u32 hi = channels >> 32, lo = channels;
2625
2626        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2627        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2628        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2629        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2630        mmiowb();
2631        ohci->mc_channels = channels;
2632}
2633
2634static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2635                                int type, int channel, size_t header_size)
2636{
2637        struct fw_ohci *ohci = fw_ohci(card);
2638        struct iso_context *uninitialized_var(ctx);
2639        descriptor_callback_t uninitialized_var(callback);
2640        u64 *uninitialized_var(channels);
2641        u32 *uninitialized_var(mask), uninitialized_var(regs);
2642        unsigned long flags;
2643        int index, ret = -EBUSY;
2644
2645        spin_lock_irqsave(&ohci->lock, flags);
2646
2647        switch (type) {
2648        case FW_ISO_CONTEXT_TRANSMIT:
2649                mask     = &ohci->it_context_mask;
2650                callback = handle_it_packet;
2651                index    = ffs(*mask) - 1;
2652                if (index >= 0) {
2653                        *mask &= ~(1 << index);
2654                        regs = OHCI1394_IsoXmitContextBase(index);
2655                        ctx  = &ohci->it_context_list[index];
2656                }
2657                break;
2658
2659        case FW_ISO_CONTEXT_RECEIVE:
2660                channels = &ohci->ir_context_channels;
2661                mask     = &ohci->ir_context_mask;
2662                callback = handle_ir_packet_per_buffer;
2663                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2664                if (index >= 0) {
2665                        *channels &= ~(1ULL << channel);
2666                        *mask     &= ~(1 << index);
2667                        regs = OHCI1394_IsoRcvContextBase(index);
2668                        ctx  = &ohci->ir_context_list[index];
2669                }
2670                break;
2671
2672        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2673                mask     = &ohci->ir_context_mask;
2674                callback = handle_ir_buffer_fill;
2675                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2676                if (index >= 0) {
2677                        ohci->mc_allocated = true;
2678                        *mask &= ~(1 << index);
2679                        regs = OHCI1394_IsoRcvContextBase(index);
2680                        ctx  = &ohci->ir_context_list[index];
2681                }
2682                break;
2683
2684        default:
2685                index = -1;
2686                ret = -ENOSYS;
2687        }
2688
2689        spin_unlock_irqrestore(&ohci->lock, flags);
2690
2691        if (index < 0)
2692                return ERR_PTR(ret);
2693
2694        memset(ctx, 0, sizeof(*ctx));
2695        ctx->header_length = 0;
2696        ctx->header = (void *) __get_free_page(GFP_KERNEL);
2697        if (ctx->header == NULL) {
2698                ret = -ENOMEM;
2699                goto out;
2700        }
2701        ret = context_init(&ctx->context, ohci, regs, callback);
2702        if (ret < 0)
2703                goto out_with_header;
2704
2705        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2706                set_multichannel_mask(ohci, 0);
2707
2708        return &ctx->base;
2709
2710 out_with_header:
2711        free_page((unsigned long)ctx->header);
2712 out:
2713        spin_lock_irqsave(&ohci->lock, flags);
2714
2715        switch (type) {
2716        case FW_ISO_CONTEXT_RECEIVE:
2717                *channels |= 1ULL << channel;
2718                break;
2719
2720        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2721                ohci->mc_allocated = false;
2722                break;
2723        }
2724        *mask |= 1 << index;
2725
2726        spin_unlock_irqrestore(&ohci->lock, flags);
2727
2728        return ERR_PTR(ret);
2729}
2730
2731static int ohci_start_iso(struct fw_iso_context *base,
2732                          s32 cycle, u32 sync, u32 tags)
2733{
2734        struct iso_context *ctx = container_of(base, struct iso_context, base);
2735        struct fw_ohci *ohci = ctx->context.ohci;
2736        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2737        int index;
2738
2739        /* the controller cannot start without any queued packets */
2740        if (ctx->context.last->branch_address == 0)
2741                return -ENODATA;
2742
2743        switch (ctx->base.type) {
2744        case FW_ISO_CONTEXT_TRANSMIT:
2745                index = ctx - ohci->it_context_list;
2746                match = 0;
2747                if (cycle >= 0)
2748                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2749                                (cycle & 0x7fff) << 16;
2750
