linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/seq_file.h>
  38#include <linux/ratelimit.h>
  39#include "md.h"
  40#include "raid1.h"
  41#include "bitmap.h"
  42
  43#define DEBUG 0
  44#define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
  45
  46/*
  47 * Number of guaranteed r1bios in case of extreme VM load:
  48 */
  49#define NR_RAID1_BIOS 256
  50
  51
  52static void allow_barrier(conf_t *conf);
  53static void lower_barrier(conf_t *conf);
  54
  55static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  56{
  57        struct pool_info *pi = data;
  58        int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  59
  60        /* allocate a r1bio with room for raid_disks entries in the bios array */
  61        return kzalloc(size, gfp_flags);
  62}
  63
  64static void r1bio_pool_free(void *r1_bio, void *data)
  65{
  66        kfree(r1_bio);
  67}
  68
  69#define RESYNC_BLOCK_SIZE (64*1024)
  70//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  71#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  72#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  73#define RESYNC_WINDOW (2048*1024)
  74
  75static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  76{
  77        struct pool_info *pi = data;
  78        struct page *page;
  79        r1bio_t *r1_bio;
  80        struct bio *bio;
  81        int i, j;
  82
  83        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  84        if (!r1_bio)
  85                return NULL;
  86
  87        /*
  88         * Allocate bios : 1 for reading, n-1 for writing
  89         */
  90        for (j = pi->raid_disks ; j-- ; ) {
  91                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  92                if (!bio)
  93                        goto out_free_bio;
  94                r1_bio->bios[j] = bio;
  95        }
  96        /*
  97         * Allocate RESYNC_PAGES data pages and attach them to
  98         * the first bio.
  99         * If this is a user-requested check/repair, allocate
 100         * RESYNC_PAGES for each bio.
 101         */
 102        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 103                j = pi->raid_disks;
 104        else
 105                j = 1;
 106        while(j--) {
 107                bio = r1_bio->bios[j];
 108                for (i = 0; i < RESYNC_PAGES; i++) {
 109                        page = alloc_page(gfp_flags);
 110                        if (unlikely(!page))
 111                                goto out_free_pages;
 112
 113                        bio->bi_io_vec[i].bv_page = page;
 114                        bio->bi_vcnt = i+1;
 115                }
 116        }
 117        /* If not user-requests, copy the page pointers to all bios */
 118        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 119                for (i=0; i<RESYNC_PAGES ; i++)
 120                        for (j=1; j<pi->raid_disks; j++)
 121                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 122                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 123        }
 124
 125        r1_bio->master_bio = NULL;
 126
 127        return r1_bio;
 128
 129out_free_pages:
 130        for (j=0 ; j < pi->raid_disks; j++)
 131                for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 132                        put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 133        j = -1;
 134out_free_bio:
 135        while ( ++j < pi->raid_disks )
 136                bio_put(r1_bio->bios[j]);
 137        r1bio_pool_free(r1_bio, data);
 138        return NULL;
 139}
 140
 141static void r1buf_pool_free(void *__r1_bio, void *data)
 142{
 143        struct pool_info *pi = data;
 144        int i,j;
 145        r1bio_t *r1bio = __r1_bio;
 146
 147        for (i = 0; i < RESYNC_PAGES; i++)
 148                for (j = pi->raid_disks; j-- ;) {
 149                        if (j == 0 ||
 150                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 151                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 152                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 153                }
 154        for (i=0 ; i < pi->raid_disks; i++)
 155                bio_put(r1bio->bios[i]);
 156
 157        r1bio_pool_free(r1bio, data);
 158}
 159
 160static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
 161{
 162        int i;
 163
 164        for (i = 0; i < conf->raid_disks; i++) {
 165                struct bio **bio = r1_bio->bios + i;
 166                if (!BIO_SPECIAL(*bio))
 167                        bio_put(*bio);
 168                *bio = NULL;
 169        }
 170}
 171
 172static void free_r1bio(r1bio_t *r1_bio)
 173{
 174        conf_t *conf = r1_bio->mddev->private;
 175
 176        put_all_bios(conf, r1_bio);
 177        mempool_free(r1_bio, conf->r1bio_pool);
 178}
 179
 180static void put_buf(r1bio_t *r1_bio)
 181{
 182        conf_t *conf = r1_bio->mddev->private;
 183        int i;
 184
 185        for (i=0; i<conf->raid_disks; i++) {
 186                struct bio *bio = r1_bio->bios[i];
 187                if (bio->bi_end_io)
 188                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 189        }
 190
 191        mempool_free(r1_bio, conf->r1buf_pool);
 192
 193        lower_barrier(conf);
 194}
 195
 196static void reschedule_retry(r1bio_t *r1_bio)
 197{
 198        unsigned long flags;
 199        mddev_t *mddev = r1_bio->mddev;
 200        conf_t *conf = mddev->private;
 201
 202        spin_lock_irqsave(&conf->device_lock, flags);
 203        list_add(&r1_bio->retry_list, &conf->retry_list);
 204        conf->nr_queued ++;
 205        spin_unlock_irqrestore(&conf->device_lock, flags);
 206
 207        wake_up(&conf->wait_barrier);
 208        md_wakeup_thread(mddev->thread);
 209}
 210
 211/*
 212 * raid_end_bio_io() is called when we have finished servicing a mirrored
 213 * operation and are ready to return a success/failure code to the buffer
 214 * cache layer.
 215 */
 216static void call_bio_endio(r1bio_t *r1_bio)
 217{
 218        struct bio *bio = r1_bio->master_bio;
 219        int done;
 220        conf_t *conf = r1_bio->mddev->private;
 221
 222        if (bio->bi_phys_segments) {
 223                unsigned long flags;
 224                spin_lock_irqsave(&conf->device_lock, flags);
 225                bio->bi_phys_segments--;
 226                done = (bio->bi_phys_segments == 0);
 227                spin_unlock_irqrestore(&conf->device_lock, flags);
 228        } else
 229                done = 1;
 230
 231        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 232                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 233        if (done) {
 234                bio_endio(bio, 0);
 235                /*
 236                 * Wake up any possible resync thread that waits for the device
 237                 * to go idle.
 238                 */
 239                allow_barrier(conf);
 240        }
 241}
 242
 243static void raid_end_bio_io(r1bio_t *r1_bio)
 244{
 245        struct bio *bio = r1_bio->master_bio;
 246
 247        /* if nobody has done the final endio yet, do it now */
 248        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 249                PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
 250                        (bio_data_dir(bio) == WRITE) ? "write" : "read",
 251                        (unsigned long long) bio->bi_sector,
 252                        (unsigned long long) bio->bi_sector +
 253                                (bio->bi_size >> 9) - 1);
 254
 255                call_bio_endio(r1_bio);
 256        }
 257        free_r1bio(r1_bio);
 258}
 259
 260/*
 261 * Update disk head position estimator based on IRQ completion info.
 262 */
 263static inline void update_head_pos(int disk, r1bio_t *r1_bio)
 264{
 265        conf_t *conf = r1_bio->mddev->private;
 266
 267        conf->mirrors[disk].head_position =
 268                r1_bio->sector + (r1_bio->sectors);
 269}
 270
 271static void raid1_end_read_request(struct bio *bio, int error)
 272{
 273        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 274        r1bio_t *r1_bio = bio->bi_private;
 275        int mirror;
 276        conf_t *conf = r1_bio->mddev->private;
 277
 278        mirror = r1_bio->read_disk;
 279        /*
 280         * this branch is our 'one mirror IO has finished' event handler:
 281         */
 282        update_head_pos(mirror, r1_bio);
 283
 284        if (uptodate)
 285                set_bit(R1BIO_Uptodate, &r1_bio->state);
 286        else {
 287                /* If all other devices have failed, we want to return
 288                 * the error upwards rather than fail the last device.
 289                 * Here we redefine "uptodate" to mean "Don't want to retry"
 290                 */
 291                unsigned long flags;
 292                spin_lock_irqsave(&conf->device_lock, flags);
 293                if (r1_bio->mddev->degraded == conf->raid_disks ||
 294                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 295                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 296                        uptodate = 1;
 297                spin_unlock_irqrestore(&conf->device_lock, flags);
 298        }
 299
 300        if (uptodate)
 301                raid_end_bio_io(r1_bio);
 302        else {
 303                /*
 304                 * oops, read error:
 305                 */
 306                char b[BDEVNAME_SIZE];
 307                printk_ratelimited(
 308                        KERN_ERR "md/raid1:%s: %s: "
 309                        "rescheduling sector %llu\n",
 310                        mdname(conf->mddev),
 311                        bdevname(conf->mirrors[mirror].rdev->bdev,
 312                                 b),
 313                        (unsigned long long)r1_bio->sector);
 314                set_bit(R1BIO_ReadError, &r1_bio->state);
 315                reschedule_retry(r1_bio);
 316        }
 317
 318        rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 319}
 320
 321static void close_write(r1bio_t *r1_bio)
 322{
 323        /* it really is the end of this request */
 324        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 325                /* free extra copy of the data pages */
 326                int i = r1_bio->behind_page_count;
 327                while (i--)
 328                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 329                kfree(r1_bio->behind_bvecs);
 330                r1_bio->behind_bvecs = NULL;
 331        }
 332        /* clear the bitmap if all writes complete successfully */
 333        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 334                        r1_bio->sectors,
 335                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 336                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 337        md_write_end(r1_bio->mddev);
 338}
 339
 340static void r1_bio_write_done(r1bio_t *r1_bio)
 341{
 342        if (!atomic_dec_and_test(&r1_bio->remaining))
 343                return;
 344
 345        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 346                reschedule_retry(r1_bio);
 347        else {
 348                close_write(r1_bio);
 349                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 350                        reschedule_retry(r1_bio);
 351                else
 352                        raid_end_bio_io(r1_bio);
 353        }
 354}
 355
 356static void raid1_end_write_request(struct bio *bio, int error)
 357{
 358        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 359        r1bio_t *r1_bio = bio->bi_private;
 360        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 361        conf_t *conf = r1_bio->mddev->private;
 362        struct bio *to_put = NULL;
 363
 364
 365        for (mirror = 0; mirror < conf->raid_disks; mirror++)
 366                if (r1_bio->bios[mirror] == bio)
 367                        break;
 368
 369        /*
 370         * 'one mirror IO has finished' event handler:
 371         */
 372        if (!uptodate) {
 373                set_bit(WriteErrorSeen,
 374                        &conf->mirrors[mirror].rdev->flags);
 375                set_bit(R1BIO_WriteError, &r1_bio->state);
 376        } else {
 377                /*
 378                 * Set R1BIO_Uptodate in our master bio, so that we
 379                 * will return a good error code for to the higher
 380                 * levels even if IO on some other mirrored buffer
 381                 * fails.
 382                 *
 383                 * The 'master' represents the composite IO operation
 384                 * to user-side. So if something waits for IO, then it
 385                 * will wait for the 'master' bio.
