1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25#include "drmP.h"
26#include "nouveau_drv.h"
27#include "nouveau_mm.h"
28
29static int types[0x80] = {
30 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0,
32 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
34 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 0,
35 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
36 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2,
37 1, 0, 2, 0, 1, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 0
38};
39
40bool
41nv50_vram_flags_valid(struct drm_device *dev, u32 tile_flags)
42{
43 int type = (tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK) >> 8;
44
45 if (likely(type < ARRAY_SIZE(types) && types[type]))
46 return true;
47 return false;
48}
49
50void
51nv50_vram_del(struct drm_device *dev, struct nouveau_mem **pmem)
52{
53 struct drm_nouveau_private *dev_priv = dev->dev_private;
54 struct nouveau_mm *mm = dev_priv->engine.vram.mm;
55 struct nouveau_mm_node *this;
56 struct nouveau_mem *mem;
57
58 mem = *pmem;
59 *pmem = NULL;
60 if (unlikely(mem == NULL))
61 return;
62
63 mutex_lock(&mm->mutex);
64 while (!list_empty(&mem->regions)) {
65 this = list_first_entry(&mem->regions, struct nouveau_mm_node, rl_entry);
66
67 list_del(&this->rl_entry);
68 nouveau_mm_put(mm, this);
69 }
70
71 if (mem->tag) {
72 drm_mm_put_block(mem->tag);
73 mem->tag = NULL;
74 }
75 mutex_unlock(&mm->mutex);
76
77 kfree(mem);
78}
79
80int
81nv50_vram_new(struct drm_device *dev, u64 size, u32 align, u32 size_nc,
82 u32 memtype, struct nouveau_mem **pmem)
83{
84 struct drm_nouveau_private *dev_priv = dev->dev_private;
85 struct nouveau_mm *mm = dev_priv->engine.vram.mm;
86 struct nouveau_mm_node *r;
87 struct nouveau_mem *mem;
88 int comp = (memtype & 0x300) >> 8;
89 int type = (memtype & 0x07f);
90 int ret;
91
92 if (!types[type])
93 return -EINVAL;
94 size >>= 12;
95 align >>= 12;
96 size_nc >>= 12;
97
98 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
99 if (!mem)
100 return -ENOMEM;
101
102 mutex_lock(&mm->mutex);
103 if (comp) {
104 if (align == 16) {
105 struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
106 int n = (size >> 4) * comp;
107
108 mem->tag = drm_mm_search_free(&pfb->tag_heap, n, 0, 0);
109 if (mem->tag)
110 mem->tag = drm_mm_get_block(mem->tag, n, 0);
111 }
112
113 if (unlikely(!mem->tag))
114 comp = 0;
115 }
116
117 INIT_LIST_HEAD(&mem->regions);
118 mem->dev = dev_priv->dev;
119 mem->memtype = (comp << 7) | type;
120 mem->size = size;
121
122 do {
123 ret = nouveau_mm_get(mm, types[type], size, size_nc, align, &r);
124 if (ret) {
125 mutex_unlock(&mm->mutex);
126 nv50_vram_del(dev, &mem);
127 return ret;
128 }
129
130 list_add_tail(&r->rl_entry, &mem->regions);
131 size -= r->length;
132 } while (size);
133 mutex_unlock(&mm->mutex);
134
135 r = list_first_entry(&mem->regions, struct nouveau_mm_node, rl_entry);
136 mem->offset = (u64)r->offset << 12;
137 *pmem = mem;
138 return 0;
139}
140
141static u32
142nv50_vram_rblock(struct drm_device *dev)
143{
144 struct drm_nouveau_private *dev_priv = dev->dev_private;
145 int i, parts, colbits, rowbitsa, rowbitsb, banks;
146 u64 rowsize, predicted;
147 u32 r0, r4, rt, ru, rblock_size;
148
149 r0 = nv_rd32(dev, 0x100200);
150 r4 = nv_rd32(dev, 0x100204);
151 rt = nv_rd32(dev, 0x100250);
152 ru = nv_rd32(dev, 0x001540);
153 NV_DEBUG(dev, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", r0, r4, rt, ru);
154
155 for (i = 0, parts = 0; i < 8; i++) {
156 if (ru & (0x00010000 << i))
157 parts++;
158 }
159
160 colbits = (r4 & 0x0000f000) >> 12;
161 rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
162 rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
163 banks = ((r4 & 0x01000000) ? 8 : 4);
164
165 rowsize = parts * banks * (1 << colbits) * 8;
166 predicted = rowsize << rowbitsa;
167 if (r0 & 0x00000004)
168 predicted += rowsize << rowbitsb;
169
170 if (predicted != dev_priv->vram_size) {
171 NV_WARN(dev, "memory controller reports %dMiB VRAM\n",
172 (u32)(dev_priv->vram_size >> 20));
173 NV_WARN(dev, "we calculated %dMiB VRAM\n",
174 (u32)(predicted >> 20));
175 }
176
177 rblock_size = rowsize;
178 if (rt & 1)
179 rblock_size *= 3;
180
181 NV_DEBUG(dev, "rblock %d bytes\n", rblock_size);
182 return rblock_size;
183}
184
185int
186nv50_vram_init(struct drm_device *dev)
187{
188 struct drm_nouveau_private *dev_priv = dev->dev_private;
189 struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
190 const u32 rsvd_head = ( 256 * 1024) >> 12;
191 const u32 rsvd_tail = (1024 * 1024) >> 12;
192 u32 rblock, length;
193
194 dev_priv->vram_size = nv_rd32(dev, 0x10020c);
195 dev_priv->vram_size |= (dev_priv->vram_size & 0xff) << 32;
196 dev_priv->vram_size &= 0xffffffff00ULL;
197
198
199 if (dev_priv->chipset == 0xaa ||
200 dev_priv->chipset == 0xac ||
201 dev_priv->chipset == 0xaf) {
202 dev_priv->vram_sys_base = (u64)nv_rd32(dev, 0x100e10) << 12;
203 rblock = 4096 >> 12;
204 } else {
205 rblock = nv50_vram_rblock(dev) >> 12;
206 }
207
208 length = (dev_priv->vram_size >> 12) - rsvd_head - rsvd_tail;
209
210 return nouveau_mm_init(&vram->mm, rsvd_head, length, rblock);
211}
212
213void
214nv50_vram_fini(struct drm_device *dev)
215{
216 struct drm_nouveau_private *dev_priv = dev->dev_private;
217 struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
218
219 nouveau_mm_fini(&vram->mm);
220}
221