2751                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2752                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2753                context_run(&ctx->context, match);
2754                break;
2755
2756        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2757                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2758                /* fall through */
2759        case FW_ISO_CONTEXT_RECEIVE:
2760                index = ctx - ohci->ir_context_list;
2761                match = (tags << 28) | (sync << 8) | ctx->base.channel;
2762                if (cycle >= 0) {
2763                        match |= (cycle & 0x07fff) << 12;
2764                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2765                }
2766
2767                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2768                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2769                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2770                context_run(&ctx->context, control);
2771
2772                ctx->sync = sync;
2773                ctx->tags = tags;
2774
2775                break;
2776        }
2777
2778        return 0;
2779}
2780
2781static int ohci_stop_iso(struct fw_iso_context *base)
2782{
2783        struct fw_ohci *ohci = fw_ohci(base->card);
2784        struct iso_context *ctx = container_of(base, struct iso_context, base);
2785        int index;
2786
2787        switch (ctx->base.type) {
2788        case FW_ISO_CONTEXT_TRANSMIT:
2789                index = ctx - ohci->it_context_list;
2790                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2791                break;
2792
2793        case FW_ISO_CONTEXT_RECEIVE:
2794        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2795                index = ctx - ohci->ir_context_list;
2796                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2797                break;
2798        }
2799        flush_writes(ohci);
2800        context_stop(&ctx->context);
2801        tasklet_kill(&ctx->context.tasklet);
2802
2803        return 0;
2804}
2805
2806static void ohci_free_iso_context(struct fw_iso_context *base)
2807{
2808        struct fw_ohci *ohci = fw_ohci(base->card);
2809        struct iso_context *ctx = container_of(base, struct iso_context, base);
2810        unsigned long flags;
2811        int index;
2812
2813        ohci_stop_iso(base);
2814        context_release(&ctx->context);
2815        free_page((unsigned long)ctx->header);
2816
2817        spin_lock_irqsave(&ohci->lock, flags);
2818
2819        switch (base->type) {
2820        case FW_ISO_CONTEXT_TRANSMIT:
2821                index = ctx - ohci->it_context_list;
2822                ohci->it_context_mask |= 1 << index;
2823                break;
2824
2825        case FW_ISO_CONTEXT_RECEIVE:
2826                index = ctx - ohci->ir_context_list;
2827                ohci->ir_context_mask |= 1 << index;
2828                ohci->ir_context_channels |= 1ULL << base->channel;
2829                break;
2830
2831        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2832                index = ctx - ohci->ir_context_list;
2833                ohci->ir_context_mask |= 1 << index;
2834                ohci->ir_context_channels |= ohci->mc_channels;
2835                ohci->mc_channels = 0;
2836                ohci->mc_allocated = false;
2837                break;
2838        }
2839
2840        spin_unlock_irqrestore(&ohci->lock, flags);
2841}
2842
2843static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2844{
2845        struct fw_ohci *ohci = fw_ohci(base->card);
2846        unsigned long flags;
2847        int ret;
2848
2849        switch (base->type) {
2850        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2851
2852                spin_lock_irqsave(&ohci->lock, flags);
2853
2854                /* Don't allow multichannel to grab other contexts' channels. */
2855                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2856                        *channels = ohci->ir_context_channels;
2857                        ret = -EBUSY;
2858                } else {
2859                        set_multichannel_mask(ohci, *channels);
2860                        ret = 0;
2861                }
2862
2863                spin_unlock_irqrestore(&ohci->lock, flags);
2864
2865                break;
2866        default:
2867                ret = -EINVAL;
2868        }
2869
2870        return ret;
2871}
2872
2873#ifdef CONFIG_PM
2874static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2875{
2876        int i;
2877        struct iso_context *ctx;
2878
2879        for (i = 0 ; i < ohci->n_ir ; i++) {
2880                ctx = &ohci->ir_context_list[i];
2881                if (ctx->context.running)
2882                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2883        }
2884
2885        for (i = 0 ; i < ohci->n_it ; i++) {
2886                ctx = &ohci->it_context_list[i];
2887                if (ctx->context.running)