 386                 */
 387                sector_t first_bad;
 388                int bad_sectors;
 389
 390                r1_bio->bios[mirror] = NULL;
 391                to_put = bio;
 392                set_bit(R1BIO_Uptodate, &r1_bio->state);
 393
 394                /* Maybe we can clear some bad blocks. */
 395                if (is_badblock(conf->mirrors[mirror].rdev,
 396                                r1_bio->sector, r1_bio->sectors,
 397                                &first_bad, &bad_sectors)) {
 398                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 399                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 400                }
 401        }
 402
 403        update_head_pos(mirror, r1_bio);
 404
 405        if (behind) {
 406                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 407                        atomic_dec(&r1_bio->behind_remaining);
 408
 409                /*
 410                 * In behind mode, we ACK the master bio once the I/O
 411                 * has safely reached all non-writemostly
 412                 * disks. Setting the Returned bit ensures that this
 413                 * gets done only once -- we don't ever want to return
 414                 * -EIO here, instead we'll wait
 415                 */
 416                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 417                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 418                        /* Maybe we can return now */
 419                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 420                                struct bio *mbio = r1_bio->master_bio;
 421                                PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
 422                                       (unsigned long long) mbio->bi_sector,
 423                                       (unsigned long long) mbio->bi_sector +
 424                                       (mbio->bi_size >> 9) - 1);
 425                                call_bio_endio(r1_bio);
 426                        }
 427                }
 428        }
 429        if (r1_bio->bios[mirror] == NULL)
 430                rdev_dec_pending(conf->mirrors[mirror].rdev,
 431                                 conf->mddev);
 432
 433        /*
 434         * Let's see if all mirrored write operations have finished
 435         * already.
 436         */
 437        r1_bio_write_done(r1_bio);
 438
 439        if (to_put)
 440                bio_put(to_put);
 441}
 442
 443
 444/*
 445 * This routine returns the disk from which the requested read should
 446 * be done. There is a per-array 'next expected sequential IO' sector
 447 * number - if this matches on the next IO then we use the last disk.
 448 * There is also a per-disk 'last know head position' sector that is
 449 * maintained from IRQ contexts, both the normal and the resync IO
 450 * completion handlers update this position correctly. If there is no
 451 * perfect sequential match then we pick the disk whose head is closest.
 452 *
 453 * If there are 2 mirrors in the same 2 devices, performance degrades
 454 * because position is mirror, not device based.
 455 *
 456 * The rdev for the device selected will have nr_pending incremented.
 457 */
 458static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
 459{
 460        const sector_t this_sector = r1_bio->sector;
 461        int sectors;
 462        int best_good_sectors;
 463        int start_disk;
 464        int best_disk;
 465        int i;
 466        sector_t best_dist;
 467        mdk_rdev_t *rdev;
 468        int choose_first;
 469
 470        rcu_read_lock();
 471        /*
 472         * Check if we can balance. We can balance on the whole
 473         * device if no resync is going on, or below the resync window.
 474         * We take the first readable disk when above the resync window.
 475         */
 476 retry:
 477        sectors = r1_bio->sectors;
 478        best_disk = -1;
 479        best_dist = MaxSector;
 480        best_good_sectors = 0;
 481
 482        if (conf->mddev->recovery_cp < MaxSector &&
 483            (this_sector + sectors >= conf->next_resync)) {
 484                choose_first = 1;
 485                start_disk = 0;
 486        } else {
 487                choose_first = 0;
 488                start_disk = conf->last_used;
 489        }
 490
 491        for (i = 0 ; i < conf->raid_disks ; i++) {
 492                sector_t dist;
 493                sector_t first_bad;
 494                int bad_sectors;
 495
 496                int disk = start_disk + i;
 497                if (disk >= conf->raid_disks)
 498                        disk -= conf->raid_disks;
 499
 500                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 501                if (r1_bio->bios[disk] == IO_BLOCKED
 502                    || rdev == NULL
 503                    || test_bit(Faulty, &rdev->flags))
 504                        continue;
 505                if (!test_bit(In_sync, &rdev->flags) &&
 506                    rdev->recovery_offset < this_sector + sectors)
 507                        continue;
 508                if (test_bit(WriteMostly, &rdev->flags)) {
 509                        /* Don't balance among write-mostly, just
 510                         * use the first as a last resort */
 511                        if (best_disk < 0)
 512                                best_disk = disk;
 513                        continue;
 514                }
 515                /* This is a reasonable device to use.  It might
 516                 * even be best.
 517                 */
 518                if (is_badblock(rdev, this_sector, sectors,
 519                                &first_bad, &bad_sectors)) {
 520                        if (best_dist < MaxSector)
 521                                /* already have a better device */
 522                                continue;
 523                        if (first_bad <= this_sector) {
 524                                /* cannot read here. If this is the 'primary'
 525                                 * device, then we must not read beyond
 526                                 * bad_sectors from another device..
 527                                 */
 528                                bad_sectors -= (this_sector - first_bad);
 529                                if (choose_first && sectors > bad_sectors)
 530                                        sectors = bad_sectors;
 531                                if (best_good_sectors > sectors)
 532                                        best_good_sectors = sectors;
 533
 534                        } else {
 535                                sector_t good_sectors = first_bad - this_sector;
 536                                if (good_sectors > best_good_sectors) {
 537                                        best_good_sectors = good_sectors;
 538                                        best_disk = disk;
 539                                }
 540                                if (choose_first)
 541                                        break;
 542                        }
 543                        continue;
 544                } else
 545                        best_good_sectors = sectors;
 546
 547                dist = abs(this_sector - conf->mirrors[disk].head_position);
 548                if (choose_first
 549                    /* Don't change to another disk for sequential reads */
 550                    || conf->next_seq_sect == this_sector
 551                    || dist == 0
 552                    /* If device is idle, use it */
 553                    || atomic_read(&rdev->nr_pending) == 0) {
 554                        best_disk = disk;
 555                        break;
 556                }
 557                if (dist < best_dist) {
 558                        best_dist = dist;
 559                        best_disk = disk;
 560                }
 561        }
 562
 563        if (best_disk >= 0) {
 564                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 565                if (!rdev)
 566                        goto retry;
 567                atomic_inc(&rdev->nr_pending);
 568                if (test_bit(Faulty, &rdev->flags)) {
 569                        /* cannot risk returning a device that failed
 570                         * before we inc'ed nr_pending
 571                         */
 572                        rdev_dec_pending(rdev, conf->mddev);
 573                        goto retry;
 574                }
 575                sectors = best_good_sectors;
 576                conf->next_seq_sect = this_sector + sectors;
 577                conf->last_used = best_disk;
 578        }
 579        rcu_read_unlock();
 580        *max_sectors = sectors;
 581
 582        return best_disk;
 583}
 584
 585int md_raid1_congested(mddev_t *mddev, int bits)
 586{
 587        conf_t *conf = mddev->private;
 588        int i, ret = 0;
 589
 590        rcu_read_lock();
 591        for (i = 0; i < mddev->raid_disks; i++) {
 592                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 593                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 594                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 595
 596                        BUG_ON(!q);
 597
 598                        /* Note the '|| 1' - when read_balance prefers
 599                         * non-congested targets, it can be removed
 600                         */
 601                        if ((bits & (1<<BDI_async_congested)) || 1)
 602                                ret |= bdi_congested(&q->backing_dev_info, bits);
 603                        else
 604                                ret &= bdi_congested(&q->backing_dev_info, bits);
 605                }
 606        }
 607        rcu_read_unlock();
 608        return ret;
 609}
 610EXPORT_SYMBOL_GPL(md_raid1_congested);
 611
 612static int raid1_congested(void *data, int bits)
 613{
 614        mddev_t *mddev = data;
 615
 616        return mddev_congested(mddev, bits) ||
 617                md_raid1_congested(mddev, bits);
 618}
 619
 620static void flush_pending_writes(conf_t *conf)
 621{
 622        /* Any writes that have been queued but are awaiting
 623         * bitmap updates get flushed here.
 624         */
 625        spin_lock_irq(&conf->device_lock);
 626
 627        if (conf->pending_bio_list.head) {
 628                struct bio *bio;
 629                bio = bio_list_get(&conf->pending_bio_list);
 630                spin_unlock_irq(&conf->device_lock);
 631                /* flush any pending bitmap writes to
 632                 * disk before proceeding w/ I/O */
 633                bitmap_unplug(conf->mddev->bitmap);
 634
 635                while (bio) { /* submit pending writes */
 636                        struct bio *next = bio->bi_next;
 637                        bio->bi_next = NULL;
 638                        generic_make_request(bio);
 639                        bio = next;
 640                }
 641        } else
 642                spin_unlock_irq(&conf->device_lock);
 643}
 644
 645/* Barriers....
 646 * Sometimes we need to suspend IO while we do something else,
 647 * either some resync/recovery, or reconfigure the array.
 648 * To do this we raise a 'barrier'.
 649 * The 'barrier' is a counter that can be raised multiple times
 650 * to count how many activities are happening which preclude
 651 * normal IO.
 652 * We can only raise the barrier if there is no pending IO.
 653 * i.e. if nr_pending == 0.
 654 * We choose only to raise the barrier if no-one is waiting for the
 655 * barrier to go down.  This means that as soon as an IO request
 656 * is ready, no other operations which require a barrier will start
 657 * until the IO request has had a chance.
 658 *
 659 * So: regular IO calls 'wait_barrier'.  When that returns there
 660 *    is no backgroup IO happening,  It must arrange to call
 661 *    allow_barrier when it has finished its IO.
 662 * backgroup IO calls must call raise_barrier.  Once that returns
 663 *    there is no normal IO happeing.  It must arrange to call
 664 *    lower_barrier when the particular background IO completes.
 665 */
 666#define RESYNC_DEPTH 32
 667
 668static void raise_barrier(conf_t *conf)
 669{
 670        spin_lock_irq(&conf->resync_lock);
 671
 672        /* Wait until no block IO is waiting */
 673        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 674                            conf->resync_lock, );
 675
 676        /* block any new IO from starting */
 677        conf->barrier++;
 678
 679        /* Now wait for all pending IO to complete */
 680        wait_event_lock_irq(conf->wait_barrier,
 681                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 682                            conf->resync_lock, );
 683
 684        spin_unlock_irq(&conf->resync_lock);
 685}
 686
 687static void lower_barrier(conf_t *conf)
 688{
 689        unsigned long flags;
 690        BUG_ON(conf->barrier <= 0);
 691        spin_lock_irqsave(&conf->resync_lock, flags);
 692        conf->barrier--;
 693        spin_unlock_irqrestore(&conf->resync_lock, flags);
 694        wake_up(&conf->wait_barrier);
 695}
 696
 697static void wait_barrier(conf_t *conf)
 698{
 699        spin_lock_irq(&conf->resync_lock);
 700        if (conf->barrier) {
 701                conf->nr_waiting++;
 702                wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 703                                    conf->resync_lock,
 704                                    );
 705                conf->nr_waiting--;
 706        }
 707        conf->nr_pending++;
 708        spin_unlock_irq(&conf->resync_lock);
 709}
 710
 711static void allow_barrier(conf_t *conf)
 712{
 713        unsigned long flags;
 714        spin_lock_irqsave(&conf->resync_lock, flags);
 715        conf->nr_pending--;
 716        spin_unlock_irqrestore(&conf->resync_lock, flags);
 717        wake_up(&conf->wait_barrier);
 718}
 719
 720static void freeze_array(conf_t *conf)
 721{
 722        /* stop syncio and normal IO and wait for everything to
 723         * go quite.
 724         * We increment barrier and nr_waiting, and then
 725         * wait until nr_pending match nr_queued+1
 726         * This is called in the context of one normal IO request
 727         * that has failed. Thus any sync request that might be pending
 728         * will be blocked by nr_pending, and we need to wait for
 729         * pending IO requests to complete or be queued for re-try.
 730         * Thus the number queued (nr_queued) plus this request (1)
 731         * must match the number of pending IOs (nr_pending) before
 732         * we continue.