2888                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2889        }
2890}
2891#endif
2892
2893static int queue_iso_transmit(struct iso_context *ctx,
2894                              struct fw_iso_packet *packet,
2895                              struct fw_iso_buffer *buffer,
2896                              unsigned long payload)
2897{
2898        struct descriptor *d, *last, *pd;
2899        struct fw_iso_packet *p;
2900        __le32 *header;
2901        dma_addr_t d_bus, page_bus;
2902        u32 z, header_z, payload_z, irq;
2903        u32 payload_index, payload_end_index, next_page_index;
2904        int page, end_page, i, length, offset;
2905
2906        p = packet;
2907        payload_index = payload;
2908
2909        if (p->skip)
2910                z = 1;
2911        else
2912                z = 2;
2913        if (p->header_length > 0)
2914                z++;
2915
2916        /* Determine the first page the payload isn't contained in. */
2917        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2918        if (p->payload_length > 0)
2919                payload_z = end_page - (payload_index >> PAGE_SHIFT);
2920        else
2921                payload_z = 0;
2922
2923        z += payload_z;
2924
2925        /* Get header size in number of descriptors. */
2926        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2927
2928        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2929        if (d == NULL)
2930                return -ENOMEM;
2931
2932        if (!p->skip) {
2933                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2934                d[0].req_count = cpu_to_le16(8);
2935                /*
2936                 * Link the skip address to this descriptor itself.  This causes
2937                 * a context to skip a cycle whenever lost cycles or FIFO
2938                 * overruns occur, without dropping the data.  The application
2939                 * should then decide whether this is an error condition or not.
2940                 * FIXME:  Make the context's cycle-lost behaviour configurable?
2941                 */
2942                d[0].branch_address = cpu_to_le32(d_bus | z);
2943
2944                header = (__le32 *) &d[1];
2945                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2946                                        IT_HEADER_TAG(p->tag) |
2947                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2948                                        IT_HEADER_CHANNEL(ctx->base.channel) |
2949                                        IT_HEADER_SPEED(ctx->base.speed));
2950                header[1] =
2951                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2952                                                          p->payload_length));
2953        }
2954
2955        if (p->header_length > 0) {
2956                d[2].req_count    = cpu_to_le16(p->header_length);
2957                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2958                memcpy(&d[z], p->header, p->header_length);
2959        }
2960
2961        pd = d + z - payload_z;
2962        payload_end_index = payload_index + p->payload_length;
2963        for (i = 0; i < payload_z; i++) {
2964                page               = payload_index >> PAGE_SHIFT;
2965                offset             = payload_index & ~PAGE_MASK;
2966                next_page_index    = (page + 1) << PAGE_SHIFT;
2967                length             =
2968                        min(next_page_index, payload_end_index) - payload_index;
2969                pd[i].req_count    = cpu_to_le16(length);
2970
2971                page_bus = page_private(buffer->pages[page]);
2972                pd[i].data_address = cpu_to_le32(page_bus + offset);
2973
2974                payload_index += length;
2975        }
2976
2977        if (p->interrupt)
2978                irq = DESCRIPTOR_IRQ_ALWAYS;
2979        else
2980                irq = DESCRIPTOR_NO_IRQ;
2981
2982        last = z == 2 ? d : d + z - 1;
2983        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2984                                     DESCRIPTOR_STATUS |
2985                                     DESCRIPTOR_BRANCH_ALWAYS |
2986                                     irq);
2987
2988        context_append(&ctx->context, d, z, header_z);
2989
2990        return 0;
2991}
2992
2993static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2994                                       struct fw_iso_packet *packet,
2995                                       struct fw_iso_buffer *buffer,
2996                                       unsigned long payload)
2997{
2998        struct descriptor *d, *pd;
2999        dma_addr_t d_bus, page_bus;
3000        u32 z, header_z, rest;
3001        int i, j, length;
3002        int page, offset, packet_count, header_size, payload_per_buffer;
3003
3004        /*
3005         * The OHCI controller puts the isochronous header and trailer in the
3006         * buffer, so we need at least 8 bytes.
3007         */
3008        packet_count = packet->header_length / ctx->base.header_size;
3009        header_size  = max(ctx->base.header_size, (size_t)8);
3010
3011        /* Get header size in number of descriptors. */
3012        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3013        page     = payload >> PAGE_SHIFT;
3014        offset   = payload & ~PAGE_MASK;
3015        payload_per_buffer = packet->payload_length / packet_count;
3016
3017        for (i = 0; i < packet_count; i++) {
3018                /* d points to the header descriptor */
3019                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3020                d = context_get_descriptors(&ctx->context,
3021                                z + header_z, &d_bus);
3022                if (d == NULL)
3023                        return -ENOMEM;
3024
3025                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3026                                              DESCRIPTOR_INPUT_MORE);
3027                if (packet->skip && i == 0)
3028                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3029                d->req_count    = cpu_to_le16(header_size);
3030                d->res_count    = d->req_count;
3031                d->transfer_status = 0;
3032                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3033
3034                rest = payload_per_buffer;
3035                pd = d;
3036                for (j = 1; j < z; j++) {
3037                        pd++;
3038                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3039                                                  DESCRIPTOR_INPUT_MORE);
3040
3041                        if (offset + rest < PAGE_SIZE)
3042                                length = rest;
3043                        else
3044                                length = PAGE_SIZE - offset;
3045                        pd->req_count = cpu_to_le16(length);
3046                        pd->res_count = pd->req_count;
3047                        pd->transfer_status = 0;
3048
3049                        page_bus = page_private(buffer->pages[page]);
3050                        pd->data_address = cpu_to_le32(page_bus + offset);
3051
3052                        offset = (offset + length) & ~PAGE_MASK;
3053                        rest -= length;
3054                        if (offset == 0)
3055                                page++;
3056                }
3057                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3058                                          DESCRIPTOR_INPUT_LAST |
3059                                          DESCRIPTOR_BRANCH_ALWAYS);
3060                if (packet->interrupt && i == packet_count - 1)
3061                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3062
3063                context_append(&ctx->context, d, z, header_z);
3064        }
3065
3066        return 0;
3067}
3068
3069static int queue_iso_buffer_fill(struct iso_context *ctx,
3070                                 struct fw_iso_packet *packet,
3071                                 struct fw_iso_buffer *buffer,
3072                                 unsigned long payload)
3073{
3074        struct descriptor *d;
3075        dma_addr_t d_bus, page_bus;
3076        int page, offset, rest, z, i, length;
3077
3078        page   = payload >> PAGE_SHIFT;
3079        offset = payload & ~PAGE_MASK;
3080        rest   = packet->payload_length;
3081
3082        /* We need one descriptor for each page in the buffer. */
3083        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3084
3085        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3086                return -EFAULT;
3087
3088        for (i = 0; i < z; i++) {
3089                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3090                if (d == NULL)
3091                        return -ENOMEM;
3092
3093                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3094                                         DESCRIPTOR_BRANCH_ALWAYS);
3095                if (packet->skip && i == 0)
3096                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3097                if (packet->interrupt && i == z - 1)
3098                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3099
3100                if (offset + rest < PAGE_SIZE)
3101                        length = rest;
3102                else
3103                        length = PAGE_SIZE - offset;
3104                d->req_count = cpu_to_le16(length);
3105                d->res_count = d->req_count;
3106                d->transfer_status = 0;
3107
3108                page_bus = page_private(buffer->pages[page]);
3109                d->data_address = cpu_to_le32(page_bus + offset);
3110
3111                rest -= length;
3112                offset = 0;
3113                page++;
3114
3115                context_append(&ctx->context, d, 1, 0);
3116        }
3117
3118        return 0;
3119}
3120
3121static int ohci_queue_iso(struct fw_iso_context *base,
3122                          struct fw_iso_packet *packet,
3123                          struct fw_iso_buffer *buffer,
3124                          unsigned long payload)
3125{
3126        struct iso_context *ctx = container_of(base, struct iso_context, base);
3127        unsigned long flags;
3128        int ret = -ENOSYS;
3129
3130        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3131        switch (base->type) {
3132        case FW_ISO_CONTEXT_TRANSMIT:
3133                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3134                break;
3135        case FW_ISO_CONTEXT_RECEIVE:
3136                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3137                break;
3138        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3139                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3140                break;
3141        }
3142        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3143
3144        return ret;
3145}
3146
3147static void ohci_flush_queue_iso(struct fw_iso_context *base)
3148{
3149        struct context *ctx =
3150                        &container_of(base, struct iso_context, base)->context;
3151
3152        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3153}
3154
3155static const struct fw_card_driver ohci_driver = {
3156        .enable                 = ohci_enable,
3157        .read_phy_reg           = ohci_read_phy_reg,
3158        .update_phy_reg         = ohci_update_phy_reg,
3159        .set_config_rom         = ohci_set_config_rom,
3160        .send_request           = ohci_send_request,
3161        .send_response          = ohci_send_response,
3162        .cancel_packet          = ohci_cancel_packet,
3163        .enable_phys_dma        = ohci_enable_phys_dma,
3164        .read_csr               = ohci_read_csr,
3165        .write_csr              = ohci_write_csr,
3166
3167        .allocate_iso_context   = ohci_allocate_iso_context,
3168        .free_iso_context       = ohci_free_iso_context,
3169        .set_iso_channels       = ohci_set_iso_channels,
3170        .queue_iso              = ohci_queue_iso,
3171        .flush_queue_iso        = ohci_flush_queue_iso,
3172        .start_iso              = ohci_start_iso,
3173        .stop_iso               = ohci_stop_iso,
3174};
3175
3176#ifdef CONFIG_PPC_PMAC
3177static void pmac_ohci_on(struct pci_dev *dev)
3178{
3179        if (machine_is(powermac)) {
3180                struct device_node *ofn = pci_device_to_OF_node(dev);
3181
3182                if (ofn) {
3183                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3184                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3185                }
3186        }
3187}
3188
3189static void pmac_ohci_off(struct pci_dev *dev)
3190{
3191        if (machine_is(powermac)) {
3192                struct device_node *ofn = pci_device_to_OF_node(dev);
3193
3194                if (ofn) {
3195                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3196                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3197                }
3198        }
3199}
3200#else
3201static inline void pmac_ohci_on(struct pci_dev *dev) {}
3202static inline void pmac_ohci_off(struct pci_dev *dev) {}
3203#endif /* CONFIG_PPC_PMAC */
3204
3205static int __devinit pci_probe(struct pci_dev *dev,
3206                               const struct pci_device_id *ent)
3207{
3208        struct fw_ohci *ohci;
3209        u32 bus_options, max_receive, link_speed, version;
3210        u64 guid;
3211        int i, err;
3212        size_t size;
3213
3214        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3215                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3216                return -ENOSYS;
3217        }
3218
3219        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3220        if (ohci == NULL) {
3221                err = -ENOMEM;
3222                goto fail;
3223        }
3224
3225        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3226
3227        pmac_ohci_on(dev);
3228
3229        err = pci_enable_device(dev);
3230        if (err) {
3231                fw_error("Failed to enable OHCI hardware\n");
3232                goto fail_free;
3233        }
3234
3235        pci_set_master(dev);
3236        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237        pci_set_drvdata(dev, ohci);
3238
3239        spin_lock_init(&ohci->lock);
3240        mutex_init(&ohci->phy_reg_mutex);
3241
3242        tasklet_init(&ohci->bus_reset_tasklet,
3243                     bus_reset_tasklet, (unsigned long)ohci);
3244
3245        err = pci_request_region(dev, 0, ohci_driver_name);
3246        if (err) {
3247                fw_error("MMIO resource unavailable\n");
3248                goto fail_disable;
3249        }
3250
3251        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3252        if (ohci->registers == NULL) {
3253                fw_error("Failed to remap registers\n");
3254                err = -ENXIO;
3255                goto fail_iomem;
3256        }
3257
3258        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3259                if ((ohci_quirks[i].vendor == dev->vendor) &&
3260                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3261                     ohci_quirks[i].device == dev->device) &&
3262                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3263                     ohci_quirks[i].revision >= dev->revision)) {
3264                        ohci->quirks = ohci_quirks[i].flags;
3265                        break;
3266                }
3267        if (param_quirks)
3268                ohci->quirks = param_quirks;
3269
3270        /*
3271         * Because dma_alloc_coherent() allocates at least one page,
3272         * we save space by using a common buffer for the AR request/
3273         * response descriptors and the self IDs buffer.