 733         */
 734        spin_lock_irq(&conf->resync_lock);
 735        conf->barrier++;
 736        conf->nr_waiting++;
 737        wait_event_lock_irq(conf->wait_barrier,
 738                            conf->nr_pending == conf->nr_queued+1,
 739                            conf->resync_lock,
 740                            flush_pending_writes(conf));
 741        spin_unlock_irq(&conf->resync_lock);
 742}
 743static void unfreeze_array(conf_t *conf)
 744{
 745        /* reverse the effect of the freeze */
 746        spin_lock_irq(&conf->resync_lock);
 747        conf->barrier--;
 748        conf->nr_waiting--;
 749        wake_up(&conf->wait_barrier);
 750        spin_unlock_irq(&conf->resync_lock);
 751}
 752
 753
 754/* duplicate the data pages for behind I/O 
 755 */
 756static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
 757{
 758        int i;
 759        struct bio_vec *bvec;
 760        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 761                                        GFP_NOIO);
 762        if (unlikely(!bvecs))
 763                return;
 764
 765        bio_for_each_segment(bvec, bio, i) {
 766                bvecs[i] = *bvec;
 767                bvecs[i].bv_page = alloc_page(GFP_NOIO);
 768                if (unlikely(!bvecs[i].bv_page))
 769                        goto do_sync_io;
 770                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 771                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 772                kunmap(bvecs[i].bv_page);
 773                kunmap(bvec->bv_page);
 774        }
 775        r1_bio->behind_bvecs = bvecs;
 776        r1_bio->behind_page_count = bio->bi_vcnt;
 777        set_bit(R1BIO_BehindIO, &r1_bio->state);
 778        return;
 779
 780do_sync_io:
 781        for (i = 0; i < bio->bi_vcnt; i++)
 782                if (bvecs[i].bv_page)
 783                        put_page(bvecs[i].bv_page);
 784        kfree(bvecs);
 785        PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 786}
 787
 788static int make_request(mddev_t *mddev, struct bio * bio)
 789{
 790        conf_t *conf = mddev->private;
 791        mirror_info_t *mirror;
 792        r1bio_t *r1_bio;
 793        struct bio *read_bio;
 794        int i, disks;
 795        struct bitmap *bitmap;
 796        unsigned long flags;
 797        const int rw = bio_data_dir(bio);
 798        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 799        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 800        mdk_rdev_t *blocked_rdev;
 801        int plugged;
 802        int first_clone;
 803        int sectors_handled;
 804        int max_sectors;
 805
 806        /*
 807         * Register the new request and wait if the reconstruction
 808         * thread has put up a bar for new requests.
 809         * Continue immediately if no resync is active currently.
 810         */
 811
 812        md_write_start(mddev, bio); /* wait on superblock update early */
 813
 814        if (bio_data_dir(bio) == WRITE &&
 815            bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 816            bio->bi_sector < mddev->suspend_hi) {
 817                /* As the suspend_* range is controlled by
 818                 * userspace, we want an interruptible
 819                 * wait.
 820                 */
 821                DEFINE_WAIT(w);
 822                for (;;) {
 823                        flush_signals(current);
 824                        prepare_to_wait(&conf->wait_barrier,
 825                                        &w, TASK_INTERRUPTIBLE);
 826                        if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 827                            bio->bi_sector >= mddev->suspend_hi)
 828                                break;
 829                        schedule();
 830                }
 831                finish_wait(&conf->wait_barrier, &w);
 832        }
 833
 834        wait_barrier(conf);
 835
 836        bitmap = mddev->bitmap;
 837
 838        /*
 839         * make_request() can abort the operation when READA is being
 840         * used and no empty request is available.
 841         *
 842         */
 843        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 844
 845        r1_bio->master_bio = bio;
 846        r1_bio->sectors = bio->bi_size >> 9;
 847        r1_bio->state = 0;
 848        r1_bio->mddev = mddev;
 849        r1_bio->sector = bio->bi_sector;
 850
 851        /* We might need to issue multiple reads to different
 852         * devices if there are bad blocks around, so we keep
 853         * track of the number of reads in bio->bi_phys_segments.
 854         * If this is 0, there is only one r1_bio and no locking
 855         * will be needed when requests complete.  If it is
 856         * non-zero, then it is the number of not-completed requests.
 857         */
 858        bio->bi_phys_segments = 0;
 859        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 860
 861        if (rw == READ) {
 862                /*
 863                 * read balancing logic:
 864                 */
 865                int rdisk;
 866
 867read_again:
 868                rdisk = read_balance(conf, r1_bio, &max_sectors);
 869
 870                if (rdisk < 0) {
 871                        /* couldn't find anywhere to read from */
 872                        raid_end_bio_io(r1_bio);
 873                        return 0;
 874                }
 875                mirror = conf->mirrors + rdisk;
 876
 877                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 878                    bitmap) {
 879                        /* Reading from a write-mostly device must
 880                         * take care not to over-take any writes
 881                         * that are 'behind'
 882                         */
 883                        wait_event(bitmap->behind_wait,
 884                                   atomic_read(&bitmap->behind_writes) == 0);
 885                }
 886                r1_bio->read_disk = rdisk;
 887
 888                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 889                md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
 890                            max_sectors);
 891
 892                r1_bio->bios[rdisk] = read_bio;
 893
 894                read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 895                read_bio->bi_bdev = mirror->rdev->bdev;
 896                read_bio->bi_end_io = raid1_end_read_request;
 897                read_bio->bi_rw = READ | do_sync;
 898                read_bio->bi_private = r1_bio;
 899
 900                if (max_sectors < r1_bio->sectors) {
 901                        /* could not read all from this device, so we will
 902                         * need another r1_bio.
 903                         */
 904
 905                        sectors_handled = (r1_bio->sector + max_sectors
 906                                           - bio->bi_sector);
 907                        r1_bio->sectors = max_sectors;
 908                        spin_lock_irq(&conf->device_lock);
 909                        if (bio->bi_phys_segments == 0)
 910                                bio->bi_phys_segments = 2;
 911                        else
 912                                bio->bi_phys_segments++;
 913                        spin_unlock_irq(&conf->device_lock);
 914                        /* Cannot call generic_make_request directly
 915                         * as that will be queued in __make_request
 916                         * and subsequent mempool_alloc might block waiting
 917                         * for it.  So hand bio over to raid1d.
 918                         */
 919                        reschedule_retry(r1_bio);
 920
 921                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 922
 923                        r1_bio->master_bio = bio;
 924                        r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
 925                        r1_bio->state = 0;
 926                        r1_bio->mddev = mddev;
 927                        r1_bio->sector = bio->bi_sector + sectors_handled;
 928                        goto read_again;
 929                } else
 930                        generic_make_request(read_bio);
 931                return 0;
 932        }
 933
 934        /*
 935         * WRITE:
 936         */
 937        /* first select target devices under rcu_lock and
 938         * inc refcount on their rdev.  Record them by setting
 939         * bios[x] to bio
 940         * If there are known/acknowledged bad blocks on any device on
 941         * which we have seen a write error, we want to avoid writing those
 942         * blocks.
 943         * This potentially requires several writes to write around
 944         * the bad blocks.  Each set of writes gets it's own r1bio
 945         * with a set of bios attached.
 946         */
 947        plugged = mddev_check_plugged(mddev);
 948
 949        disks = conf->raid_disks;
 950 retry_write:
 951        blocked_rdev = NULL;
 952        rcu_read_lock();
 953        max_sectors = r1_bio->sectors;
 954        for (i = 0;  i < disks; i++) {
 955                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 956                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 957                        atomic_inc(&rdev->nr_pending);
 958                        blocked_rdev = rdev;
 959                        break;
 960                }
 961                r1_bio->bios[i] = NULL;
 962                if (!rdev || test_bit(Faulty, &rdev->flags)) {
 963                        set_bit(R1BIO_Degraded, &r1_bio->state);
 964                        continue;
 965                }
 966
 967                atomic_inc(&rdev->nr_pending);
 968                if (test_bit(WriteErrorSeen, &rdev->flags)) {
 969                        sector_t first_bad;
 970                        int bad_sectors;
 971                        int is_bad;
 972
 973                        is_bad = is_badblock(rdev, r1_bio->sector,
 974                                             max_sectors,
 975                                             &first_bad, &bad_sectors);
 976                        if (is_bad < 0) {
 977                                /* mustn't write here until the bad block is
 978                                 * acknowledged*/
 979                                set_bit(BlockedBadBlocks, &rdev->flags);
 980                                blocked_rdev = rdev;
 981                                break;
 982                        }
 983                        if (is_bad && first_bad <= r1_bio->sector) {
 984                                /* Cannot write here at all */
 985                                bad_sectors -= (r1_bio->sector - first_bad);
 986                                if (bad_sectors < max_sectors)
 987                                        /* mustn't write more than bad_sectors
 988                                         * to other devices yet
 989                                         */
 990                                        max_sectors = bad_sectors;
 991                                rdev_dec_pending(rdev, mddev);
 992                                /* We don't set R1BIO_Degraded as that
 993                                 * only applies if the disk is
 994                                 * missing, so it might be re-added,
 995                                 * and we want to know to recover this
 996                                 * chunk.
 997                                 * In this case the device is here,
 998                                 * and the fact that this chunk is not
 999                                 * in-sync is recorded in the bad
1000                                 * block log
1001                                 */
1002                                continue;
1003                        }
1004                        if (is_bad) {
1005                                int good_sectors = first_bad - r1_bio->sector;
1006                                if (good_sectors < max_sectors)
1007                                        max_sectors = good_sectors;
1008                        }
1009                }
1010                r1_bio->bios[i] = bio;
1011        }
1012        rcu_read_unlock();
1013
1014        if (unlikely(blocked_rdev)) {
1015                /* Wait for this device to become unblocked */
1016                int j;
1017
1018                for (j = 0; j < i; j++)
1019                        if (r1_bio->bios[j])
1020                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021                r1_bio->state = 0;
1022                allow_barrier(conf);
1023                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024                wait_barrier(conf);
1025                goto retry_write;
1026        }
1027
1028        if (max_sectors < r1_bio->sectors) {
1029                /* We are splitting this write into multiple parts, so
1030                 * we need to prepare for allocating another r1_bio.
1031                 */
1032                r1_bio->sectors = max_sectors;
1033                spin_lock_irq(&conf->device_lock);
1034                if (bio->bi_phys_segments == 0)
1035                        bio->bi_phys_segments = 2;
1036                else
1037                        bio->bi_phys_segments++;
1038                spin_unlock_irq(&conf->device_lock);
1039        }
1040        sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1041
1042        atomic_set(&r1_bio->remaining, 1);
1043        atomic_set(&r1_bio->behind_remaining, 0);
1044
1045        first_clone = 1;
1046        for (i = 0; i < disks; i++) {
1047                struct bio *mbio;
1048                if (!r1_bio->bios[i])
1049                        continue;
1050
1051                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052                md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053
1054                if (first_clone) {
1055                        /* do behind I/O ?