3274         */
3275        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3276        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3277        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3278                                               PAGE_SIZE,
3279                                               &ohci->misc_buffer_bus,
3280                                               GFP_KERNEL);
3281        if (!ohci->misc_buffer) {
3282                err = -ENOMEM;
3283                goto fail_iounmap;
3284        }
3285
3286        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3287                              OHCI1394_AsReqRcvContextControlSet);
3288        if (err < 0)
3289                goto fail_misc_buf;
3290
3291        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3292                              OHCI1394_AsRspRcvContextControlSet);
3293        if (err < 0)
3294                goto fail_arreq_ctx;
3295
3296        err = context_init(&ohci->at_request_ctx, ohci,
3297                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3298        if (err < 0)
3299                goto fail_arrsp_ctx;
3300
3301        err = context_init(&ohci->at_response_ctx, ohci,
3302                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3303        if (err < 0)
3304                goto fail_atreq_ctx;
3305
3306        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3307        ohci->ir_context_channels = ~0ULL;
3308        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3309        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3310        ohci->ir_context_mask = ohci->ir_context_support;
3311        ohci->n_ir = hweight32(ohci->ir_context_mask);
3312        size = sizeof(struct iso_context) * ohci->n_ir;
3313        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3314
3315        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3316        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3317        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3318        ohci->it_context_mask = ohci->it_context_support;
3319        ohci->n_it = hweight32(ohci->it_context_mask);
3320        size = sizeof(struct iso_context) * ohci->n_it;
3321        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3322
3323        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3324                err = -ENOMEM;
3325                goto fail_contexts;
3326        }
3327
3328        ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3329        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3330
3331        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3332        max_receive = (bus_options >> 12) & 0xf;
3333        link_speed = bus_options & 0x7;
3334        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3335                reg_read(ohci, OHCI1394_GUIDLo);
3336
3337        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3338        if (err)
3339                goto fail_contexts;
3340
3341        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3342        fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3343                  "%d IR + %d IT contexts, quirks 0x%x\n",
3344                  dev_name(&dev->dev), version >> 16, version & 0xff,
3345                  ohci->n_ir, ohci->n_it, ohci->quirks);
3346
3347        return 0;
3348
3349 fail_contexts:
3350        kfree(ohci->ir_context_list);
3351        kfree(ohci->it_context_list);
3352        context_release(&ohci->at_response_ctx);
3353 fail_atreq_ctx:
3354        context_release(&ohci->at_request_ctx);
3355 fail_arrsp_ctx:
3356        ar_context_release(&ohci->ar_response_ctx);
3357 fail_arreq_ctx:
3358        ar_context_release(&ohci->ar_request_ctx);
3359 fail_misc_buf:
3360        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3361                          ohci->misc_buffer, ohci->misc_buffer_bus);
3362 fail_iounmap:
3363        pci_iounmap(dev, ohci->registers);
3364 fail_iomem:
3365        pci_release_region(dev, 0);
3366 fail_disable:
3367        pci_disable_device(dev);
3368 fail_free:
3369        kfree(ohci);
3370        pmac_ohci_off(dev);
3371 fail:
3372        if (err == -ENOMEM)
3373                fw_error("Out of memory\n");
3374
3375        return err;
3376}
3377
3378static void pci_remove(struct pci_dev *dev)
3379{
3380        struct fw_ohci *ohci;
3381
3382        ohci = pci_get_drvdata(dev);
3383        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3384        flush_writes(ohci);
3385        fw_core_remove_card(&ohci->card);
3386
3387        /*
3388         * FIXME: Fail all pending packets here, now that the upper
3389         * layers can't queue any more.