1056                         * Not if there are too many, or cannot
1057                         * allocate memory, or a reader on WriteMostly
1058                         * is waiting for behind writes to flush */
1059                        if (bitmap &&
1060                            (atomic_read(&bitmap->behind_writes)
1061                             < mddev->bitmap_info.max_write_behind) &&
1062                            !waitqueue_active(&bitmap->behind_wait))
1063                                alloc_behind_pages(mbio, r1_bio);
1064
1065                        bitmap_startwrite(bitmap, r1_bio->sector,
1066                                          r1_bio->sectors,
1067                                          test_bit(R1BIO_BehindIO,
1068                                                   &r1_bio->state));
1069                        first_clone = 0;
1070                }
1071                if (r1_bio->behind_bvecs) {
1072                        struct bio_vec *bvec;
1073                        int j;
1074
1075                        /* Yes, I really want the '__' version so that
1076                         * we clear any unused pointer in the io_vec, rather
1077                         * than leave them unchanged.  This is important
1078                         * because when we come to free the pages, we won't
1079                         * know the original bi_idx, so we just free
1080                         * them all
1081                         */
1082                        __bio_for_each_segment(bvec, mbio, j, 0)
1083                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085                                atomic_inc(&r1_bio->behind_remaining);
1086                }
1087
1088                r1_bio->bios[i] = mbio;
1089
1090                mbio->bi_sector = (r1_bio->sector +
1091                                   conf->mirrors[i].rdev->data_offset);
1092                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093                mbio->bi_end_io = raid1_end_write_request;
1094                mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1095                mbio->bi_private = r1_bio;
1096
1097                atomic_inc(&r1_bio->remaining);
1098                spin_lock_irqsave(&conf->device_lock, flags);
1099                bio_list_add(&conf->pending_bio_list, mbio);
1100                spin_unlock_irqrestore(&conf->device_lock, flags);
1101        }
1102        /* Mustn't call r1_bio_write_done before this next test,
1103         * as it could result in the bio being freed.
1104         */
1105        if (sectors_handled < (bio->bi_size >> 9)) {
1106                r1_bio_write_done(r1_bio);
1107                /* We need another r1_bio.  It has already been counted
1108                 * in bio->bi_phys_segments
1109                 */
1110                r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1111                r1_bio->master_bio = bio;
1112                r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1113                r1_bio->state = 0;
1114                r1_bio->mddev = mddev;
1115                r1_bio->sector = bio->bi_sector + sectors_handled;
1116                goto retry_write;
1117        }
1118
1119        r1_bio_write_done(r1_bio);
1120
1121        /* In case raid1d snuck in to freeze_array */
1122        wake_up(&conf->wait_barrier);
1123
1124        if (do_sync || !bitmap || !plugged)
1125                md_wakeup_thread(mddev->thread);
1126
1127        return 0;
1128}
1129
1130static void status(struct seq_file *seq, mddev_t *mddev)
1131{
1132        conf_t *conf = mddev->private;
1133        int i;
1134
1135        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1136                   conf->raid_disks - mddev->degraded);
1137        rcu_read_lock();
1138        for (i = 0; i < conf->raid_disks; i++) {
1139                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1140                seq_printf(seq, "%s",
1141                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1142        }
1143        rcu_read_unlock();
1144        seq_printf(seq, "]");
1145}
1146
1147
1148static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1149{
1150        char b[BDEVNAME_SIZE];
1151        conf_t *conf = mddev->private;
1152
1153        /*
1154         * If it is not operational, then we have already marked it as dead
1155         * else if it is the last working disks, ignore the error, let the
1156         * next level up know.
1157         * else mark the drive as failed
1158         */
1159        if (test_bit(In_sync, &rdev->flags)
1160            && (conf->raid_disks - mddev->degraded) == 1) {
1161                /*
1162                 * Don't fail the drive, act as though we were just a
1163                 * normal single drive.
1164                 * However don't try a recovery from this drive as
1165                 * it is very likely to fail.
1166                 */
1167                conf->recovery_disabled = mddev->recovery_disabled;
1168                return;
1169        }
1170        set_bit(Blocked, &rdev->flags);
1171        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1172                unsigned long flags;
1173                spin_lock_irqsave(&conf->device_lock, flags);
1174                mddev->degraded++;
1175                set_bit(Faulty, &rdev->flags);
1176                spin_unlock_irqrestore(&conf->device_lock, flags);
1177                /*
1178                 * if recovery is running, make sure it aborts.
1179                 */
1180                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1181        } else
1182                set_bit(Faulty, &rdev->flags);
1183        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1184        printk(KERN_ALERT
1185               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186               "md/raid1:%s: Operation continuing on %d devices.\n",
1187               mdname(mddev), bdevname(rdev->bdev, b),
1188               mdname(mddev), conf->raid_disks - mddev->degraded);
1189}
1190
1191static void print_conf(conf_t *conf)
1192{
1193        int i;
1194
1195        printk(KERN_DEBUG "RAID1 conf printout:\n");
1196        if (!conf) {
1197                printk(KERN_DEBUG "(!conf)\n");
1198                return;
1199        }
1200        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1201                conf->raid_disks);
1202
1203        rcu_read_lock();
1204        for (i = 0; i < conf->raid_disks; i++) {
1205                char b[BDEVNAME_SIZE];
1206                mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1207                if (rdev)
1208                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1209                               i, !test_bit(In_sync, &rdev->flags),
1210                               !test_bit(Faulty, &rdev->flags),
1211                               bdevname(rdev->bdev,b));
1212        }
1213        rcu_read_unlock();
1214}
1215
1216static void close_sync(conf_t *conf)
1217{
1218        wait_barrier(conf);
1219        allow_barrier(conf);
1220
1221        mempool_destroy(conf->r1buf_pool);
1222        conf->r1buf_pool = NULL;
1223}
1224
1225static int raid1_spare_active(mddev_t *mddev)
1226{
1227        int i;
1228        conf_t *conf = mddev->private;
1229        int count = 0;
1230        unsigned long flags;
1231
1232        /*
1233         * Find all failed disks within the RAID1 configuration 
1234         * and mark them readable.
1235         * Called under mddev lock, so rcu protection not needed.
1236         */
1237        for (i = 0; i < conf->raid_disks; i++) {
1238                mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1239                if (rdev
1240                    && !test_bit(Faulty, &rdev->flags)
1241                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1242                        count++;
1243                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1244                }
1245        }
1246        spin_lock_irqsave(&conf->device_lock, flags);
1247        mddev->degraded -= count;
1248        spin_unlock_irqrestore(&conf->device_lock, flags);
1249
1250        print_conf(conf);
1251        return count;
1252}
1253
1254
1255static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1256{
1257        conf_t *conf = mddev->private;
1258        int err = -EEXIST;
1259        int mirror = 0;
1260        mirror_info_t *p;
1261        int first = 0;
1262        int last = mddev->raid_disks - 1;
1263
1264        if (mddev->recovery_disabled == conf->recovery_disabled)
1265                return -EBUSY;
1266
1267        if (rdev->raid_disk >= 0)
1268                first = last = rdev->raid_disk;
1269
1270        for (mirror = first; mirror <= last; mirror++)
1271                if ( !(p=conf->mirrors+mirror)->rdev) {
1272
1273                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1274                                          rdev->data_offset << 9);
1275                        /* as we don't honour merge_bvec_fn, we must
1276                         * never risk violating it, so limit
1277                         * ->max_segments to one lying with a single
1278                         * page, as a one page request is never in
1279                         * violation.
1280                         */
1281                        if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1282                                blk_queue_max_segments(mddev->queue, 1);
1283                                blk_queue_segment_boundary(mddev->queue,
1284                                                           PAGE_CACHE_SIZE - 1);
1285                        }
1286
1287                        p->head_position = 0;
1288                        rdev->raid_disk = mirror;
1289                        err = 0;
1290                        /* As all devices are equivalent, we don't need a full recovery
1291                         * if this was recently any drive of the array
1292                         */
1293                        if (rdev->saved_raid_disk < 0)
1294                                conf->fullsync = 1;
1295                        rcu_assign_pointer(p->rdev, rdev);
1296                        break;
1297                }
1298        md_integrity_add_rdev(rdev, mddev);
1299        print_conf(conf);
1300        return err;
1301}
1302
1303static int raid1_remove_disk(mddev_t *mddev, int number)
1304{
1305        conf_t *conf = mddev->private;
1306        int err = 0;
1307        mdk_rdev_t *rdev;
1308        mirror_info_t *p = conf->mirrors+ number;
1309
1310        print_conf(conf);
1311        rdev = p->rdev;
1312        if (rdev) {
1313                if (test_bit(In_sync, &rdev->flags) ||
1314                    atomic_read(&rdev->nr_pending)) {
1315                        err = -EBUSY;
1316                        goto abort;
1317                }
1318                /* Only remove non-faulty devices if recovery
1319                 * is not possible.
1320                 */
1321                if (!test_bit(Faulty, &rdev->flags) &&
1322                    mddev->recovery_disabled != conf->recovery_disabled &&
1323                    mddev->degraded < conf->raid_disks) {
1324                        err = -EBUSY;
1325                        goto abort;
1326                }
1327                p->rdev = NULL;
1328                synchronize_rcu();
1329                if (atomic_read(&rdev->nr_pending)) {
1330                        /* lost the race, try later */
1331                        err = -EBUSY;
1332                        p->rdev = rdev;
1333                        goto abort;
1334                }
1335                err = md_integrity_register(mddev);
1336        }
1337abort:
1338
1339        print_conf(conf);
1340        return err;
1341}
1342
1343
1344static void end_sync_read(struct bio *bio, int error)
1345{
1346        r1bio_t *r1_bio = bio->bi_private;
1347        int i;
1348
1349        for (i=r1_bio->mddev->raid_disks; i--; )
1350                if (r1_bio->bios[i] == bio)
1351                        break;
1352        BUG_ON(i < 0);
1353        update_head_pos(i, r1_bio);
1354        /*
1355         * we have read a block, now it needs to be re-written,
1356         * or re-read if the read failed.
1357         * We don't do much here, just schedule handling by raid1d
1358         */
1359        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1360                set_bit(R1BIO_Uptodate, &r1_bio->state);
1361
1362        if (atomic_dec_and_test(&r1_bio->remaining))
1363                reschedule_retry(r1_bio);
1364}
1365
1366static void end_sync_write(struct bio *bio, int error)
1367{
1368        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1369        r1bio_t *r1_bio = bio->bi_private;
1370        mddev_t *mddev = r1_bio->mddev;
1371        conf_t *conf = mddev->private;
1372        int i;
1373        int mirror=0;
1374        sector_t first_bad;
1375        int bad_sectors;
1376
1377        for (i = 0; i < conf->raid_disks; i++)
1378                if (r1_bio->bios[i] == bio) {
1379                        mirror = i;
1380                        break;
1381                }
1382        if (!uptodate) {
1383                sector_t sync_blocks = 0;
1384                sector_t s = r1_bio->sector;
1385                long sectors_to_go = r1_bio->sectors;
1386                /* make sure these bits doesn't get cleared. */
1387                do {
1388                        bitmap_end_sync(mddev->bitmap, s,
1389                                        &sync_blocks, 1);
1390                        s += sync_blocks;
1391                        sectors_to_go -= sync_blocks;
1392                } while (sectors_to_go > 0);
1393                set_bit(WriteErrorSeen,
1394                        &conf->mirrors[mirror].rdev->flags);
1395                set_bit(R1BIO_WriteError, &r1_bio->state);
1396        } else if (is_badblock(conf->mirrors[mirror].rdev,
1397                               r1_bio->sector,
1398                               r1_bio->sectors,
1399                               &first_bad, &bad_sectors) &&
1400                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1401                                r1_bio->sector,
1402                                r1_bio->sectors,
1403                                &first_bad, &bad_sectors)
1404                )
1405                set_bit(R1BIO_MadeGood, &r1_bio->state);
1406
1407        update_head_pos(mirror, r1_bio);
1408
1409        if (atomic_dec_and_test(&r1_bio->remaining)) {
1410                int s = r1_bio->sectors;
1411                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1412                    test_bit(R1BIO_WriteError, &r1_bio->state))
1413                        reschedule_retry(r1_bio);
1414                else {
1415                        put_buf(r1_bio);
1416                        md_done_sync(mddev, s, uptodate);
1417                }
1418        }
1419}
1420
1421static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1422                            int sectors, struct page *page, int rw)
1423{
1424        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1425                /* success */
1426                return 1;
1427        if (rw == WRITE)
1428                set_bit(WriteErrorSeen, &rdev->flags);
1429        /* need to record an error - either for the block or the device */
1430        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1431                md_error(rdev->mddev, rdev);
1432        return 0;
1433}
1434
1435static int fix_sync_read_error(r1bio_t *r1_bio)
1436{
1437        /* Try some synchronous reads of other devices to get
1438         * good data, much like with normal read errors.  Only
1439         * read into the pages we already have so we don't
1440         * need to re-issue the read request.
1441         * We don't need to freeze the array, because being in an
1442         * active sync request, there is no normal IO, and
1443         * no overlapping syncs.
1444         * We don't need to check is_badblock() again as we
1445         * made sure that anything with a bad block in range
1446         * will have bi_end_io clear.
1447         */
1448        mddev_t *mddev = r1_bio->mddev;
1449        conf_t *conf = mddev->private;
1450        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1451        sector_t sect = r1_bio->sector;
1452        int sectors = r1_bio->sectors;
1453        int idx = 0;
1454
1455        while(sectors) {
1456                int s = sectors;
1457                int d = r1_bio->read_disk;
1458                int success = 0;
1459                mdk_rdev_t *rdev;
1460                int start;
1461
1462                if (s > (PAGE_SIZE>>9))
1463                        s = PAGE_SIZE >> 9;
1464                do {
1465                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1466                                /* No rcu protection needed here devices
1467                                 * can only be removed when no resync is
1468                                 * active, and resync is currently active
1469                                 */
1470                                rdev = conf->mirrors[d].rdev;
1471                                if (sync_page_io(rdev, sect, s<<9,
1472                                                 bio->bi_io_vec[idx].bv_page,
1473                                                 READ, false)) {
1474                                        success = 1;
1475                                        break;
1476                                }
1477                        }
1478                        d++;
1479                        if (d == conf->raid_disks)
1480                                d = 0;
1481                } while (!success && d != r1_bio->read_disk);
1482
1483                if (!success) {
1484                        char b[BDEVNAME_SIZE];
1485                        int abort = 0;
1486                        /* Cannot read from anywhere, this block is lost.
1487                         * Record a bad block on each device.  If that doesn't
1488                         * work just disable and interrupt the recovery.
1489                         * Don't fail devices as that won't really help.
1490                         */
1491                        printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1492                               " for block %llu\n",
1493                               mdname(mddev),
1494                               bdevname(bio->bi_bdev, b),
1495                               (unsigned long long)r1_bio->sector);
1496                        for (d = 0; d < conf->raid_disks; d++) {
1497                                rdev = conf->mirrors[d].rdev;
1498                                if (!rdev || test_bit(Faulty, &rdev->flags))
1499                                        continue;
1500                                if (!rdev_set_badblocks(rdev, sect, s, 0))
1501                                        abort = 1;
1502                        }
1503                        if (abort) {
1504                                mddev->recovery_disabled = 1;
1505                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506                                md_done_sync(mddev, r1_bio->sectors, 0);
1507                                put_buf(r1_bio);
1508                                return 0;
1509                        }
1510                        /* Try next page */
1511                        sectors -= s;
1512                        sect += s;
1513                        idx++;
1514                        continue;
1515                }
1516
1517                start = d;
1518                /* write it back and re-read */
1519                while (d != r1_bio->read_disk) {
1520                        if (d == 0)
1521                                d = conf->raid_disks;
1522                        d--;
1523                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1524                                continue;
1525                        rdev = conf->mirrors[d].rdev;
1526                        if (r1_sync_page_io(rdev, sect, s,
1527                                            bio->bi_io_vec[idx].bv_page,
1528                                            WRITE) == 0) {
1529                                r1_bio->bios[d]->bi_end_io = NULL;
1530                                rdev_dec_pending(rdev, mddev);
1531                        }
1532                }
1533                d = start;
1534                while (d != r1_bio->read_disk) {
1535                        if (d == 0)
1536                                d = conf->raid_disks;
1537                        d--;
1538                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1539                                continue;
1540                        rdev = conf->mirrors[d].rdev;
1541                        if (r1_sync_page_io(rdev, sect, s,
1542                                            bio->bi_io_vec[idx].bv_page,
1543                                            READ) != 0)
1544                                atomic_add(s, &rdev->corrected_errors);
1545                }
1546                sectors -= s;
1547                sect += s;
1548                idx ++;
1549        }
1550        set_bit(R1BIO_Uptodate, &r1_bio->state);
1551        set_bit(BIO_UPTODATE, &bio->bi_flags);
1552        return 1;
1553}
1554
1555static int process_checks(r1bio_t *r1_bio)
1556{
1557        /* We have read all readable devices.  If we haven't
1558         * got the block, then there is no hope left.
1559         * If we have, then we want to do a comparison
1560         * and skip the write if everything is the same.
1561         * If any blocks failed to read, then we need to
1562         * attempt an over-write
1563         */
1564        mddev_t *mddev = r1_bio->mddev;
1565        conf_t *conf = mddev->private;
1566        int primary;
1567        int i;
1568
1569        for (primary = 0; primary < conf->raid_disks; primary++)
1570                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1571                    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1572                        r1_bio->bios[primary]->bi_end_io = NULL;
1573                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1574                        break;
1575                }
1576        r1_bio->read_disk = primary;
1577        for (i = 0; i < conf->raid_disks; i++) {
1578                int j;
1579                int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1580                struct bio *pbio = r1_bio->bios[primary];
1581                struct bio *sbio = r1_bio->bios[i];
1582                int size;
1583
1584                if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1585                        continue;
1586
1587                if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1588                        for (j = vcnt; j-- ; ) {
1589                                struct page *p, *s;
1590                                p = pbio->bi_io_vec[j].bv_page;
1591                                s = sbio->bi_io_vec[j].bv_page;
1592                                if (memcmp(page_address(p),
1593                                           page_address(s),
1594                                           PAGE_SIZE))
1595                                        break;
1596                        }
1597                } else
1598                        j = 0;
1599                if (j >= 0)
1600                        mddev->resync_mismatches += r1_bio->sectors;
1601                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1602                              && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1603                        /* No need to write to this device. */
1604                        sbio->bi_end_io = NULL;
1605                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1606                        continue;
1607                }
1608                /* fixup the bio for reuse */
1609                sbio->bi_vcnt = vcnt;
1610                sbio->bi_size = r1_bio->sectors << 9;
1611                sbio->bi_idx = 0;
1612                sbio->bi_phys_segments = 0;
1613                sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614                sbio->bi_flags |= 1 << BIO_UPTODATE;
1615                sbio->bi_next = NULL;
1616                sbio->bi_sector = r1_bio->sector +
1617                        conf->mirrors[i].rdev->data_offset;
1618                sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1619                size = sbio->bi_size;
1620                for (j = 0; j < vcnt ; j++) {
1621                        struct bio_vec *bi;
1622                        bi = &sbio->bi_io_vec[j];
1623                        bi->bv_offset = 0;
1624                        if (size > PAGE_SIZE)
1625                                bi->bv_len = PAGE_SIZE;
1626                        else
1627                                bi->bv_len = size;
1628                        size -= PAGE_SIZE;
1629                        memcpy(page_address(bi->bv_page),
1630                               page_address(pbio->bi_io_vec[j].bv_page),
1631                               PAGE_SIZE);
1632                }
1633        }
1634        return 0;
1635}
1636
1637static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1638{
1639        conf_t *conf = mddev->private;
1640        int i;
1641        int disks = conf->raid_disks;
1642        struct bio *bio, *wbio;
1643
1644        bio = r1_bio->bios[r1_bio->read_disk];
1645
1646        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1647                /* ouch - failed to read all of that. */
1648                if (!fix_sync_read_error(r1_bio))
1649                        return;
1650
1651        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1652                if (process_checks(r1_bio) < 0)
1653                        return;
1654        /*
1655         * schedule writes
1656         */
1657        atomic_set(&r1_bio->remaining, 1);
1658        for (i = 0; i < disks ; i++) {
1659                wbio = r1_bio->bios[i];
1660                if (wbio->bi_end_io == NULL ||
1661                    (wbio->bi_end_io == end_sync_read &&
1662                     (i == r1_bio->read_disk ||
1663                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1664                        continue;
1665
1666                wbio->bi_rw = WRITE;
1667                wbio->bi_end_io = end_sync_write;
1668                atomic_inc(&r1_bio->remaining);
1669                md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1670
1671                generic_make_request(wbio);
1672        }
1673
1674        if (atomic_dec_and_test(&r1_bio->remaining)) {
1675                /* if we're here, all write(s) have completed, so clean up */
1676                md_done_sync(mddev, r1_bio->sectors, 1);
1677                put_buf(r1_bio);
1678        }
1679}
1680
1681/*
1682 * This is a kernel thread which:
1683 *
1684 *      1.      Retries failed read operations on working mirrors.
1685 *      2.      Updates the raid superblock when problems encounter.
1686 *      3.      Performs writes following reads for array synchronising.
1687 */
1688
1689static void fix_read_error(conf_t *conf, int read_disk,
1690                           sector_t sect, int sectors)
1691{
1692        mddev_t *mddev = conf->mddev;
1693        while(sectors) {
1694                int s = sectors;
1695                int d = read_disk;
1696                int success = 0;
1697                int start;
1698                mdk_rdev_t *rdev;
1699
1700                if (s > (PAGE_SIZE>>9))
1701                        s = PAGE_SIZE >> 9;
1702
1703                do {
1704                        /* Note: no rcu protection needed here
1705                         * as this is synchronous in the raid1d thread
1706                         * which is the thread that might remove
1707                         * a device.  If raid1d ever becomes multi-threaded....
1708                         */
1709                        sector_t first_bad;
1710                        int bad_sectors;
1711
1712                        rdev = conf->mirrors[d].rdev;
1713                        if (rdev &&
1714                            test_bit(In_sync, &rdev->flags) &&
1715                            is_badblock(rdev, sect, s,
1716                                        &first_bad, &bad_sectors) == 0 &&
1717                            sync_page_io(rdev, sect, s<<9,
1718                                         conf->tmppage, READ, false))
1719                                success = 1;
1720                        else {
1721                                d++;
1722                                if (d == conf->raid_disks)
1723                                        d = 0;
1724                        }
1725                } while (!success && d != read_disk);
1726
1727                if (!success) {
1728                        /* Cannot read from anywhere - mark it bad */
1729                        mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1730                        if (!rdev_set_badblocks(rdev, sect, s, 0))
1731                                md_error(mddev, rdev);
1732                        break;
1733                }
1734                /* write it back and re-read */
1735                start = d;
1736                while (d != read_disk) {
1737                        if (d==0)
1738                                d = conf->raid_disks;
1739                        d--;
1740                        rdev = conf->mirrors[d].rdev;
1741                        if (rdev &&
1742                            test_bit(In_sync, &rdev->flags))
1743                                r1_sync_page_io(rdev, sect, s,
1744                                                conf->tmppage, WRITE);
1745                }
1746                d = start;
1747                while (d != read_disk) {
1748                        char b[BDEVNAME_SIZE];
1749                        if (d==0)
1750                                d = conf->raid_disks;
1751                        d--;
1752                        rdev = conf->mirrors[d].rdev;
1753                        if (rdev &&
1754                            test_bit(In_sync, &rdev->flags)) {
1755                                if (r1_sync_page_io(rdev, sect, s,
1756                                                    conf->tmppage, READ)) {
1757                                        atomic_add(s, &rdev->corrected_errors);
1758                                        printk(KERN_INFO
1759                                               "md/raid1:%s: read error corrected "
1760                                               "(%d sectors at %llu on %s)\n",
1761                                               mdname(mddev), s,
1762                                               (unsigned long long)(sect +
1763                                                   rdev->data_offset),
1764                                               bdevname(rdev->bdev, b));
1765                                }
1766                        }
1767                }
1768                sectors -= s;
1769                sect += s;
1770        }
1771}
1772
1773static void bi_complete(struct bio *bio, int error)
1774{
1775        complete((struct completion *)bio->bi_private);
1776}
1777
1778static int submit_bio_wait(int rw, struct bio *bio)
1779{
1780        struct completion event;
1781        rw |= REQ_SYNC;
1782
1783        init_completion(&event);
1784        bio->bi_private = &event;
1785        bio->bi_end_io = bi_complete;
1786        submit_bio(rw, bio);
1787        wait_for_completion(&event);
1788
1789        return test_bit(BIO_UPTODATE, &bio->bi_flags);
1790}
1791
1792static int narrow_write_error(r1bio_t *r1_bio, int i)
1793{
1794        mddev_t *mddev = r1_bio->mddev;
1795        conf_t *conf = mddev->private;
1796        mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1797        int vcnt, idx;
1798        struct bio_vec *vec;
1799
1800        /* bio has the data to be written to device 'i' where
1801         * we just recently had a write error.