3390         */
3391
3392        software_reset(ohci);
3393        free_irq(dev->irq, ohci);
3394
3395        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3396                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3397                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3398        if (ohci->config_rom)
3399                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3400                                  ohci->config_rom, ohci->config_rom_bus);
3401        ar_context_release(&ohci->ar_request_ctx);
3402        ar_context_release(&ohci->ar_response_ctx);
3403        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3404                          ohci->misc_buffer, ohci->misc_buffer_bus);
3405        context_release(&ohci->at_request_ctx);
3406        context_release(&ohci->at_response_ctx);
3407        kfree(ohci->it_context_list);
3408        kfree(ohci->ir_context_list);
3409        pci_disable_msi(dev);
3410        pci_iounmap(dev, ohci->registers);
3411        pci_release_region(dev, 0);
3412        pci_disable_device(dev);
3413        kfree(ohci);
3414        pmac_ohci_off(dev);
3415
3416        fw_notify("Removed fw-ohci device.\n");
3417}
3418
3419#ifdef CONFIG_PM
3420static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3421{
3422        struct fw_ohci *ohci = pci_get_drvdata(dev);
3423        int err;
3424
3425        software_reset(ohci);
3426        free_irq(dev->irq, ohci);
3427        pci_disable_msi(dev);
3428        err = pci_save_state(dev);
3429        if (err) {
3430                fw_error("pci_save_state failed\n");
3431                return err;
3432        }
3433        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3434        if (err)
3435                fw_error("pci_set_power_state failed with %d\n", err);
3436        pmac_ohci_off(dev);
3437
3438        return 0;
3439}
3440
3441static int pci_resume(struct pci_dev *dev)
3442{
3443        struct fw_ohci *ohci = pci_get_drvdata(dev);
3444        int err;
3445
3446        pmac_ohci_on(dev);
3447        pci_set_power_state(dev, PCI_D0);
3448        pci_restore_state(dev);
3449        err = pci_enable_device(dev);
3450        if (err) {
3451                fw_error("pci_enable_device failed\n");
3452                return err;
3453        }
3454
3455        /* Some systems don't setup GUID register on resume from ram  */
3456        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3457                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3458                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3459                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3460        }
3461
3462        err = ohci_enable(&ohci->card, NULL, 0);
3463        if (err)
3464                return err;
3465
3466        ohci_resume_iso_dma(ohci);
3467
3468        return 0;
3469}
3470#endif
3471
3472static const struct pci_device_id pci_table[] = {
3473        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3474        { }
3475};
3476
3477MODULE_DEVICE_TABLE(pci, pci_table);
3478
3479static struct pci_driver fw_ohci_pci_driver = {
3480        .name           = ohci_driver_name,
3481        .id_table       = pci_table,
3482        .probe          = pci_probe,
3483        .remove         = pci_remove,
3484#ifdef CONFIG_PM
3485        .resume         = pci_resume,
3486        .suspend        = pci_suspend,
3487#endif
3488};
3489
3490MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3491MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3492MODULE_LICENSE("GPL");
3493
3494/* Provide a module alias so root-on-sbp2 initrds don't break. */
3495#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3496MODULE_ALIAS("ohci1394");
3497#endif
3498
3499static int __init fw_ohci_init(void)
3500{
3501        return pci_register_driver(&fw_ohci_pci_driver);
3502}
3503
3504static void __exit fw_ohci_cleanup(void)
3505{
3506        pci_unregister_driver(&fw_ohci_pci_driver);
3507}
3508
3509module_init(fw_ohci_init);
3510module_exit(fw_ohci_cleanup);
3511