1802         * We repeatedly clone the bio and trim down to one block,
1803         * then try the write.  Where the write fails we record
1804         * a bad block.
1805         * It is conceivable that the bio doesn't exactly align with
1806         * blocks.  We must handle this somehow.
1807         *
1808         * We currently own a reference on the rdev.
1809         */
1810
1811        int block_sectors;
1812        sector_t sector;
1813        int sectors;
1814        int sect_to_write = r1_bio->sectors;
1815        int ok = 1;
1816
1817        if (rdev->badblocks.shift < 0)
1818                return 0;
1819
1820        block_sectors = 1 << rdev->badblocks.shift;
1821        sector = r1_bio->sector;
1822        sectors = ((sector + block_sectors)
1823                   & ~(sector_t)(block_sectors - 1))
1824                - sector;
1825
1826        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1827                vcnt = r1_bio->behind_page_count;
1828                vec = r1_bio->behind_bvecs;
1829                idx = 0;
1830                while (vec[idx].bv_page == NULL)
1831                        idx++;
1832        } else {
1833                vcnt = r1_bio->master_bio->bi_vcnt;
1834                vec = r1_bio->master_bio->bi_io_vec;
1835                idx = r1_bio->master_bio->bi_idx;
1836        }
1837        while (sect_to_write) {
1838                struct bio *wbio;
1839                if (sectors > sect_to_write)
1840                        sectors = sect_to_write;
1841                /* Write at 'sector' for 'sectors'*/
1842
1843                wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1844                memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1845                wbio->bi_sector = r1_bio->sector;
1846                wbio->bi_rw = WRITE;
1847                wbio->bi_vcnt = vcnt;
1848                wbio->bi_size = r1_bio->sectors << 9;
1849                wbio->bi_idx = idx;
1850
1851                md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1852                wbio->bi_sector += rdev->data_offset;
1853                wbio->bi_bdev = rdev->bdev;
1854                if (submit_bio_wait(WRITE, wbio) == 0)
1855                        /* failure! */
1856                        ok = rdev_set_badblocks(rdev, sector,
1857                                                sectors, 0)
1858                                && ok;
1859
1860                bio_put(wbio);
1861                sect_to_write -= sectors;
1862                sector += sectors;
1863                sectors = block_sectors;
1864        }
1865        return ok;
1866}
1867
1868static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1869{
1870        int m;
1871        int s = r1_bio->sectors;
1872        for (m = 0; m < conf->raid_disks ; m++) {
1873                mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1874                struct bio *bio = r1_bio->bios[m];
1875                if (bio->bi_end_io == NULL)
1876                        continue;
1877                if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1879                        rdev_clear_badblocks(rdev, r1_bio->sector, s);
1880                }
1881                if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1882                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1883                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1884                                md_error(conf->mddev, rdev);
1885                }
1886        }
1887        put_buf(r1_bio);
1888        md_done_sync(conf->mddev, s, 1);
1889}
1890
1891static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1892{
1893        int m;
1894        for (m = 0; m < conf->raid_disks ; m++)
1895                if (r1_bio->bios[m] == IO_MADE_GOOD) {
1896                        mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1897                        rdev_clear_badblocks(rdev,
1898                                             r1_bio->sector,
1899                                             r1_bio->sectors);
1900                        rdev_dec_pending(rdev, conf->mddev);
1901                } else if (r1_bio->bios[m] != NULL) {
1902                        /* This drive got a write error.  We need to
1903                         * narrow down and record precise write
1904                         * errors.
1905                         */
1906                        if (!narrow_write_error(r1_bio, m)) {
1907                                md_error(conf->mddev,
1908                                         conf->mirrors[m].rdev);
1909                                /* an I/O failed, we can't clear the bitmap */
1910                                set_bit(R1BIO_Degraded, &r1_bio->state);
1911                        }
1912                        rdev_dec_pending(conf->mirrors[m].rdev,
1913                                         conf->mddev);
1914                }
1915        if (test_bit(R1BIO_WriteError, &r1_bio->state))
1916                close_write(r1_bio);
1917        raid_end_bio_io(r1_bio);
1918}
1919
1920static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1921{
1922        int disk;
1923        int max_sectors;
1924        mddev_t *mddev = conf->mddev;
1925        struct bio *bio;
1926        char b[BDEVNAME_SIZE];
1927        mdk_rdev_t *rdev;
1928
1929        clear_bit(R1BIO_ReadError, &r1_bio->state);
1930        /* we got a read error. Maybe the drive is bad.  Maybe just
1931         * the block and we can fix it.
1932         * We freeze all other IO, and try reading the block from
1933         * other devices.  When we find one, we re-write
1934         * and check it that fixes the read error.
1935         * This is all done synchronously while the array is
1936         * frozen
1937         */
1938        if (mddev->ro == 0) {
1939                freeze_array(conf);
1940                fix_read_error(conf, r1_bio->read_disk,
1941                               r1_bio->sector, r1_bio->sectors);
1942                unfreeze_array(conf);
1943        } else
1944                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1945
1946        bio = r1_bio->bios[r1_bio->read_disk];
1947        bdevname(bio->bi_bdev, b);
1948read_more:
1949        disk = read_balance(conf, r1_bio, &max_sectors);
1950        if (disk == -1) {
1951                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1952                       " read error for block %llu\n",
1953                       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1954                raid_end_bio_io(r1_bio);
1955        } else {
1956                const unsigned long do_sync
1957                        = r1_bio->master_bio->bi_rw & REQ_SYNC;
1958                if (bio) {
1959                        r1_bio->bios[r1_bio->read_disk] =
1960                                mddev->ro ? IO_BLOCKED : NULL;
1961                        bio_put(bio);
1962                }
1963                r1_bio->read_disk = disk;
1964                bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1965                md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1966                r1_bio->bios[r1_bio->read_disk] = bio;
1967                rdev = conf->mirrors[disk].rdev;
1968                printk_ratelimited(KERN_ERR
1969                                   "md/raid1:%s: redirecting sector %llu"
1970                                   " to other mirror: %s\n",
1971                                   mdname(mddev),
1972                                   (unsigned long long)r1_bio->sector,
1973                                   bdevname(rdev->bdev, b));
1974                bio->bi_sector = r1_bio->sector + rdev->data_offset;
1975                bio->bi_bdev = rdev->bdev;
1976                bio->bi_end_io = raid1_end_read_request;
1977                bio->bi_rw = READ | do_sync;
1978                bio->bi_private = r1_bio;
1979                if (max_sectors < r1_bio->sectors) {
1980                        /* Drat - have to split this up more */
1981                        struct bio *mbio = r1_bio->master_bio;
1982                        int sectors_handled = (r1_bio->sector + max_sectors
1983                                               - mbio->bi_sector);
1984                        r1_bio->sectors = max_sectors;
1985                        spin_lock_irq(&conf->device_lock);
1986                        if (mbio->bi_phys_segments == 0)
1987                                mbio->bi_phys_segments = 2;
1988                        else
1989                                mbio->bi_phys_segments++;
1990                        spin_unlock_irq(&conf->device_lock);
1991                        generic_make_request(bio);
1992                        bio = NULL;
1993
1994                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1995
1996                        r1_bio->master_bio = mbio;
1997                        r1_bio->sectors = (mbio->bi_size >> 9)
1998                                          - sectors_handled;
1999                        r1_bio->state = 0;
2000                        set_bit(R1BIO_ReadError, &r1_bio->state);
2001                        r1_bio->mddev = mddev;
2002                        r1_bio->sector = mbio->bi_sector + sectors_handled;
2003
2004                        goto read_more;
2005                } else
2006                        generic_make_request(bio);
2007        }
2008}
2009
2010static void raid1d(mddev_t *mddev)
2011{
2012        r1bio_t *r1_bio;
2013        unsigned long flags;
2014        conf_t *conf = mddev->private;
2015        struct list_head *head = &conf->retry_list;
2016        struct blk_plug plug;
2017
2018        md_check_recovery(mddev);
2019
2020        blk_start_plug(&plug);
2021        for (;;) {
2022
2023                if (atomic_read(&mddev->plug_cnt) == 0)
2024                        flush_pending_writes(conf);
2025
2026                spin_lock_irqsave(&conf->device_lock, flags);
2027                if (list_empty(head)) {
2028                        spin_unlock_irqrestore(&conf->device_lock, flags);
2029                        break;
2030                }
2031                r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2032                list_del(head->prev);
2033                conf->nr_queued--;
2034                spin_unlock_irqrestore(&conf->device_lock, flags);
2035
2036                mddev = r1_bio->mddev;
2037                conf = mddev->private;
2038                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2039                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2040                            test_bit(R1BIO_WriteError, &r1_bio->state))
2041                                handle_sync_write_finished(conf, r1_bio);
2042                        else
2043                                sync_request_write(mddev, r1_bio);
2044                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045                           test_bit(R1BIO_WriteError, &r1_bio->state))
2046                        handle_write_finished(conf, r1_bio);
2047                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2048                        handle_read_error(conf, r1_bio);
2049                else
2050                        /* just a partial read to be scheduled from separate
2051                         * context
2052                         */
2053                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2054
2055                cond_resched();
2056                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2057                        md_check_recovery(mddev);
2058        }
2059        blk_finish_plug(&plug);
2060}
2061
2062
2063static int init_resync(conf_t *conf)
2064{
2065        int buffs;
2066
2067        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2068        BUG_ON(conf->r1buf_pool);
2069        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2070                                          conf->poolinfo);
2071        if (!conf->r1buf_pool)
2072                return -ENOMEM;
2073        conf->next_resync = 0;
2074        return 0;
2075}
2076
2077/*
2078 * perform a "sync" on one "block"
2079 *
2080 * We need to make sure that no normal I/O request - particularly write
2081 * requests - conflict with active sync requests.
2082 *
2083 * This is achieved by tracking pending requests and a 'barrier' concept
2084 * that can be installed to exclude normal IO requests.
2085 */
2086
2087static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2088{
2089        conf_t *conf = mddev->private;
2090        r1bio_t *r1_bio;
2091        struct bio *bio;
2092        sector_t max_sector, nr_sectors;
2093        int disk = -1;
2094        int i;
2095        int wonly = -1;
2096        int write_targets = 0, read_targets = 0;
2097        sector_t sync_blocks;
2098        int still_degraded = 0;
2099        int good_sectors = RESYNC_SECTORS;
2100        int min_bad = 0; /* number of sectors that are bad in all devices */
2101
2102        if (!conf->r1buf_pool)
2103                if (init_resync(conf))
2104                        return 0;
2105
2106        max_sector = mddev->dev_sectors;
2107        if (sector_nr >= max_sector) {
2108                /* If we aborted, we need to abort the
2109                 * sync on the 'current' bitmap chunk (there will
2110                 * only be one in raid1 resync.
2111                 * We can find the current addess in mddev->curr_resync
2112                 */
2113                if (mddev->curr_resync < max_sector) /* aborted */
2114                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2115                                                &sync_blocks, 1);
2116                else /* completed sync */
2117                        conf->fullsync = 0;
2118
2119                bitmap_close_sync(mddev->bitmap);
2120                close_sync(conf);
2121                return 0;
2122        }
2123
2124        if (mddev->bitmap == NULL &&
2125            mddev->recovery_cp == MaxSector &&
2126            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2127            conf->fullsync == 0) {
2128                *skipped = 1;
2129                return max_sector - sector_nr;
2130        }
2131        /* before building a request, check if we can skip these blocks..
2132         * This call the bitmap_start_sync doesn't actually record anything
2133         */
2134        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2135            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2136                /* We can skip this block, and probably several more */
2137                *skipped = 1;
2138                return sync_blocks;
2139        }
2140        /*
2141         * If there is non-resync activity waiting for a turn,
2142         * and resync is going fast enough,
2143         * then let it though before starting on this new sync request.
2144         */
2145        if (!go_faster && conf->nr_waiting)
2146                msleep_interruptible(1000);
2147
2148        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2149        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2150        raise_barrier(conf);
2151
2152        conf->next_resync = sector_nr;
2153
2154        rcu_read_lock();
2155        /*
2156         * If we get a correctably read error during resync or recovery,
2157         * we might want to read from a different device.  So we
2158         * flag all drives that could conceivably be read from for READ,
2159         * and any others (which will be non-In_sync devices) for WRITE.
2160         * If a read fails, we try reading from something else for which READ
2161         * is OK.
2162         */
2163
2164        r1_bio->mddev = mddev;
2165        r1_bio->sector = sector_nr;
2166        r1_bio->state = 0;
2167        set_bit(R1BIO_IsSync, &r1_bio->state);
2168
2169        for (i=0; i < conf->raid_disks; i++) {
2170                mdk_rdev_t *rdev;
2171                bio = r1_bio->bios[i];
2172
2173                /* take from bio_init */
2174                bio->bi_next = NULL;
2175                bio->bi_flags &= ~(BIO_POOL_MASK-1);
2176                bio->bi_flags |= 1 << BIO_UPTODATE;
2177                bio->bi_comp_cpu = -1;
2178                bio->bi_rw = READ;
2179                bio->bi_vcnt = 0;
2180                bio->bi_idx = 0;
2181                bio->bi_phys_segments = 0;
2182                bio->bi_size = 0;
2183                bio->bi_end_io = NULL;
2184                bio->bi_private = NULL;
2185
2186                rdev = rcu_dereference(conf->mirrors[i].rdev);
2187                if (rdev == NULL ||
2188                    test_bit(Faulty, &rdev->flags)) {
2189                        still_degraded = 1;
2190                } else if (!test_bit(In_sync, &rdev->flags)) {
2191                        bio->bi_rw = WRITE;
2192                        bio->bi_end_io = end_sync_write;
2193                        write_targets ++;
2194                } else {
2195                        /* may need to read from here */
2196                        sector_t first_bad = MaxSector;
2197                        int bad_sectors;
2198
2199                        if (is_badblock(rdev, sector_nr, good_sectors,
2200                                        &first_bad, &bad_sectors)) {
2201                                if (first_bad > sector_nr)
2202                                        good_sectors = first_bad - sector_nr;
2203                                else {
2204                                        bad_sectors -= (sector_nr - first_bad);
2205                                        if (min_bad == 0 ||
2206                                            min_bad > bad_sectors)
2207                                                min_bad = bad_sectors;
2208                                }
2209                        }
2210                        if (sector_nr < first_bad) {
2211                                if (test_bit(WriteMostly, &rdev->flags)) {
2212                                        if (wonly < 0)
2213                                                wonly = i;
2214                                } else {
2215                                        if (disk < 0)
2216                                                disk = i;
2217                                }
2218                                bio->bi_rw = READ;
2219                                bio->bi_end_io = end_sync_read;
2220                                read_targets++;
2221                        }
2222                }
2223                if (bio->bi_end_io) {
2224                        atomic_inc(&rdev->nr_pending);
2225                        bio->bi_sector = sector_nr + rdev->data_offset;
2226                        bio->bi_bdev = rdev->bdev;
2227                        bio->bi_private = r1_bio;
2228                }
2229        }
2230        rcu_read_unlock();
2231        if (disk < 0)
2232                disk = wonly;
2233        r1_bio->read_disk = disk;
2234
2235        if (read_targets == 0 && min_bad > 0) {
2236                /* These sectors are bad on all InSync devices, so we
2237                 * need to mark them bad on all write targets
2238                 */
2239                int ok = 1;
2240                for (i = 0 ; i < conf->raid_disks ; i++)
2241                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2242                                mdk_rdev_t *rdev =
2243                                        rcu_dereference(conf->mirrors[i].rdev);
2244                                ok = rdev_set_badblocks(rdev, sector_nr,
2245                                                        min_bad, 0
2246                                        ) && ok;
2247                        }
2248                set_bit(MD_CHANGE_DEVS, &mddev->flags);
2249                *skipped = 1;
2250                put_buf(r1_bio);
2251
2252                if (!ok) {
2253                        /* Cannot record the badblocks, so need to
2254                         * abort the resync.
2255                         * If there are multiple read targets, could just
2256                         * fail the really bad ones ???
2257                         */
2258                        conf->recovery_disabled = mddev->recovery_disabled;
2259                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2260                        return 0;
2261                } else
2262                        return min_bad;
2263
2264        }
2265        if (min_bad > 0 && min_bad < good_sectors) {
2266                /* only resync enough to reach the next bad->good
2267                 * transition */
2268                good_sectors = min_bad;
2269        }
2270
2271        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2272                /* extra read targets are also write targets */
2273                write_targets += read_targets-1;
2274
2275        if (write_targets == 0 || read_targets == 0) {
2276                /* There is nowhere to write, so all non-sync
2277                 * drives must be failed - so we are finished
2278                 */
2279                sector_t rv = max_sector - sector_nr;
2280                *skipped = 1;
2281                put_buf(r1_bio);
2282                return rv;
2283        }
2284
2285        if (max_sector > mddev->resync_max)
2286                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2287        if (max_sector > sector_nr + good_sectors)
2288                max_sector = sector_nr + good_sectors;
2289        nr_sectors = 0;
2290        sync_blocks = 0;
2291        do {
2292                struct page *page;
2293                int len = PAGE_SIZE;
2294                if (sector_nr + (len>>9) > max_sector)
2295                        len = (max_sector - sector_nr) << 9;
2296                if (len == 0)
2297                        break;
2298                if (sync_blocks == 0) {
2299                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2300                                               &sync_blocks, still_degraded) &&
2301                            !conf->fullsync &&
2302                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303                                break;
2304                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2305                        if ((len >> 9) > sync_blocks)
2306                                len = sync_blocks<<9;
2307                }
2308
2309                for (i=0 ; i < conf->raid_disks; i++) {
2310                        bio = r1_bio->bios[i];
2311                        if (bio->bi_end_io) {
2312                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2313                                if (bio_add_page(bio, page, len, 0) == 0) {
2314                                        /* stop here */
2315                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2316                                        while (i > 0) {
2317                                                i--;
2318                                                bio = r1_bio->bios[i];
2319                                                if (bio->bi_end_io==NULL)
2320                                                        continue;
2321                                                /* remove last page from this bio */
2322                                                bio->bi_vcnt--;
2323                                                bio->bi_size -= len;
2324                                                bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2325                                        }
2326                                        goto bio_full;
2327                                }
2328                        }
2329                }
2330                nr_sectors += len>>9;
2331                sector_nr += len>>9;
2332                sync_blocks -= (len>>9);
2333        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2334 bio_full:
2335        r1_bio->sectors = nr_sectors;
2336
2337        /* For a user-requested sync, we read all readable devices and do a
2338         * compare
2339         */
2340        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2341                atomic_set(&r1_bio->remaining, read_targets);
2342                for (i=0; i<conf->raid_disks; i++) {
2343                        bio = r1_bio->bios[i];
2344                        if (bio->bi_end_io == end_sync_read) {
2345                                md_sync_acct(bio->bi_bdev, nr_sectors);
2346                                generic_make_request(bio);
2347                        }
2348                }
2349        } else {
2350                atomic_set(&r1_bio->remaining, 1);
2351                bio = r1_bio->bios[r1_bio->read_disk];
2352                md_sync_acct(bio->bi_bdev, nr_sectors);
2353                generic_make_request(bio);
2354
2355        }
2356        return nr_sectors;
2357}
2358
2359static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2360{
2361        if (sectors)
2362                return sectors;
2363
2364        return mddev->dev_sectors;
2365}
2366
2367static conf_t *setup_conf(mddev_t *mddev)
2368{
2369        conf_t *conf;
2370        int i;
2371        mirror_info_t *disk;
2372        mdk_rdev_t *rdev;
2373        int err = -ENOMEM;
2374
2375        conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2376        if (!conf)
2377                goto abort;
2378
2379        conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2380                                 GFP_KERNEL);
2381        if (!conf->mirrors)
2382                goto abort;
2383
2384        conf->tmppage = alloc_page(GFP_KERNEL);
2385        if (!conf->tmppage)
2386                goto abort;
2387
2388        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2389        if (!conf->poolinfo)
2390                goto abort;
2391        conf->poolinfo->raid_disks = mddev->raid_disks;
2392        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2393                                          r1bio_pool_free,
2394                                          conf->poolinfo);
2395        if (!conf->r1bio_pool)
2396                goto abort;
2397
2398        conf->poolinfo->mddev = mddev;
2399
2400        spin_lock_init(&conf->device_lock);
2401        list_for_each_entry(rdev, &mddev->disks, same_set) {
2402                int disk_idx = rdev->raid_disk;
2403                if (disk_idx >= mddev->raid_disks
2404                    || disk_idx < 0)
2405                        continue;
2406                disk = conf->mirrors + disk_idx;
2407
2408                disk->rdev = rdev;
2409
2410                disk->head_position = 0;
2411        }
2412        conf->raid_disks = mddev->raid_disks;
2413        conf->mddev = mddev;
2414        INIT_LIST_HEAD(&conf->retry_list);
2415
2416        spin_lock_init(&conf->resync_lock);
2417        init_waitqueue_head(&conf->wait_barrier);
2418
2419        bio_list_init(&conf->pending_bio_list);
2420
2421        conf->last_used = -1;
2422        for (i = 0; i < conf->raid_disks; i++) {
2423
2424                disk = conf->mirrors + i;
2425
2426                if (!disk->rdev ||
2427                    !test_bit(In_sync, &disk->rdev->flags)) {
2428                        disk->head_position = 0;
2429                        if (disk->rdev)
2430                                conf->fullsync = 1;
2431                } else if (conf->last_used < 0)
2432                        /*
2433                         * The first working device is used as a
2434                         * starting point to read balancing.
2435                         */
2436                        conf->last_used = i;
2437        }
2438
2439        err = -EIO;
2440        if (conf->last_used < 0) {
2441                printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2442                       mdname(mddev));
2443                goto abort;
2444        }
2445        err = -ENOMEM;
2446        conf->thread = md_register_thread(raid1d, mddev, NULL);
2447        if (!conf->thread) {
2448                printk(KERN_ERR
2449                       "md/raid1:%s: couldn't allocate thread\n",
2450                       mdname(mddev));
2451                goto abort;
2452        }
2453
2454        return conf;
2455
2456 abort:
2457        if (conf) {
2458                if (conf->r1bio_pool)
2459                        mempool_destroy(conf->r1bio_pool);
2460                kfree(conf->mirrors);
2461                safe_put_page(conf->tmppage);
2462                kfree(conf->poolinfo);
2463                kfree(conf);
2464        }
2465        return ERR_PTR(err);
2466}
2467
2468static int run(mddev_t *mddev)
2469{
2470        conf_t *conf;
2471        int i;
2472        mdk_rdev_t *rdev;
2473
2474        if (mddev->level != 1) {
2475                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2476                       mdname(mddev), mddev->level);
2477                return -EIO;
2478        }
2479        if (mddev->reshape_position != MaxSector) {
2480                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2481                       mdname(mddev));
2482                return -EIO;
2483        }
2484        /*
2485         * copy the already verified devices into our private RAID1
2486         * bookkeeping area. [whatever we allocate in run(),
2487         * should be freed in stop()]
2488         */
2489        if (mddev->private == NULL)
2490                conf = setup_conf(mddev);
2491        else
2492                conf = mddev->private;
2493
2494        if (IS_ERR(conf))
2495                return PTR_ERR(conf);
2496
2497        list_for_each_entry(rdev, &mddev->disks, same_set) {
2498                if (!mddev->gendisk)
2499                        continue;
2500                disk_stack_limits(mddev->gendisk, rdev->bdev,
2501                                  rdev->data_offset << 9);
2502                /* as we don't honour merge_bvec_fn, we must never risk
2503                 * violating it, so limit ->max_segments to 1 lying within
2504                 * a single page, as a one page request is never in violation.
2505                 */
2506                if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2507                        blk_queue_max_segments(mddev->queue, 1);
2508                        blk_queue_segment_boundary(mddev->queue,
2509                                                   PAGE_CACHE_SIZE - 1);
2510                }
2511        }
2512
2513        mddev->degraded = 0;
2514        for (i=0; i < conf->raid_disks; i++)
2515                if (conf->mirrors[i].rdev == NULL ||
2516                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2517                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2518                        mddev->degraded++;
2519
2520        if (conf->raid_disks - mddev->degraded == 1)
2521                mddev->recovery_cp = MaxSector;
2522
2523        if (mddev->recovery_cp != MaxSector)
2524                printk(KERN_NOTICE "md/raid1:%s: not clean"
2525                       " -- starting background reconstruction\n",
2526                       mdname(mddev));
2527        printk(KERN_INFO 
2528                "md/raid1:%s: active with %d out of %d mirrors\n",
2529                mdname(mddev), mddev->raid_disks - mddev->degraded, 
2530                mddev->raid_disks);
2531
2532        /*
2533         * Ok, everything is just fine now
2534         */
2535        mddev->thread = conf->thread;
2536        conf->thread = NULL;
2537        mddev->private = conf;
2538
2539        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2540
2541        if (mddev->queue) {
2542                mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2543                mddev->queue->backing_dev_info.congested_data = mddev;
2544        }
2545        return md_integrity_register(mddev);
2546}
2547
2548static int stop(mddev_t *mddev)
2549{
2550        conf_t *conf = mddev->private;
2551        struct bitmap *bitmap = mddev->bitmap;
2552
2553        /* wait for behind writes to complete */
2554        if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2555                printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2556                       mdname(mddev));
2557                /* need to kick something here to make sure I/O goes? */
2558                wait_event(bitmap->behind_wait,
2559                           atomic_read(&bitmap->behind_writes) == 0);
2560        }
2561
2562        raise_barrier(conf);
2563        lower_barrier(conf);
2564
2565        md_unregister_thread(&mddev->thread);
2566        if (conf->r1bio_pool)
2567                mempool_destroy(conf->r1bio_pool);
2568        kfree(conf->mirrors);
2569        kfree(conf->poolinfo);
2570        kfree(conf);
2571        mddev->private = NULL;
2572        return 0;
2573}
2574
2575static int raid1_resize(mddev_t *mddev, sector_t sectors)
2576{
2577        /* no resync is happening, and there is enough space
2578         * on all devices, so we can resize.
2579         * We need to make sure resync covers any new space.
2580         * If the array is shrinking we should possibly wait until
2581         * any io in the removed space completes, but it hardly seems
2582         * worth it.
2583         */
2584        md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2585        if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2586                return -EINVAL;
2587        set_capacity(mddev->gendisk, mddev->array_sectors);
2588        revalidate_disk(mddev->gendisk);
2589        if (sectors > mddev->dev_sectors &&
2590            mddev->recovery_cp > mddev->dev_sectors) {
2591                mddev->recovery_cp = mddev->dev_sectors;
2592                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2593        }
2594        mddev->dev_sectors = sectors;
2595        mddev->resync_max_sectors = sectors;
2596        return 0;
2597}
2598
2599static int raid1_reshape(mddev_t *mddev)
2600{
2601        /* We need to:
2602         * 1/ resize the r1bio_pool
2603         * 2/ resize conf->mirrors
2604         *
2605         * We allocate a new r1bio_pool if we can.
2606         * Then raise a device barrier and wait until all IO stops.
2607         * Then resize conf->mirrors and swap in the new r1bio pool.
2608         *
2609         * At the same time, we "pack" the devices so that all the missing
2610         * devices have the higher raid_disk numbers.
2611         */
2612        mempool_t *newpool, *oldpool;
2613        struct pool_info *newpoolinfo;
2614        mirror_info_t *newmirrors;
2615        conf_t *conf = mddev->private;
2616        int cnt, raid_disks;
2617        unsigned long flags;
2618        int d, d2, err;
2619
2620        /* Cannot change chunk_size, layout, or level */
2621        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2622            mddev->layout != mddev->new_layout ||
2623            mddev->level != mddev->new_level) {
2624                mddev->new_chunk_sectors = mddev->chunk_sectors;
2625                mddev->new_layout = mddev->layout;
2626                mddev->new_level = mddev->level;
2627                return -EINVAL;
2628        }
2629
2630        err = md_allow_write(mddev);
2631        if (err)
2632                return err;
2633
2634        raid_disks = mddev->raid_disks + mddev->delta_disks;
2635
2636        if (raid_disks < conf->raid_disks) {
2637                cnt=0;
2638                for (d= 0; d < conf->raid_disks; d++)
2639                        if (conf->mirrors[d].rdev)
2640                                cnt++;
2641                if (cnt > raid_disks)
2642                        return -EBUSY;
2643        }
2644
2645        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2646        if (!newpoolinfo)
2647                return -ENOMEM;
2648        newpoolinfo->mddev = mddev;
2649        newpoolinfo->raid_disks = raid_disks;
2650
2651        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652                                 r1bio_pool_free, newpoolinfo);
2653        if (!newpool) {
2654                kfree(newpoolinfo);
2655                return -ENOMEM;
2656        }
2657        newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2658        if (!newmirrors) {
2659                kfree(newpoolinfo);
2660                mempool_destroy(newpool);
2661                return -ENOMEM;
2662        }
2663
2664        raise_barrier(conf);
2665
2666        /* ok, everything is stopped */
2667        oldpool = conf->r1bio_pool;
2668        conf->r1bio_pool = newpool;
2669
2670        for (d = d2 = 0; d < conf->raid_disks; d++) {
2671                mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2672                if (rdev && rdev->raid_disk != d2) {
2673                        sysfs_unlink_rdev(mddev, rdev);
2674                        rdev->raid_disk = d2;
2675                        sysfs_unlink_rdev(mddev, rdev);
2676                        if (sysfs_link_rdev(mddev, rdev))
2677                                printk(KERN_WARNING
2678                                       "md/raid1:%s: cannot register rd%d\n",
2679                                       mdname(mddev), rdev->raid_disk);
2680                }
2681                if (rdev)
2682                        newmirrors[d2++].rdev = rdev;
2683        }
2684        kfree(conf->mirrors);
2685        conf->mirrors = newmirrors;
2686        kfree(conf->poolinfo);
2687        conf->poolinfo = newpoolinfo;
2688
2689        spin_lock_irqsave(&conf->device_lock, flags);
2690        mddev->degraded += (raid_disks - conf->raid_disks);
2691        spin_unlock_irqrestore(&conf->device_lock, flags);
2692        conf->raid_disks = mddev->raid_disks = raid_disks;
2693        mddev->delta_disks = 0;
2694
2695        conf->last_used = 0; /* just make sure it is in-range */
2696        lower_barrier(conf);
2697
2698        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699        md_wakeup_thread(mddev->thread);
2700
2701        mempool_destroy(oldpool);
2702        return 0;
2703}
2704
2705static void raid1_quiesce(mddev_t *mddev, int state)
2706{
2707        conf_t *conf = mddev->private;
2708
2709        switch(state) {
2710        case 2: /* wake for suspend */
2711                wake_up(&conf->wait_barrier);
2712                break;
2713        case 1:
2714                raise_barrier(conf);
2715                break;
2716        case 0:
2717                lower_barrier(conf);
2718                break;
2719        }
2720}
2721
2722static void *raid1_takeover(mddev_t *mddev)
2723{
2724        /* raid1 can take over:
2725         *  raid5 with 2 devices, any layout or chunk size
2726         */
2727        if (mddev->level == 5 && mddev->raid_disks == 2) {
2728                conf_t *conf;
2729                mddev->new_level = 1;
2730                mddev->new_layout = 0;
2731                mddev->new_chunk_sectors = 0;
2732                conf = setup_conf(mddev);
2733                if (!IS_ERR(conf))
2734                        conf->barrier = 1;
2735                return conf;
2736        }
2737        return ERR_PTR(-EINVAL);
2738}
2739
2740static struct mdk_personality raid1_personality =
2741{
2742        .name           = "raid1",
2743        .level          = 1,
2744        .owner          = THIS_MODULE,
2745        .make_request   = make_request,
2746        .run            = run,
2747        .stop           = stop,
2748        .status         = status,
2749        .error_handler  = error,
2750        .hot_add_disk   = raid1_add_disk,
2751        .hot_remove_disk= raid1_remove_disk,
2752        .spare_active   = raid1_spare_active,
2753        .sync_request   = sync_request,
2754        .resize         = raid1_resize,
2755        .size           = raid1_size,
2756        .check_reshape  = raid1_reshape,
2757        .quiesce        = raid1_quiesce,
2758        .takeover       = raid1_takeover,
2759};
2760
2761static int __init raid_init(void)
2762{
2763        return register_md_personality(&raid1_personality);
2764}
2765
2766static void raid_exit(void)
2767{
2768        unregister_md_personality(&raid1_personality);
2769}
2770
2771module_init(raid_init);
2772module_exit(raid_exit);
2773MODULE_LICENSE("GPL");
2774MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776MODULE_ALIAS("md-raid1");
2777MODULE_ALIAS("md-level-1");
2778